1
|
Ma J, Tian T, Zeng N, Gu Y, Ren X, Jin Z. The value of common blood parameters for the differential diagnosis of respiratory tract infections in children. AMB Express 2025; 15:25. [PMID: 39918743 PMCID: PMC11806179 DOI: 10.1186/s13568-025-01829-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 01/26/2025] [Indexed: 02/09/2025] Open
Abstract
Mycoplasma pneumoniae and influenza A virus are common pathogens that cause respiratory tract infection in children. Both pathogens present with similar clinical symptoms, and their epidemic periods often overlap. Consequently, it is challenging for clinicians to make a rapid preliminary diagnosis. However, common blood tests is simple and efficient, Therefore, the purpose of this study is to preliminarily distinguish Mycoplasma pneumoniae and influenza A virus infection in children by analyzing the results of common blood tests, thereby guiding clinical diagnosis and treatment.The results showed that, compared with children in the influenza A virus-positive group, children in the Mycoplasma pneumoniae-positive group had higher white blood cell (WBC), red blood cell (RBC), haemoglobin (HGB), platelet (PLT) counts, lymphocyte (LYM) and eosinophil (EOS) counts and ratios, as well as higher concentrations of C-reactive protein (CRP) and serum amyloid A (SAA), while neutrophil (NEU) and monocyte (MONO) counts and ratios, Neutrophil to Lymphocyte ratio( NLR) were lower, in addition, LYM, EOS counts and ratios, and NLR were all more effective in differentiating between the two pathogen infections, A combined analysis of these indicators further improved the differentiation efficacy. Therefore, LYM and EOS counts and ratios, along with NLR, can serve as effective blood parameters for differentiating Mycoplasma pneumoniae infections from influenza A virus infections in children.
Collapse
Affiliation(s)
- Jun'e Ma
- Department of Clinical Laboratory, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, China
| | - Ting Tian
- Department of Clinical Laboratory, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, China
| | - Nianyi Zeng
- Department of Clinical Laboratory, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, China
| | - Yue Gu
- Department of Clinical Laboratory, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, China
| | - Xuewei Ren
- Department of Clinical Laboratory, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, China
| | - Zhengjiang Jin
- Department of Clinical Laboratory, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, China.
| |
Collapse
|
2
|
Darwish A, Ateya A, Alghamdi MA, El-Sayed A. Individual Genomic Loci, Transcript Level and Serum Profile of Immune, Antioxidant and Hormonal Markers Associated with Sheep Arthritis. Vet Sci 2025; 12:122. [PMID: 40005882 PMCID: PMC11861797 DOI: 10.3390/vetsci12020122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
Arthritis is a leading cause of economic loss in livestock farming including sheep. This study examined the changes in gene expression, antioxidants, pro-inflammatory cytokines, acute-phase proteins (APPs), hormonal assays and iron profiles linked to sheep arthritis, as well as the diagnostic utility of these markers. Blood samples were obtained from 30 apparently healthy rams and 30 rams with arthritis for gene expression and biochemical analyses. Gene expression intensities were much higher in the arthritis-affected rams than in the healthy ones for the genes IL-1α, IL-1β, IL-6, IL-10, TNFα, NCF4, NFKB, TMED, FCAMR, iNOS and COX18. The SOD3, CAT, GPX and ATOX1 genes were expressed at substantially lower levels in arthritis-affected rams. Disparities in the nucleotide sequence variants for the amplified DNA bases linked to arthritis for the studied genes were found in the PCR-DNA sequence verdicts of the affected and healthy rams. Immunological, acute-phase protein (APP), antioxidant, hormonal and iron profiles were estimated in both groups and statistically analyzed. The arthritic group in relation to the healthy one showed a significant (p < 0.05) increase in pro-inflammatory cytokines, APPs, free radicals, immunoglobulins, cortisol, GH, TSH, ferritin, TIBC and UIBC and a significant (p ˂ 0.05) decrease in anti-inflammatory cytokines, antioxidants, complements, insulin, T3, T4, SI, and Tf and Tf sat.% serum levels. The estimated pro-inflammatory cytokines and APPs achieved high values of sensitivity and specificity, positive predictive values (PPVs), negative predictive values (NPVs), a high accuracy rate and a moderate likelihood ratio (LR). The study concluded that ovine arthritis stimulates innate and humeral immunity, resulting in prominent alterations in gene expression, pro-inflammatory cytokines, APP assays and antioxidant profiles, which could be valuable indicators of sheep arthritis.
Collapse
Affiliation(s)
- Asmaa Darwish
- Department of Animal Health and Poultry, Animal and Poultry Production Division, Desert Research Center (DRC), Cairo 11753, Egypt;
| | - Ahmed Ateya
- Department of Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mansour A. Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia;
- Genomics and Personalized Medicine Unit, The Center for Medical and Health Research, King Khalid University, Abha 62529, Saudi Arabia
| | - Ahmed El-Sayed
- Department of Animal Health and Poultry, Animal and Poultry Production Division, Desert Research Center (DRC), Cairo 11753, Egypt;
| |
Collapse
|
3
|
Darwish A, Ebissy E, Hafez A, Ateya A, El-Sayed A. Nucleotide sequence variants, gene expression and serum profile of immune and antioxidant markers associated with bacterial diarrhea susceptibility in Barki lambs. BMC Vet Res 2024; 20:462. [PMID: 39394128 PMCID: PMC11468138 DOI: 10.1186/s12917-024-04288-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 09/16/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Despite the fact that diarrhea is more accurately described as a clinical symptom than a disease. Diarrhea is one of the most important issues in ovine medicine, particularly in lambs, and because of high morbidity and mortality rate, sluggish growth performance, and veterinary costs, it is believed to be a major source of economic loss. Salmonella and enterotoxigenic Escherichia coli are the most common and commercially significant agents responsible for diarrhea. OBJECTIVE The objective of this study was to monitor the nucleotide sequence variations, gene expression, serum inflammatory and oxidative stress biomarkers in diarrheic lambs. Another aim was to identify different pathotypes and virulence genes of Salmonella and E. coli causing diarrhea. METHODOLOGY Blood samples were taken from 50 Barki who were diarrheal and 50 who appeared to be healthy, and then divided in 3 portions, with EDTA added to the first part for CBC, DNA and RNA extraction. The second sample received 5000 I.U. of heparin calcium, and a clean plain tube was used for the third component. The second and third sections were centrifuged to extract serum and plasma until the biochemical and immunological analysis was completed. Fecal samples were collected for bacteriological examination, and the bacteria were identified by PCR analysis. PCR-DNA sequencing was conducted for immune (SELL, JAK2, SLC11A1, IL10, FEZF1, NCF4, LITAF, SBD2, NFKB, TNF-α, IL1B, IL6, LGALS, and CATH1), antioxidant (SOD1, CAT, GPX1, GST, Nrf2, Keap1, HMOX1, and NQO1), and GIT health (CALB1, GT, and MUC2) genes in healthy and diarrheic lambs. RESULTS Virulent genetic markers of pathogenic characteristics of E. coli (astA, Vt2e (Stx2e), CFA/I, groES and luxS) and Salmonella (invA, SopB, bcfC and avrA) were detected in all diarrheic lambs. PCR-DNA sequencing of immune, antioxidant and intestinal health genes