1
|
Magers B, Usmani M, Brumfield KD, Huq A, Colwell RR, Jutla AS. Assessment of water scarcity as a risk factor for cholera outbreaks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 978:179412. [PMID: 40250229 DOI: 10.1016/j.scitotenv.2025.179412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/04/2025] [Accepted: 04/09/2025] [Indexed: 04/20/2025]
Abstract
INTRODUCTION Increasing aridity and incidence of droughts pose a significant threat to human health, primarily in exacerbating water scarcity, and is projected to become more frequent and severe as a result of related environmental changes in many regions globally. Concomitantly, water scarcity will force populations to utilize potentially contaminated water sources, hence increasing exposure to waterborne diseases, notably cholera. Proliferation of Vibrio cholerae, causative agent of cholera, is driven by environmental factors. Notably, temperature and precipitation have been employed in providing predictive awareness of cholera, allowing early warning and mitigation. The impact of droughts on incidence and spread of cholera is less understood. METHODS This study aimed to quantify relationships among temperature, precipitation, and droughts as a basis for establishing the connection of environmental parameters and outbreaks of cholera. Thirteen cholera outbreaks between 2003 and 2023 in four African countries (Ethiopia, Kenya, Nigeria, and Senegal) were assessed using odds ratio and k-means clustering analysis. RESULTS Cholera outbreaks were 3.07 (95 % CI: [0.95, 9.88]) times more likely when drought conditions (negative precipitation anomalies, positive temperature anomalies, and negative Standardized Precipitation-Evapotranspiration Index) were present, compared to their absence. When excess rainfall was also considered, the odds ratio increased to 3.50 (95 % CI: [1.03, 11.90]). Complementary evidence obtained using k-means clustering analysis supported the conclusion that outbreaks of cholera were common during drought conditions. CONCLUSIONS Considering the last few decades with increased severity and frequency of droughts in cholera-impacted regions, climate projections indicate the threat of cholera outbreaks will continue, especially noting increasing reports of cholera globally. Hence, predictive intelligence systems for rapid risk assessment, with respect to climate, drought, and human health, are warranted.
Collapse
Affiliation(s)
- Bailey Magers
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Moiz Usmani
- Civil, Construction and Environmental Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kyle D Brumfield
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA; University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, USA
| | - Anwar Huq
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
| | - Rita R Colwell
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA; University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, USA
| | - Antarpreet S Jutla
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
2
|
Kang DY, Islam MT, Bouba RW, Wadoubé Z, Djaouda M, Boucher YF. Non-O1/O139 environmental Vibrio cholerae from Northern Cameroon reveals potential intra-/inter-continental transmissions. PLoS Negl Trop Dis 2025; 19:e0012890. [PMID: 40179128 PMCID: PMC12037076 DOI: 10.1371/journal.pntd.0012890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 04/28/2025] [Accepted: 02/05/2025] [Indexed: 04/05/2025] Open
Abstract
Northern Cameroon in Central Africa has experienced recurring cholera outbreaks despite ongoing efforts to control the disease. While most cholera studies focus on O1 pandemic Vibrio cholerae strains, non-O1/O139 strains are increasingly recognized for their infection potential and dynamic relationships with O1 strains during outbreaks. Here we explore the genetic diversity and phylogenetic relationships of non-O1/O139 V. cholerae (NOVC) isolated from environmental water sources in Northern Cameroon. These NOVC strains show significant genetic diversity and virulence potential. They are closely related to environmental strains from Kenya and clinical strains from Argentina and Haiti, suggesting transmissions across countries and continents, likely facilitated by human carriers. The highly conserved tcpA gene found in some strains from Cameroon is closely related to the tcpA O1 Classical type, suggesting direct or indirect genetic interactions between these environmental NOVC strains and pandemic strains. Our findings underscore the importance of environmental surveillance and further studies of NOVC strains to better understand cholera outbreaks.
