1
|
Dai Z, Xie B, Xie C, Xiang J, Wang X, Li J, Zheng R, Wang Y. Comparative Metagenomic Analysis of the Gut Microbiota of Captive Pangolins: A Case Study of Two Species. Animals (Basel) 2024; 15:57. [PMID: 39795000 PMCID: PMC11718824 DOI: 10.3390/ani15010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Pangolins, one of the most trafficked mammals, face significant health challenges in captivity, including digestive disorders and immune dysfunctions. These issues are closely linked to alterations in their gut microbiota, which play vital roles in the host metabolism, immunity, and overall health. This study investigated the differences in the gut microbiota composition and function between two pangolin species, Chinese pangolins (Manis pentadactyla) and Malayan pangolins (Manis javanica), under identical captive conditions to better understand their ecological adaptability and health implications. Using metagenomic sequencing, fecal samples from eight adult captive pangolins were analyzed, including four male Malayan pangolins and three male and one female Chinese pangolins. Comparative analyses of the alpha and beta diversities, microbial community structure, and functional profiles were performed. Both species harbored gut microbiota dominated by Firmicutes, Bacteroidetes, and Proteobacteria. However, the Chinese pangolins exhibited higher microbial diversity (Shannon index, p = 0.042; Simpson index, p = 0.037) and lower relative abundance of Proteobacteria compared with the Malayan pangolins. A functional analysis revealed significant differences in the metabolic pathways, where the Chinese pangolins demonstrated a higher potential for fiber degradation, whereas the Malayan pangolins exhibited elevated levels of antibiotic resistance genes and pathogenic taxa, such as Escherichia coli. These findings suggest that captivity duration and environmental stress likely contribute to the observed differences, with the Malayan pangolins experiencing greater dysbiosis due to longer captivity periods. This study provides valuable insights into the role of gut microbiota in pangolin health and offers a foundation for improving conservation strategies and captive care protocols.
Collapse
Affiliation(s)
- Zhengyu Dai
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Z.D.)
| | - Bowen Xie
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Z.D.)
| | - Chungang Xie
- Wildlife Protection and Management Station, Jinhua Municipal Bureau of Planning and Natural Resources, Jinhua 321052, China
| | - Jinsuo Xiang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Z.D.)
| | - Xinmei Wang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Z.D.)
- College of Ecology and Agriculture, Sichuan Minzu College, Chengdu 626001, China
| | - Jing Li
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Z.D.)
| | - Rongquan Zheng
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Z.D.)
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| | - Yanni Wang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Z.D.)
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
2
|
Kumaran M, Sivaranjani T, Suresh S, Periandy S, Soundhariya S, Alibrahim KA, Alodhayb AN. Investigation of the molecular structure of CHBP, biological activities and SARS-CoV-2 protein binding interaction by molecular and biomolecular spectroscopy approaches. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124853. [PMID: 39053114 DOI: 10.1016/j.saa.2024.124853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
The objective of this investigation is to learn more about the structural, electrical, spectroscopic, and physiochemical characteristics of biologically active cyano-4'-hydroxybiphenyl (CHBP). The title molecule's optimized conformational analysis was computed using the DFT/B3LYP/6-311++G (d, p) level of theory. The observed wavenumbers were compared with theoretical FT-IR and FT-Raman spectra. 1H and 13C NMR experimental spectra in CDCl3 solution (solvent phase) were recorded and the chemical shift was calculated. NBO analysis was used to examine the transfer of charge as well as the intermolecular and intramolecular bonding of orbitals. The TD-DFT (time-dependent DFT) approach was used to estimate theoretical values for both the gas and solvent (ethanol) in the corresponding transitional research, which was conducted using UV-Vis's spectra. Energy gap (Eg = 0.26764 eV) implies that the strong potential for charge transfer, and the stability of the CHBP compound. CHBP compound's has bioactive nature, its drug-likeness and biological properties were evaluated. The predicted topological polar surface area of 44.02 \AA2 for the molecule falls within the permissible range of < 140 \AA2. Based on the docking results, the most stable docking score value is -6.84 kcal/mol. In that interaction, MET 165 affects both phenyl rings in a pi-sulphur fashion and a single bond hydrogen with protein moieties GLN 192. This suggests that the pi-alkyl in PRO 168 is a hydroxyl substitutional ring. Our findings demonstrate the CHBP compound is a good inhibitor against the SAR COVID-19 viral protein.
Collapse
Affiliation(s)
- M Kumaran
- Department of Physics, Sri ManakulaVinayagar Engineering College, Pondicherry 605107, India
| | - T Sivaranjani
- Department of Physics, Sri ManakulaVinayagar Engineering College, Pondicherry 605107, India.
| | - S Suresh
- Department of Physics, Saveetha Engineering College (Autonomous), Thandalam, Chennai 602105, Tamil Nadu, India.
| | - S Periandy
- Department of Physics, Kanchi Mamunivar Centre for Post Graduate Studies and Research, Pondicherry, India
| | - S Soundhariya
- Department of Physics, Kanchi Mamunivar Centre for Post Graduate Studies and Research, Pondicherry, India
| | - Khuloud A Alibrahim
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Abdullah N Alodhayb
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Worthington BM, Wong PYH, Kumaree KK, Prigge TL, Ng KH, Liao Y, Martelli P, Churgin S, Lee FK, Perkins C, Bradley M, Pierce MP, Shum MHH, Miot EF, Cheung WYM, McIlroy SE, Nash HC, Wirdateti, Semiadi G, Tan CW, Wang LF, Ades G, Baker DM, Dingle C, Pybus OG, Holmes EC, Leung GM, Guan Y, Zhu H, Bonebrake TC, Lam TTY. Serological evidence of sarbecovirus exposure along Sunda pangolin trafficking pathways. BMC Biol 2024; 22:274. [PMID: 39593133 PMCID: PMC11600613 DOI: 10.1186/s12915-024-02074-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/20/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Early in the coronavirus disease 2019 (COVID-19) pandemic, Sunda pangolins (Manis javanica) involved in the illegal wildlife trade in mainland China were identified as hosts of severe acute respiratory syndrome-related coronaviruses (SARSr-CoVs). Although it is unconfirmed whether pangolins or other traded wildlife served as intermediate hosts for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the trafficking of pangolins presents a clear risk for transmission of viruses with zoonotic and epizootic potential regardless. We have investigated the origins of pangolin carcasses seized in Hong Kong and have evaluated their potential exposure to SARSr-CoVs, other coronaviruses, and paramyxoviruses, aiming to address a gap in our knowledge with regard to the role of wildlife trade in the maintenance and emergence of pathogens with zoonotic and epizootic potential. RESULTS Using a combination of virological and wildlife forensics tools, we investigated 89 Sunda pangolin carcasses seized by Hong Kong authorities during anti-smuggling operations in the territory conducted in 2013 (n = 1) and 2018 (n = 88). Swabs, organ tissues, blood, and other body fluids were collected during post-mortem examination. Two enzyme-linked immunosorbent assays (ELISAs), which employ a double-antigen sandwich format, were used to detect antibodies reactive against SARSr-CoVs. One individual was found to be seropositive with support from both methods, while five individuals exhibited a putatively seropositive result from one ELISA method. Polymerase chain reaction (PCR) screening for coronavirus and paramyxovirus ribonucleic acid (RNA) did not yield any positives. Based on genomic data, the seropositive individual was determined to have likely originated from Java, while the putatively seropositive individuals were determined to have originated from populations in Borneo, Java, and Singapore/Sumatra. CONCLUSIONS While the role of pangolins in the evolution and ecology of SARS-CoV-2 is uncertain, our results suggest susceptibility and potential exposure of pangolins to SARSr-CoVs, occurring naturally or associated with the illegal trafficking of these animals. Complex dynamics between natural populations, traded individuals, and pathogen susceptibility complicate conclusions about the role of pangolins, as well as other host species, in the ecology of SARSr-CoVs and potentially zoonotic viruses with risk of future emergence.