found eleven single nucleotide polymorphisms (SNPs) linked to either diarrhea resistance or susceptibility in Barki lambs. Transcript levels of immune, antioxidant, and GIT health (CALB1, GT, and MUC2) genes varied between healthy and diarrheic lambs. Nucleotide sequence variation of the genes under inquiry between reference sequences in GenBank and those of the animals under investigation verified all identified SNPs. Significant (P = 0.001) erythrocytosis, neutrophilic leukocytosis, with lymphocytopenia were observed in diarrheic lambs. Significant (P = 0.001) increases in serum IL-1α, IL-1β, IL-6, TNF-α (90.5 ± 1.7, 101.8 ± 1.7, 72.3 ± 6.6, 71.26 ± 4.89 Pg/ml, respectively), serum Fb, Cp, Hp, SAA (230.7 ± 12.4 mg/dl, 6.5 ± 0.07 mg/dl, 2.5 ± 0.09 g/dl, 7.4 ± 0.4 mg/L, respectively), free radicals (MDA, NO), cortisol (6.91 ± 0.18 μg/dl) and growth hormone, with significant (P = 0.001) decreases in serum IL-10 (81.71 ± 1.05 Pg/ml), antioxidants (CAT, GPx), insulin, triiodothyronine (T3) and thyroxine (T4) in diarrheic lambs. CONCLUSIONS The study's findings provided credence to the theory that marker-assisted selection (MAS) could be used to predict and prevent diarrhea in Barki sheep by selecting lambs based on SNPs in genes linked to inflammation, antioxidants, and intestinal health. In order to establish an efficient management protocol and determine the most susceptible risk period for disease occurrence, gene expression profiles of the genes under investigation, pro-inflammatory cytokines and acute phase proteins may also be utilized as proxy biomarkers for lamb enteritis.
Collapse
Affiliation(s)
- Asmaa Darwish
- Department of Animal Health and Poultry, Animal and Poultry Production Division, Desert Research Center (DRC), Cairo, Egypt
| | - Eman Ebissy
- Department of Animal Health and Poultry, Animal and Poultry Production Division, Desert Research Center (DRC), Cairo, Egypt
| | - Amani Hafez
- Department of Animal Health and Poultry, Animal and Poultry Production Division, Desert Research Center (DRC), Cairo, Egypt
| | - Ahmed Ateya
- Department of Development of Animal , of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| | - Ahmed El-Sayed
- Department of Animal Health and Poultry, Animal and Poultry Production Division, Desert Research Center (DRC), Cairo, Egypt
| |
Collapse
|
4
|
Reolon HG, Abduch NG, de Freitas AC, Silva RMDO, Fragomeni BDO, Lourenco D, Baldi F, de Paz CCP, Stafuzza NB. Proteomic changes of the bovine blood plasma in response to heat stress in a tropically adapted cattle breed. Front Genet 2024; 15:1392670. [PMID: 39149588 PMCID: PMC11324462 DOI: 10.3389/fgene.2024.1392670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024] Open
Abstract
Background Identifying molecular mechanisms responsible for the response to heat stress is essential to increase production, reproduction, health, and welfare. This study aimed to identify early biological responses and potential biomarkers involved in the response to heat stress and animal's recovery in tropically adapted beef cattle through proteomic analysis of blood plasma. Methods Blood samples were collected from 14 Caracu males during the heat stress peak (HSP) and 16 h after it (heat stress recovery-HSR) assessed based on wet bulb globe temperature index and rectal temperature. Proteome was investigated by liquid chromatography-tandem mass spectrometry from plasma samples, and the differentially regulated proteins were evaluated by functional enrichment analysis using DAVID tool. The protein-protein interaction network was evaluated by STRING tool. Results A total of 1,550 proteins were detected in both time points, of which 84 and 65 were downregulated and upregulated during HSR, respectively. Among the differentially regulated proteins with the highest absolute log-fold change values, those encoded by the GABBR1, EPHA2, DUSP5, MUC2, DGCR8, MAP2K7, ADRA1A, CXADR, TOPBP1, and NEB genes were highlighted as potential biomarkers because of their roles in response to heat stress. The functional enrichment analysis revealed that 65 Gene Ontology terms and 34 pathways were significant (P < 0.05). We highlighted those that could be associated with the response to heat stress, such as those related to the immune system, complement system, hemostasis, calcium, ECM-receptor interaction, and PI3K-Akt and MAPK signaling pathways. In addition, the protein-protein interaction network analysis revealed several complement and coagulation proteins and acute-phase proteins as important nodes based on their centrality and edges. Conclusion Identifying differentially regulated proteins and their relationship, as well as their roles in key pathways contribute to improve the knowledge of the mechanisms behind the response to heat stress in naturally adapted cattle breeds. In addition, proteins highlighted herein are potential biomarkers involved in the early response and recovery from heat stress in tropically adapted beef cattle.
Collapse
Affiliation(s)
| | - Natalya Gardezani Abduch
- Beef Cattle Research Center, Animal Science Institute, Sertãozinho, Brazil
- Department of Genetics, Ribeirao Preto Medical School (FMRP), University of Sao Paulo (USP), Ribeirão Preto, Brazil
| | - Ana Claudia de Freitas
- Beef Cattle Research Center, Animal Science Institute, Sertãozinho, Brazil
- Agricultural Research Agency of the State of Minas Gerais (EPAMIG), Patos de Minas, Brazil
| | | | | | - Daniela Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Fernando Baldi
- Department of Animal Science, School of Agricultural and Veterinary Sciences, Sao Paulo State University (UNESP), Jaboticabal, Brazil
| | - Claudia Cristina Paro de Paz
- Department of Genetics, Ribeirao Preto Medical School (FMRP), University of Sao Paulo (USP), Ribeirão Preto, Brazil
- Sustainable Livestock Research Center, Animal Science Institute, São José do Rio Preto, Brazil
| | | |
Collapse
|
5
|
Urbańska DM, Pawlik M, Korwin-Kossakowska A, Czopowicz M, Rutkowska K, Kawecka-Grochocka E, Mickiewicz M, Kaba J, Bagnicka E. Effect of Supplementation with Curcuma longa and Rosmarinus officinalis Extract Mixture on Acute Phase Protein, Cathelicidin, Defensin and Cytolytic Protein Gene Expression in the Livers of Young Castrated Polish White Improved Bucks. Genes (Basel) 2023; 14:1932. [PMID: 37895281 PMCID: PMC10606746 DOI: 10.3390/genes14101932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Goats are an excellent animal model for research on some physiological and pathophysiological processes in humans. The search for supplements that prevent homeostasis disorders and strengthen the immune system is necessary to reduce the risk of many diseases in both humans and animals. The aim of the study was to analyze the effect of supplementation with a mixture of dried extracts of Curcuma longa and Rosmarinus officinalis on the expression of acute-phase protein (SAA, HP, CRP, LALBA, AGP, CP, FGA, FGB, and FGG), cathelicidin (BAC5, BAC7.5, BAC3.4, MAP28, MAP34, and HEPC), beta-defensin-1 (GBD1, DEFB1), and beta-defensin-2, and cytolytic protein (LIZ and LF) genes in the livers of young castrated bucks of the Polish White Improved breed. The higher expression of LF in the control group suggests that it is important for the first line of hepatic immune defense and its expression is downregulated by the mixture of turmeric and rosemary extracts; thus, the spice-herb mixture mutes its activity. The lower expression of FGB and the higher expression of BAC5 genes in the livers of healthy, young castrated bucks who were administered the supplement suggest the silencing effects of the mixture on the acute-phase response and the stimulating effect on the antimicrobial activity of the immune system.