Collapse
Affiliation(s)
- Deborah Yebon Kang
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), National University of Singapore, Singapore
| | - Mohammad Tarequl Islam
- Infectious Diseases Division, International Centre for Diarrheal Disease Research,Dhaka, Bangladesh
| | - Roméo Wakayansam Bouba
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua, Cameroon
| | - Zoua Wadoubé
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua, Cameroon
| | - Moussa Djaouda
- Department of Life and Earth Sciences, University of Maroua, Maroua, Cameroon
- Department of Technical and Fundamental Studies, University of Garoua, Garoua, Cameroon
| | - Yann Felix Boucher
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), National University of Singapore, Singapore
- Saw Swee Hock School of Public Health and National University Hospital System, National University of Singapore, Singapore
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore and National University Hospital System, Singapore
| |
Collapse
|
3
|
Siamalube B, Ehinmitan E. Unmasking the Neglected Cholera Outbreaks in Sub-Saharan Africa. Int J Public Health 2025; 69:1607990. [PMID: 39839081 PMCID: PMC11745870 DOI: 10.3389/ijph.2024.1607990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Affiliation(s)
- Beenzu Siamalube
- Department of Molecular Biology and Biotechnology, Pan African University Institute of Basic Sciences, Technology and Innovation, Nairobi, Kenya
| | | |
Collapse
|
4
|
Bitew A, Gelaw A, Wondimeneh Y, Ayenew Z, Getie M, Tafere W, Gebre-Eyesus T, Yimer M, Beyene GT, Bitew M, Abayneh T, Abebe M, Mihret A, Yeshitela B, Teferi M, Gelaw B. Prevalence and antimicrobial susceptibility pattern of Vibrio cholerae isolates from cholera outbreak sites in Ethiopia. BMC Public Health 2024; 24:2071. [PMID: 39085873 PMCID: PMC11292863 DOI: 10.1186/s12889-024-19621-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Cholera is an acute infectious disease caused by ingestion of contaminated food or water with Vibrio cholerae. Cholera remains a global threat to public health and an indicator of inequity and lack of social development. The aim of this study was to assess the prevalence and antimicrobial susceptibility pattern of V. cholerae from cholera outbreak sites in Ethiopia. METHODS Across-sectional study was conducted from May 2022 to October 2023 across different regions in Ethiopia: Oromia National Regional State, Amhara National Regional State and Addis Ababa City Administration. A total of 415 fecal samples were collected from the three regions. Two milliliter fecal samples were collected from each study participants. The collected samples were cultured on Blood Agar, MacConkey Agar and Thiosulfate Citrate Bile Salt Sucrose Agar. A series of biochemical tests Oxidase test, String test, Motility, Indole, Citrate, Gas production, H2S production, Urease test were used to identify V. cholerae species. Both polyvalent and monovalent antisera were used for agglutination tests to identify and differentiate V. cholerae serogroup and serotypes. In addition, Kirby-Bauer Disk diffusion antibiotic susceptibility test method was done. Data were registered in epi-enfo version 7 and analyzed by Statistical Package for Social Science version 25. Descriptive statistics were used to determine the prevalence of Vibrio cholerae. Logistic regression model was fitted and p-value < 0.05 was considered as statically significant. RESULTS The prevalence of V. cholerae in the fecal samples was 30.1%. Majority of the isolates were from Oromia National Regional State 43.2% (n = 54) followed by Amhara National Regional State 31.2% (n = 39) and Addis Ababa City Administration 25.6% (n = 32). Most of the V. cholerae isolates were O1 serogroups 90.4% (n = 113) and Ogawa serotypes 86.4% (n = 108). Majority of the isolates were susceptible to ciprofloxacin 100% (n = 125), tetracycline 72% (n = 90) and gentamycin 68% (n = 85). More than half of the isolates were resistant to trimethoprim-sulfamethoxazole 62.4% (n = 78) and ampicillin 56.8% (n = 71). In this study, participants unable to read and write were about four times more at risk for V. cholerae infection (AOR: 3.8, 95% CI: 1.07-13.33). In addition, consumption of river water were about three times more at risk for V. cholerae infection (AOR: 2.8, 95% CI: 1.08-7.08). CONCLUSION our study revealed a high prevalence of V. cholerae from fecal samples. The predominant serogroups and serotypes were O1 and Ogawa, respectively. Fortunately, the isolates showed susceptible to most tested antibiotics. Drinking water from river were the identified associated risk factor for V. cholerae infection. Protecting the community from drinking of river water and provision of safe and treated water could reduce cholera outbreaks in the study areas.