Collapse
Affiliation(s)
- Brian M Worthington
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong SAR, People's Republic of China
- Guangdong-Hongkong Joint Laboratory of Emerging Infectious Diseases, Joint Institute of Virology (Shantou University, The University of Hong Kong), Shantou, Guangdong, 515063, People's Republic of China
- Advanced Pathogen Research Institute, Futian District, Shenzhen City, Guangdong, 518045, People's Republic of China
- Centre for Immunology & Infection Limited, Hong Kong SAR, People's Republic of China
| | - Portia Y-H Wong
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, People's Republic of China
- Marine and Environmental Biology Section, Department of Biology, University of Southern California, Los Angeles, CA, USA
| | - Kishoree K Kumaree
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong SAR, People's Republic of China
- Guangdong-Hongkong Joint Laboratory of Emerging Infectious Diseases, Joint Institute of Virology (Shantou University, The University of Hong Kong), Shantou, Guangdong, 515063, People's Republic of China
- Advanced Pathogen Research Institute, Futian District, Shenzhen City, Guangdong, 518045, People's Republic of China
| | - Tracey-Leigh Prigge
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Kar Hon Ng
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Yunshi Liao
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong SAR, People's Republic of China
- Centre for Immunology & Infection Limited, Hong Kong SAR, People's Republic of China
| | - Paolo Martelli
- Ocean Park Corporation, Hong Kong SAR, People's Republic of China
| | - Sarah Churgin
- Ocean Park Corporation, Hong Kong SAR, People's Republic of China
| | - Foo K Lee
- Ocean Park Corporation, Hong Kong SAR, People's Republic of China
| | - Chris Perkins
- Ocean Park Corporation, Hong Kong SAR, People's Republic of China
| | - Michael Bradley
- Ocean Park Conservation Foundation, Hong Kong SAR, People's Republic of China
| | - Mac P Pierce
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Marcus H-H Shum
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong SAR, People's Republic of China
- Laboratory of Data Discovery for Health Limited, Hong Kong SAR, People's Republic of China
| | - Elliott F Miot
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong SAR, People's Republic of China
- Centre for Immunology & Infection Limited, Hong Kong SAR, People's Republic of China
- HKU-Pasteur Research Pole, The University of Hong Kong, Hong Kong SAR, People's Republic of China
- MIVEGEC, Université de Montpellier, IRD, CNRS, 34394, Montpellier, France
| | - William Y-M Cheung
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong SAR, People's Republic of China
- Guangdong-Hongkong Joint Laboratory of Emerging Infectious Diseases, Joint Institute of Virology (Shantou University, The University of Hong Kong), Shantou, Guangdong, 515063, People's Republic of China
- Advanced Pathogen Research Institute, Futian District, Shenzhen City, Guangdong, 518045, People's Republic of China
- Laboratory of Data Discovery for Health Limited, Hong Kong SAR, People's Republic of China
| | - Shelby E McIlroy
- School of Life Sciences, Simon F.S. Li Marine Science Laboratories, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China
| | - Helen C Nash
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, Singapore
| | - Wirdateti
- Research Centre for Ecology and Innovation Agency, BRIN, Cibinong, 16911, Indonesia
| | - Gono Semiadi
- Research Centre for Biosystematics and Evolution, BRIN, Cibinong, 16911, Indonesia
| | - Chee-Wah Tan
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Gary Ades
- Kadoorie Farm and Botanic Garden, Lam Kam Road, Tai Po, Hong Kong SAR, People's Republic of China
| | - David M Baker
- School of Biological Sciences, Swire Institute of Marine Science, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Caroline Dingle
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Oliver G Pybus
- Department of Biology, University of Oxford, Oxford, UK
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, London, UK
| | - Edward C Holmes
- Laboratory of Data Discovery for Health Limited, Hong Kong SAR, People's Republic of China
- Sydney Institute for Infectious Diseases, School of Medical Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Gabriel M Leung
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong SAR, People's Republic of China
- Laboratory of Data Discovery for Health Limited, Hong Kong SAR, People's Republic of China
| | - Yi Guan
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong SAR, People's Republic of China
- Guangdong-Hongkong Joint Laboratory of Emerging Infectious Diseases, Joint Institute of Virology (Shantou University, The University of Hong Kong), Shantou, Guangdong, 515063, People's Republic of China
- Advanced Pathogen Research Institute, Futian District, Shenzhen City, Guangdong, 518045, People's Republic of China
- Laboratory of Data Discovery for Health Limited, Hong Kong SAR, People's Republic of China
- Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai, 200225, People's Republic of China
| | - Huachen Zhu
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong SAR, People's Republic of China
- Guangdong-Hongkong Joint Laboratory of Emerging Infectious Diseases, Joint Institute of Virology (Shantou University, The University of Hong Kong), Shantou, Guangdong, 515063, People's Republic of China
- Advanced Pathogen Research Institute, Futian District, Shenzhen City, Guangdong, 518045, People's Republic of China
- Laboratory of Data Discovery for Health Limited, Hong Kong SAR, People's Republic of China
| | - Timothy C Bonebrake
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, People's Republic of China.
| | - Tommy T Y Lam
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong SAR, People's Republic of China.
- Guangdong-Hongkong Joint Laboratory of Emerging Infectious Diseases, Joint Institute of Virology (Shantou University, The University of Hong Kong), Shantou, Guangdong, 515063, People's Republic of China.
- Advanced Pathogen Research Institute, Futian District, Shenzhen City, Guangdong, 518045, People's Republic of China.
- Centre for Immunology & Infection Limited, Hong Kong SAR, People's Republic of China.
- Laboratory of Data Discovery for Health Limited, Hong Kong SAR, People's Republic of China.
| |
Collapse
|
4
|
Han Q, Yu Y, Sun H, Zhang X, Liu P, Deng J, Hu X, Chen J. Proteomics and Microbiota Conjoint Analysis in the Nasal Mucus: Revelation of Differences in Immunological Function in Manis javanica and Manis pentadactyla. Animals (Basel) 2024; 14:2683. [PMID: 39335272 PMCID: PMC11428827 DOI: 10.3390/ani14182683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/24/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
All eight pangolin species, especially captive Manis pentadactyla, are critically endangered and susceptible to various pathogenic microorganisms, causing mass mortality. They are involved in the complement system, iron transport system, and inflammatory factors. M. pentadactyla exhibited a higher abundance of opportunistic pathogens, Moraxella, which potentially evaded complement-mediated immune response by reducing C5 levels and counteracting detrimental effects through transferrin neutralization. In addition, we found that the major structure of C5a, an important inflammatory factor, was lacking in M. javanica. In brief, this study revealed the differences in immune factors and microbiome between M. javanica and M. pentadactyla, thus providing a theoretical basis for subsequent immunotherapy.