Collapse
Affiliation(s)
- Daria M. Urbańska
- Department of Animal Improvement and Nutrigenomics, Institute of Genetics and Animal Breeding Polish Academy of Sciences, Postepu 36A Str., 05-552 Jastrzębiec, Poland; (A.K.-K.); (E.B.)
| | - Marek Pawlik
- Department of Neurotoxicology, Mossakowski Medical Research Institute Polish Academy of Sciences, Pawińskiego 5 Str., 02-106 Warsaw, Poland;
| | - Agnieszka Korwin-Kossakowska
- Department of Animal Improvement and Nutrigenomics, Institute of Genetics and Animal Breeding Polish Academy of Sciences, Postepu 36A Str., 05-552 Jastrzębiec, Poland; (A.K.-K.); (E.B.)
| | - Michał Czopowicz
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776 Warsaw, Poland; (M.C.); (M.M.); (J.K.)
| | - Karolina Rutkowska
- Department of Medical Genetics, Medical University of Warsaw, Pawińskiego 3c Str., 02-106 Warsaw, Poland;
| | - Ewelina Kawecka-Grochocka
- Department of Animal Improvement and Nutrigenomics, Institute of Genetics and Animal Breeding Polish Academy of Sciences, Postepu 36A Str., 05-552 Jastrzębiec, Poland; (A.K.-K.); (E.B.)
| | - Marcin Mickiewicz
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776 Warsaw, Poland; (M.C.); (M.M.); (J.K.)
| | - Jarosław Kaba
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776 Warsaw, Poland; (M.C.); (M.M.); (J.K.)
| | - Emilia Bagnicka
- Department of Animal Improvement and Nutrigenomics, Institute of Genetics and Animal Breeding Polish Academy of Sciences, Postepu 36A Str., 05-552 Jastrzębiec, Poland; (A.K.-K.); (E.B.)
| |
Collapse
|
6
|
González-Méndez AS, Tórtora Pérez JL, Rojas-Anaya E, Ramírez Álvarez H. Study of the Genetic Expression of Antiretroviral Restriction Factors and Acute Phase Proteins in Cattle Infected with Bovine Leukemia Virus. Pathogens 2023; 12:529. [PMID: 37111415 PMCID: PMC10146972 DOI: 10.3390/pathogens12040529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
The goal of this study was to analyze the genetic expression of antiretroviral restriction factors (ARF) and acute phase proteins (APP), as well as their correlation with proviral and viral loads in cattle with aleukemic (AL) and persistent lymphocytosis (PL). Complete blood samples were collected from a herd of dairy cows, and we extracted genetic material from peripheral blood leukocytes. Absolute quantification of the expression of ARF (APOBEC-Z1, Z2, and Z3; HEXIM-1, HEXIM-2, and BST2) and APP (haptoglobin (HP), and serum amyloid A (SAA)) was performed by qPCR. Statistical significance was observed in the expression of APOBEC-Z3 in BLV-infected animals. We only found positive correlations with a strong expression of the ARF genes in the AL group. The participation of APOBEC (Z1 and Z3), HEXIM-1, and HEXIM-2 was more frequently identified in BLV-infected animals. HEXIM-2 showed active gene expression in the AL group. Although the expression of ARF in early stages of infection (AL) maintains an important participation, in late stages (PL) it seems to have little relevance.
Collapse
Affiliation(s)
- Ana S. González-Méndez
- Virology, Genetics and Molecular Biology Laboratory, Faculty of Higher Education Cuautitlan, Veterinary Medical School, Campus 4, National Autonomous University of Mexico, Cuautitlan Izcalli, Mexico City CP 54714, Mexico; (A.S.G.-M.); (J.L.T.P.)
| | - Jorge L. Tórtora Pérez
- Virology, Genetics and Molecular Biology Laboratory, Faculty of Higher Education Cuautitlan, Veterinary Medical School, Campus 4, National Autonomous University of Mexico, Cuautitlan Izcalli, Mexico City CP 54714, Mexico; (A.S.G.-M.); (J.L.T.P.)
| | - Edith Rojas-Anaya
- Pacific Center Research Center, INIFAP, Guadalajara CP 44660, Mexico;
| | - Hugo Ramírez Álvarez
- Virology, Genetics and Molecular Biology Laboratory, Faculty of Higher Education Cuautitlan, Veterinary Medical School, Campus 4, National Autonomous University of Mexico, Cuautitlan Izcalli, Mexico City CP 54714, Mexico; (A.S.G.-M.); (J.L.T.P.)
| |
Collapse
|
7
|
Saco Y, Bassols A. Acute phase proteins in cattle and swine: A review. Vet Clin Pathol 2023; 52 Suppl 1:50-63. [PMID: 36526287 DOI: 10.1111/vcp.13220] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/30/2022] [Accepted: 11/08/2022] [Indexed: 12/23/2022]
Abstract
The major acute phase proteins (APPs) in cattle are haptoglobin (Hp) and serum amyloid A (SAA), and in swine, are Hp, SAA, C-reactive protein (CRP), and Pig major acute phase protein (Pig-MAP). Many methodologic assays are presently available to measure these parameters, which are still being improved to increase their specificity, sensitivity, user-friendliness, and economic availability. In cattle, the main applications are the diagnosis and monitoring of frequent diseases such as mastitis and metritis in dairy cows and respiratory problems in young calves. In pigs, APPs are useful in the control of bacterial and viral infections, and they may be used at the slaughterhouse to monitor subclinical pathologies and improve food safety. The utility of APP in animal production must not be forgotten; optimization of protocols to improve performance, welfare, and nutrition may benefit from the use of APPs. Other sample types besides serum or plasma have potential uses; APP determination in milk is a powerful tool in the control of mastitis, saliva is a non-invasive sample type, and meat juice is easily obtained at the slaughterhouse. Increasing our knowledge of reference intervals and the influence of variables such as age, breed, sex, and the season is important. Finally, worldwide harmonization and standardization of analytical procedures will help to expand the use of APPs.