Collapse
Affiliation(s)
- Abebaw Bitew
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.
- Department of Medical Microbiology, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia.
| | - Aschalew Gelaw
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Yitayih Wondimeneh
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Zeleke Ayenew
- Department of Bacteriology, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Michael Getie
- Department of Medical Microbiology, Amhara National Regional State Public Health Institute, Bahir Dar, Ethiopia
| | - Wudu Tafere
- Department of Medical Microbiology, Amhara National Regional State Public Health Institute, Bahir Dar, Ethiopia
| | - Tsehaynesh Gebre-Eyesus
- Department of Medical Microbiology, Amhara National Regional State Public Health Institute, Bahir Dar, Ethiopia
| | - Marechign Yimer
- Bacterial and Viral Disease Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Getachew Tesfaye Beyene
- Bacterial and Viral Disease Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Molalegne Bitew
- Bio and Emerging Technology Institute of Ethiopia, Addis Ababa, Ethiopia
| | | | - Markos Abebe
- Bacterial and Viral Disease Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Adane Mihret
- Bacterial and Viral Disease Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Biruk Yeshitela
- Bacterial and Viral Disease Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Mekonnen Teferi
- Bacterial and Viral Disease Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Baye Gelaw
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
5
|
Brumfield KD, Usmani M, Santiago S, Singh K, Gangwar M, Hasan NA, Netherland M, Deliz K, Angelini C, Beatty NL, Huq A, Jutla AS, Colwell RR. Genomic diversity of Vibrio spp. and metagenomic analysis of pathogens in Florida Gulf coastal waters following Hurricane Ian. mBio 2023; 14:e0147623. [PMID: 37931127 PMCID: PMC10746180 DOI: 10.1128/mbio.01476-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/30/2023] [Indexed: 11/08/2023] Open
Abstract
IMPORTANCE Evidence suggests warming temperatures are associated with the spread of potentially pathogenic Vibrio spp. and the emergence of human disease globally. Following Hurricane Ian, the State of Florida reported a sharp increase in the number of reported Vibrio spp. infections and deaths. Hence, monitoring of pathogens, including vibrios, and environmental parameters influencing their occurrence is critical to public health. Here, DNA sequencing was used to investigate the genomic diversity of Vibrio parahaemolyticus and Vibrio vulnificus, both potential human pathogens, in Florida coastal waters post Hurricane Ian, in October 2022. Additionally, the microbial community of water samples was profiled to detect the presence of Vibrio spp. and other microorganisms (bacteria, fungi, protists, and viruses) present in the samples. Long-term environmental data analysis showed changes in environmental parameters during and after Ian were optimal for the growth of Vibrio spp. and related pathogens. Collectively, results will be used to develop predictive risk models during climate change.
Collapse
Affiliation(s)
- Kyle D. Brumfield
- Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, Maryland, USA
| | - Moiz Usmani
- Department of Environmental Engineering Sciences, Geohealth and Hydrology Laboratory, University of Florida, Gainesville, Florida, USA
| | - Sanneri Santiago
- Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, Florida, USA
| | - Komalpreet Singh
- Department of Environmental Engineering Sciences, Geohealth and Hydrology Laboratory, University of Florida, Gainesville, Florida, USA
| | - Mayank Gangwar
- Department of Environmental Engineering Sciences, Geohealth and Hydrology Laboratory, University of Florida, Gainesville, Florida, USA
| | | | | | - Katherine Deliz
- Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, Florida, USA
| | - Christine Angelini
- Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, Florida, USA
| | - Norman L. Beatty
- Department of Medicine, Division of Infectious Diseases and Global Medicine, University of Florida, Gainesville, Florida, USA
| | - Anwar Huq
- Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Antarpreet S. Jutla
- Department of Environmental Engineering Sciences, Geohealth and Hydrology Laboratory, University of Florida, Gainesville, Florida, USA
| | - Rita R. Colwell
- Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
6
|
Jutla A, Usmani M, Brumfield KD, Singh K, McBean F, Potter A, Gutierrez A, Gama S, Huq A, Colwell RR. Anticipatory decision-making for cholera in Malawi. mBio 2023; 14:e0052923. [PMID: 37962395 PMCID: PMC10746182 DOI: 10.1128/mbio.00529-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023] Open
Abstract
Climate change raises an old disease to a new level of public health threat. The causative agent, Vibrio cholerae, native to aquatic ecosystems, is influenced by climate and weather processes. The risk of cholera is elevated in vulnerable populations lacking access to safe water and sanitation infrastructure. Predictive intelligence, employing mathematical algorithms that integrate earth observations and heuristics derived from microbiological, sociological, and weather data, can provide anticipatory decision-making capabilities to reduce the burden of cholera and save human lives. An example offered here is the recent outbreak of cholera in Malawi, predicted in advance by such algorithms.