Collapse
Affiliation(s)
- Qing Han
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Yepin Yu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Hongbin Sun
- Shenzhen Natural Reserve Management Center, Shenzhen 518115, China
| | - Xiujuan Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Ping Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Jianfeng Deng
- Shenzhen Natural Reserve Management Center, Shenzhen 518115, China
| | - Xinyuan Hu
- Shenzhen Natural Reserve Management Center, Shenzhen 518115, China
| | - Jinping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| |
Collapse
|
5
|
Hassanin A, Tu VT, Görföl T, Ngon LQ, Pham PV, Hang CT, Tuan TA, Prot M, Simon-Lorière E, Kemenesi G, Tóth GE, Moulin L, Wurtzer S. Phylogeography of horseshoe bat sarbecoviruses in Vietnam and neighbouring countries. Implications for the origins of SARS-CoV and SARS-CoV-2. Mol Ecol 2024; 33:e17486. [PMID: 39161178 DOI: 10.1111/mec.17486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/21/2024]
Abstract
Previous studies on horseshoe bats (Rhinolophus spp.) have described many coronaviruses related to SARS-CoV (SARSCoVr) in China and only a few coronaviruses related to SARS-CoV-2 (SARSCoV2r) in Yunnan (southern China), Cambodia, Laos and Thailand. Here, we report the results of several field missions carried out in 2017, 2021 and 2022 across Vietnam during which 1218 horseshoe bats were sampled from 19 locations. Sarbecoviruses were detected in 11% of faecal RNA extracts, with much more positives among Rhinolophus thomasi (46%). We assembled 38 Sarbecovirus genomes, including 32 SARSCoVr, four SARSCoV2r, and two recombinants of SARSCoVr and SARSCoV2r (RecSar), one showing a Spike protein very similar to SARS-CoV-2. We detected a bat co-infected with four coronaviruses, including two sarbecoviruses. Our analyses revealed that Sarbecovirus genomes evolve in Vietnam under strong geographical and host constraints. First, we found evidence for a deep separation between viruses from northern Vietnam and those from central and southern Vietnam. Second, we detected only SARSCoVr in Rhinolophus thomasi, both SARSCoVr and SARSCoV2r in Rhinolophus affinis, and only RecSar in Rhinolophus pusillus captured close to the border with China. Third, the bias in favour of Uracil in synonymous third codon positions of SARSCoVr extracted from R. thomasi showed a negative correlation with latitudes. Our results also provided support for an emergence of SARS-CoV in horseshoe bats from northern Yunnan and emergence of SARS-CoV-2 in horseshoe bats from northern Indochina subtropical forests (southern Yunnan, northern Laos and north-western Vietnam).
Collapse
Affiliation(s)
- Alexandre Hassanin
- Institut de Systématique, Évolution, Biodiversité (ISYEB), SU, MNHN, CNRS, EPHE, UA, Sorbonne Université, Paris, France
| | - Vuong Tan Tu
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Tamás Görföl
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Lam Quang Ngon
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Phu Van Pham
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Chu Thi Hang
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Tran Anh Tuan
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Mathieu Prot
- G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, Paris, France
| | - Etienne Simon-Lorière
- G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, Paris, France
| | - Gábor Kemenesi
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Gábor Endre Tóth
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Laurent Moulin
- R&D Laboratory, Direction Recherche, Développement et Qualité de l'Eau, Eau de Paris, Ivry-sur-Seine, France
| | - Sébastien Wurtzer
- R&D Laboratory, Direction Recherche, Développement et Qualité de l'Eau, Eau de Paris, Ivry-sur-Seine, France
| |
Collapse
|
6
|
Karim B, Barary M, Fereydouni Z, Sanjari E, Hosseinzadeh R, Salehi-Vaziri M, Maleki A. The nuts and bolts of recombination in the generation of SARS-CoV-2 variants; from XA to XBB. Lett Appl Microbiol 2024; 77:ovae074. [PMID: 39081071 DOI: 10.1093/lambio/ovae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/23/2024] [Accepted: 07/29/2024] [Indexed: 01/28/2025]
Abstract
Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), new variants with enhanced transmissibility and pathogenicity have surfaced. The World Health Organization has designated five such variants-Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529)-as variants of concern. Each variant exhibits distinct characteristics, with many displaying a combination of point mutations and insertions/deletions (indels). These genetic alterations, including mutations, recombinations, and rearrangements, contribute to the emergence of new strains that may exhibit modified phenotypes. However, identifying recombinant forms can be challenging due to their resemblance to other lineages. It is critical to monitor the evolution of new recombinant variants, particularly in light of the potential for vaccine-resistant strains and their accelerated propagation. Recombination has played a pivotal role in the development of certain SARS-CoV-2 variants, such as XA, XD, XF, XE, and XBB, among others. This report delves into the significance of recombination in the evolution of SARS-CoV-2 variants, especially Omicron sublineages, underscoring the necessity for continuous surveillance of the SARS-CoV-2 genome to identify newly emerged recombinant variants.
Collapse
Affiliation(s)
- Bardia Karim
- Student Research Committee, Babol University of Medical Sciences, Babol 4717647745, Iran
| | - Mohammad Barary
- Student Research Committee, Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran
| | - Zahra Fereydouni
- COVID-19 National Reference Laboratory (CNRL), Pasteur Institute of Iran, Pasteur Ave., Tehran 1316943551, Iran
| | - Elaheh Sanjari
- Student Research Committee, Faculty of Pharmacy, Islamic Azad University, Ayatollah Amoli Branch, Amol 678, Iran
| | - Rezvan Hosseinzadeh
- Student Research Committee, Babol University of Medical Sciences, Babol 4717647745, Iran
| | - Mostafa Salehi-Vaziri
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory), Pasteur Institute of Iran, Pasteur Ave., Tehran 01316943551, Iran
| | - Ali Maleki
- COVID-19 National Reference Laboratory (CNRL), Pasteur Institute of Iran, Pasteur Ave., Tehran 1316943551, Iran
- Department of Influenza and Respiratory Viruses, Pasteur Institute of Iran, Pasteur Ave., Tehran 1316943551, Iran
| |
Collapse
|
7
|
Xia LY, Wang XF, Cui XM, Zhang YM, Wang ZF, Li ET, Fan CF, Song K, Li YG, Ye RZ, Li FX, Zhu DY, Zhang J, Shi ZZ, Zhang MZ, Li LJ, Shen SJ, Jin S, Zhang YW, Fu WG, Zhao L, Wang WH, Wang TC, Wang YC, Jiang JF, Hu YL, Jia N, Gao YW, Cao WC. Characterization of a pangolin SARS-CoV-2-related virus isolate that uses the human ACE2 receptor. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1502-1513. [PMID: 38478297 DOI: 10.1007/s11427-023-2484-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/08/2023] [Indexed: 06/19/2024]
Abstract
Various SARS-CoV-2-related coronaviruses have been increasingly identified in pangolins, showing a potential threat to humans. Here we report the infectivity and pathogenicity of the SARS-CoV-2-related virus, PCoV-GX/P2V, which was isolated from a Malayan pangolin (Manis javanica). PCoV-GX/P2V could grow in human hepatoma, colorectal adenocarcinoma cells, and human primary nasal epithelial cells. It replicated more efficiently in cells expressing human angiotensin-converting enzyme 2 (hACE2) as SARS-CoV-2 did. After intranasal inoculation to the hACE2-transgenic mice, PCoV-GX/P2V not only replicated in nasal turbinate and lungs, but also caused interstitial pneumonia, characterized by infiltration of mixed inflammatory cells and multifocal alveolar hemorrhage. Existing population immunity established by SARS-CoV-2 infection and vaccination may not protect people from PCoV-GX/P2V infection. These findings further verify the hACE2 utility of PCoV-GX/P2V by in vivo experiments using authentic viruses and highlight the importance for intensive surveillance to prevent possible cross-species transmission.
