1
|
Zhao J, Wang D, Wang C, Lin Y, Ye H, Maung AT, El-Telbany M, Masuda Y, Honjoh KI, Miyamoto T, Xiao F. Biocontrol of Salmonella Schwarzengrund and Escherichia coli O157:H7 planktonic and biofilm cells via combined treatment of polyvalent phage and sodium hexametaphosphate on foods and food contact surfaces. Food Microbiol 2025; 126:104680. [PMID: 39638444 DOI: 10.1016/j.fm.2024.104680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
Salmonella Schwarzengrund and Escherichia coli O157:H7 are ones of foodborne pathogens that can produce biofilms and cause serious food poisoning. Bacteriophages are an emerging antibacterial strategy used to prevent foodborne pathogen contamination in the food industry. In this study, the combined antibacterial effects of the polyvalent phage PS5 and sodium hexametaphosphate (SHMP) against both pathogens were investigated to evaluate their effectiveness in food applications. The combined treatment with phage PS5 (multiplicity of infection, MOI = 10) and 1.0% SHMP inhibited the growth of S. Schwarzengrund and E. coli O157:H7, and the viable counts of both decreased by more than 2.45 log CFU/mL. In KAGOME vegetable and fruit mixed juice, the combined treatment with PS5 (MOI = 100) and 1.0% SHMP also resulted in significant pathogen inactivation at 4 °C after 24 h. PS5 (1010 PFU/mL) and 1.0% SHMP showed stronger synergistic effects on biofilm formation and the removal of established biofilms on polystyrene plates. Additionally, we evaluated their combined effects on reducing the biofilms of S. Schwarzengrund and E. coli O157:H7 on glass tubes and cabbage leaves at 4 °C. These findings indicate the utility of this approach in the biocontrol of the planktonic and biofilm cells of S. Schwarzengrund and E. coli O157:H7 on foods and food contact surfaces.
Collapse
Affiliation(s)
- Junxin Zhao
- Food and Pharmacy College, Xuchang University, Xuchang, 461000, China
| | - Deguo Wang
- Food and Pharmacy College, Xuchang University, Xuchang, 461000, China
| | - Chen Wang
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yunzhi Lin
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Haomin Ye
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Aye Thida Maung
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Mohamed El-Telbany
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yoshimitsu Masuda
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ken-Ichi Honjoh
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takahisa Miyamoto
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Fugang Xiao
- Food and Pharmacy College, Xuchang University, Xuchang, 461000, China.
| |
Collapse
|
2
|
Tasdurmazli S, Cinar I, Karamese M, Aksak Karamese S, Cadirci E, Melo LDR, Ozbek T. Exploring in vitro efficacy of rCHAPk with antibiotic combinations, and promising findings of its therapeutic potential for clinical-originated MRSA wound infection. Int J Biol Macromol 2025; 296:139630. [PMID: 39788229 DOI: 10.1016/j.ijbiomac.2025.139630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
The increasing threat of antimicrobial-resistant bacteria, particularly Staphylococcus aureus, which rapidly develops multidrug resistance and commonly colonizes wound surfaces, demands innovative strategies. Phage-encoded endolysins offer a dual-purpose approach as topical therapies for infectious skin wounds and synergistic agents to reduce high-dose antibiotic dependence. This study explores recombinant CHAPk (rCHAPk), efficiently synthesized within 3 h, displaying broad-spectrum antibacterial activity against 10 Gram-positive strains, including resistant variants, with rapid bactericidal kinetics. Application of 10 μg of rCHAPk reduced OD600 by 0.4 within 5 min against a clinical methicillin-resistant S. aureus (MRSA) strain. Combining rCHAPk (1.875 μg/mL) with oxacillin/vancomycin lowered their minimum bactericidal concentrations to 1 μg/mL from initial values over 64 μg/mL and 32 μg/mL, respectively, with a fractional inhibitory concentration index below 0.1. rCHAPk retained efficacy after one year of refrigerated storage. In in vivo experiments, rCHAPk outperformed commercial fucidin therapy in MRSA-induced murine wound models over two weeks, enhancing wound healing by modulating pro-inflammatory cytokine responses and the proliferative phase. This study, for the first time, investigates rCHAPk's in vitro combination with antibiotics and wound healing parameters, highlighting its potential as a potent antibacterial agent synergizing with antibiotics to address antibiotic-resistant bacterial wound infections.
Collapse
Affiliation(s)
- Semra Tasdurmazli
- Yıldız Technical University, Faculty of Science and Arts, Department of Molecular Biology and Genetics, Istanbul, Turkey
| | - Irfan Cinar
- Kastamonu University, Faculty of Medicine, Kastamonu, Turkey
| | | | | | - Elif Cadirci
- Ataturk University, Faculty of Medicine, Erzurum, Turkey
| | - Luís D R Melo
- Center of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS -Associate Laboratory, Braga, Guimarães, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Tulin Ozbek
- Yıldız Technical University, Faculty of Science and Arts, Department of Molecular Biology and Genetics, Istanbul, Turkey.
| |
Collapse
|
3
|
Cao X, Tang Y, Lu Z, Ma X, Li H, Chi X, Li J, Liu Z. Enhanced bacteriostatic effects of phage vB_C4 and cell wall-targeting antibiotic combinations against drug-resistant Aeromonas veronii. Microbiol Spectr 2025; 13:e0190824. [PMID: 39817744 PMCID: PMC11792460 DOI: 10.1128/spectrum.01908-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/12/2024] [Indexed: 01/18/2025] Open
Abstract
Aeromonas veronii is a vital zoonotic pathogen known for its extensive drug resistance and ability to form biofilms, which contribute to its antibiotic resistance. In this study, the phage vB_C4, specifically targeting A. veronii, was isolated and subjected to bioinformatic analysis and bacteriostatic activity assays. The combination of phage vB_C4 with antibiotics such as cephalothin and cefoxitin, which target the bacterial cell wall, resulted in a significantly enhanced bacteriostatic effect compared to either the phage or antibiotics alone. Furthermore, the phage dosage was critical in optimizing the antimicrobial effect when used in conjunction with antibiotics. This combined treatment exhibited a more distinct effect in removing mature biofilms and inhibiting biofilm formation, leading to a considerable decrease in bacterial density within the biofilm. Overall, the synergistic use of phage and antibiotics offers a novel attitude for treating pathogenic bacteria and holds significant potential in preventing the emergence of drug-resistant strains.IMPORTANCEThe combined application of phages and antibiotics not only effectively inhibits the emergence of phage-resistant bacteria but also reduces the required effective concentration of antibiotics. Additionally, this combination therapy demonstrates significant therapeutic effects on clinical infections mediated by biofilms. Consequently, this study establishes a basis for evaluating the parameters essential for utilizing phage-antibiotic combination therapy in the treatment of biofilm-associated infections, thereby offering a novel selection for the clinical management of multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Xin Cao
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Yanqiong Tang
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - ZhenZhang Lu
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Xiang Ma
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Hong Li
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Xue Chi
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Juanjuan Li
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Zhu Liu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
4
|
Tham HY, Chong LC, Krishnan M, Khan AM, Choi SB, Tamura T, Yusoff K, Tan GH, Song AAL. Characterization of the host specificity of the SH3 cell wall binding domain of the staphylococcal phage 88 endolysin. Arch Microbiol 2025; 207:47. [PMID: 39878790 DOI: 10.1007/s00203-025-04242-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/31/2025]
Abstract
Bacteriophages produce endolysins at the end of the lytic cycle, which are crucial for lysing the host cells and releasing virion progeny. This lytic feature allows endolysins to act as effective antimicrobial alternatives when applied exogenously. Staphylococcal endolysins typically possess a modular structure with one or two enzymatically active N-terminal domains (EADs) and a C-terminal cell wall binding domain (CBD). The EADs degrade the peptidoglycan layer, leading to bacterial lysis, while the CBD binds to the specific host cell wall, and therefore, influences specificity of the endolysin. This study aimed to alter and characterize the host specificity of the CBD by exploring the impact of amino acid modifications within the CBD of a staphylococcal endolysin, Endo88. Endo88 was able to lyse Staphylococcus spp. and Enterococcus faecalis. However, despite attempts to mutate amino acids hypothesized for binding with cell wall components, the host-range was not affected but the lytic activity was severely reduced instead, although no alterations were performed on the EADs (Cysteine, histidine-dependent aminohydrolases/peptidases domain and Amidase domain). Further investigations of the CBD alone (Src homology3 domain, SH3) without the EADs suggested that binding and lytic activity may not be correlated in some cases since Endo88 and its mutants could lyse Staphylococcus epidermidis well but no binding activity was observed in the flow cytometry analysis. Molecular docking was used to gain insights on the observations for the binding and lytic activity which may help future strategies in designing enhanced engineered endolysins.
Collapse
Affiliation(s)
- Hong Yun Tham
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Li Chuin Chong
- Center for Bioinformatics School of Data Sciences, Perdana University, Damansara Heights, Kuala Lumpur, 50490, Malaysia
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, A Joint Venture Between Medical School Hannover (MHH) and Helmholtz Centre for Infection Research (HZI), 30625, Hannover, Germany
| | - Melvina Krishnan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Asif Mohammad Khan
- College of Computing and Information Technology, University of Doha for Science and Technology (UDST), Doha, Qatar
| | - Sy Bing Choi
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Wilayah Persekutuan Kuala Lumpur, Cheras, 56000, Malaysia
| | - Takashi Tamura
- Graduate School of Environmental and Life Sciences, Okayama University, Okayama, 700- 8530, Japan
| | - Khatijah Yusoff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Kajang, Selangor, 43000, Malaysia
| | - Geok Hun Tan
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Adelene Ai-Lian Song
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia.
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia.
| |
Collapse
|
5
|
Golban M, Charostad J, Kazemian H, Heidari H. Phage-Derived Endolysins Against Resistant Staphylococcus spp.: A Review of Features, Antibacterial Activities, and Recent Applications. Infect Dis Ther 2025; 14:13-57. [PMID: 39549153 PMCID: PMC11782739 DOI: 10.1007/s40121-024-01069-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/22/2024] [Indexed: 11/18/2024] Open
Abstract
Antimicrobial resistance is a significant global public health issue, and the dissemination of antibiotic resistance in Gram-positive bacterial pathogens has significantly increased morbidity, mortality rates, and healthcare costs. Among them, Staphylococcus, especially methicillin-resistant Staphylococcus aureus (MRSA), causes a wide range of diseases due to its diverse pathogenic factors and infection strategies. These bacteria also present significant issues in veterinary medicine and food safety. Effectively managing staphylococci-related problems necessitates a concerted effort to implement preventive measures, rapidly detect the pathogen, and develop new and safe antimicrobial therapies. In recent years, there has been growing interest in using endolysins to combat bacterial infections. These enzymes, which are also referred to as lysins, are a unique class of hydrolytic enzymes synthesized by double-stranded DNA bacteriophages. They possess glycosidase, lytic transglycosylase, amidase, and endopeptidase activities, effectively destroying the peptidoglycan layer and resulting in bacterial lysis. This unique property makes endolysins powerful antimicrobial agents, particularly against Gram-positive organisms with more accessible peptidoglycan layers. Therefore, considering the potential benefits of endolysins compared to conventional antibiotics, we have endeavored to gather and review the characteristics and uses of endolysins derived from staphylococcal bacteriophages, as well as their antibacterial effectiveness against Staphylococcus spp. based on conducted experiments and trials.