Collapse
Affiliation(s)
- Antarpreet Jutla
- Department of Environmental Engineering Sciences, GeoHealth and Hydrology Laboratory, University of Florida, Gainesville, Florida, USA
| | - Moiz Usmani
- Department of Environmental Engineering Sciences, GeoHealth and Hydrology Laboratory, University of Florida, Gainesville, Florida, USA
| | - Kyle D. Brumfield
- Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, Maryland, USA
| | - Komalpreet Singh
- Department of Environmental Engineering Sciences, GeoHealth and Hydrology Laboratory, University of Florida, Gainesville, Florida, USA
| | - Fergus McBean
- Foreign, Commonwealth & Development Office, London, United Kingdom
| | - Amy Potter
- Foreign, Commonwealth & Development Office, London, United Kingdom
| | - Angelica Gutierrez
- Office of Water Prediction, National Oceanic and Atmospheric Administration (NOAA), Silver Spring, Maryland, USA
| | - Samuel Gama
- Department of Disaster Management Affairs, Office of the President and Cabinet, Lilongwe, Malawi
| | - Anwar Huq
- Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, Maryland, USA
| | - Rita R. Colwell
- Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
7
|
Li Y, Yang KD, Kong DC, Ye JF. Advances in phage display based nano immunosensors for cholera toxin. Front Immunol 2023; 14:1224397. [PMID: 37781379 PMCID: PMC10534012 DOI: 10.3389/fimmu.2023.1224397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023] Open
Abstract
Cholera, a persistent global public health concern, continues to cause outbreaks in approximately 30 countries and territories this year. The imperative to safeguard water sources and food from Vibrio cholerae, the causative pathogen, remains urgent. The bacterium is mainly disseminated via ingestion of contaminated water or food. Despite the plate method's gold standard status for detection, its time-consuming nature, taking several days to provide results, remains a challenge. The emergence of novel virulence serotypes raises public health concerns, potentially compromising existing detection methods. Hence, exploiting Vibrio cholerae toxin testing holds promise due to its inherent stability. Immunobiosensors, leveraging antibody specificity and sensitivity, present formidable tools for detecting diverse small molecules, encompassing drugs, hormones, toxins, and environmental pollutants. This review explores cholera toxin detection, highlighting phage display-based nano immunosensors' potential. Engineered bacteriophages exhibit exceptional cholera toxin affinity, through specific antibody fragments or mimotopes, enabling precise quantification. This innovative approach promises to reshape cholera toxin detection, offering an alternative to animal-derived methods. Harnessing engineered bacteriophages aligns with ethical detection and emphasizes sensitivity and accuracy, a pivotal stride in the evolution of detection strategies. This review primarily introduces recent advancements in phage display-based nano immunosensors for cholera toxin, encompassing technical aspects, current challenges, and future prospects.