Collapse
Affiliation(s)
- Yolanda Saco
- Departament de Bioquímica i Biologia Molecular, Servei de Bioquímica Clínica Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Anna Bassols
- Departament de Bioquímica i Biologia Molecular, Servei de Bioquímica Clínica Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
8
|
Fu K, Sun Y, Wang J, Cao R. Tanshinone IIa alleviates LPS-induced oxidative stress in dairy cow mammary epithelial cells by activating the Nrf2 signalling pathway. Res Vet Sci 2022; 151:149-155. [PMID: 36027684 DOI: 10.1016/j.rvsc.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/26/2022] [Accepted: 08/07/2022] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Mastitis is the most prevalent disease in dairy cows worldwide. Evidence has emerged that oxidative stress plays a crucial role in the development of mastitis. This study aimed to investigate the antioxidative effects of tanshinone IIa (Tan IIa) on LPS-induced oxidative stress in dairy cow mammary epithelial cells (CMECs). METHODS AND RESULTS We examined the levels of ROS and MDA in LPS-treated CMECs after supplementation with Tan IIa using detection kits and found that Tan IIa significantly inhibited the upregulation of these factors. In addition, we also found that Tan IIa significantly reversed the decrease in mitochondrial membrane potential induced by LPS. Moreover, Tan IIa improved the activities of antioxidant enzymes, which were decreased by LPS. Finally, we examined the probable pathway in which Tan IIa exerted its antioxidant effects using qPCR and western blotting and found that Tan IIa significantly activated the Keap1/Nrf2 signalling pathway. CONCLUSION These results suggest that Tan IIa might become a possible therapeutic agent for the treatment of dairy cow mastitis by weakening oxidative stress induced by LPS in CMECs.
Collapse
Affiliation(s)
- Kaiqiang Fu
- Qingdao Agricultural University, Shandong, Qingdao 266109, PR China.
| | - Yuning Sun
- Qingdao Agricultural University, Shandong, Qingdao 266109, PR China; Qingdao Hengxing University of Science and Technology, Shandong, Qingdao 266100, PR China
| | - Junbo Wang
- Qingdao Agricultural University, Shandong, Qingdao 266109, PR China
| | - Rongfeng Cao
- Qingdao Agricultural University, Shandong, Qingdao 266109, PR China.
| |
Collapse
|
9
|
Lymphatic filarial serum proteome profiling for identification and characterization of diagnostic biomarkers. PLoS One 2022; 17:e0270635. [PMID: 35793325 PMCID: PMC9258881 DOI: 10.1371/journal.pone.0270635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/15/2022] [Indexed: 01/08/2023] Open
Abstract
Lymphatic Filariasis (LF) affects more than 863 million people in tropical and subtropical areas of the world, causing high morbidity and long illnesses leading to social exclusion and loss of wages. A combination of drugs Ivermectin, Diethylcarbamazine citrate and Albendazole is recommended by WHO to accelerate the Global Programme to Eliminate Lymphatic Filariasis (GPELF). To assess the outcome of GPELF, to re-evaluate and to formulate further strategies there is an imperative need for high quality diagnostic markers. This study was undertaken to identify Lymphatic Filarial biomarkers which can detect LF infections in asymptomatic cases and would also serve as indicators for differentiating among different clinical stages of the disease. A combination of Fourier-transform infrared spectroscopy (FT-IR), MMP zymography, SDS-PAGE, classical 2DE along with MALDI-TOF/MS was done to identify LF biomarkers from serum samples of different stages of LF patients. FT-IR spectroscopy coupled with univariate and multivariate analysis of LF serum samples, revealed significant differences in peak intensity at 3300, 2950, 1645, 1540 and 1448 cm-1 (p<0.05). The proteomics analysis results showed that various proteins were differentially expressed (p<0.05), including C-reactive protein, α-1-antitrypsin, heterogeneous nuclear ribonucleoprotein D like, apolipoproteins A-I and A-IV in different LF clinical stages. Functional pathway analysis suggested the involvement of differentially expressed proteins in vital physiological pathways like acute phase response, hemostasis, complement and coagulation cascades. Furthermore, the differentiation between different stages of LF cases and biomarkers identified in this study clearly demonstrates the potential of the human serum profiling approach for LF detection. To our knowledge, this is the first report of comparative human serum profiling in different categories of LF patients.
Collapse
|
10
|
Biomarkers of sepsis in pigs, horses and cattle: from acute phase proteins to procalcitonin. Anim Health Res Rev 2022; 23:82-99. [PMID: 35795920 DOI: 10.1017/s1466252322000019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Sepsis is a complex clinical syndrome triggered by an inflammatory host response to an infection. It is usually complicated to detect and diagnose, and has severe consequences in human and veterinary health, especially when treatment is not started early. Therefore, efforts to detect sepsis accurately are needed. In addition, its proper diagnosis could reduce the misuse of antibiotics, which is essential fighting against antimicrobial resistance. This case is a particular issue in farm animals, as antibiotics have been traditionally given massively, but now they are becoming increasingly restricted. When sepsis is suspected in animals, the most frequently used biomarkers are acute phase proteins such as C-reactive protein, serum amyloid A and haptoglobin, but their concentrations can increase in other inflammatory conditions. In human patients, the most promising biomarkers to detect sepsis are currently procalcitonin and presepsin, and there is a wide range of other biomarkers under study. However, there is little information on the application of these biomarkers in veterinary species. This review aims to describe the general concepts of sepsis and the current knowledge about the biomarkers of sepsis in pigs, horses, and cattle and to discuss possible advances in the field.
Collapse
|
11
|
Acute Stress Response of Sheep to Shearing Procedures: Dynamic Change of Cortisol Concentration and Protein Electrophoretic Pattern. Animals (Basel) 2022; 12:ani12070862. [PMID: 35405852 PMCID: PMC8996932 DOI: 10.3390/ani12070862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/11/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Abstract
The current study aimed to investigate the influence of acute stress by shearing procedures on hematological parameters, serum cortisol concentration and serum protein electrophoretic pattern in Comisana sheep. A total of 20 not pregnant and not lactating adult ewes, aged 3−4 years old and with a mean bodyweight of 55.50 ± 3.50 kg, were enrolled in the study. From each animal, blood samples were collected before shearing (TPRE) and 5 (TPOST5) and 60 (TPOST60) minutes after the end of the shearing procedure in order to assess the values of hematological parameters, serum cortisol, total proteins and protein fractions, including albumin, α-, β1-, β2- and γ-globulins. According to statistical analysis results, albumin values were lower at TPOST60 than TPOST5 (p < 0.01), whereas α- and β2-globulins and the A/G ratio were higher at TPOST60 with respect to TPRE (p < 0.01) and TPOST5 (p < 0.01). A higher serum concentration of cortisol was found at TPOST5 and TPOST60 than TPRE (p < 0.01), and at TPOST60 than TPOST5 (p < 0.01). The serum cortisol values were negatively correlated with the serum values of albumin, β1-globulins and A/G ratio at TPOST60, and positively correlated with α- and β2-globulins at TPOST5 and TPOST60. The decrease in the albumin concentration and the increase in the α- and β2-globulins observed in ewes after shearing with respect to the baseline values suggests an acute phase response in shorn ewes. Additionally, the correlation found between the serum cortisol concentration and the serum protein fractions confirmed the immunomodulatory effect of this hormone, emphasizing the linkage between the endocrine and immune systems during an acute stress condition.