Collapse
Affiliation(s)
- Mina Golban
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Javad Charostad
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Kazemian
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Hamid Heidari
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
6
|
Pchelin IM, Smolensky AV, Azarov DV, Goncharov AE. Lytic Spectra of Tailed Bacteriophages: A Systematic Review and Meta-Analysis. Viruses 2024; 16:1879. [PMID: 39772189 PMCID: PMC11680127 DOI: 10.3390/v16121879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
As natural predators of bacteria, tailed bacteriophages can be used in biocontrol applications, including antimicrobial therapy. Also, phage lysis is a detrimental factor in technological processes based on bacterial growth and metabolism. The spectrum of bacteria bacteriophages interact with is known as the host range. Phage science produced a vast amount of host range data. However, there has been no attempt to analyse these data from the viewpoint of modern phage and bacterial taxonomy. Here, we performed a meta-analysis of spotting and plaquing host range data obtained on strains of production host species. The main metric of our study was the host range value calculated as a ratio of lysed strains to the number of tested bacterial strains. We found no boundary between narrow and broad host ranges in tailed phages taken as a whole. Family-level groups of strictly lytic bacteriophages had significantly different median plaquing host range values in the range from 0.18 (Drexlerviridae) to 0.70 (Herelleviridae). In Escherichia coli phages, broad host ranges were associated with decreased efficiency of plating. Bacteriophage morphology, genome size, and the number of tRNA-coding genes in phage genomes did not correlate with host range values. From the perspective of bacterial species, median plaquing host ranges varied from 0.04 in bacteriophages infecting Acinetobacter baumannii to 0.73 in Staphylococcus aureus phages. Taken together, our results imply that taxonomy of bacteriophages and their bacterial hosts can be predictive of intraspecies host ranges.
Collapse
Affiliation(s)
- Ivan M. Pchelin
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint Petersburg 197022, Russia; (D.V.A.); (A.E.G.)
| | - Andrei V. Smolensky
- Department of Computer Science, Neapolis University Pafos, Paphos 8042, Cyprus;
| | - Daniil V. Azarov
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint Petersburg 197022, Russia; (D.V.A.); (A.E.G.)
| | - Artemiy E. Goncharov
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint Petersburg 197022, Russia; (D.V.A.); (A.E.G.)
| |
Collapse
|
7
|
Akturk E, Melo LD, Oliveira H, Crabbé A, Coenye T, Azeredo J. Combining phages and antibiotic to enhance antibiofilm efficacy against an in vitro dual species wound biofilm. Biofilm 2023; 6:100147. [PMID: 37662851 PMCID: PMC10474582 DOI: 10.1016/j.bioflm.2023.100147] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
Chronic wound management is extremely challenging because of the persistence of biofilm-forming pathogens, such as Pseudomonas aeruginosa and Staphylococcus aureus, which are the prevailing bacterial species that co-infect chronic wounds. Phage therapy has gained an increased interest to treat biofilm-associated infections, namely when combined with antibiotics. Here, we tested the effect of gentamicin as a co-adjuvant of phages in a dual species-biofilm wound model formed on artificial dermis. The biofilm-killing capacity of the tested treatments was significantly increased when phages were combined with gentamicin and applied multiple times as multiple dose (three doses, every 8 h). Our results suggest that gentamycin is an effective adjuvant of phage therapy particularly when applied simultaneously with phages and in three consecutive doses. The multiple and simultaneous dose treatment seems to be essential to avoid bacterial resistance development to each of the antimicrobial agents.
Collapse
Affiliation(s)
- Ergun Akturk
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS – Associate Laboratory, Braga, Guimarães, Portugal
| | - Luís D.R. Melo
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS – Associate Laboratory, Braga, Guimarães, Portugal
- ESCMID Study Group for Biofilms (ESGB), Switzerland
| | - Hugo Oliveira
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS – Associate Laboratory, Braga, Guimarães, Portugal
- ESCMID Study Group for Biofilms (ESGB), Switzerland
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology (LPM), Ghent University, Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology (LPM), Ghent University, Ghent, Belgium
- ESCMID Study Group for Biofilms (ESGB), Switzerland
| | - Joana Azeredo
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS – Associate Laboratory, Braga, Guimarães, Portugal
- ESCMID Study Group for Biofilms (ESGB), Switzerland
| |
Collapse
|
8
|
da Silva JD, Melo LDR, Santos SB, Kropinski AM, Xisto MF, Dias RS, da Silva Paes I, Vieira MS, Soares JJF, Porcellato D, da Silva Duarte V, de Paula SO. Genomic and proteomic characterization of vB_SauM-UFV_DC4, a novel Staphylococcus jumbo phage. Appl Microbiol Biotechnol 2023; 107:7231-7250. [PMID: 37741937 PMCID: PMC10638138 DOI: 10.1007/s00253-023-12743-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/03/2023] [Accepted: 08/21/2023] [Indexed: 09/25/2023]
Abstract
Staphylococcus aureus is one of the most relevant mastitis pathogens in dairy cattle, and the acquisition of antimicrobial resistance genes presents a significant health issue in both veterinary and human fields. Among the different strategies to tackle S. aureus infection in livestock, bacteriophages have been thoroughly investigated in the last decades; however, few specimens of the so-called jumbo phages capable of infecting S. aureus have been described. Herein, we report the biological, genomic, and structural proteomic features of the jumbo phage vB_SauM-UFV_DC4 (DC4). DC4 exhibited a remarkable killing activity against S. aureus isolated from the veterinary environment and stability at alkaline conditions (pH 4 to 12). The complete genome of DC4 is 263,185 bp (GC content: 25%), encodes 263 predicted CDSs (80% without an assigned function), 1 tRNA (Phe-tRNA), multisubunit RNA polymerase, and an RNA-dependent DNA polymerase. Moreover, comparative analysis revealed that DC4 can be considered a new viral species belonging to a new genus DC4 and showed a similar set of lytic proteins and depolymerase activity with closely related jumbo phages. The characterization of a new S. aureus jumbo phage increases our understanding of the diversity of this group and provides insights into the biotechnological potential of these viruses. KEY POINTS: • vB_SauM-UFV_DC4 is a new viral species belonging to a new genus within the class Caudoviricetes. • vB_SauM-UFV_DC4 carries a set of RNA polymerase subunits and an RNA-directed DNA polymerase. • vB_SauM-UFV_DC4 and closely related jumbo phages showed a similar set of lytic proteins.
Collapse
Affiliation(s)
- Jéssica Duarte da Silva
- Department of Microbiology, Federal University of Viçosa, Av. Peter Henry Rolfs, S/N, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Luís D R Melo
- Centre of Biological Engineering - CEB, University of Minho, 4710-057, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Portugal
| | - Sílvio B Santos
- Centre of Biological Engineering - CEB, University of Minho, 4710-057, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Portugal
| | - Andrew M Kropinski
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Mariana Fonseca Xisto
- Department of General Biology, Federal University of Viçosa, Av. Peter Henry Rolfs, S/N, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Roberto Sousa Dias
- Department of General Biology, Federal University of Viçosa, Av. Peter Henry Rolfs, S/N, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Isabela da Silva Paes
- Department of General Biology, Federal University of Viçosa, Av. Peter Henry Rolfs, S/N, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Marcella Silva Vieira
- Department of General Biology, Federal University of Viçosa, Av. Peter Henry Rolfs, S/N, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - José Júnior Ferreira Soares
- Department of General Biology, Federal University of Viçosa, Av. Peter Henry Rolfs, S/N, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Davide Porcellato
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | - Vinícius da Silva Duarte
- Department of Microbiology, Federal University of Viçosa, Av. Peter Henry Rolfs, S/N, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil.
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway.
| | - Sérgio Oliveira de Paula
- Department of General Biology, Federal University of Viçosa, Av. Peter Henry Rolfs, S/N, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| |
Collapse
|
9
|
Plumet L, Morsli M, Ahmad-Mansour N, Clavijo-Coppens F, Berry L, Sotto A, Lavigne JP, Costechareyre D, Molle V. Isolation and Characterization of New Bacteriophages against Staphylococcal Clinical Isolates from Diabetic Foot Ulcers. Viruses 2023; 15:2287. [PMID: 38140529 PMCID: PMC10747802 DOI: 10.3390/v15122287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/09/2023] [Accepted: 11/19/2023] [Indexed: 12/24/2023] Open
Abstract
Staphylococcus sp. is the most common bacterial genus in infections related to diabetic foot ulcers (DFUs). The emergence of multidrug-resistant bacteria places a serious burden on public health systems. Phage therapy is an alternative treatment to antibiotics, overcoming the issue of antibiotic resistance. In this study, six phages (SAVM01 to SAVM06) were isolated from effluents and were used against a panel of staphylococcal clinical samples isolated from DFUs. A genomic analysis revealed that the phages belonged to the Herelleviridae family, with sequences similar to those of the Kayvirus genus. No lysogeny-associated genes, known virulence or drug resistance genes were identified in the phage genomes. The phages displayed a strong lytic and antibiofilm activity against DFU clinical isolates, as well as against opportunistic pathogenic coagulase-negative staphylococci. The results presented here suggest that these phages could be effective biocontrol agents against staphylococcal clinical isolates from DFUs.
Collapse
Affiliation(s)
- Lucile Plumet
- VBIC, INSERM U1047, University of Montpellier, 34095 Montpellier, France; (L.P.); (N.A.-M.)
| | - Madjid Morsli
- VBIC, INSERM U1047, Department of Microbiology and Hospital Hygiene, University of Montpellier, CHU Nîmes, 30908 Nîmes, France; (M.M.); (J.-P.L.)
| | - Nour Ahmad-Mansour
- VBIC, INSERM U1047, University of Montpellier, 34095 Montpellier, France; (L.P.); (N.A.-M.)
| | | | - Laurence Berry
- Laboratory of Pathogen and Host Immunity, CNRS UMR5294, University of Montpellier, 34095 Montpellier, France;
| | - Albert Sotto
- VBIC, INSERM U1047, Department of Infectious Diseases, University of de Montpellier, CHU Nîmes, 30908 Nîmes, France;
| | - Jean-Philippe Lavigne
- VBIC, INSERM U1047, Department of Microbiology and Hospital Hygiene, University of Montpellier, CHU Nîmes, 30908 Nîmes, France; (M.M.); (J.-P.L.)
| | | | - Virginie Molle
- VBIC, INSERM U1047, University of Montpellier, 34095 Montpellier, France; (L.P.); (N.A.-M.)
- VBIC, INSERM U1047, Department of Microbiology and Hospital Hygiene, University of Montpellier, CHU Nîmes, 30908 Nîmes, France; (M.M.); (J.-P.L.)
| |
Collapse
|
10
|
Stojowska-Swędrzyńska K, Kuczyńska-Wiśnik D, Laskowska E. New Strategies to Kill Metabolically-Dormant Cells Directly Bypassing the Need for Active Cellular Processes. Antibiotics (Basel) 2023; 12:1044. [PMID: 37370363 DOI: 10.3390/antibiotics12061044] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Antibiotic therapy failure is often caused by the presence of persister cells, which are metabolically-dormant bacteria capable of surviving exposure to antimicrobials. Under favorable conditions, persisters can resume growth leading to recurrent infections. Moreover, several studies have indicated that persisters may promote the evolution of antimicrobial resistance and facilitate the selection of specific resistant mutants; therefore, in light of the increasing numbers of multidrug-resistant infections worldwide, developing efficient strategies against dormant cells is of paramount importance. In this review, we present and discuss the efficacy of various agents whose antimicrobial activity is independent of the metabolic status of the bacteria as they target cell envelope structures. Since the biofilm-environment is favorable for the formation of dormant subpopulations, anti-persister strategies should also include agents that destroy the biofilm matrix or inhibit biofilm development. This article reviews examples of selected cell wall hydrolases, polysaccharide depolymerases and antimicrobial peptides. Their combination with standard antibiotics seems to be the most promising approach in combating persistent infections.
Collapse
Affiliation(s)
- Karolina Stojowska-Swędrzyńska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Dorota Kuczyńska-Wiśnik
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Ewa Laskowska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
11
|
Abd-Allah IM, El-Housseiny GS, Al-Agamy MH, Radwan HH, Aboshanab KM, Hassouna NA. Statistical optimization of a podoviral anti-MRSA phage CCASU-L10 generated from an under sampled repository: Chicken rinse. Front Cell Infect Microbiol 2023; 13:1149848. [PMID: 37065190 PMCID: PMC10102507 DOI: 10.3389/fcimb.2023.1149848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/07/2023] [Indexed: 04/03/2023] Open
Abstract
IntroductionThe insurgence of antimicrobial resistance is an imminent health danger globally. A wide range of challenging diseases are attributed to methicillin-resistant Staphylococcus aureus (MRSA) as it is weaponized with a unique array of virulence factors, and most importantly, the resistance it develops to most of the antibiotics used clinically. On that account, the present study targeted the optimization of the production of a bacteriophage active against MRSA, and evaluating some of its characters.Methods and resultsThe bacteriophage originated from a quite peculiar environmental source, raw chicken rinse and was suggested to belong to Podoviridae, order Caudovirales. It withstood a variety of extreme conditions and yield optimization was accomplished via the D-optimal design by response surface methodology (RSM). A reduced quadratic model was generated, and the ideal production conditions recommended were pH 8, glycerol 0.9% v/v, peptone 0.08% w/v, and 107 CFU/ml as the host inoculum size. These conditions led to a two-log fold increase in the phage titer (1.17x10¹² PFU/ml), as compared to the regular conditions.DiscussionTo conclude, statistical optimization successfully enhanced the output of the podoviral phage titer by two-log fold and therefore, can be regarded as a potential scale-up strategy. The produced phage was able to tolerate extreme environmental condition making it suitable for topical pharmaceutical preparations. Further preclinical and clinical studies are required to ensure its suitability for use in human.