Collapse
Affiliation(s)
- Luo-Yuan Xia
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Xue-Feng Wang
- Changchun Veterinary Research Institute, Changchun, 130122, China
| | - Xiao-Ming Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, 100071, China
| | - Yi-Ming Zhang
- Changchun Veterinary Research Institute, Changchun, 130122, China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Zhen-Fei Wang
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - En-Tao Li
- Changchun Veterinary Research Institute, Changchun, 130122, China
| | - Chang-Fa Fan
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Ke Song
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yuan-Guo Li
- Changchun Veterinary Research Institute, Changchun, 130122, China
| | - Run-Ze Ye
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Fang-Xu Li
- Changchun Veterinary Research Institute, Changchun, 130122, China
| | - Dai-Yun Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Jie Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | | | - Ming-Zhu Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Liang-Jing Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Shi-Jing Shen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Song Jin
- Changchun Veterinary Research Institute, Changchun, 130122, China
| | - Ya-Wei Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Wei-Guang Fu
- Changchun Veterinary Research Institute, Changchun, 130122, China
| | - Lin Zhao
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Wen-Hao Wang
- Changchun Veterinary Research Institute, Changchun, 130122, China
| | - Tie-Cheng Wang
- Changchun Veterinary Research Institute, Changchun, 130122, China
| | - You-Chun Wang
- National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, 100071, China
| | - Yan-Ling Hu
- Life Sciences Institute, Guangxi Medical University, Nanning, 530020, China
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, 100071, China.
| | - Yu-Wei Gao
- Changchun Veterinary Research Institute, Changchun, 130122, China.
| | - Wu-Chun Cao
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, 100071, China.
| |
Collapse
|
8
|
Fang R, Yang X, Guo Y, Peng B, Dong R, Li S, Xu S. SARS-CoV-2 infection in animals: Patterns, transmission routes, and drivers. ECO-ENVIRONMENT & HEALTH 2024; 3:45-54. [PMID: 38169914 PMCID: PMC10758742 DOI: 10.1016/j.eehl.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/05/2023] [Accepted: 09/17/2023] [Indexed: 01/05/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is more widespread in animals than previously thought, and it may be able to infect a wider range of domestic and wild species. To effectively control the spread of the virus and protect animal health, it is crucial to understand the cross-species transmission mechanisms and risk factors of SARS-CoV-2. This article collects published literature on SARS-CoV-2 in animals and examines the distribution, transmission routes, biophysical, and anthropogenic drivers of infected animals. The reported cases of infection in animals are mainly concentrated in South America, North America, and Europe, and species affected include lions, white-tailed deer, pangolins, minks, and cats. Biophysical factors influencing infection of animals with SARS-CoV-2 include environmental determinants, high-risk landscapes, air quality, and susceptibility of different animal species, while anthropogenic factors comprise human behavior, intensive livestock farming, animal markets, and land management. Due to current research gaps and surveillance capacity shortcomings, future mitigation strategies need to be designed from a One Health perspective, with research focused on key regions with significant data gaps in Asia and Africa to understand the drivers, pathways, and spatiotemporal dynamics of interspecies transmission.
Collapse
Affiliation(s)
- Ruying Fang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xin Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yiyang Guo
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bingjie Peng
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ruixuan Dong
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Sen Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shunqing Xu
- School of Life Sciences, Hainan University, Haikou 570228, China
| |
Collapse
|
9
|
Xia LY, Wang ZF, Cui XM, Li YG, Ye RZ, Zhu DY, Li FX, Zhang J, Wang WH, Zhang MZ, Gao WY, Li LF, Que TC, Wang TC, Jia N, Jiang JF, Gao YW, Cao WC. Isolation and characterization of a pangolin-borne HKU4-related coronavirus that potentially infects human-DPP4-transgenic mice. Nat Commun 2024; 15:1048. [PMID: 38316817 PMCID: PMC10844334 DOI: 10.1038/s41467-024-45453-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 01/23/2024] [Indexed: 02/07/2024] Open
Abstract
We recently detected a HKU4-related coronavirus in subgenus Merbecovirus (named pangolin-CoV-HKU4-P251T) from a Malayan pangolin1. Here we report isolation and characterization of pangolin-CoV-HKU4-P251T, the genome sequence of which is closest to that of a coronavirus from the greater bamboo bat (Tylonycteris robustula) in Yunnan Province, China, with a 94.3% nucleotide identity. Pangolin-CoV-HKU4-P251T is able to infect human cell lines, and replicates more efficiently in cells that express human-dipeptidyl-peptidase-4 (hDPP4)-expressing and pangolin-DPP4-expressing cells than in bat-DPP4-expressing cells. After intranasal inoculation with pangolin-CoV-HKU4-P251, hDPP4-transgenic female mice are likely infected, showing persistent viral RNA copy numbers in the lungs. Progressive interstitial pneumonia developed in the infected mice, characterized by the accumulation of macrophages, and increase of antiviral cytokines, proinflammatory cytokines, and chemokines in lung tissues. These findings suggest that the pangolin-borne HKU4-related coronavirus has a potential for emerging as a human pathogen by using hDPP4.
Collapse
Affiliation(s)
- Luo-Yuan Xia
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, P. R. China
| | - Zhen-Fei Wang
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, P. R. China
- Changchun Veterinary Research Institute, Changchun, 130122, Jilin, P. R. China
| | - Xiao-Ming Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, 100071, P. R. China
| | - Yuan-Guo Li
- Changchun Veterinary Research Institute, Changchun, 130122, Jilin, P. R. China
| | - Run-Ze Ye
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, P. R. China
| | - Dai-Yun Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China
| | - Fang-Xu Li
- Changchun Veterinary Research Institute, Changchun, 130122, Jilin, P. R. China
| | - Jie Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China
| | - Wen-Hao Wang
- Changchun Veterinary Research Institute, Changchun, 130122, Jilin, P. R. China
| | - Ming-Zhu Zhang
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, P. R. China
| | - Wan-Ying Gao
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, P. R. China
| | - Lian-Feng Li
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, P. R. China
| | - Teng-Cheng Que
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, Guangxi, P. R. China
| | - Tie-Cheng Wang
- Changchun Veterinary Research Institute, Changchun, 130122, Jilin, P. R. China
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, 100071, P. R. China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China.