Collapse
Affiliation(s)
- Yang Li
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
- School of Nursing, Jilin University, Changchun, China
| | - Kai-di Yang
- School of Nursing, Jilin University, Changchun, China
| | - De-cai Kong
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jun-feng Ye
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
8
|
Shackleton D, Economou T, Memon FA, Chen A, Dutta S, Kanungo S, Deb A. Seasonality of cholera in Kolkata and the influence of climate. BMC Infect Dis 2023; 23:572. [PMID: 37660078 PMCID: PMC10474634 DOI: 10.1186/s12879-023-08532-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/11/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND Cholera in Kolkata remains endemic and the Indian city is burdened with a high number of annual cases. Climate change is widely considered to exacerbate cholera, however the precise relationship between climate and cholera is highly heterogeneous in space and considerable variation can be observed even within the Indian subcontinent. To date, relatively few studies have been conducted regarding the influence of climate on cholera in Kolkata. METHODS We considered 21 years of confirmed cholera cases from the Infectious Disease Hospital in Kolkata during the period of 1999-2019. We used Generalised Additive Modelling (GAM) to extract the non-linear relationship between cholera and different climatic factors; temperature, rainfall and sea surface temperature (SST). Peak associated lag times were identified using cross-correlation lag analysis. RESULTS Our findings revealed a bi-annual pattern of cholera cases with two peaks coinciding with the increase in temperature in summer and the onset of monsoon rains. Variables selected as explanatory variables in the GAM model were temperature and rainfall. Temperature was the only significant factor associated with summer cholera (mean temperature of 30.3 °C associated with RR of 3.8) while rainfall was found to be the main driver of monsoon cholera (550 mm total monthly rainfall associated with RR of 3.38). Lag time analysis revealed that the association between temperature and cholera cases in the summer had a longer peak lag time compared to that between rainfall and cholera during the monsoon. We propose several mechanisms by which these relationships are mediated. CONCLUSIONS Kolkata exhibits a dual-peak phenomenon with independent mediating factors. We suggest that the summer peak is due to increased bacterial concentration in urban water bodies, while the monsoon peak is driven by contaminated flood waters. Our results underscore the potential utility of preventative strategies tailored to these seasonal and climatic patterns, including efforts to reduce direct contact with urban water bodies in summer and to protect residents from flood waters during monsoon.
Collapse
Affiliation(s)
- Debbie Shackleton
- College of Engineering, Mathematics, and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK.
| | - Theo Economou
- Department of Mathematics, University of Exeter, Exeter, UK
- Climate and Atmosphere Research Centre, The Cyprus Institute, Nicosia, Cyprus
| | - Fayyaz Ali Memon
- College of Engineering, Mathematics, and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK
| | - Albert Chen
- College of Engineering, Mathematics, and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK
| | - Shanta Dutta
- National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Suman Kanungo
- National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Alok Deb
- National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
9
|
Gamża AM, Hagenaars TJ, Koene MGJ, de Jong MCM. Combining a parsimonious mathematical model with infection data from tailor-made experiments to understand environmental transmission. Sci Rep 2023; 13:12986. [PMID: 37563156 PMCID: PMC10415373 DOI: 10.1038/s41598-023-38817-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/15/2023] [Indexed: 08/12/2023] Open
Abstract
Although most infections are transmitted through the environment, the processes underlying the environmental stage of transmission are still poorly understood for most systems. Improved understanding of the environmental transmission dynamics is important for effective non-pharmaceutical intervention strategies. To study the mechanisms underlying environmental transmission we formulated a parsimonious modelling framework including hypothesised mechanisms of pathogen dispersion and decay. To calibrate and validate the model, we conducted a series of experiments studying distance-dependent transmission of Campylobacter jejuni in broilers. We obtained informative simultaneous estimates for all three model parameters: the parameter of C. jejuni inactivation, the diffusion coefficient describing pathogen dispersion, and the transmission rate parameter. The time and distance dependence of transmission in the fitted model is quantitatively consistent with marked spatiotemporal patterns in the experimental observations. These results, for C. jejuni in broilers, show that the application of our modelling framework to suitable transmission data can provide mechanistic insight in environmental pathogen transmission.
Collapse
Affiliation(s)
- Anna M Gamża
- Quantitative Veterinary Epidemiology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands.
- Wageningen Bioveterinary Research, Wageningen University and Research, 8221 RA, Lelystad, The Netherlands.
| | - Thomas J Hagenaars
- Wageningen Bioveterinary Research, Wageningen University and Research, 8221 RA, Lelystad, The Netherlands.