Collapse
Affiliation(s)
- Israa M. Abd-Allah
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abbassia, Cairo, Egypt
| | - Ghadir S. El-Housseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abbassia, Cairo, Egypt
- *Correspondence: Ghadir S. El-Housseiny, ; Khaled M. Aboshanab,
| | - Mohamed H. Al-Agamy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Hesham H. Radwan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khaled M. Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abbassia, Cairo, Egypt
- *Correspondence: Ghadir S. El-Housseiny, ; Khaled M. Aboshanab,
| | - Nadia A. Hassouna
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abbassia, Cairo, Egypt
| |
Collapse
|
12
|
Interactions between Jumbo Phage SA1 and Staphylococcus: A Global Transcriptomic Analysis. Microorganisms 2022; 10:microorganisms10081590. [PMID: 36014008 PMCID: PMC9414953 DOI: 10.3390/microorganisms10081590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 01/21/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is an important zoonotic pathogen that poses a serious health concern to humans and cattle worldwide. Although it has been proven that lytic phages may successfully kill S. aureus, the interaction between the host and the phage has yet to be thoroughly investigated, which will likely limit the clinical application of phage. Here, RNA sequencing (RNA-seq) was used to examine the transcriptomics of jumbo phage SA1 and Staphylococcus JTB1-3 during a high multiplicity of infection (MOI) and RT-qPCR was used to confirm the results. The RNA-seq analysis revealed that phage SA1 took over the transcriptional resources of the host cells and that the genes were categorized as early, middle, and late, based on the expression levels during infection. A minor portion of the resources of the host was employed to enable phage replication after infection because only 35.73% (997/2790) of the host genes were identified as differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that the phage infection mainly affected the nucleotide metabolism, protein metabolism, and energy-related metabolism of the host. Moreover, the expression of the host genes involved in anti-phage systems, virulence, and drug resistance significantly changed during infection. This research gives a fresh understanding of the relationship between jumbo phages and their Gram-positive bacteria hosts and provides a reference for studying phage treatment and antibiotics.
Collapse
|
13
|
Abd-Allah IM, El-Housseiny GS, Alshahrani MY, El-Masry SS, Aboshanab KM, Hassouna NA. An Anti-MRSA Phage From Raw Fish Rinse: Stability Evaluation and Production Optimization. Front Cell Infect Microbiol 2022; 12:904531. [PMID: 35656033 PMCID: PMC9152141 DOI: 10.3389/fcimb.2022.904531] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/13/2022] [Indexed: 11/26/2022] Open
Abstract
Accumulating evidence has denoted the danger of resistance in tenacious organisms like methicillin-resistant Staphylococcus aureus (MRSA). MRSA, a supple bacterium that adopts a variety of antibiotic resistance mechanisms, is the cause of multiple life-threatening conditions. Approaching a post-antibiotic era, bacteria-specific natural predators, bacteriophages, are now given the chance to prove eligible for joining the antibacterial weaponry. Considering the foregoing, this study aimed at isolating bacteriophages with promising anti-MRSA lytic activity, followed by characterization and optimization of the production of the bacteriophage with the broadest host range. Five phages were isolated from different environmental sources including the rinse of raw chicken egg, raw milk, and, remarkably, the raw meat rinses of chicken and fish. Examined for lytic activity against a set of 23 MRSA isolates collected from various clinical specimens, all five phages showed relatively broad host ranges with the bacteriophage originally isolated from raw fish rinse showing lytic activity against all the isolates tested. This phage is suggested to be a member of Siphoviridae family, order Caudovirales, as revealed by electron microscopy. It also exhibited good thermal stability and viability at different pH grades. Moreover, it showed reasonable stability against UV light and all viricidal organic solvents tested. Optimization using D-optimal design by response surface methodology was carried out to enhance the phage yield. The optimum conditions suggested by the generated model were a pH value of 7, a carbon source of 0.5% w/v sucrose, and a nitrogen source of 0.1% w/v peptone, at a temperature of 28°C and a bacterial inoculum size of 107 CFU/ml, resulting in a 2 log-fold increase in the produced bacteriophage titer. Overall, the above findings indicate the lytic ability inflicted by this virus on MRSA. Apparently, its stability under some of the extreme conditions tested implies its potential to be a candidate for pharmaceutical formulation as an anti-MRSA therapeutic tool. We hope that bacteriophages could tip the balance in favor of the human front in their battle against multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Israa M. Abd-Allah
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ghadir S. El-Housseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Samar S. El-Masry
- Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Khaled M. Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nadia A. Hassouna
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
14
|
Arroyo-Moreno S, Buttimer C, Bottacini F, Chanishvili N, Ross P, Hill C, Coffey A. Insights into Gene Transcriptional Regulation of Kayvirus Bacteriophages Obtained from Therapeutic Mixtures. Viruses 2022; 14:v14030626. [PMID: 35337034 PMCID: PMC8952766 DOI: 10.3390/v14030626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 12/30/2022] Open
Abstract
Bacteriophages (phages) of the genus Kayvirus of Staphylococcus aureus are promising agents for therapeutic applications. In this study, we isolated Kayvirus phages, SAM1 and SAM2, from the Fersisi commercial phage cocktail (George Eliava Institute, Tbilisi, Georgia), which exhibits high sequence homology with phage K (≥94%, BLASTn). We found that phages SAM1 and SAM2 infected 95% and 86% of 21 MRSA of differing sequence types (MLST, SCCmec type) obtained from the Irish National MRSA collection, respectively. We conducted differential transcriptomic analysis by RNA-Seq on phage SAM1 during host infection, showing differential expression of its genes at different points during host infection. This analysis also allowed the identification of potentially adverse outcomes in the application of these phages to target MRSA as therapy. The interaction of phage SAM1 on the host caused the upregulation of prophage genes. Additionally, phage infection was found to cause the slight upregulation of host genes implicated in virulence factors relating to hemolysins, immune evasion, and adhesion, but also the downregulation of genes associated with enterotoxins. The findings of this study give further insights into the biology of kayviruses and their use as therapeutics.
Collapse
Affiliation(s)
- Sara Arroyo-Moreno
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland; (S.A.-M.); (F.B.)
| | - Colin Buttimer
- APC Microbiome Ireland, University College, T12 YT20 Cork, Ireland; (C.B.); (P.R.); (C.H.)
| | - Francesca Bottacini
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland; (S.A.-M.); (F.B.)
| | - Nina Chanishvili
- George Eliava Institute of Bacteriophage, Microbiology & Virology, Tbilisi 0160, Georgia;
| | - Paul Ross
- APC Microbiome Ireland, University College, T12 YT20 Cork, Ireland; (C.B.); (P.R.); (C.H.)
| | - Colin Hill
- APC Microbiome Ireland, University College, T12 YT20 Cork, Ireland; (C.B.); (P.R.); (C.H.)
- School of Microbiology, University College Cork, T12 YN60 Cork, Ireland
| | - Aidan Coffey
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland; (S.A.-M.); (F.B.)
- APC Microbiome Ireland, University College, T12 YT20 Cork, Ireland; (C.B.); (P.R.); (C.H.)
- Correspondence:
| |
Collapse
|
15
|
Comparative Assessment of Bacteriophage and Antibiotic Activity against Multidrug-Resistant Staphylococcus aureus Biofilms. Int J Mol Sci 2022; 23:ijms23031274. [PMID: 35163197 PMCID: PMC8836238 DOI: 10.3390/ijms23031274] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
Problems connected with biofilm-related infections and antibiotic resistance necessitate the investigation and development of novel treatment strategies. Given their unique characteristics, one of the most promising alternatives to conventional antibiotics are bacteriophages. In the in vitro and in vivo larva model study, we demonstrate that phages vB_SauM-A, vB_SauM-C, and vB_SauM-D are effective antibiofilm agents. The exposure of biofilm to phages vB_SauM-A and vB_SauM-D led to 2-3 log reductions in the colony-forming unit number in most of the multidrug-resistant S. aureus strains. It was found that phage application reduced the formed biofilms independently of the used titer. Moreover, the study demonstrated that bacteriophages are more efficient in biofilm biomass removal and reduction in staphylococci count when compared to the antibiotics used. The scanning electron microscopy analysis results are in line with colony forming unit (CFU) counting but not entirely consistent with crystal violet (CV) staining. Additionally, phages vB_SauM-A, vB_SauM-C, and vB_SauM-D can significantly increase the survival rate and extend the survival time of Galleria mellonella larvae.
Collapse
|
16
|
Manoharadas S, Altaf M, Alrefaei AF, Ahmad N, Althaf Hussain S, Al-Rayes BF. An Engineered Multimodular Enzybiotic against Methicillin-Resistant Staphylococcus aureus. Life (Basel) 2021; 11:1384. [PMID: 34947915 PMCID: PMC8705753 DOI: 10.3390/life11121384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022] Open
Abstract
Development of multidrug antibiotic resistance in bacteria is a predicament encountered worldwide. Researchers are in a constant hunt to develop effective antimicrobial agents to counter these dreadful pathogenic bacteria. Here we describe a chimerically engineered multimodular enzybiotic to treat a clinical isolate of methicillin-resistant Staphylococcus aureus (S. aureus). The cell wall binding domain of phage ϕ11 endolysin was replaced with a truncated and more potent cell wall binding domain from a completely unrelated protein from a different phage. The engineered enzybiotic showed strong activity against clinically relevant methicillin-resistant Staphylococcus aureus. In spite of a multimodular peptidoglycan cleaving catalytic domain, the engineered enzybiotic could not exhibit its activity against a veterinary isolate of S. aureus. Our studies point out that novel antimicrobial proteins can be genetically engineered. Moreover, the cell wall binding domain of the engineered protein is indispensable for a strong binding and stability of the proteins.
Collapse
Affiliation(s)
- Salim Manoharadas
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia
- Central Laboratory RM 63AA, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia; (M.A.); (N.A.); (S.A.H.); (B.F.A.-R.)
| | - Mohammad Altaf
- Central Laboratory RM 63AA, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia; (M.A.); (N.A.); (S.A.H.); (B.F.A.-R.)
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia;
| | - Naushad Ahmad
- Central Laboratory RM 63AA, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia; (M.A.); (N.A.); (S.A.H.); (B.F.A.-R.)
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia
| | - Shaik Althaf Hussain
- Central Laboratory RM 63AA, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia; (M.A.); (N.A.); (S.A.H.); (B.F.A.-R.)
- Department of Zoology, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia;
| | - Basel F. Al-Rayes
- Central Laboratory RM 63AA, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia; (M.A.); (N.A.); (S.A.H.); (B.F.A.-R.)
| |
Collapse
|
17
|
Göller PC, Elsener T, Lorgé D, Radulovic N, Bernardi V, Naumann A, Amri N, Khatchatourova E, Coutinho FH, Loessner MJ, Gómez-Sanz E. Multi-species host range of staphylococcal phages isolated from wastewater. Nat Commun 2021; 12:6965. [PMID: 34845206 PMCID: PMC8629997 DOI: 10.1038/s41467-021-27037-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022] Open
Abstract
The host range of bacteriophages defines their impact on bacterial communities and genome diversity. Here, we characterize 94 novel staphylococcal phages from wastewater and establish their host range on a diversified panel of 117 staphylococci from 29 species. Using this high-resolution phage-bacteria interaction matrix, we unveil a multi-species host range as a dominant trait of the isolated staphylococcal phages. Phage genome sequencing shows this pattern to prevail irrespective of taxonomy. Network analysis between phage-infected bacteria reveals that hosts from multiple species, ecosystems, and drug-resistance phenotypes share numerous phages. Lastly, we show that phages throughout this network can package foreign genetic material enclosing an antibiotic resistance marker at various frequencies. Our findings indicate a weak host specialism of the tested phages, and therefore their potential to promote horizontal gene transfer in this environment.