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, 100071, P. R. China.
| | - Yu-Wei Gao
- Changchun Veterinary Research Institute, Changchun, 130122, Jilin, P. R. China.
| | - Wu-Chun Cao
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, P. R. China.
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China.
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, 100071, P. R. China.
| |
Collapse
|
10
|
Wani AK, Chopra C, Dhanjal DS, Akhtar N, Singh H, Bhau P, Singh A, Sharma V, Pinheiro RSB, Américo-Pinheiro JHP, Singh R. Metagenomics in the fight against zoonotic viral infections: A focus on SARS-CoV-2 analogues. J Virol Methods 2024; 323:114837. [PMID: 37914040 DOI: 10.1016/j.jviromet.2023.114837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Zoonotic viral infections continue to pose significant threats to global public health, as highlighted by the COVID-19 pandemic caused by the SARS-CoV-2 virus. The emergence of SARS-CoV-2 served as a stark reminder of the potential for zoonotic transmission of viruses from animals to humans. Understanding the origins and dynamics of zoonotic viruses is critical for early detection, prevention, and effective management of future outbreaks. Metagenomics has emerged as a powerful tool for investigating the virome of diverse ecosystems, shedding light on the diversity of viral populations, their hosts, and potential zoonotic spillover events. We provide an in-depth examination of metagenomic approaches, including, NGS metagenomics, shotgun metagenomics, viral metagenomics, and single-virus metagenomics, highlighting their strengths and limitations in identifying and characterizing zoonotic viral pathogens. This review underscores the pivotal role of metagenomics in enhancing our ability to detect, monitor, and mitigate zoonotic viral infections, using SARS-CoV-2 analogues as a case study. We emphasize the need for continued interdisciplinary collaboration among virologists, ecologists, and bioinformaticians to harness the full potential of metagenomic approaches in safeguarding public health against emerging zoonotic threats.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab 144411, India
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab 144411, India
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab 144411, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab 144411, India
| | - Himanshu Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab 144411, India
| | - Poorvi Bhau
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Anjuvan Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab 144411, India
| | - Varun Sharma
- NMC Genetics India Pvt. Ltd, Gurugram, Harayana, India
| | - Rafael Silvio Bonilha Pinheiro
- School of Veterinary Medicine and Animal Science, Department of Animal Production, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Juliana Heloisa Pinê Américo-Pinheiro
- Department of Forest Science, Soils and Environment, School of Agronomic Sciences, São Paulo State University (UNESP), Ave. Universitária, 3780, Botucatu, SP 18610-034, Brazil; Graduate Program in Environmental Sciences, Brazil University, Street Carolina Fonseca, 584, São Paulo, SP 08230-030, Brazil
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab 144411, India.
| |
Collapse
|
11
|
Rabaan AA, Alenazy MF, Alshehri AA, Alshahrani MA, Al-Subaie MF, Alrasheed HA, Al Kaabi NA, Thakur N, Bouafia NA, Alissa M, Alsulaiman AM, AlBaadani AM, Alhani HM, Alhaddad AH, Alfouzan WA, Ali BMA, Al-Abdulali KH, Khamis F, Bayahya A, Al Fares MA, Sharma M, Dhawan M. An updated review on pathogenic coronaviruses (CoVs) amid the emergence of SARS-CoV-2 variants: A look into the repercussions and possible solutions. J Infect Public Health 2023; 16:1870-1883. [PMID: 37839310 DOI: 10.1016/j.jiph.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023] Open
Abstract
SARS-CoV-2, responsible for COVID-19, shares 79% and 50% of its identity with SARS-CoV-1 and MERS-CoV, respectively. It uses the same main cell attachment and entry receptor as SARS-CoV-1, which is the ACE-2 receptor. However, key residues in the receptor-binding domain of its S-protein seem to give it a stronger affinity for the receptor and a better ability to hide from the host immune system. Like SARS-CoV-1 and MERS-CoV, cytokine storms in critically ill COVID-19 patients cause ARDS, neurological pathology, multiorgan failure, and increased death. Though many issues remain, the global research effort and lessons from SARS-CoV-1 and MERS-CoV are hopeful. The emergence of novel SARS-CoV-2 variants and subvariants raised serious concerns among the scientific community amid the emergence of other viral diseases like monkeypox and Marburg virus, which are major concerns for healthcare settings worldwide. Hence, an updated review on the comparative analysis of various coronaviruses (CoVs) has been developed, which highlights the evolution of CoVs and their repercussions.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan.
| | - Maha Fahad Alenazy
- Department of Physiology, College of Medicine, King Khalid university hospital, King Saud University, Riyadh 4545, Saudi Arabia
| | - Ahmad A Alshehri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Mohammed Abdulrahman Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Maha F Al-Subaie
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Research Center, Dr. Sulaiman Alhabib Medical Group, Riyadh 13328, Saudi Arabia; Department of Infectious Diseases, Dr. Sulaiman Alhabib Medical Group, Riyadh 13328, Saudi Arabia
| | - Hayam A Alrasheed
- Department of pharmacy Practice, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia; Pharmacy Department, King Abdullah Bin Abdulaziz University Hospital, Riyadh 11671, Saudi Arabia
| | - Nawal A Al Kaabi
- Sheikh Khalifa Medical City, Abu Dhabi Health Services Company (SEHA), Abu Dhabi, 51900, United Arab Emirates; College of Medicine and Health Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Nanamika Thakur
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, India
| | - Nabiha A Bouafia
- Infection prevention and control centre of Excellence, Prince Sultan Medical Military City, Riyadh 12233, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Abeer M AlBaadani
- Internal Medicine Department, Infectious Disease Division, London health science Center, London, Ontario N6G0X2, Canada
| | - Hatem M Alhani
- Department of Pediatric Infectious Disease, Maternity and Children Hospital, Dammam 31176, Saudi Arabia; Department of Infection Control, Maternity and Children Hospital, Dammam 31176, Saudi Arabia; Preventive Medicine and Infection Prevention and Control Department, Directorate of Ministry of Health, Dammam 32245, Saudi Arabia
| | - Ali H Alhaddad
- Assistant Agency for Hospital Affairs, Ministry of Health, Riyadh 12382, Saudi Arabia
| | - Wadha A Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait; Microbiology Unit, Department of Laboratories, Farwania Hospital, Farwania 85000, Kuwait
| | - Batool Mohammed Abu Ali
- Infectious disease section, Department of internal medicine, King Fahad Hospital Hofuf, Hofuf 36365, Saudi Arabia
| | - Khadija H Al-Abdulali
- Nursing Department, Home health care, Qatif Health Network, Qatif 31911, Saudi Arabia
| | - Faryal Khamis
- Infection Diseases unit, Department of Internal Medicine, Royal Hospital, Muscat 1331, Oman
| | - Ali Bayahya
- Microbiology Department, Alqunfudah General Hospital, Alqunfudah 28813, Saudi Arabia
| | - Mona A Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia.
| | - Manish Sharma
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, India
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, India; Trafford College, Altrincham, Manchester WA14 5PQ, UK.