Collapse
|
12
|
Potential Novel Biomarkers for Mastitis Diagnosis in Sheep. Animals (Basel) 2021; 11:ani11102783. [PMID: 34679803 PMCID: PMC8532728 DOI: 10.3390/ani11102783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Inflammation of the mammary gland (mastitis) is an important disease of dairy sheep. Mastitis management depends mainly on the diagnosis. Conventional diagnostic methods including somatic cell count, California Mastitis Test, and microbial culture have limitations. Therefore researchers are looking for new diagnostic biomarkers of mastitis including specific proteins produced by the liver in case of disease (acute phase proteins), unique genetic sequences (miRNAs), or antimicrobial peptides produced by immune cells during inflammation (cathelicidines). Abstract This review aims to characterize promising novel markers of ovine mastitis. Mastitis is considered as one of the primary factors for premature culling in dairy sheep and has noticeable financial, productional, and animal welfare-related implications. Furthermore, clinical, and subclinical mammary infections negatively affect milk yield and alter the milk composition, thereby leading to lowered quality of dairy products. It is, therefore, crucial to control and prevent mastitis through proper diagnosis, treatment or culling, and appropriate udder health management particularly at the end of the lactation period. The clinical form of mastitis is characterized by abnormalities in milk and mammary gland tissue alteration or systemic symptoms consequently causing minor diagnostic difficulties. However, to identify ewes with subclinical mastitis, laboratory diagnostics is crucial. Mastitis control is primarily dependent on determining somatic cell count (SCC) and the California Mastitis Test (CMT), which aim to detect the quantity of cells in the milk sample. The other useful diagnostic tool is microbial culture, which complements SCC and CMT. However, all mentioned diagnostic methods have their limitations and therefore novel biomarkers of ovine subclinical mastitis are highly desired. These sensitive indicators include acute-phase proteins, miRNA, and cathelicidins measurements, which could be determined in ovine serum and/or milk and in the future may become useful in early mastitis diagnostics as well as a preventive tool. This may contribute to increased detection of ovine mammary gland inflammation in sheep, especially in subclinical form, and consequently improves milk quality and quantity.
Collapse
|
13
|
Ostrowska M, Zwierzchowski L, Brzozowska P, Kawecka-Grochocka E, Żelazowska B, Bagnicka E. The effect of single-nucleotide polymorphism in the promoter region of bovine alpha-lactalbumin (LALBA) gene on LALBA expression in milk cells and milk traits of cows. J Anim Sci 2021; 99:6283592. [PMID: 34032850 DOI: 10.1093/jas/skab169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/20/2021] [Indexed: 12/26/2022] Open
Abstract
Polymorphisms of milk protein genes have been proposed as candidate markers for dairy production traits in cattle. In the present study, a polymorphism was detected in the 5'-flanking (promoter) region of the bovine alpha-lactalbumin (LALBA) gene, a T/C transition located at nucleotide -1,001 relative to the transcription start site g.-1001T > C (NC_037332.1:g.31183170T > C), which is recognizable with PstI restriction endonuclease. In silico analyses showed that this mutation created novel retinoid X receptor alpha and vitamin D receptor transcription factor binding sites. Real-time PCR found that cows with different genetic variants of the promoter demonstrated different levels of expression of LALBA mRNA in milk somatic cells (MSCs). The TT genotype cows demonstrated low expression, whereas those with CT demonstrated much higher expression (P < 0.05). ELISA analysis found milk LALBA protein levels also differed between the TT and CT cows (P < 0.05) and that these levels were not correlated with the mRNA abundance in MSC. Association analysis found that the g.-1001T > C polymorphism in the promoter region of the LALBA gene influenced milk production traits in Polish Holstein-Friesian cows. High daily milk yield and dry matter yield, and high lactose yield and concentration were associated with the TT genotype. The TT genotype cows also had a lower number of somatic cells in the milk, considered as an indicator of udder health status. Therefore, the TT genotype could be more desirable from the breeder's perspective.
Collapse
Affiliation(s)
- Malgorzata Ostrowska
- Institute of Genetics and Animal Breeding of the Polish Academy of Science, Jastrzebiec 05-552, Poland.,Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Lublin 20-704, Poland
| | - Lech Zwierzchowski
- Institute of Genetics and Animal Breeding of the Polish Academy of Science, Jastrzebiec 05-552, Poland
| | - Paulina Brzozowska
- Institute of Genetics and Animal Breeding of the Polish Academy of Science, Jastrzebiec 05-552, Poland
| | - Ewelina Kawecka-Grochocka
- Institute of Genetics and Animal Breeding of the Polish Academy of Science, Jastrzebiec 05-552, Poland.,Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw 02-787, Poland
| | - Beata Żelazowska
- Institute of Genetics and Animal Breeding of the Polish Academy of Science, Jastrzebiec 05-552, Poland
| | - Emilia Bagnicka
- Institute of Genetics and Animal Breeding of the Polish Academy of Science, Jastrzebiec 05-552, Poland
| |
Collapse
|
14
|
Ovarian activity in crossbred Thai native does during naturally occurring foot-and-mouth disease (FMD) virus infection. Trop Anim Health Prod 2021; 53:269. [PMID: 33871729 DOI: 10.1007/s11250-021-02714-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/10/2020] [Indexed: 10/21/2022]
Abstract
This study aimed to compare the follicular dynamics in goats during naturally infected with foot-and-mouth disease virus (FMD) subjected to induced ovulations, and after disease recovery, crossbred Thai native does were synchronized with CIDR for 14 days, and then PGF2α and PMSG were administered on the day following CIDR removal. The ovarian activity was determined by transrectal ultrasonography. Clinical signs (fever, anorexia, lameness, and foot lesion) were observed on day 12 post-estrus (day 0, day of expected estrus). The study was carried out for 2 periods: FMD outbreak (day 0-day 21) and FMD recovery (day 63-day 84). Infected does were classified into two groups: (I) does without (n = 5) and (II) does with clinical signs (n = 5). The results showed that during FMD outbreak, the number of follicles/waves and number of follicles > 5 mm in ovulatory follicle wave of group II were lower than those of group I and those of its own group after FMD recovery (P<0.05). Higher in follicular regression rate were found in group II compared to group I in the does with 3 follicular waves during FMD outbreak (P<0.05). Moreover, during FMD outbreak, the does had lower number of follicles > 5 mm and longer day of emergence and day of largest follicles in ovulatory follicle wave than of those after FMD recovery. This observation demonstrated that FMD impaired folliculogenesis in goats, and the ovarian activity could be restored about 1 month after disease recovery.