Collapse
Affiliation(s)
- Pauline C. Göller
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Tabea Elsener
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Dominic Lorgé
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Natasa Radulovic
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Viona Bernardi
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Annika Naumann
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Nesrine Amri
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Ekaterina Khatchatourova
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Felipe Hernandes Coutinho
- grid.26811.3c0000 0001 0586 4893Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Martin J. Loessner
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Elena Gómez-Sanz
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Zurich, Switzerland. .,Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain.
| |
Collapse
|
18
|
Nogueira CL, Pires DP, Monteiro R, Santos SB, Carvalho CM. Exploitation of a Klebsiella Bacteriophage Receptor-Binding Protein as a Superior Biorecognition Molecule. ACS Infect Dis 2021; 7:3077-3087. [PMID: 34618422 DOI: 10.1021/acsinfecdis.1c00366] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Klebsiella pneumoniae is a Gram-negative bacterium that has become one of the leading causes of life-threatening healthcare-associated infections (HAIs), including pneumonia and sepsis. Moreover, due to its increasingly antibiotic resistance, K. pneumoniae has been declared a global top priority concern. The problem of K. pneumoniae infections is due, in part, to the inability to detect this pathogen rapidly and accurately and thus to treat patients within the early stages of infections. The success in bacterial detection is greatly dictated by the biorecognition molecule used, with the current diagnostic tools relying on expensive probes often lacking specificity and/or sensitivity. (Bacterio)phage receptor-binding proteins (RBPs) are responsible for the recognition and adsorption of phages to specific bacterial host receptors and thus present high potential as biorecognition molecules. In this study, we report the identification and characterization of a novel RBP from the K. pneumoniae phage KpnM6E1 that presents high specificity against the target bacteria and high sensitivity (80%) to recognize K. pneumoniae strains. Moreover, adsorption studies validated the role of gp86 in the attachment to bacterial receptors, as it highly inhibits (86%) phage adsorption to its Klebsiella host. Overall, in this study, we unravel the role and potential of a novel Klebsiella phage RBP as a powerful tool to be used coupled with analytical techniques or biosensing platforms for the diagnosis of K. pneumoniae infections.
Collapse
Affiliation(s)
- Catarina L. Nogueira
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
- Instituto de Engenharia de Sistemas E Computadores─Microsistemas e Nanotecnologias (INESC MN), Rua Alves Redol, 9, 1000-029 Lisbon, Portugal
| | - Diana P. Pires
- Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Rodrigo Monteiro
- Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Sílvio B. Santos
- Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Carla M. Carvalho
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| |
Collapse
|
19
|
Gutiérrez D, Rodríguez-Rubio L, Ruas-Madiedo P, Fernández L, Campelo AB, Briers Y, Nielsen MW, Pedersen K, Lavigne R, García P, Rodríguez A. Design and Selection of Engineered Lytic Proteins With Staphylococcus aureus Decolonizing Activity. Front Microbiol 2021; 12:723834. [PMID: 34594314 PMCID: PMC8477017 DOI: 10.3389/fmicb.2021.723834] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus causes various infections in humans and animals, the skin being the principal reservoir of this pathogen. The widespread occurrence of methicillin-resistant S. aureus (MRSA) limits the elimination and treatment of this pathogen. Phage lytic proteins have been proven as efficient antimicrobials against S. aureus. Here, a set of 12 engineered proteins based on endolysins were conceptualized to select the most optimal following a stepwise funnel approach assessing parameters including turbidity reduction, minimum inhibitory concentration (MIC), time-kill curves, and antibiofilm assays, as well as testing their stability in a broad range of storage conditions (pH, temperature, and ionic strength). The engineered phage lysins LysRODIΔAmi and ClyRODI-H5 showed the highest specific lytic activity (5 to 50 times higher than the rest), exhibited a shelf-life up to 6 months and remained stable at temperatures up to 50°C and in a pH range from 3 to 9. LysRODIΔAmi showed the lower MIC values against all staphylococcal strains tested. Both proteins were able to kill 6 log units of the strain S. aureus Sa9 within 5 min and could remove preformed biofilms (76 and 65%, respectively). Moreover, LysRODIΔAmi could prevent biofilm formation at low protein concentrations (0.15–0.6 μM). Due to its enhanced antibiofilm properties, LysRODIΔAmi was selected to effectively remove S. aureus contamination in both intact and disrupted keratinocyte monolayers. Notably, this protein did not demonstrate any toxicity toward human keratinocytes, even at high concentrations (22.1 μM). Finally, a pig skin ex vivo model was used to evaluate treatment of artificially contaminated pig skin using LysRODIΔAmi (16.5 μg/cm2). Following an early reduction of S. aureus, a second dose of protein completely eradicated S. aureus. Overall, our results suggest that LysRODIΔAmi is a suitable candidate as antimicrobial agent to prevent and treat staphylococcal skin infections.
Collapse
Affiliation(s)
- Diana Gutiérrez
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Asturias, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Lorena Rodríguez-Rubio
- Laboratory of Gene Technology, Department of Biosystems, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Patricia Ruas-Madiedo
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Asturias, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Lucía Fernández
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Asturias, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Ana Belén Campelo
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Asturias, Spain
| | - Yves Briers
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Martin Weiss Nielsen
- Department of Microbiology and Production, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Karl Pedersen
- Department of Microbiology and Production, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Pilar García
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Asturias, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Ana Rodríguez
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Asturias, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| |
Collapse
|
20
|
Yu JH, Park DW, Lim JA, Park JH. Characterization of staphylococcal endolysin LysSAP33 possessing untypical domain composition. J Microbiol 2021; 59:840-847. [PMID: 34383247 DOI: 10.1007/s12275-021-1242-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 01/21/2023]
Abstract
Endolysin, a peptidoglycan hydrolase derived from bacteriophage, has been suggested as an alternative antimicrobial agent. Many endolysins on staphylococcal phages have been identified and applied extensively against Staphylococcus spp. Among them, LysK-like endolysin, a well-studied staphylococcal endolysin, accounts for most of the identified endolysins. However, relatively little interest has been paid to LysKunlike endolysin and a few of them has been characterized. An endolysin LysSAP33 encoded on bacteriophage SAP33 shared low homology with LysK-like endolysin in sequence by 41% and domain composition (CHAP-unknown CBD). A green fluorescence assay using a fusion protein for LysSAP33_CBD indicated that the CBD domain (157-251 aa) was bound to the peptidoglycan of S. aureus. The deletion of LysSAP33_CBD at the C-terminal region resulted in a significant decrease in lytic activity and efficacy. Compared to LysK-like endolysin, LysSAP33 retained its lytic activity in a broader range of temperature, pH, and NaCl concentrations. In addition, it showed a higher activity against biofilms than LysK-like endolysin. This study could be a helpful tool to develop our understanding of staphylococcal endolysins not belonging to LysK-like endolysins and a potential biocontrol agent against biofilms.
Collapse
Affiliation(s)
- Jun-Hyeok Yu
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam, 13120, Korea
- School of Microbiology, University College Cork, Cork, T12 K8AF, Ireland
| | - Do-Won Park
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam, 13120, Korea
| | - Jeong-A Lim
- Research Group of Consumer Safety, Korea Food Research Institute, Wanju, 55365, Korea
| | - Jong-Hyun Park
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam, 13120, Korea.
| |
Collapse
|
21
|
Shemyakin IG, Firstova VV, Fursova NK, Abaev IV, Filippovich SY, Ignatov SG, Dyatlov IA. Next-Generation Antibiotics, Bacteriophage Endolysins, and Nanomaterials for Combating Pathogens. BIOCHEMISTRY (MOSCOW) 2021; 85:1374-1388. [PMID: 33280580 DOI: 10.1134/s0006297920110085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This review presents various strategies to fight causative agents of infectious diseases. Species-specific programmable RNA-containing antibiotics open up new possibilities for creating next-generation of personalized drugs based on microbiome editing and can serve as a new tool for selective elimination of pathogenic bacterial species while keeping intact the rest of microbiota. Another promising approach in combating bacterial infections is genome editing using the CRISPR-Cas systems. Expanding knowledge on the molecular mechanisms of innate immunity has been actively used for developing new antimicrobials. However, obvious risks of using antibiotic adjuvants aimed at activation of the host immune system include development of the autoimmune response with subsequent organ damage. To avoid these risks, it is essential to elucidate action mechanisms of the specific ligands and signal molecules used as components of the hybrid antibiotics. Bacteriophage endolysins are also considered as effective antimicrobials against antibiotic-resistant bacteria, metabolically inactive persisters, and microbial biofilms. Despite significant advances in the design of implants with antibacterial properties, the problem of postoperative infections still remains. Different nanomodifications of the implant surface have been designed to reduce bacterial contamination. Here, we review bactericidal, fungicidal, and immunomodulating properties of compounds used for the implant surface nanomodifications, such as silver, boron nitride nanomaterials, nanofibers, and nanogalvanic materials.
Collapse
Affiliation(s)
- I G Shemyakin
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, 142279, Russia
| | - V V Firstova
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, 142279, Russia.
| | - N K Fursova
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, 142279, Russia
| | - I V Abaev
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, 142279, Russia
| | - S Yu Filippovich
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - S G Ignatov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, 142279, Russia
| | - I A Dyatlov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, 142279, Russia
| |
Collapse
|
22
|
Whittard E, Redfern J, Xia G, Millard A, Ragupathy R, Malic S, Enright MC. Phenotypic and Genotypic Characterization of Novel Polyvalent Bacteriophages With Potent In Vitro Activity Against an International Collection of Genetically Diverse Staphylococcus aureus. Front Cell Infect Microbiol 2021; 11:698909. [PMID: 34295840 PMCID: PMC8290860 DOI: 10.3389/fcimb.2021.698909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Phage therapy recently passed a key milestone with success of the first regulated clinical trial using systemic administration. In this single-arm non-comparative safety study, phages were administered intravenously to patients with invasive Staphylococcus aureus infections with no adverse reactions reported. Here, we examined features of 78 lytic S. aureus phages, most of which were propagated using a S. carnosus host modified to be broadly susceptible to staphylococcal phage infection. Use of this host eliminates the threat of contamination with staphylococcal prophage - the main vector of S. aureus horizontal gene transfer. We determined the host range of these phages against an international collection of 185 S. aureus isolates with 56 different multilocus sequence types that included multiple representatives of all epidemic MRSA and MSSA clonal complexes. Forty of our 78 phages were able to infect > 90% of study isolates, 15 were able to infect > 95%, and two could infect all 184 clinical isolates, but not a phage-resistant mutant generated in a previous study. We selected the 10 phages with the widest host range for in vitro characterization by planktonic culture time-kill analysis against four isolates:- modified S. carnosus strain TM300H, methicillin-sensitive isolates D329 and 15981, and MRSA isolate 252. Six of these 10 phages were able to rapidly kill, reducing cell numbers of at least three isolates. The four best-performing phages, in this assay, were further shown to be highly effective in reducing 48 h biofilms on polystyrene formed by eight ST22 and eight ST36 MRSA isolates. Genomes of 22 of the widest host-range phages showed they belonged to the Twortvirinae subfamily of the order Caudovirales in three main groups corresponding to Silviavirus, and two distinct groups of Kayvirus. These genomes assembled as single-linear dsDNAs with an average length of 140 kb and a GC content of c. 30%. Phages that could infect > 96% of S. aureus isolates were found in all three groups, and these have great potential as therapeutic candidates if, in future studies, they can be formulated to maximize their efficacy and eliminate emergence of phage resistance by using appropriate combinations.