| | - Miriam G J Koene
- Wageningen Bioveterinary Research, Wageningen University and Research, 8221 RA, Lelystad, The Netherlands
| | - Mart C M de Jong
- Quantitative Veterinary Epidemiology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
10
|
Hassan M, Mohd Ali MR, Zamri HF, Nor Amdan NA, Azmai MNA, Maniam S, Mohamed Alipiah N, Hashim R. Distribution, Prevalence, and Antibiotic Susceptibility Profiles of Infectious Noncholera Vibrio Species in Malaysia. J Trop Med 2023; 2023:2716789. [PMID: 37274080 PMCID: PMC10238136 DOI: 10.1155/2023/2716789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/05/2023] [Accepted: 05/06/2023] [Indexed: 06/06/2023] Open
Abstract
Background The noncholera Vibrio spp. which cause vibriosis are abundantly found in our water ecosystem. These bacteria could negatively affect both humans and animals. To date, there is a paucity of information available on the existence and pathogenicity of this particular noncholera Vibrio spp. in Malaysia in comparison to their counterpart, Vibrio cholera. Methods In this study, we extracted retrospective data from Malaysian surveillance database. Analysis was carried out using WHONET software focusing noncholera Vibrio spp. including Vibrio parahaemolyticus, Vibrio vulnificus, Vibrio fluvialis, Vibrio alginolyticus, Vibrio hollisae (Grimontia hollisae), Vibrio mimicus, Vibrio metschnikovii, and Vibrio furnissii. Results Here, we report the first distribution and prevalence of these species isolated in Malaysia together with the antibiotic sensitivity profile based on the species. We found that V. parahaemolyticus is the predominant species isolated in Malaysia. Noticeably, across the study period, V. fluvialis is becoming more prevalent, as compared to V. parahaemolyticus. In addition, this study also reports the first isolation of pathogenic V. furnissii from stool in Malaysia. Conclusion These data represent an important step toward understanding the potential emergence of noncholera Vibrio spp. outbreaks.
Collapse
Affiliation(s)
- Murnihayati Hassan
- Bacteriology Unit, Infectious Disease Research Center (IDRC), Institute for Medical Research (IMR), National Institutes of Health (NIH) Complex, Ministry of Health Malaysia, Setia Alam, 40170 Shah Alam, Kuala Lumpur, Selangor, Malaysia
| | - Mohammad Ridhuan Mohd Ali
- Bacteriology Unit, Infectious Disease Research Center (IDRC), Institute for Medical Research (IMR), National Institutes of Health (NIH) Complex, Ministry of Health Malaysia, Setia Alam, 40170 Shah Alam, Kuala Lumpur, Selangor, Malaysia
| | - Hana Farizah Zamri
- Bacteriology Unit, Infectious Disease Research Center (IDRC), Institute for Medical Research (IMR), National Institutes of Health (NIH) Complex, Ministry of Health Malaysia, Setia Alam, 40170 Shah Alam, Kuala Lumpur, Selangor, Malaysia
| | - Nur Asyura Nor Amdan
- Bacteriology Unit, Infectious Disease Research Center (IDRC), Institute for Medical Research (IMR), National Institutes of Health (NIH) Complex, Ministry of Health Malaysia, Setia Alam, 40170 Shah Alam, Kuala Lumpur, Selangor, Malaysia
| | - Mohammad Noor Amal Azmai
- Aquatic Animal Health & Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Saraswathiy Maniam
- Bacteriology Unit, Infectious Disease Research Center (IDRC), Institute for Medical Research (IMR), National Institutes of Health (NIH) Complex, Ministry of Health Malaysia, Setia Alam, 40170 Shah Alam, Kuala Lumpur, Selangor, Malaysia
| | - Norfarrah Mohamed Alipiah
- Aquatic Animal Health & Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Rohaidah Hashim
- Bacteriology Unit, Infectious Disease Research Center (IDRC), Institute for Medical Research (IMR), National Institutes of Health (NIH) Complex, Ministry of Health Malaysia, Setia Alam, 40170 Shah Alam, Kuala Lumpur, Selangor, Malaysia
| |
Collapse
|
11
|
Combating cholera by building predictive capabilities for pathogenic Vibrio cholerae in Yemen. Sci Rep 2023; 13:2255. [PMID: 36755108 PMCID: PMC9908932 DOI: 10.1038/s41598-022-22946-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/21/2022] [Indexed: 02/10/2023] Open
Abstract
Cholera remains a global public health threat in regions where social vulnerabilities intersect with climate and weather processes that impact infectious Vibrio cholerae. While access to safe drinking water and sanitation facilities limit cholera outbreaks, sheer cost of building such infrastructure limits the ability to safeguard the population. Here, using Yemen as an example where cholera outbreak was reported in 2016, we show how predictive abilities for forecasting risk, employing sociodemographical, microbiological, and climate information of cholera, can aid in combating disease outbreak. An epidemiological analysis using Bradford Hill Criteria was employed in near-real-time to understand a predictive model's outputs and cholera cases in Yemen. We note that the model predicted cholera risk at least four weeks in advance for all governorates of Yemen with overall 72% accuracy (varies with the year). We argue the development of anticipatory decision-making frameworks for climate modulated diseases to design intervention activities and limit exposure of pathogens preemptively.