Collapse
|
15
|
Pławińska-Czarnak J, Majewska A, Zarzyńska J, Bogdan J, Kaba J, Anusz K, Bagnicka E. Gene Expression Profile in Peripheral Blood Nuclear Cells of Small Ruminant Lentivirus-Seropositive and Seronegative Dairy Goats in Their First Lactation. Animals (Basel) 2021; 11:ani11040940. [PMID: 33810360 PMCID: PMC8066113 DOI: 10.3390/ani11040940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Caprine arthritis encephalitis, caused by small ruminant lentivirus (SRLV), is a disease that develops with various signs in adult goats, e.g., arthritis, mastitis, and progressive weight loss, while in goat kids, the disease presents with only neuropathy and extremely rarely. The disease results in reduced milk production and economic losses in herds of goats. Previously described changes in single gene expression do not fully explain all the processes occurring in the infected goats. Therefore, the present study describes the first use of a transcriptomic array designed specifically for goats in Poland. Its aim was to investigate the gene expression profiles of peripheral blood nuclear cells from SRLV-seropositive and SRLV-seronegative goats using a custom-made Capra hircus gene expression array. Just four genes out of ~50,000 were found to have differential expression; moreover, changes in their expression suggest an active inflammatory mechanism in SRLV-seropositive goats at the early stage of SRLV infection. Abstract The immune response to a viral antigen causes inflammatory cell infiltration to the tissue, which creates a suitable environment for the replication of the virus in macrophages, and the recruitment of more monocytes to the site of infection, or latently infected monocytes. The aim of the study was to analyze the transcriptomic profile of peripheral blood nuclear cells isolated from SRLV-seropositive and SRLV-negative goats at the peak of their first lactation. SRLV-seropositive goats were probably infected via colostrum. Custom transcriptomic microarrays for goats were designed and developed, namely the Capra hircus gene expression array, which features ~50,000 unique transcripts per microarray. Only four genes were differentially expressed, with up-regulated expression of the GIMAP2, SSC5D and SETX genes, and down-regulated expression of the GPR37 gene in SRLV-seropositive vs. SRLV-seronegative goats. However, in an RT-qPCR analysis, the result for the SETX gene was not confirmed. The differences in the expressions of the studied genes indicate an active inflammatory process in the SRLV-seropositive goats at the early stage of infection.
Collapse
Affiliation(s)
- Joanna Pławińska-Czarnak
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (J.Z.); (J.B.); (K.A.)
- Correspondence:
| | - Alicja Majewska
- Department of Physiology Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland;
| | - Joanna Zarzyńska
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (J.Z.); (J.B.); (K.A.)
| | - Janusz Bogdan
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (J.Z.); (J.B.); (K.A.)
| | - Jarosław Kaba
- Division of Epidemiology and Veterinary Management, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | - Krzysztof Anusz
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (J.Z.); (J.B.); (K.A.)
| | - Emilia Bagnicka
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland;
| |
Collapse
|
16
|
Acute phase protein expressions in secretory and cistern lining epithelium tissues of the dairy cattle mammary gland during chronic mastitis caused by staphylococci. BMC Vet Res 2020; 16:320. [PMID: 32867772 PMCID: PMC7460751 DOI: 10.1186/s12917-020-02544-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/25/2020] [Indexed: 11/23/2022] Open
Abstract
Background Mastitis is the most common disease in dairy cattle and the costliest for the dairy farming industry, as it lowers milk yield and quality. Mastitis occurs as a result of interactions between microorganisms and the individual genetic predispositions of each animal. Thus, it is important to fully understand the mechanisms underlying these interactions. Elucidating the immune response mechanisms can determine which genetic background makes an animal highly resistant to mastitis. We analyzed the innate immune responses of dairy cows naturally infected with coagulase-positive staphylococci (CoPS; N = 8) or coagulase-negative staphylococci (CoNS; N = 7), causing persistent mastitis (after several failed treatments) vs. infection-free (i.e., healthy [H]; N = 8) dairy cows. The expressions of the acute phase protein genes serum amyloid A3 (SAA3), haptoglobin (HP), ceruloplasmin (CP) genes in the tissues most exposed to pathogens— mammary gland cistern lining epithelial cells (CLECs) and mammary epithelial cells (MECs)—were analyzed. Results We found constitutive and extrahepatic expressions of the studied genes in both tissue types. HP expression in the MECs of the CoPS-infected group was higher than in the H group (p ≤ 0.05). Moreover, higher SAA3 expression in the CoPS and CoNS groups than in the H group (p = 0.06 and 0.08, respectively) was found. No differences between SAA3 and HP in CLECs were revealed, regardless of the pathogen type. However, higher expression of CP (p ≤ 0.05) in the CoPS group than in the H group was noted. Conclusions The expressions of selected acute phase proteins were similar between CLECs and MECs, which means that CLECs are not only a mechanical barrier but are also responsible for the biological immune response. Our findings agree with the results of other authors describing the immunological response of MECs during chronic mastitis, but the results for CLECs are novel.
Collapse
|
17
|
Association of serum C-reactive protein level and polymorphisms with susceptibility to dengue infection and severe clinical outcome among eastern Indian patients. Med Microbiol Immunol 2020; 209:631-640. [PMID: 32720219 DOI: 10.1007/s00430-020-00690-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/18/2020] [Indexed: 12/20/2022]
Abstract
Dengue virus (DENV) infection is a major public health concern in India ranging from simple febrile illness to severe outcome. This study aimed to investigate association of serum CRP level and CRP gene polymorphisms towards development of dengue disease susceptibility and severity among eastern Indian patients. Blood was collected from 348 symptomatic patients. Sera was subjected to serological diagnosis for the presence of anti-dengue IgM, anti-dengue IgG antibodies and dengue NS1 antigen by ELISA. Viral RNA was extracted and the presence of DENV genome, viral load, serotypes was determined by qRT-PCR. CRP level and polymorphisms were determined by immunoturbidimetry and polymerase chain reaction-restriction fragment length polymorphism, respectively. Statistical analysis was performed by GraphPad-Prism. Among 206 dengue patients, CRP level increased significantly among patients within acute phase, and patients with qRT-PCR/NS1 antigen positivity, high viral load (HVL), secondary infection, and DENV4 and DENV2 infections. rs3091244, TT genotype positively associated with dengue susceptibility (p = 0.03). CT genotype of rs3093059 and TT genotype of rs3091244 were found to correlate with elevated CRP level and development of WHO-defined warning signs. TT genotype of rs3091244 was more prevalent among HVL patients. Thus, these CRP polymorphic variants and CRP concentration might act as potential prognostic biomarkers for predicting disease severity among acute-stage dengue patients.