| |
Collapse
|
12
|
Hou YJ, Chiba S, Leist SR, Meganck RM, Martinez DR, Schäfer A, Catanzaro NJ, Sontake V, West A, Edwards CE, Yount B, Lee RE, Gallant SC, Zost SJ, Powers J, Adams L, Kong EF, Mattocks M, Tata A, Randell SH, Tata PR, Halfmann P, Crowe JE, Kawaoka Y, Baric RS. Host range, transmissibility and antigenicity of a pangolin coronavirus. Nat Microbiol 2023; 8:1820-1833. [PMID: 37749254 PMCID: PMC10522490 DOI: 10.1038/s41564-023-01476-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 08/14/2023] [Indexed: 09/27/2023]
Abstract
The pathogenic and cross-species transmission potential of SARS-CoV-2-related coronaviruses (CoVs) remain poorly characterized. Here we recovered a wild-type pangolin (Pg) CoV GD strain including derivatives encoding reporter genes using reverse genetics. In primary human cells, PgCoV replicated efficiently but with reduced fitness and showed less efficient transmission via airborne route compared with SARS-CoV-2 in hamsters. PgCoV was potently inhibited by US Food and Drug Administration approved drugs, and neutralized by COVID-19 patient sera and SARS-CoV-2 therapeutic antibodies in vitro. A pan-Sarbecovirus antibody and SARS-CoV-2 S2P recombinant protein vaccine protected BALB/c mice from PgCoV infection. In K18-hACE2 mice, PgCoV infection caused severe clinical disease, but mice were protected by a SARS-CoV-2 human antibody. Efficient PgCoV replication in primary human cells and hACE2 mice, coupled with a capacity for airborne spread, highlights an emergence potential. However, low competitive fitness, pre-immune humans and the benefit of COVID-19 countermeasures should impede its ability to spread globally in human populations.
Collapse
Affiliation(s)
- Yixuan J Hou
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Moderna Inc., Cambridge, MA, USA
| | - Shiho Chiba
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rita M Meganck
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David R Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nicholas J Catanzaro
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Vishwaraj Sontake
- Department of Cell Biology, Regeneration Next Initiative, Duke University Medical Center, Durham, NC, USA
| | - Ande West
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Catlin E Edwards
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Boyd Yount
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rhianna E Lee
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Samuel C Gallant
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Seth J Zost
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John Powers
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lily Adams
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Edgar F Kong
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Melissa Mattocks
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Aleksandra Tata
- Department of Cell Biology, Regeneration Next Initiative, Duke University Medical Center, Durham, NC, USA
| | - Scott H Randell
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Purushothama R Tata
- Department of Cell Biology, Regeneration Next Initiative, Duke University Medical Center, Durham, NC, USA
| | - Peter Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
13
|
Wang X, Ding P, Sun C, Wang D, Zhu J, Wu W, Wei Y, Xiang R, Ding X, Luo L, Li M, Zhang W, Jin X, Sun J, Liu H, Chen D. Comparative analysis of single cell lung atlas of bat, cat, tiger, and pangolin. Cell Biol Toxicol 2023; 39:2431-2435. [PMID: 36169743 PMCID: PMC9516514 DOI: 10.1007/s10565-022-09771-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/26/2022] [Indexed: 11/03/2022]
Abstract
Horseshoe bats (Rhinolophus sinicus) might help maintain coronaviruses severely affecting human health, such as severe acute respiratory syndrome coronavirus (SARS-CoV). Bats may be more tolerant of viral infection than other mammals due to their unique immune system, but the exact mechanism remains to be fully explored. During the coronavirus disease 2019 (COVID-19) pandemic, multiple animal species were diseased by coronavirus infection, especially in the respiratory system. Herein, a comparative analysis with single nucleus transcriptomic data of the lungs across four species, including horseshoe bat, cat, tiger, and pangolin, were conducted. The distribution of entry factors for twenty-eight respiratory viruses was characterized for the four species. Our findings might increase our understanding of the immune background of horseshoe bats.
Collapse
Affiliation(s)
- Xiran Wang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Peiwen Ding
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengcheng Sun
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Daxi Wang
- BGI-Shenzhen, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, 518083, China
| | - Jiacheng Zhu
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wendi Wu
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Yanan Wei
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | | | - Xiangning Ding
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lihua Luo
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Wensheng Zhang
- School of Basic Medical Sciences, Binzhou Medical University, No. 346, Guanhai Road, Laishan District, Yantai City, Shandong, China
| | - Xin Jin
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| | - Huan Liu
- BGI-Shenzhen, Shenzhen, 518083, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Dongsheng Chen
- BGI-Shenzhen, Shenzhen, 518083, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
14
|
Tan M, Xia J, Luo H, Meng G, Zhu Z. Applying the digital data and the bioinformatics tools in SARS-CoV-2 research. Comput Struct Biotechnol J 2023; 21:4697-4705. [PMID: 37841328 PMCID: PMC10568291 DOI: 10.1016/j.csbj.2023.09.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023] Open
Abstract
Bioinformatics has been playing a crucial role in the scientific progress to fight against the pandemic of the coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The advances in novel algorithms, mega data technology, artificial intelligence and deep learning assisted the development of novel bioinformatics tools to analyze daily increasing SARS-CoV-2 data in the past years. These tools were applied in genomic analyses, evolutionary tracking, epidemiological analyses, protein structure interpretation, studies in virus-host interaction and clinical performance. To promote the in-silico analysis in the future, we conducted a review which summarized the databases, web services and software applied in SARS-CoV-2 research. Those digital resources applied in SARS-CoV-2 research may also potentially contribute to the research in other coronavirus and non-coronavirus viruses.
Collapse
Affiliation(s)
- Meng Tan
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Jiaxin Xia
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Haitao Luo
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Geng Meng
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhenglin Zhu
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
15
|
Bardhan M, Ray I, Roy S, Bhatt P, Patel S, Asri S, Shariff S, Shree A, Mitra S, Roy P, Anand A. Emerging zoonotic diseases and COVID-19 pandemic: global Perspective and Indian Scenario. Ann Med Surg (Lond) 2023; 85:3997-4004. [PMID: 37554903 PMCID: PMC10406085 DOI: 10.1097/ms9.0000000000001057] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/02/2023] [Indexed: 08/10/2023] Open
Abstract
The current coronavirus disease 2019 (COVID-19) pandemic is one example of the scores of zoonotic diseases responsible for various outbreaks resulting in the deaths of millions of people for centuries. The COVID-19 pandemic has broken the age-old healthcare infrastructure and led to utter chaos. In the shadow of this pandemic, other zoonotic infections like the nipah virus, monkeypox, and langya virus, to name a few, have been neglected. Hence, outbreaks caused by such zoonotic viruses are rising in their endemic areas, like the Indian subcontinent. The mortality and morbidity due to such zoonoses are greater than usual due to the shortage of healthcare professionals caused by the COVID-19 crisis. Due to the lack of vaccines and therapeutics directed against this viral infection, treatment of patients is limited to supportive management and prevention, making preparedness for these potential zoonotic viral outbreaks essential. This paper highlights some of these zoonotic infections, which perpetuated and wreaked havoc while the world was occupied with containing the COVID-19 pandemic.