Collapse
|
12
|
Usmani M, Brumfield KD, Magers BM, Huq A, Barciela R, Nguyen TH, Colwell RR, Jutla A. Predictive Intelligence for Cholera in Ukraine? GEOHEALTH 2022; 6:e2022GH000681. [PMID: 36185317 PMCID: PMC9514009 DOI: 10.1029/2022gh000681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 06/16/2023]
Abstract
Cholera, an ancient waterborne diarrheal disease, remains a threat to public health, especially when climate/weather processes, microbiological parameters, and sociological determinants intersect with population vulnerabilities of loss of access to safe drinking water and sanitation infrastructure. The ongoing war in Ukraine has either damaged or severely crippled civil infrastructure, following which the human population is at risk of health disasters. This editorial highlights a perspective on using predictive intelligence to combat potential (and perhaps impending) cholera outbreaks in various regions of Ukraine. Reliable and judicious use of existing earth observations inspired mathematical algorithms integrating heuristic understanding of microbiological, sociological, and weather parameters have the potential to save or reduce the disease burden.
Collapse
Affiliation(s)
- Moiz Usmani
- GeoHealth and Hydrology LaboratoryDepartment of Environmental Engineering SciencesUniversity of FloridaGainesvilleFLUSA
| | - Kyle D. Brumfield
- Maryland Pathogen Research InstituteUniversity of MarylandCollege ParkMDUSA
- University of Maryland Institute for Advanced Computer StudiesUniversity of MarylandCollege ParkMDUSA
| | - Bailey M. Magers
- GeoHealth and Hydrology LaboratoryDepartment of Environmental Engineering SciencesUniversity of FloridaGainesvilleFLUSA
| | - Anwar Huq
- Maryland Pathogen Research InstituteUniversity of MarylandCollege ParkMDUSA
- University of Maryland Institute for Advanced Computer StudiesUniversity of MarylandCollege ParkMDUSA
| | | | - Thanh H. Nguyen
- Department of Civil and Environmental EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Rita R. Colwell
- Maryland Pathogen Research InstituteUniversity of MarylandCollege ParkMDUSA
- University of Maryland Institute for Advanced Computer StudiesUniversity of MarylandCollege ParkMDUSA
| | - Antarpreet Jutla
- GeoHealth and Hydrology LaboratoryDepartment of Environmental Engineering SciencesUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
13
|
Major Stressors Favoring Cholera Trigger and Dissemination in Guinea-Bissau (West Africa). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111296. [PMID: 34769812 PMCID: PMC8583644 DOI: 10.3390/ijerph182111296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/15/2021] [Accepted: 10/23/2021] [Indexed: 11/17/2022]
Abstract
Cholera remains a heavy burden worldwide, especially in Sub-Saharan African countries, which account for the majority of the reported cases on the continent. In this study, a 27-year retrospective analysis of cholera epidemics in Guinea-Bissau was performed in order to highlight major stressors fueling the trigger and dissemination of the disease. Although the role of environmental factors did not always have the same degree of importance for the onset of epidemics, a cholera seasonal pattern was clearly perceived, with most of the reported cases occurring during the wet season. The generated theoretical hypothesis indicated rainfall above climatological average, associated with a lack of WASH (water, sanitation and hygiene) infrastructure, and the occurrence of concomitant epidemics in neighboring countries as the key indicators for optimal conditions for cholera to thrive in Guinea-Bissau. Warmer air temperature, the increase in sea surface temperature, and the decrease in salinity in the coastal areas may also contribute to the emergence and/or aggravation of cholera events. Prediction of the conditions favorable for cholera growth and identification of risk pathways will allow the timely allocation of resources, and support the development of alert tools and mitigation strategies.
Collapse
|