Collapse
|
18
|
Sadri H, Getachew B, Ghaffari MH, Hammon HM, Steinhoff-Wagner J, Sauerwein H. Short communication: Plasma concentration and tissue mRNA expression of haptoglobin in neonatal calves. J Dairy Sci 2020; 103:6684-6691. [PMID: 32331878 DOI: 10.3168/jds.2020-18218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 02/10/2020] [Indexed: 01/11/2023]
Abstract
Haptoglobin (Hp), one of the major positive acute phase proteins in cattle, is released in response to proinflammatory cytokines. Colostrum intake might influence the response of the innate immune system, including Hp gene expression. Thus, we hypothesized that plasma concentrations and tissue mRNA expression of Hp in neonatal calves might be influenced by early nutrition in the neonatal calf and would thus be greater if receiving colostrum compared with milk-based formula. Two trials were performed. In trial 1, German Holstein calves were fed either colostrum (COL; n = 7) or milk-based formula (FOR; n = 7) up to 4 d of life. Blood was sampled from d 1 to 4 before morning feeding and before and 2 h after feeding on d 4. Tissue samples from liver, kidney fat, duodenum, and ileum were collected after slaughter on d 4 at 2 h after feeding. In trial 2, calves born preterm (n = 7) or at term (n = 7) received colostrum only at 24 h post natum. Blood was sampled at birth, and before and 2 h after feeding. Tissue samples from liver and kidney fat were collected after slaughter at 26 h after birth. Blood plasma, colostrum, and formula Hp concentrations were determined using a competitive ELISA. Tissue expression of Hp mRNA was quantified by real-time quantitative PCR. The formula contained much less Hp (≤0.5 µg/mL) than colostrum (69.3, 93.9, and 20.4 µg/mL from d 1 to d 3, respectively). In trial 1, before colostrum or formula feeding, plasma concentrations of Hp were comparable in both groups. Plasma Hp increased in FOR after feeding, resulting in greater or a trend for greater plasma Hp concentrations in FOR than in COL calves. The mRNA abundance of Hp in liver and kidney fat was 3- and 2.2-fold greater in FOR than in COL calves, respectively, whereas duodenal and ileal abundance of Hp mRNA did not differ between groups. In trial 2, plasma Hp concentrations decreased slightly over time in term calves, but they did not differ in both groups before and 2 h after feeding on d 2. The abundance of Hp mRNA in liver was 5.3-fold greater in term than in preterm calves, whereas its abundance in kidney fat did not differ between groups. Contrasting our hypothesis, formula, but not colostrum feeding was associated with greater Hp mRNA abundance in liver and adipose tissue, indicating that the response of innate immune system seems to be modulated by formula feeding because of the lack of immunoglobulin intake. The lower hepatic abundance of Hp mRNA in preterm calves than in term calves may indicate lower synthetic capacity of the liver for Hp in preterm calves shortly after birth.
Collapse
Affiliation(s)
- H Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, 5166616471 Tabriz, Iran
| | - B Getachew
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, 53111 Bonn, Germany
| | - M H Ghaffari
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, 53111 Bonn, Germany
| | - H M Hammon
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - J Steinhoff-Wagner
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - H Sauerwein
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany.
| |
Collapse
|
19
|
Jarczak J, Słoniewska D, Kaba J, Bagnicka E. The expression of cytokines in the milk somatic cells, blood leukocytes and serum of goats infected with small ruminant lentivirus. BMC Vet Res 2019; 15:424. [PMID: 31775763 PMCID: PMC6882311 DOI: 10.1186/s12917-019-2182-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023] Open
Abstract
Background The present study aimed to determine the expression of cytokines, which is associated with the immunological response of dairy goats against small ruminant lentivirus (SRLV). The study was conducted on 26 dairy goats in their second to sixth lactation, which were divided by breed and parity into two groups: SRLV naturally infected (N = 13) and non-infected (N = 13) animals. All goats in the study were asymptomatic. The milk and blood samples, which served as studied material were taken on days 7, 30, 120 and 240 of the lactation. The gene and protein expression of several cytokines was studied using Real-Time PCR and ELISA methods. Results INF-β and INF-γ expression was down-regulated in the milk somatic cells (MSC) of SRLV-infected goats. However, an increased concentration of INF-β was observed in the MSC in SRLV-infected goats, while INF-γ expression was not observed in both SRLV-infected and non-infected animals The SRLV-infected goats also displayed decreased expression of IL-1α, IL-1β, IL-6 and INF-γ genes in the blood leukocytes,with IL-1α, IL-1β and IL-6 protein levels also being decreased in the sera. TNF-α was the only gene that demonstrated increased expression in both the MSC and the blood of infected animals; however, no such overexpression was observed at the protein level. Conclusions SRLV probably influences the immune system of infected animals by deregulating of the expression of cytokines. Further, epigenetic studies may clarify the mechanisms by which SRLV regulates the gene and protein expression of the host.
Collapse
Affiliation(s)
- Justyna Jarczak
- Biobank Lab, Department of Molecular Biophysics, University of Łódź, ul. Pilarskiego 14/16, 90-231, Łódź, Poland. .,Polish Center for Technology Development - PORT, BBMRI.pl Consortium, ul. Stabłowicka 147, 54-066, Wrocław, Poland.