Collapse
Affiliation(s)
- Mainak Bardhan
- Indian Council of Medical Research, New Delhi
- Miami Cancer Institute, Baptist Health, South Florida, USA
| | - Ishita Ray
- Mahatma Gandhi Memorial Medical College, Indore
| | | | | | | | - Sucharu Asri
- SGT Medical College Hospital and Research Institute, Haryana
| | | | - Anagha Shree
- SGT Medical College Hospital and Research Institute, Haryana
| | - Saloni Mitra
- OO Bogomolets National Medical University, Kyiv, Ukraine
| | - Priyanka Roy
- Department of Labor, Government of West Bengal, Kolkatta, West Bengal, India
| | - Ayush Anand
- B. P. Koirala Institute of Health Sciences, Dharan, Nepal
| |
Collapse
|
16
|
Sitam FT, Salgado‐Lynn M, Denel A, Panjang E, McEwing R, Lightson A, Ogden R, Maruji NA, Yahya NK, Ngau C, Mohd Kulaimi NA, Ithnin H, Rovie‐Ryan J, Abu Bakar MS, Ewart KM. Phylogeography of the Sunda pangolin, Manis javanica: Implications for taxonomy, conservation management and wildlife forensics. Ecol Evol 2023; 13:e10373. [PMID: 37593756 PMCID: PMC10427774 DOI: 10.1002/ece3.10373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 08/19/2023] Open
Abstract
The Sunda pangolin (Manis javanica) is the most widely distributed Asian pangolin species, occurring across much of Southeast Asia and in southern China. It is classified as Critically Endangered and is one of the most trafficked mammals in the world, which not only negatively impacts wild Sunda pangolin populations but also poses a potential disease risk to other species, including humans and livestock. Here, we aimed to investigate the species' phylogeography across its distribution to improve our understanding of the species' evolutionary history, elucidate any taxonomic uncertainties and enhance the species' conservation genetic management and potential wildlife forensics applications. We sequenced mtDNA genomes from 23 wild Sunda pangolins of known provenance originating from Malaysia to fill sampling gaps in previous studies, particularly in Borneo. To conduct phylogenetic and population genetic analyses of Sunda pangolins across their range, we integrated these newly generated mitochondrial genomes with previously generated mtDNA and nuclear DNA data sets (RAD-seq SNP data). We identified an evolutionarily distinct mtDNA lineage in north Borneo, estimated to be ~1.6 million years divergent from lineages in west/south Borneo and the mainland, comparable to the divergence time from the Palawan pangolin. There appeared to be mitonuclear discordance, with no apparent genetic structure across Borneo based on analysis of nuclear SNPs. These findings are consistent with the 'out of Borneo hypothesis', whereby Sunda pangolins diversified in Borneo before subsequently migrating throughout Sundaland, and/or a secondary contact scenario between mainland and Borneo. We have elucidated possible taxonomic issues in the Sunda/Palawan pangolin complex and highlight the critical need for additional georeferenced samples to accurately apportion its range-wide genetic variation into appropriate taxonomic and conservation units. Additionally, these data have improved forensic identification testing involving these species and permit the implementation of geographic provenance testing in some scenarios.
Collapse
Affiliation(s)
- Frankie T. Sitam
- Department of Wildlife and National Parks (DWNP/PERHILITAN)National Wildlife Forensic Laboratory (NWFL)Kuala LumpurMalaysia
| | - Milena Salgado‐Lynn
- Danau Girang Field Centre (DGFC)Kota KinabaluMalaysia
- Wildlife Health, Genetic and Forensic Laboratory (WHGFL)Kota KinabaluMalaysia
- Organisms and Environment Division, Cardiff School of BiosciencesCardiff UniversityCardiffUK
| | - Azroie Denel
- Sarawak Forestry Corporation (SFC)KuchingMalaysia
| | - Elisa Panjang
- Danau Girang Field Centre (DGFC)Kota KinabaluMalaysia
- Organisms and Environment Division, Cardiff School of BiosciencesCardiff UniversityCardiffUK
| | | | | | - Rob Ogden
- TRACE Wildlife Forensics NetworkEdinburghUK
- Royal (Dick) School of Veterinary Studies and the Roslin InstituteUniversity of EdinburghEdinburghUK
| | - Nur Alwanie Maruji
- Wildlife Health, Genetic and Forensic Laboratory (WHGFL)Kota KinabaluMalaysia
- Sabah Wildlife Department (SWD)Kota KinabaluMalaysia
| | - Nurhartini Kamalia Yahya
- Danau Girang Field Centre (DGFC)Kota KinabaluMalaysia
- Wildlife Health, Genetic and Forensic Laboratory (WHGFL)Kota KinabaluMalaysia
| | - Cosmas Ngau
- Department of Wildlife and National Parks (DWNP/PERHILITAN)National Wildlife Forensic Laboratory (NWFL)Kuala LumpurMalaysia
| | - Noor Azleen Mohd Kulaimi
- Department of Wildlife and National Parks (DWNP/PERHILITAN)National Wildlife Forensic Laboratory (NWFL)Kuala LumpurMalaysia
| | - Hartini Ithnin
- Department of Wildlife and National Parks (DWNP/PERHILITAN)National Wildlife Forensic Laboratory (NWFL)Kuala LumpurMalaysia
| | | | | | - Kyle M. Ewart
- TRACE Wildlife Forensics NetworkEdinburghUK
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| |
Collapse
|
17
|
Khorasani Esmaili P, Dabiri S, Movahedinia S, Shojaeepour S, Bagheri F, Ranjbar H, Shamsi Meymandi M, Mohebbi E, Farrokhnia M. Evaluation of Laboratory Findings of Patients with Coronavirus Disease 2019 in Kerman, Iran. IRANIAN JOURNAL OF PATHOLOGY 2023; 18:347-355. [PMID: 37942197 PMCID: PMC10628381 DOI: 10.30699/ijp.2023.1971332.3031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/30/2023] [Indexed: 11/10/2023]
Abstract
Background & Objective Since December 2019 in Wuhan, China there is a new form of pneumonia and after expansion in other countries, World Health Organization (WHO) called it Coronavirus Disease 2019 (COVID-19). Since the clinical laboratory findings have played an important role in the progression of the disease, this study aimed to evaluate the laboratory findings in COVID-19 patients (before vaccination). Methods In this case-control study that was conducted from February to August 2020; the laboratory test status in 101 positive COVID-19 patients was evaluated and compared with 101 healthy individuals. Results The results of our study showed that 21% of patients had low WBC, 24.75% low RBC, 37.62%, low Hb, 18.81% with low HCT, 29.7%, low Plt, 41.58% had High PT, 71.29% high CRP, 17.82% high urea, 11.88% high CR, 15.84% high LDH, 10.89% low sodium, 14.75% low potassium (K). The quantitative examination of blood factors showed that lymph%, mixed%, PLT, HCT, Hb, and RBC were higher in the control group than in the case group. While Neu%, WBC, PTT, CRP, UREA, LDH, K in the patient group were higher than in the control group. Conclusion According to the results of the study, it can be concluded that in the clinical treatment of COVID-19 patients, much attention should be paid to the laboratory indicators to identify and intervene early in critically ill patients.