Collapse
Affiliation(s)
- Elliot Whittard
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - James Redfern
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Guoqing Xia
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Andrew Millard
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Roobinidevi Ragupathy
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Sladjana Malic
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Mark C. Enright
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
23
|
Figueiredo CM, Malvezzi Karwowski MS, da Silva Ramos RCP, de Oliveira NS, Peña LC, Carneiro E, Freitas de Macedo RE, Rosa EAR. Bacteriophages as tools for biofilm biocontrol in different fields. BIOFOULING 2021; 37:689-709. [PMID: 34304662 DOI: 10.1080/08927014.2021.1955866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Microbial biofilms are difficult to control due to the limited accessibility that antimicrobial drugs and chemicals have to the entrapped inner cells. The extracellular matrix, binds water, contributes to altered cell physiology within biofilms and act as a barrier for most antiproliferative molecules. Thus, new strategies need to be developed to overcome biofilm vitality. In this review, based on 223 documents, the advantages, recommendations, and limitations of using bacteriophages as 'biofilm predators' are presented. The plausibility of using phages (bacteriophages and mycoviruses) to control biofilms grown in different environments is also discussed. The topics covered here include recent historical experiences in biofilm control/eradication using phages in medicine, dentistry, veterinary, and food industries, the pros and cons of their use, and the development of microbial resistance/immunity to such viruses.
Collapse
Affiliation(s)
| | | | | | | | - Lorena Caroline Peña
- Xenobiotics Research Unit, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Everdan Carneiro
- Graduate Program in Dentistry, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | | | - Edvaldo Antonio Ribeiro Rosa
- Graduate Program in Dentistry, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
- Graduate Program in Animal Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
- Xenobiotics Research Unit, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| |
Collapse
|
24
|
Walsh L, Johnson CN, Hill C, Ross RP. Efficacy of Phage- and Bacteriocin-Based Therapies in Combatting Nosocomial MRSA Infections. Front Mol Biosci 2021; 8:654038. [PMID: 33996906 PMCID: PMC8116899 DOI: 10.3389/fmolb.2021.654038] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus is a pathogen commonly found in nosocomial environments where infections can easily spread - especially given the reduced immune response of patients and large overlap between personnel in charge of their care. Although antibiotics are available to treat nosocomial infections, the increased occurrence of antibiotic resistance has rendered many treatments ineffective. Such is the case for methicillin resistant S. aureus (MRSA), which has continued to be a threat to public health since its emergence. For this reason, alternative treatment technologies utilizing antimicrobials such as bacteriocins, bacteriophages (phages) and phage endolysins are being developed. These antimicrobials provide an advantage over antibiotics in that many have narrow inhibition spectra, enabling treatments to be selected based on the target (pathogenic) bacterium while allowing for survival of commensal bacteria and thus avoiding collateral damage to the microbiome. Bacterial resistance to these treatments occurs less frequently than with antibiotics, particularly in circumstances where combinatory antimicrobial therapies are used. Phage therapy has been well established in Eastern Europe as an effective treatment against bacterial infections. While there are no Randomized Clinical Trials (RCTs) to our knowledge examining phage treatment of S. aureus infections that have completed all trial phases, numerous clinical trials are underway, and several commercial phage preparations are currently available to treat S. aureus infections. Bacteriocins have primarily been used in the food industry for bio-preservation applications. However, the idea of repurposing bacteriocins for human health is an attractive one considering their efficacy against many bacterial pathogens. There are concerns about the ability of bacteriocins to survive the gastrointestinal tract given their proteinaceous nature, however, this obstacle may be overcome by altering the administration route of the therapy through encapsulation, or by bioengineering protease-resistant variants. Obstacles such as enzymatic digestion are less of an issue for topical/local administration, for example, application to the surface of the skin. Bacteriocins have also shown impressive synergistic effects when used in conjunction with other antimicrobials, including antibiotics, which may allow antibiotic-based therapies to be used more sparingly with less resistance development. This review provides an updated account of known bacteriocins, phages and phage endolysins which have demonstrated an impressive ability to kill S. aureus strains. In particular, examples of antimicrobials with the ability to target MRSA strains and their subsequent use in a clinical setting are outlined.
Collapse
Affiliation(s)
- Lauren Walsh
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Crystal N Johnson
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Cork, Ireland
| | - Colin Hill
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - R Paul Ross
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Cork, Ireland
| |
Collapse
|
25
|
Azeredo J, García P, Drulis-Kawa Z. Targeting biofilms using phages and their enzymes. Curr Opin Biotechnol 2021; 68:251-261. [PMID: 33714050 DOI: 10.1016/j.copbio.2021.02.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 02/08/2023]
Abstract
The complex biofilm architecture composed of extracellular polymeric structures (EPS) provides a protective shield to physiologically diverse bacterial cells immersed in its structure. The evolutionary interplay between bacteria and their viruses (phages) forced the latter ones to develop specific strategies to overcome the biofilm defensive barriers and kill sessile cells. Phages are equipped with a wide panel of enzyme-degrading EPS macromolecules which together are powerful weapons to combat biofilms. Antibiofilm performance can be achieved by combining phages or phage-borne enzymes with other antimicrobials such as antibiotics. Nevertheless, a variety of enzymes encoded in phage genomes still need to be explored. To advance in biofilm control strategies we must deepen the understanding of the biofilm biology itself, as well as discover and better exploit the unlimited antibacterial potential of phages.
Collapse
Affiliation(s)
- Joana Azeredo
- Centro de Engenharia Biológica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Pilar García
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares sn. 33300, Villaviciosa, Asturias, Spain.
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| |
Collapse
|
26
|
Oh HK, Hwang YJ, Hong HW, Myung H. Comparison of Enterococcus faecalis Biofilm Removal Efficiency among Bacteriophage PBEF129, Its Endolysin, and Cefotaxime. Viruses 2021; 13:v13030426. [PMID: 33800040 PMCID: PMC7999683 DOI: 10.3390/v13030426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
Enterococcus faecalis is a Gram-positive pathogen which colonizes human intestinal surfaces, forming biofilms, and demonstrates a high resistance to many antibiotics. Especially, antibiotics are less effective for eradicating biofilms and better alternatives are needed. In this study, we have isolated and characterized a bacteriophage, PBEF129, infecting E. faecalis. PBEF129 infected a variety of strains of E. faecalis, including those exhibiting antibiotic resistance. Its genome is a linear double-stranded DNA, 144,230 base pairs in length. Its GC content is 35.9%. The closest genomic DNA sequence was found in Enterococcus phage vB_EfaM_Ef2.3, with a sequence identity of 99.06% over 95% query coverage. Furthermore, 75 open reading frames (ORFs) were functionally annotated and five tRNA-encoding genes were found. ORF 6 was annotated as a phage endolysin having an L-acetylmuramoyl-l-alanine amidase activity. We purified the enzyme as a recombinant protein and confirmed its enzymatic activity. The endolysin’s host range was observed to be wider than its parent phage PBEF129. When applied to bacterial biofilm on the surface of in vitro cultured human intestinal cells, it demonstrated a removal efficacy of the same degree as cefotaxime, but much lower than its parent bacteriophage.
Collapse
Affiliation(s)
- Hyun Keun Oh
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Gyung-Gi Do 17035, Korea; (H.K.O.); (Y.J.H.)
| | - Yoon Jung Hwang
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Gyung-Gi Do 17035, Korea; (H.K.O.); (Y.J.H.)
| | | | - Heejoon Myung
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Gyung-Gi Do 17035, Korea; (H.K.O.); (Y.J.H.)
- LyseNTech Co. Ltd., Gyung-Gi Do 17035, Korea;
- Bacteriophage Bank of Korea, Yong-In, Mo-Hyun, Gyung-Gi Do 17035, Korea
- Correspondence:
| |
Collapse
|
27
|
Yin W, Xu S, Wang Y, Zhang Y, Chou SH, Galperin MY, He J. Ways to control harmful biofilms: prevention, inhibition, and eradication. Crit Rev Microbiol 2020; 47:57-78. [PMID: 33356690 DOI: 10.1080/1040841x.2020.1842325] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Biofilms are complex microbial architectures that encase microbial cells in a matrix comprising self-produced extracellular polymeric substances. Microorganisms living in biofilms are much more resistant to hostile environments than their planktonic counterparts and exhibit enhanced resistance against the microbicides. From the human perspective, biofilms can be classified into beneficial, neutral, and harmful. Harmful biofilms impact food safety, cause plant and animal diseases, and threaten medical fields, making it urgent to develop effective and robust strategies to control harmful biofilms. In this review, we discuss various strategies to control biofilm formation on infected tissues, implants, and medical devices. We classify the current strategies into three main categories: (i) changing the properties of susceptible surfaces to prevent biofilm formation; (ii) regulating signalling pathways to inhibit biofilm formation; (iii) applying external forces to eradicate the biofilm. We hope this review would motivate the development of innovative and effective strategies for controlling harmful biofilms.
Collapse
Affiliation(s)
- Wen Yin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Siyang Xu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Yiting Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Yuling Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| |
Collapse
|
28
|
Isolation of a Novel Lytic Bacteriophage against a Nosocomial Methicillin-Resistant Staphylococcus aureus Belonging to ST45. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5463801. [PMID: 33426055 PMCID: PMC7773469 DOI: 10.1155/2020/5463801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/19/2020] [Accepted: 12/09/2020] [Indexed: 01/09/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) can cause a wide range of infections from mild to life-threatening conditions. Its enhanced antibiotic resistance often leads to therapeutic failures and therefore alternative eradication methods must be considered. Potential candidates to control MRSA infections are bacteriophages and their lytic enzymes, lysins. In this study, we isolated a bacteriophage against a nosocomial MRSA strain belonging to the ST45 epidemiologic group. The phage belonging to Caudovirales, Siphoviridae, showed a narrow host range and stable lytic activity without the emergence of resistant MRSA clones. Phylogenetic analysis showed that the newly isolated Staphylococcus phage R4 belongs to the Triavirus genus in Siphoviridae family. Genetic analysis of the 45 kb sequence of R4 revealed 69 ORFs. No remnants of mobile genetic elements and traces of truncated genes were observed. We have localized the lysin (N-acetylmuramoyl-L-alanine amidase) gene of the new phage that was amplified, cloned, expressed, and purified. Its activity was verified by zymogram analysis. Our findings could potentially be used to develop specific anti-MRSA bacteriophage- and phage lysin-based therapeutic strategies against major clonal lineages and serotypes.
Collapse
|
29
|
Rai A, Vittal RV, Mohan Raj JR. Isolation, Characterization, and Comparison of Efficiencies of Bacteriophages to Reduce Planktonic and Biofilm-Associated Staphylococcus aureus. JOURNAL OF HEALTH AND ALLIED SCIENCES NU 2020. [DOI: 10.1055/s-0040-1715773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
Introduction In the present era, wherein occurrence of antimicrobial resistance compounded with biofilms in disease conditions has rendered present antibiotic therapy ineffective, the need for alternative strategies to treat bacterial infections has brought bacteriophages to the forefront. The antimicrobial activity of phages is often determined by a viable cell reduction assay which focuses only on planktonic forms. The physiology of an organism in biofilm differs from those that are planktonic; hence, there is a need to evaluate the activity of phages both on planktonic forms, as well as on biofilms, to select candidate therapeutic phages.
Materials and Methods Bacteriophages for Staphylococcus aureus were isolated from environmental samples and characterized based on growth kinetics and DNA fingerprint patterns. Activity of isolated phages on planktonic forms was determined by viable count reduction assay. Phage ability to prevent biofilm formation and ability to disperse formed biofilms were performed in 96-well microtiter plates and biofilm estimated by crystal violet assay.
Results Four bacteriophages designated, that is, P3, PD1, PE1, and PE2, were isolated and characterized. Planktonic cells of S. aureus were found to be sensitive to phages PD1, PE1, and PE2. Phages PD1 and PE2 were efficient in preventing biofilm formation and phages PD1, PE1, and P3 were efficient in dispersing formed biofilms.
Conclusion The ability of some phages to disperse biofilms effectively, while unable to show the same efficiency on planktonic cells, indicates that viable count reduction assay alone may not be a sufficient tool to imply bactericidal activity of bacteriophages, especially while trying to eradicate biofilms.