| | - Danuta Słoniewska
- Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, ul. Postępu 36A, 05-552, Magdalenka, Poland
| | - Jarosław Kaba
- Division of Epidemiology and Veterinary Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, ul. Nowoursynowska 159c, 02-787, Warszawa, Poland
| | - Emilia Bagnicka
- Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, ul. Postępu 36A, 05-552, Magdalenka, Poland
| |
Collapse
|
20
|
Dhama K, Latheef SK, Dadar M, Samad HA, Munjal A, Khandia R, Karthik K, Tiwari R, Yatoo MI, Bhatt P, Chakraborty S, Singh KP, Iqbal HMN, Chaicumpa W, Joshi SK. Biomarkers in Stress Related Diseases/Disorders: Diagnostic, Prognostic, and Therapeutic Values. Front Mol Biosci 2019; 6:91. [PMID: 31750312 PMCID: PMC6843074 DOI: 10.3389/fmolb.2019.00091] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/11/2019] [Indexed: 02/05/2023] Open
Abstract
Various internal and external factors negatively affect the homeostatic equilibrium of organisms at the molecular to the whole-body level, inducing the so-called state of stress. Stress affects an organism's welfare status and induces energy-consuming mechanisms to combat the subsequent ill effects; thus, the individual may be immunocompromised, making them vulnerable to pathogens. The information presented here has been extensively reviewed, compiled, and analyzed from authenticated published resources available on Medline, PubMed, PubMed Central, Science Direct, and other scientific databases. Stress levels can be monitored by the quantitative and qualitative measurement of biomarkers. Potential markers of stress include thermal stress markers, such as heat shock proteins (HSPs), innate immune markers, such as Acute Phase Proteins (APPs), oxidative stress markers, and chemical secretions in the saliva and urine. In addition, stress biomarkers also play critical roles in the prognosis of stress-related diseases and disorders, and therapy guidance. Moreover, different components have been identified as potent mediators of cardiovascular, central nervous system, hepatic, and nephrological disorders, which can also be employed to evaluate these conditions precisely, but with stringent validation and specificity. Considerable scientific advances have been made in the detection, quantitation, and application of these biomarkers. The present review describes the current progress of identifying biomarkers, their prognostic, and therapeutic values.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Shyma K. Latheef
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Hari Abdul Samad
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan, Mathura, India
| | - Mohd. Iqbal Yatoo
- Division of Veterinary Clinical Complex, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Prakash Bhatt
- Teaching Veterinary Clinical Complex, College of Veterinary and Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, Agartala, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Wanpen Chaicumpa
- Department of Parasitology, Faculty of Medicine, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sunil Kumar Joshi
- Division of Hematology, Oncology and Bone Marrow Transplantation, Department of Microbiology & Immunology, Department of Pediatrics, University of Miami School of Medicine, Miami, FL, United States
| |
Collapse
|
21
|
Dhama K, Latheef SK, Dadar M, Samad HA, Munjal A, Khandia R, Karthik K, Tiwari R, Yatoo MI, Bhatt P, Chakraborty S, Singh KP, Iqbal HMN, Chaicumpa W, Joshi SK. Biomarkers in Stress Related Diseases/Disorders: Diagnostic, Prognostic, and Therapeutic Values. Front Mol Biosci 2019. [PMID: 31750312 DOI: 10.3389/fmolb.2019.0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Various internal and external factors negatively affect the homeostatic equilibrium of organisms at the molecular to the whole-body level, inducing the so-called state of stress. Stress affects an organism's welfare status and induces energy-consuming mechanisms to combat the subsequent ill effects; thus, the individual may be immunocompromised, making them vulnerable to pathogens. The information presented here has been extensively reviewed, compiled, and analyzed from authenticated published resources available on Medline, PubMed, PubMed Central, Science Direct, and other scientific databases. Stress levels can be monitored by the quantitative and qualitative measurement of biomarkers. Potential markers of stress include thermal stress markers, such as heat shock proteins (HSPs), innate immune markers, such as Acute Phase Proteins (APPs), oxidative stress markers, and chemical secretions in the saliva and urine. In addition, stress biomarkers also play critical roles in the prognosis of stress-related diseases and disorders, and therapy guidance. Moreover, different components have been identified as potent mediators of cardiovascular, central nervous system, hepatic, and nephrological disorders, which can also be employed to evaluate these conditions precisely, but with stringent validation and specificity. Considerable scientific advances have been made in the detection, quantitation, and application of these biomarkers. The present review describes the current progress of identifying biomarkers, their prognostic, and therapeutic values.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Shyma K Latheef
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Hari Abdul Samad
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan, Mathura, India
| | - Mohd Iqbal Yatoo
- Division of Veterinary Clinical Complex, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Prakash Bhatt
- Teaching Veterinary Clinical Complex, College of Veterinary and Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, Agartala, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Wanpen Chaicumpa
- Department of Parasitology, Faculty of Medicine, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sunil Kumar Joshi
- Division of Hematology, Oncology and Bone Marrow Transplantation, Department of Microbiology & Immunology, Department of Pediatrics, University of Miami School of Medicine, Miami, FL, United States
| |
Collapse
|
22
|
Srivastav AK, Dhiman N, Tiwari R, Arjaria N, Prakash J, Jagdale P, Ayanur A, Singh D, Patnaik S, Kumar M. Sub-acute oral exposure of zinc oxide nanoparticles causes alteration in iron homeostasis through acute phase response: A protective effect by surface modification. J Trace Elem Med Biol 2019; 52:270-287. [PMID: 30732893 DOI: 10.1016/j.jtemb.2019.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/04/2018] [Accepted: 01/13/2019] [Indexed: 12/22/2022]
Abstract
Zinc oxide nanoparticles (ZnO NPs) are one of the most widely used nanomaterials. Following oral exposure, these NPs can accumulate in various organs and induce the toxicity due to their physiochemical characteristics. In present study to reduce the toxicity, surface engineered ZnO NPs (c-ZnO NPs) were in-situ synthesized by using polyacrylamide grafted guar gum (PAm-g-GG) polymer in alkaline media. Further, the comparative effect of bared ZnO NPs (b-ZnO NPs) and c-ZnO NPs were assessed on secondary target organ liver and kidneys of Swiss mice at doses of 10, 50 and 300 mg/kg following 28 days repeated oral treatment. The b-ZnO NPs were incited severe damages in liver and kidney tissue than c-ZnO NPs as seen by transmission electron microscopy and histopathology. The increased levels of serum biomarkers (AST, ALT, ALP, creatinine, uric acid, and urea) were also observed, that remarking a disturbance in the function of liver and kidney. After sub-acute oral treatment of b-ZnO NPs, the hepatic pro-inflammatory cytokines (IL-6, TNF-α, and MMP-9) were up-regulated that causes the activation of acute phase response (APR). We also observed significantly increased in expression of hepatic acute phase proteins (hepcidin and haptoglobin) and altered interlinked iron (Fe) signaling biomarkers (hephaestin, TF, TFR-1, LDH, and ferroportin). This study emphasizes that exposure to ZnO NPs may cause inflammation mediated APR through ultra-structural damage of tissue that could escort the progression of anemia. Nevertheless, the capping with PAm-g-GG in c- ZnO NPs has reduced the toxicity by altering the surface reactive property of ZnO NPs.
Collapse
Affiliation(s)
- Anurag Kumar Srivastav
- Biochemistry Laboratory, Animal Facility, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow 226028, Uttar Pradesh, India
| | - Nitesh Dhiman
- Water Analysis Laboratory, Nanotherapeutics and Nanomaterials Toxicology Group, CSIR-Indian Institute of Toxicology Research, (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, Uttar Pradesh, India
| | - Ratnakar Tiwari
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, Lucknow 226001, Uttar Pradesh, India
| | - Nidhi Arjaria
- Advanced Imaging Facility, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, Lucknow, India
| | - Jyoti Prakash
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow 226028, Uttar Pradesh, India
| | - Pankaj Jagdale
- Central Pathology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Anjaneya Ayanur
- Central Pathology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Dhirendra Singh
- Central Pathology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Satyakam Patnaik
- Water Analysis Laboratory, Nanotherapeutics and Nanomaterials Toxicology Group, CSIR-Indian Institute of Toxicology Research, (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, Uttar Pradesh, India
| | - Mahadeo Kumar
- Biochemistry Laboratory, Animal Facility, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|