Collapse
Affiliation(s)
- Anoopkrishna Rai
- Division of Infectious Diseases, Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Deralakatte, Mangaluru, India
| | - Rajeshwari V. Vittal
- Division of Infectious Diseases, Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Deralakatte, Mangaluru, India
| | - Juliet R. Mohan Raj
- Division of Infectious Diseases, Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Deralakatte, Mangaluru, India
| |
Collapse
|
30
|
Grishin AV, Karyagina AS, Vasina DV, Vasina IV, Gushchin VA, Lunin VG. Resistance to peptidoglycan-degrading enzymes. Crit Rev Microbiol 2020; 46:703-726. [PMID: 32985279 DOI: 10.1080/1040841x.2020.1825333] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The spread of bacterial strains resistant to commonly used antibiotics urges the development of novel antibacterial compounds. Ideally, these novel antimicrobials should be less prone to the development of resistance. Peptidoglycan-degrading enzymes are a promising class of compounds with a fundamentally different mode of action compared to traditionally used antibiotics. The difference in the mechanism of action implies differences both in the mechanisms of resistance and the chances of its emergence. To critically assess the potential of resistance development to peptidoglycan-degrading enzymes, we review the available evidence for the development of resistance to these enzymes in vitro, along with the known mechanisms of resistance to lysozyme, bacteriocins, autolysins, and phage endolysins. We conclude that genetic determinants of resistance to peptidoglycan-degrading enzymes are unlikely to readily emerge de novo. However, resistance to these enzymes would probably spread by the horizontal transfer between intrinsically resistant and susceptible species. Finally, we speculate that the higher cost of the therapeutics based on peptidoglycan degrading enzymes compared to classical antibiotics might result in less misuse, which in turn would lead to lower selective pressure, making these antibacterials less prone to resistance development.
Collapse
Affiliation(s)
- Alexander V Grishin
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.,All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Anna S Karyagina
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.,All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, Russia.,A.N. Belozersky Institute of Physical and Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Daria V Vasina
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.,A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Irina V Vasina
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vladimir A Gushchin
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.,Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir G Lunin
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.,All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
31
|
Santos SB, Cunha AP, Macedo M, Nogueira CL, Brandão A, Costa SP, Melo LDR, Azeredo J, Carvalho CM. Bacteriophage‐receptor binding proteins for multiplex detection of
Staphylococcus
and
Enterococcus
in blood. Biotechnol Bioeng 2020; 117:3286-3298. [DOI: 10.1002/bit.27489] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/23/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Sílvio B. Santos
- Centre of Biological Engineering University of Minho Braga Portugal
| | | | - Mariana Macedo
- Centre of Biological Engineering University of Minho Braga Portugal
| | - Catarina L. Nogueira
- International Iberian Nanotechnology Laboratory Braga Portugal
- Instituto de Engenharia de Sistemas e Computadores – Microsistemas e Nanotecnologias (INESC MN) and IN – Institute of Nanoscience and Nanotechnolnology Lisbon Portugal
| | - Ana Brandão
- Centre of Biological Engineering University of Minho Braga Portugal
| | - Susana P. Costa
- Centre of Biological Engineering University of Minho Braga Portugal
- International Iberian Nanotechnology Laboratory Braga Portugal
- Instituto de Engenharia de Sistemas e Computadores – Microsistemas e Nanotecnologias (INESC MN) and IN – Institute of Nanoscience and Nanotechnolnology Lisbon Portugal
| | - Luís D. R. Melo
- Centre of Biological Engineering University of Minho Braga Portugal
| | - Joana Azeredo
- Centre of Biological Engineering University of Minho Braga Portugal
| | - Carla M. Carvalho
- Centre of Biological Engineering University of Minho Braga Portugal
- International Iberian Nanotechnology Laboratory Braga Portugal
| |
Collapse
|
32
|
Antibiotics Act with vB_AbaP_AGC01 Phage against Acinetobacter baumannii in Human Heat-Inactivated Plasma Blood and Galleria mellonella Models. Int J Mol Sci 2020; 21:ijms21124390. [PMID: 32575645 PMCID: PMC7352404 DOI: 10.3390/ijms21124390] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/11/2020] [Accepted: 06/19/2020] [Indexed: 12/16/2022] Open
Abstract
Increasing multidrug resistance has led to renewed interest in phage-based therapy. A combination of the bacteriophages and antibiotics presents a promising approach enhancing the phage therapy effectiveness. First, phage candidates for therapy should be deeply characterized. Here we characterize the bacteriophage vB_AbaP_AGC01 that poses antibacterial activity against clinical Acinetobacter baumannii strains. Moreover, besides genomic and phenotypic analysis our study aims to analyze phage–antibiotic combination effectiveness with the use of ex vivo and in vivo models. The phage AGC01 efficiently adsorbs to A. baumannii cells and possesses a bacteriolytic lifecycle resulting in high production of progeny phages (317 ± 20 PFU × cell−1). The broad host range (50.27%, 93 out of 185 strains) against A. baumannii isolates and the inability of AGC01 to infect other bacterial species show its high specificity. Genomic analysis revealed a high similarity of the AGC01 genome sequence with that of the Friunavirus genus from a subfamily of Autographivirinae. The AGC01 is able to significantly reduce the A. baumannii cell count in a human heat-inactivated plasma blood model (HIP-B), both alone and in combination with antibiotics (gentamicin (GEN), ciprofloxacin (CIP), and meropenem (MER)). The synergistic action was observed when a combination of phage treatment with CIP or MER was used. The antimicrobial activity of AGC01 and phage-antibiotic combinations was confirmed using an in vivo larva model. This study shows the greatest increase in survival of G. mellonella larvae when the combination of phage (MOI = 1) and MER was used, which increased larval survival from 35% to 77%. Hence, AGC01 represents a novel candidate for phage therapy. Additionally, our study suggests that phages and antibiotics can act synergistically for greater antimicrobial effect when used as combination therapy.
Collapse
|
33
|
Kaur J, Singh P, Sharma D, Harjai K, Chhibber S. A potent enzybiotic against methicillin-resistant Staphylococcus aureus. Virus Genes 2020; 56:480-497. [DOI: 10.1007/s11262-020-01762-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/24/2020] [Indexed: 12/22/2022]
|
34
|
Costa SP, Dias NM, Melo LDR, Azeredo J, Santos SB, Carvalho CM. A novel flow cytometry assay based on bacteriophage-derived proteins for Staphylococcus detection in blood. Sci Rep 2020; 10:6260. [PMID: 32277078 PMCID: PMC7148305 DOI: 10.1038/s41598-020-62533-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/06/2019] [Indexed: 02/08/2023] Open
Abstract
Bloodstream infections (BSIs) are considered a major cause of death worldwide. Staphylococcus spp. are one of the most BSIs prevalent bacteria, classified as high priority due to the increasing multidrug resistant strains. Thus, a fast, specific and sensitive method for detection of these pathogens is of extreme importance. In this study, we have designed a novel assay for detection of Staphylococcus in blood culture samples, which combines the advantages of a phage endolysin cell wall binding domain (CBD) as a specific probe with the accuracy and high-throughput of flow cytometry techniques. In order to select the biorecognition molecule, three different truncations of the C-terminus of Staphylococcus phage endolysin E-LM12, namely the amidase (AMI), SH3 and amidase+SH3 (AMI_SH3) were cloned fused with a green fluorescent protein. From these, a higher binding efficiency to Staphylococcus cells was observed for AMI_SH3, indicating that the amidase domain possibly contributes to a more efficient binding of the SH3 domain. The novel phage endolysin-based flow cytometry assay provided highly reliable and specific detection of 1-5 CFU of Staphylococcus in 10 mL of spiked blood, after 16 hours of enrichment culture. Overall, the method developed herein presents advantages over the standard BSIs diagnostic methods, potentially contributing to an early and effective treatment of BSIs.
Collapse
Affiliation(s)
- Susana P Costa
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Nicolina M Dias
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Luís D R Melo
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Joana Azeredo
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Sílvio B Santos
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Carla M Carvalho
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal.
| |
Collapse
|
35
|
Isolation and application of bacteriophages alone or in combination with nisin against planktonic and biofilm cells of Staphylococcus aureus. Appl Microbiol Biotechnol 2020; 104:5145-5158. [PMID: 32248441 DOI: 10.1007/s00253-020-10581-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/14/2020] [Accepted: 03/23/2020] [Indexed: 01/02/2023]
Abstract
Staphylococcus aureus is a notorious foodborne pathogen since it has ability to produce variety of toxins including heat-stable enterotoxin, form biofilm, and acquire resistance to antibiotics. Biocontrol of foodborne pathogens by lytic bacteriophages garners increasing interest from both researchers and food industry. In the present study, 29 phages against S. aureus were successfully isolated from chicken, pork, and fish. Characterization of the isolates revealed that phage SA46-CTH2 belonging to Podoviridae family had a number of features suitable for food industry applications such as wide host range, short latent period, large burst size, high stress tolerance, and a genome free of virulence genes. Furthermore, phage SA46-CTH2 alone or in combination with nisin exhibited great efficacy in reducing planktonic and biofilm cells of S. aureus at various conditions tested. The combination of phage SA46-CTH2 and nisin was also found to be able to inhibit the regrowth of S. aureus at both 37 and 24 °C.Key points• A total of 29 S. aureus phages were successfully isolated from fish, pork, and chicken products. • Phage SA46-CTH2 was characterized by host range, morphology, and genome sequencing. • SA46-CTH2 significantly reduced both planktonic and biofilm cells of S. aureus. • Combination of SA46-CTH2 and nisin inhibited the regrowth of S. aureus.
Collapse
|
36
|
Abstract
To formulate the optimal strategy of combatting bacterial biofilms, in this review we update current knowledge on the growing problem of biofilm formation and its resistance to antibiotics which has spurred the search for new strategies to deal with this complication. Based on recent findings, the role of bacteriophages in the prevention and elimination of biofilm-related infections has been emphasized. In vitro, ex vivo and in vivo biofilm treatment models with single bacteriophages or phage cocktails have been compared. A combined use of bacteriophages with antibiotics in vitro or in vivo confirms earlier reports of the synergistic effect of these agents in improving biofilm removal. Furthermore, studies on the application of phage-derived lysins in vitro, ex vivo or in vivo against biofilm-related infections are encouraging. The strategy of combined use of phage and antibiotics seems to be different from using lysins and antibiotics. These findings suggest that phages and lysins alone or in combination with antibiotics may be an efficient weapon against biofilm formation in vivo and ex vivo, which could be useful in formulating novel strategies to combat bacterial infections. Those findings proved to be relevant in the prevention and destruction of biofilms occurring during urinary tract infections, orthopedic implant-related infections, periodontal and peri-implant infections. In conclusion, it appears that most efficient strategy of eliminating biofilms involves phages or lysins in combination with antibiotics, but the optimal scheme of their administration requires further studies.
Collapse
|
37
|
Barros JAR, Melo LDRD, Silva RARD, Ferraz MP, Azeredo JCVDR, Pinheiro VMDC, Colaço BJA, Fernandes MHR, Gomes PDS, Monteiro FJ. Encapsulated bacteriophages in alginate-nanohydroxyapatite hydrogel as a novel delivery system to prevent orthopedic implant-associated infections. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 24:102145. [PMID: 31857183 DOI: 10.1016/j.nano.2019.102145] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 11/26/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022]
Abstract
An innovative delivery system based on bacteriophages-loaded alginate-nanohydroxyapatite hydrogel was developed as a multifunctional approach for local tissue regeneration and infection prevention and control. Bacteriophages were efficiently encapsulated, without jeopardizing phage viability and functionality, nor affecting hydrogel morphology and chemical composition. Bacteriophage delivery occurred by swelling-disintegration-degradation process of the alginate structure and was influenced by environmental pH. Good tissue response was observed following the implantation of bacteriophages-loaded hydrogels, sustaining their biosafety profile. Bacteriophages-loaded hydrogels did not affect osteoblastic cells' proliferation and morphology. A strong osteogenic and mineralization response was promoted through the implantation of hydrogels system with nanohydroxyapatite. Lastly, bacteriophages-loaded hydrogel showed excellent antimicrobial activity inhibiting the attachment and colonization of multidrug-resistant E. faecalis surrounding and within femoral tissues. This new local delivery approach could be a promising approach to prevent and control bacterial contamination during implantation and bone integration.
Collapse
Affiliation(s)
- Joana Alberta Ribeiro Barros
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; FEUP - Faculdade de Engenharia, Universidade do Porto, Porto, Portugal.
| | - Luís Daniel Rodrigues de Melo
- Laboratório de Investigação em Biofilmes Rosário Oliveira, Center of Biological Engineering, University of Minho, Braga, Portugal
| | - Rita Araújo Reis da Silva
- Laboratory for Bone Metabolism and Regeneration - Faculty of Dental Medicine, University of Porto, Porto, Portugal; REQUIMTE/LAQV, University of Porto, Porto, Portugal
| | - Maria Pia Ferraz
- FP-ENAS/CEBIMED - University Fernando Pessoa Energy, Environment and Health Research Unit/Biomedical Research Center, Porto, Portugal
| | | | | | - Bruno Jorge Antunes Colaço
- Department of Animal Sciences, ECAV, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal; Center for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Maria Helena Raposo Fernandes
- Laboratory for Bone Metabolism and Regeneration - Faculty of Dental Medicine, University of Porto, Porto, Portugal; REQUIMTE/LAQV, University of Porto, Porto, Portugal
| | - Pedro de Sousa Gomes
- Laboratory for Bone Metabolism and Regeneration - Faculty of Dental Medicine, University of Porto, Porto, Portugal; REQUIMTE/LAQV, University of Porto, Porto, Portugal
| | - Fernando Jorge Monteiro
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; FEUP - Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
38
|
Characterization of the Three New Kayviruses and Their Lytic Activity Against Multidrug-Resistant Staphylococcus aureus. Microorganisms 2019; 7:microorganisms7100471. [PMID: 31635437 PMCID: PMC6843549 DOI: 10.3390/microorganisms7100471] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 11/17/2022] Open
Abstract
The development of antimicrobial resistance has become a global concern. One approach to overcome the problem of drug resistance is the application of bacteriophages. This study aimed at characterizing three phages isolated from sewage, which show lytic activity against clinical isolates of multidrug-resistant Staphylococcus aureus. Morphology, genetics and biological properties, including host range, adsorption rate, latent time, phage burst size and lysis profiles, were studied in all three phages. As analyzed by transmission electron microscopy (TEM), phages vB_SauM-A, vB_SauM-C, vB_SauM-D have a myovirion morphology. One of the tested phages, vB_SauM-A, has relatively rapid adsorption (86% in 17.5 min), short latent period (25 min) and extremely large burst size (~500 plaque-forming units (PFU) per infected cell). The genomic analysis revealed that vB_SauM-A, vB_SauM-C, vB_SauM-D possess large genomes (vB_SauM-A 139,031 bp, vB_SauM-C 140,086 bp, vB_SauM-D 139,088 bp) with low G+C content (~30.4%) and are very closely related to the phage K (95-97% similarity). The isolated bacteriophages demonstrate broad host range against MDR S. aureus strains, high lytic activity corresponding to strictly virulent life cycle, suggesting their potential to treat S. aureus infections.
Collapse
|
39
|
Sharahi JY, Azimi T, Shariati A, Safari H, Tehrani MK, Hashemi A. Advanced strategies for combating bacterial biofilms. J Cell Physiol 2019; 234:14689-14708. [PMID: 30693517 DOI: 10.1002/jcp.28225] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/16/2019] [Indexed: 01/24/2023]
Abstract
Biofilms are communities of microorganisms that are formed on and attached to living or nonliving surfaces and are surrounded by an extracellular polymeric material. Biofilm formation enjoys several advantages over the pathogens in the colonization process of medical devices and patients' organs. Unlike planktonic cells, biofilms have high intrinsic resistance to antibiotics and sanitizers, and overcoming them is a significant problematic challenge in the medical and food industries. There are no approved treatments to specifically target biofilms. Thus, it is required to study and present innovative and effective methods to combat a bacterial biofilm. In this review, several strategies have been discussed for combating bacterial biofilms to improve healthcare, food safety, and industrial process.
Collapse
Affiliation(s)
- Javad Yasbolaghi Sharahi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Taher Azimi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Aref Shariati
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Safari
- Health Promotion Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Melika Khanzadeh Tehrani
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Synergistic Action of Phage and Antibiotics: Parameters to Enhance the Killing Efficacy Against Mono and Dual-Species Biofilms. Antibiotics (Basel) 2019; 8:antibiotics8030103. [PMID: 31349628 PMCID: PMC6783858 DOI: 10.3390/antibiotics8030103] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 11/17/2022] Open
Abstract
Pseudomonas aeruginosa and Staphylococcus aureus are opportunistic pathogens and are commonly found in polymicrobial biofilm-associated diseases, namely chronic wounds. Their co-existence in a biofilm contributes to an increased tolerance of the biofilm to antibiotics. Combined treatments of bacteriophages and antibiotics have shown a promising antibiofilm activity, due to the profound differences in their mechanisms of action. In this study, 48 h old mono and dual-species biofilms were treated with a newly isolated P. aeruginosa infecting phage (EPA1) and seven different antibiotics (gentamicin, kanamycin, tetracycline, chloramphenicol, erythromycin, ciprofloxacin, and meropenem), alone and in simultaneous or sequential combinations. The therapeutic efficacy of the tested antimicrobials was determined. Phage or antibiotics alone had a modest effect in reducing biofilm bacteria. However, when applied simultaneously, a profound improvement in the killing effect was observed. Moreover, an impressive biofilm reduction (below the detection limit) was observed when gentamicin or ciprofloxacin were added sequentially after 6 h of phage treatment. The effect observed does not depend on the type of antibiotic but is influenced by its concentration. Moreover, in dual-species biofilms it was necessary to increase gentamicin concentration to obtain a similar killing effect as occurs in mono-species. Overall, combining phages with antibiotics can be synergistic in reducing the bacterial density in biofilms. However, the concentration of antibiotic and the time of antibiotic application are essential factors that need to be considered in the combined treatments.
Collapse
|
41
|
Barros J, Melo LDR, Poeta P, Igrejas G, Ferraz MP, Azeredo J, Monteiro FJ. Lytic bacteriophages against multidrug-resistant Staphylococcus aureus, Enterococcus faecalis and Escherichia coli isolates from orthopaedic implant-associated infections. Int J Antimicrob Agents 2019; 54:329-337. [PMID: 31229670 DOI: 10.1016/j.ijantimicag.2019.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 06/05/2019] [Accepted: 06/10/2019] [Indexed: 11/19/2022]
Abstract
Orthopaedic implant-associated infections are a devastating complication of orthopaedic surgery with a significant impact on patients and healthcare systems. The aims of this work were to describe the patterns of antimicrobial resistance, pathogenicity and virulence of clinical bacterial isolates from orthopaedic implant-associated infections and to further isolate and characterise bacteriophages that are efficient in controlling these bacteria. Staphylococcus aureus, Enterococcus faecalis and Escherichia coli isolated from orthopaedic infections showed multiresistance patterns to the most frequently used antibiotics in clinical settings. The presence of mobile genetic elements (mecA, Tn916/Tn1545 and intl1) and virulence determinants (icaB, cna, hlb, cylLs, cylM, agg, gelE, fsr and fimA) highlighted the pathogenicity of these isolates. Moreover, the isolates belonged to clonal complexes associated with the acquisition of pathogenicity islands and antimicrobial resistance genes by recombination and horizontal gene transfer. Bacteriophages vB_SauM_LM12, vB_EfaS_LM99 and vB_EcoM_JB75 were characterised and their ability to infect clinical isolates of S. aureus, E. faecalis and E. coli, respectively, was assessed. Morphological and genomic analyses revealed that vB_EfaS_LM99 and vB_EcoM_JB75 belong to the Siphoviridae and Myoviridae families, respectively, and no genes associated with lysogeny were found. The bacteriophages showed low latent periods, high burst sizes, broad host ranges and tolerance to several environmental conditions. Moreover, they showed high efficiency and specificity to infect and reduce clinical bacteria, including methicillin-resistant S. aureus and vancomycin-resistant enterococci. Therefore, the results obtained suggest that the bacteriophages used in this work are a promising approach to control these pathogens involved in orthopaedic implant-associated infections.
Collapse
Affiliation(s)
- Joana Barros
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB-Instituto Nacional de Engenharia Biomédica, Porto, Portugal; FEUP-Faculdade de Engenharia, Universidade do Porto, Porto, Portugal.
| | - Luís D R Melo
- Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Patrícia Poeta
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; LAQV‑REQUIMTE, Faculty of Science and Technology, Nova University of Lisbon, Lisbon, Portugal
| | - Gilberto Igrejas
- LAQV‑REQUIMTE, Faculty of Science and Technology, Nova University of Lisbon, Lisbon, Portugal; Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Maria P Ferraz
- FP-ENAS/CEBIMED-University Fernando Pessoa Energy, Environment and Health Research Unit/Biomedical Research Center, Porto, Portugal
| | - Joana Azeredo
- Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Fernando J Monteiro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB-Instituto Nacional de Engenharia Biomédica, Porto, Portugal; FEUP-Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
42
|
Dakheel KH, Rahim RA, Neela VK, Al-Obaidi JR, Hun TG, Isa MNM, Yusoff K. Genomic analyses of two novel biofilm-degrading methicillin-resistant Staphylococcus aureus phages. BMC Microbiol 2019; 19:114. [PMID: 31138130 PMCID: PMC6540549 DOI: 10.1186/s12866-019-1484-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/07/2019] [Indexed: 01/21/2023] Open
Abstract
Background Methicillin-resistant Staphylococcus aureus (MRSA) biofilm producers represent an important etiological agent of many chronic human infections. Antibiotics and host immune responses are largely ineffective against bacteria within biofilms. Alternative actions and novel antimicrobials should be considered. In this context, the use of phages to destroy MRSA biofilms presents an innovative alternative mechanism. Results Twenty-five MRSA biofilm producers were used as substrates to isolate MRSA-specific phages. Despite the difficulties in obtaining an isolate of this phage, two phages (UPMK_1 and UPMK_2) were isolated. Both phages varied in their ability to produce halos around their plaques, host infectivity, one-step growth curves, and electron microscopy features. Furthermore, both phages demonstrated antagonistic infectivity on planktonic cultures. This was validated in an in vitro static biofilm assay (in microtiter-plates), followed by the visualization of the biofilm architecture in situ via confocal laser scanning microscopy before and after phage infection, and further supported by phages genome analysis. The UPMK_1 genome comprised 152,788 bp coding for 155 putative open reading frames (ORFs), and its genome characteristics were between the Myoviridae and Siphoviridae family, though the morphological features confined it more to the Siphoviridae family. The UPMK_2 has 40,955 bp with 62 putative ORFs; morphologically, it presented the features of the Podoviridae though its genome did not show similarity with any of the S. aureus in the Podoviridae family. Both phages possess lytic enzymes that were associated with a high ability to degrade biofilms as shown in the microtiter plate and CLSM analyses. Conclusions The present work addressed the possibility of using phages as potential biocontrol agents for biofilm-producing MRSA. Electronic supplementary material The online version of this article (10.1186/s12866-019-1484-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Khulood Hamid Dakheel
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor Darul Ehsan, Malaysia.,Department of Biology, College of Science, Mustansiriyah University, Palestine Street, PO Box 14022, Baghdad, Iraq
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor Darul Ehsan, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Vasantha Kumari Neela
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Jameel R Al-Obaidi
- Agro-biotechnology Institute Malaysia (ABI), c/o MARDI Headquarters, 43400, Serdang, Selangor, Malaysia
| | - Tan Geok Hun
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mohd Noor Mat Isa
- Malaysia Genome Institute (MGI), Jalan Bangi, 43000, Kajang, Selangor, Malaysia
| | - Khatijah Yusoff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor Darul Ehsan, Malaysia. .,Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
43
|
Oliveira H, Sampaio M, Melo LDR, Dias O, Pope WH, Hatfull GF, Azeredo J. Staphylococci phages display vast genomic diversity and evolutionary relationships. BMC Genomics 2019; 20:357. [PMID: 31072320 PMCID: PMC6507118 DOI: 10.1186/s12864-019-5647-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/27/2019] [Indexed: 11/25/2022] Open
Abstract
Background Bacteriophages are the most abundant and diverse entities in the biosphere, and this diversity is driven by constant predator–prey evolutionary dynamics and horizontal gene transfer. Phage genome sequences are under-sampled and therefore present an untapped and uncharacterized source of genetic diversity, typically characterized by highly mosaic genomes and no universal genes. To better understand the diversity and relationships among phages infecting human pathogens, we have analysed the complete genome sequences of 205 phages of Staphylococcus sp. Results These are predicted to encode 20,579 proteins, which can be sorted into 2139 phamilies (phams) of related sequences; 745 of these are orphams and possess only a single gene. Based on shared gene content, these phages were grouped into four clusters (A, B, C and D), 27 subclusters (A1-A2, B1-B17, C1-C6 and D1-D2) and one singleton. However, the genomes have mosaic architectures and individual genes with common ancestors are positioned in distinct genomic contexts in different clusters. The staphylococcal Cluster B siphoviridae are predicted to be temperate, and the integration cassettes are often closely-linked to genes implicated in bacterial virulence determinants. There are four unusual endolysin organization strategies found in Staphylococcus phage genomes, with endolysins predicted to be encoded as single genes, two genes spliced, two genes adjacent and as a single gene with inter-lytic-domain secondary translational start site. Comparison of the endolysins reveals multi-domain modularity, with conservation of the SH3 cell wall binding domain. Conclusions This study provides a high-resolution view of staphylococcal viral genetic diversity, and insights into their gene flux patterns within and across different phage groups (cluster and subclusters) providing insights into their evolution. Electronic supplementary material The online version of this article (10.1186/s12864-019-5647-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hugo Oliveira
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal.
| | - Marta Sampaio
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Luís D R Melo
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Oscar Dias
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Welkin H Pope
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joana Azeredo
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
44
|
Rehman S, Ali Z, Khan M, Bostan N, Naseem S. The dawn of phage therapy. Rev Med Virol 2019; 29:e2041. [PMID: 31050070 DOI: 10.1002/rmv.2041] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/17/2019] [Accepted: 01/19/2019] [Indexed: 12/19/2022]
Abstract
Bacteriophages or phages, being the most abundant entities on earth, represent a potential solution to a diverse range of problems. Phages are successful antibacterial agents whose use in therapeutics was hindered by the discovery of antibiotics. Eventually, because of the development and spread of antibiotic resistance among most bacterial species, interest in phage as therapeutic entities has returned, because their noninfectious nature to humans should make them safe for human nanomedicine. This review highlights the most recent advances and progress in phage therapy and bacterial hosts against which phage research is currently being conducted with respect to food, human, and marine pathogens. Bacterial immunity against phages and tactics of phage revenge to defeat bacterial defense systems are also summarized. We have also discussed approved phage-based products (whole phage-based products and phage proteins) and shed light on their influence on the eukaryotic host with respect to host safety and induction of immune response against phage preparations. Moreover, creation of phages with desirable qualities and their uses in cancer treatment, vaccine production, and other therapies are also reviewed to bring together evidence from the scientific literature about the potentials and possible utility of phage and phage encoded proteins in the field of therapeutics and industrial biotechnology.
Collapse
Affiliation(s)
- Sana Rehman
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Zahid Ali
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Momna Khan
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Nazish Bostan
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Saadia Naseem
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
45
|
Azam AH, Tanji Y. Peculiarities of Staphylococcus aureus phages and their possible application in phage therapy. Appl Microbiol Biotechnol 2019; 103:4279-4289. [PMID: 30997551 DOI: 10.1007/s00253-019-09810-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/07/2019] [Accepted: 03/31/2019] [Indexed: 12/21/2022]
Abstract
Bacteriophage has become an attractive alternative for the treatment of antibiotic-resistant Staphylococcus aureus. For the success of phage therapy, phage host range is an important criterion when considering a candidate phage. Most reviews of S. aureus (SA) phages have focused on their impact on host evolution, especially their contribution to the spread of virulence genes and pathogenesis factors. The potential therapeutic use of SA phages, especially detailed characterizations of host recognition mechanisms, has not been extensively reviewed so far. In this report, we provide updates on the study of SA phages, focusing on host recognition mechanisms with the recent discovery of phage receptor-binding proteins (RBPs) and the possible applications of SA phages in phage therapy.
Collapse
Affiliation(s)
- Aa Haeruman Azam
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J2-15, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Yasunori Tanji
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J2-15, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.
| |
Collapse
|
46
|
Schleimer N, Kaspar U, Knaack D, von Eiff C, Molinaro S, Grallert H, Idelevich EA, Becker K. In Vitro Activity of the Bacteriophage Endolysin HY-133 against Staphylococcus aureus Small-Colony Variants and Their Corresponding Wild Types. Int J Mol Sci 2019; 20:E716. [PMID: 30736446 PMCID: PMC6387228 DOI: 10.3390/ijms20030716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 01/06/2023] Open
Abstract
Nasal carriage of methicillin-susceptible (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) represents both a source and a risk factor for subsequent infections. However, existing MRSA decolonization strategies and antibiotic treatment options are hampered by the duration of administration and particularly by the emergence of resistance. Moreover, beyond classical resistance mechanisms, functional resistance as the formation of the small-colony variant (SCV) phenotype may also impair the course and treatment of S. aureus infections. For the recombinant bacteriophage endolysin HY-133, rapid bactericidal and highly selective in vitro activities against MSSA and MRSA has been shown. In order to assess the in vitro efficacy of HY-133 against the SCV phenotype, minimal inhibitory (MIC) and minimal bactericidal concentrations (MBC) were evaluated on clinical SCVs, their isogenic wild types, as well as on genetically derived and gentamicin-selected SCVs. For all strains and growth phases, HY-133 MIC and MBC ranged between 0.12 and 1 mg/L. Time-kill studies revealed a fast-acting bactericidal activity of HY-133 resulting in a ≥3 - log10 decrease in CFU/mL within 1 h compared to oxacillin, which required 4⁻24 h. Since the mode of action of HY-133 was independent of growth phase, resistance pattern, and phenotype, it is a promising candidate for future S. aureus decolonization strategies comprising rapid activity against phenotypic variants exhibiting functional resistance.
Collapse
Affiliation(s)
- Nina Schleimer
- Institute of Medical Microbiology, University Hospital Münster (UKM), 48149 Münster, Germany.
| | - Ursula Kaspar
- Institute of Medical Microbiology, University Hospital Münster (UKM), 48149 Münster, Germany.
| | - Dennis Knaack
- Institute of Medical Microbiology, University Hospital Münster (UKM), 48149 Münster, Germany.
| | - Christof von Eiff
- Institute of Medical Microbiology, University Hospital Münster (UKM), 48149 Münster, Germany.
| | | | | | - Evgeny A Idelevich
- Institute of Medical Microbiology, University Hospital Münster (UKM), 48149 Münster, Germany.
| | - Karsten Becker
- Institute of Medical Microbiology, University Hospital Münster (UKM), 48149 Münster, Germany.
| |
Collapse
|
47
|
Affiliation(s)
- Yves Briers
- Department of Biotechnology, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
48
|
Gutiérrez D, Fernández L, Rodríguez A, García P. Role of Bacteriophages in the Implementation of a Sustainable Dairy Chain. Front Microbiol 2019; 10:12. [PMID: 30723460 PMCID: PMC6349743 DOI: 10.3389/fmicb.2019.00012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/07/2019] [Indexed: 12/16/2022] Open
Abstract
The growing human population is currently facing an unprecedented challenge regarding global food sustainability. Thus, it is of paramount to maintain food production and quality while avoiding a negative impact on climate change and the environment at large. Along the food chain, several practices could compromise future food safety and human health. One example is the widespread use of antibiotics and disinfectants in dairy production, which has contributed to the current antibiotic resistance crisis. Moreover, the uncontrolled release of antimicrobials to the environment poses a significant threat to natural ecosystems. For these reasons, research has recently focused on exploiting natural antimicrobials with the goal of achieving a safer and more sustainable dairy production chain. In this context, bacteriophages, viruses that infect bacteria, may become good allies to prevent and treat diseases in cattle, or be used as disinfectants in dairy facilities and as preservatives in dairy products. This review provides an overview of the current research regarding the use of phages as a global approach to reduce economic losses and food waste, while increasing food safety and reducing the environmental impact of food production. Our current understanding of progress, solutions, and future challenges in dairy production, processing, safety, waste processing, and quality assurance is also discussed.
Collapse
Affiliation(s)
| | | | | | - Pilar García
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Spain
| |
Collapse
|
49
|
Wu M, Hu K, Xie Y, Liu Y, Mu D, Guo H, Zhang Z, Zhang Y, Chang D, Shi Y. A Novel Phage PD-6A3, and Its Endolysin Ply6A3, With Extended Lytic Activity Against Acinetobacter baumannii. Front Microbiol 2019; 9:3302. [PMID: 30687281 PMCID: PMC6333635 DOI: 10.3389/fmicb.2018.03302] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 12/18/2018] [Indexed: 01/21/2023] Open
Abstract
With widespread abuse of antibiotics, bacterial resistance has increasingly become a serious threat. Acinetobacter baumannii has emerged as one of the most important hospital-acquired pathogens worldwide. Bacteriophages (also called “phages”) could be used as a potential alternative therapy to meet the challenges posed by such pathogens. Endolysins from phages have also been attracting increasing interest as potential antimicrobial agents. Here, we isolated 14 phages against A. baumannii, determined the lytic spectrum of each phage, and selected one with a relatively broad host range, named vB_AbaP_PD-6A3 (PD-6A3 for short), for its biological characteristics. We over-expressed and purified the endolysin (Ply6A3) from this phage and tested its biological characteristics. The PD-6A3 is a novel phage, which can kill 32.4% (179/552) of clinical multidrug resistant A. baumannii (MDRAB) isolates. Interestingly, in vitro, this endolysin could not only inhibit A. baumannii, but also that of other strains, such as Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA). We found that lethal A. baumannii sepsis mice could be effectively rescued in vivo by phage PD-6A3 and endolysin Ply6A3 intraperitoneal injection. These characteristics reveal the promising potential of phage PD-6A3 and endolysin Ply6A3 as attractive candidates for the control of A. baumannii-associated nosocomial infections.
Collapse
Affiliation(s)
- Minle Wu
- Department of Clinical Laboratory, Pudong Hosipital Affiliated to Fudan University, Shanghai, China
| | - Kongying Hu
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yili Liu
- Department of Clinical Laboratory, Shanghai Public Health Clinical Center, Shanghai, China
| | - Di Mu
- Department of Clinical Laboratory, The Fourth People's Hospital of Shanghai, Shanghai, China
| | - Huimin Guo
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhifan Zhang
- Department of Clinical Laboratory, The Fourth People's Hospital of Shanghai, Shanghai, China
| | - Yingcong Zhang
- Department of Clinical Laboratory, Pudong Hosipital Affiliated to Fudan University, Shanghai, China
| | - Dong Chang
- Department of Clinical Laboratory, Pudong Hosipital Affiliated to Fudan University, Shanghai, China
| | - Yi Shi
- Department of Clinical Laboratory, The Fourth People's Hospital of Shanghai, Shanghai, China
| |
Collapse
|
50
|
Synergistic Removal of Static and Dynamic Staphylococcus aureus Biofilms by Combined Treatment with a Bacteriophage Endolysin and a Polysaccharide Depolymerase. Viruses 2018; 10:v10080438. [PMID: 30126174 PMCID: PMC6116285 DOI: 10.3390/v10080438] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/13/2018] [Accepted: 08/17/2018] [Indexed: 01/05/2023] Open
Abstract
Staphylococcus aureus is an important pathogen and biofilm former. Biofilms cause problems in clinics and food production and are highly recalcitrant to antibiotics and sanitizers. Bacteriophage endolysins kill bacteria by degrading their cell wall and are therefore deemed promising antimicrobials and anti-biofilm agents. Depolymerases targeting polysaccharides in the extracellular matrix have been suggested as parts of a multi-enzyme approach to eradicate biofilms. The efficacy of endolysins and depolymerases against S. aureus biofilms in static models has been demonstrated. However, there is a lack of studies evaluating their activity against biofilms grown under more realistic conditions. Here, we investigated the efficacy of the endolysin LysK and the poly-N-acetylglucosamine depolymerase DA7 against staphylococcal biofilms in static and dynamic (flow cell-based) models. LysK showed activity against multiple S. aureus strains, and both LysK and DA7 removed static and dynamic biofilms from polystyrene and glass surfaces at low micromolar and nanomolar concentrations, respectively. When combined, the enzymes acted synergistically, as demonstrated by crystal violet staining of static biofilms, significantly reducing viable cell counts compared to individual enzyme treatment in the dynamic model, and confocal laser scanning microscopy. Overall, our results suggest that LysK and DA7 are potent anti-biofilm agents, alone and in combination.
Collapse
|