Collapse
Affiliation(s)
- Parisa Khorasani Esmaili
- Department of Pathology, Pathology and Stem Cells Research Center, Afzali Pour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahriar Dabiri
- Department of Pathology, Pathology and Stem Cells Research Center, Afzali Pour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Sajjadeh Movahedinia
- Department of Pathology, Pathology and Stem Cells Research Center, Afzali Pour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeedeh Shojaeepour
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Fatemeh Bagheri
- Legal Medicine Research Center, Legal Medicine Organization, Kerman, Iran
| | - Hanieh Ranjbar
- Department of Pathology, Pathology and Stem Cells Research Center, Afzali Pour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Manzumeh Shamsi Meymandi
- Department of Pathology, Pathology and Stem Cells Research Center, Afzali Pour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Mohebbi
- Research Center for Modeling in Health, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehrdad Farrokhnia
- Infectious and Internal Medicine Department, Afzalipour Hospital, Kerman University of Medical Science, Kerman, Iran
| |
Collapse
|
18
|
Pekar JE, Lytras S, Ghafari M, Magee AF, Parker E, Havens JL, Katzourakis A, Vasylyeva TI, Suchard MA, Hughes AC, Hughes J, Robertson DL, Dellicour S, Worobey M, Wertheim JO, Lemey P. The recency and geographical origins of the bat viruses ancestral to SARS-CoV and SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548617. [PMID: 37502985 PMCID: PMC10369958 DOI: 10.1101/2023.07.12.548617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The emergence of SARS-CoV in 2002 and SARS-CoV-2 in 2019 has led to increased sampling of related sarbecoviruses circulating primarily in horseshoe bats. These viruses undergo frequent recombination and exhibit spatial structuring across Asia. Employing recombination-aware phylogenetic inference on bat sarbecoviruses, we find that the closest-inferred bat virus ancestors of SARS-CoV and SARS-CoV-2 existed just ~1-3 years prior to their emergence in humans. Phylogeographic analyses examining the movement of related sarbecoviruses demonstrate that they traveled at similar rates to their horseshoe bat hosts and have been circulating for thousands of years in Asia. The closest-inferred bat virus ancestor of SARS-CoV likely circulated in western China, and that of SARS-CoV-2 likely circulated in a region comprising southwest China and northern Laos, both a substantial distance from where they emerged. This distance and recency indicate that the direct ancestors of SARS-CoV and SARS-CoV-2 could not have reached their respective sites of emergence via the bat reservoir alone. Our recombination-aware dating and phylogeographic analyses reveal a more accurate inference of evolutionary history than performing only whole-genome or single gene analyses. These results can guide future sampling efforts and demonstrate that viral genomic fragments extremely closely related to SARS-CoV and SARS-CoV-2 were circulating in horseshoe bats, confirming their importance as the reservoir species for SARS viruses.
Collapse
Affiliation(s)
- Jonathan E Pekar
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
- Department of Biomedical Informatics, University of California San Diego, La Jolla, CA 92093, USA
- These authors contributed equally
| | - Spyros Lytras
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
- These authors contributed equally
| | - Mahan Ghafari
- Department of Biology, University of Oxford, Oxford, UK
| | - Andrew F Magee
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Edyth Parker
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jennifer L Havens
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Tetyana I Vasylyeva
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Marc A Suchard
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Computational Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Alice C Hughes
- School of Biological Sciences, University of Hong Kong, Hong Kong
- China Biodiversity Green Development Foundation, Beijing, China
| | - Joseph Hughes
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - David L Robertson
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
- These authors jointly supervised the work
| | - Simon Dellicour
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, CP160/12, 50 av. FD Roosevelt, 1050, Bruxelles, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
- These authors jointly supervised the work
| | - Michael Worobey
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- These authors jointly supervised the work
| | - Joel O Wertheim
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- These authors jointly supervised the work
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
- These authors jointly supervised the work
| |
Collapse
|
19
|
Hamdy ME, El Deeb AH, Hagag NM, Shahein MA, Alaidi O, Hussein HA. Interspecies transmission of SARS CoV-2 with special emphasis on viral mutations and ACE-2 receptor homology roles. Int J Vet Sci Med 2023; 11:55-86. [PMID: 37441062 PMCID: PMC10334861 DOI: 10.1080/23144599.2023.2222981] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 07/15/2023] Open
Abstract
COVID-19 outbreak was first reported in 2019, Wuhan, China. The spillover of the disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), to a wide range of pet, zoo, wild, and farm animals has emphasized potential zoonotic and reverse zoonotic viral transmission. Furthermore, it has evoked inquiries about susceptibility of different animal species to SARS-CoV-2 infection and role of these animals as viral reservoirs. Therefore, studying susceptible and non-susceptible hosts for SARS-CoV-2 infection could give a better understanding for the virus and will help in preventing further outbreaks. Here, we review structural aspects of SARS-CoV-2 spike protein, the effect of the different mutations observed in the spike protein, and the impact of ACE2 receptor variations in different animal hosts on inter-species transmission. Moreover, the SARS-CoV-2 spillover chain was reviewed. Combination of SARS-CoV-2 high mutation rate and homology of cellular ACE2 receptors enable the virus to transcend species barriers and facilitate its transmission between humans and animals.
Collapse
Affiliation(s)
- Mervat E. Hamdy
- Genome Research Unit, Animal Health Research Institute, Agriculture Research Centre, Giza, Egypt
| | - Ayman H. El Deeb
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Virology, Faculty of Veterinary Medicine, King Salman International University, South Sinai, Egypt
| | - Naglaa M. Hagag
- Genome Research Unit, Animal Health Research Institute, Agriculture Research Centre, Giza, Egypt
| | - Momtaz A. Shahein
- Department of Virology, Animal Health Research Institute, Agriculture Research Centre, Giza, Egypt
| | - Osama Alaidi
- Biocomplexity for Research and Consulting Co., Cairo, Egypt
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Hussein A. Hussein
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
20
|
Maity S, Santra A, Vardhan Hebbani A, Pulakuntla S, Chatterjee A, Rao Badri K, Damodara Reddy V. Targeting cytokine storm as the potential anti-viral therapy: Implications in regulating SARS-CoV-2 pathogenicity. Gene 2023:147612. [PMID: 37423400 DOI: 10.1016/j.gene.2023.147612] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/18/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
The latest global pandemic corona virus disease - 2019 (COVID-19) caused by the virus SARS-CoV-2 is still a matter of worrying concern both for the scientific communities and health care organizations. COVID-19 disease is proved to be a highly contagious disease transmitted through respiratory droplets and even close contact with affected individuals. COVID-19 disease is also understood to exhibit diverse symptoms of ranging severities i.e., from mild fatigue to death. Affected individuals' susceptibility to induce immunologic dysregulation phenomena termed 'cytokine storm' seems to be playing the damaging role of escalating the disease manifestation from mild to severe. Cytokine storm in patients with severe symptoms is understood to be characterized by enhanced serum levels of many cytokines including interleukin-1β, interleukin-6, IL-10, TNF, interferon-γ, MIP-1α, MIP-1β and VEGF. Since cytokine production in general is the most important antiviral defense response, understanding the COVID-19 associated cytokine storm in particular and differentiating it from the regular cytokine production response becomes crucial in developing an effective therapeutic strategy.This review focuses on the potential targeting of COVID-19 associated cytokine storm and its challenges.
Collapse
Affiliation(s)
- Subashish Maity
- Department of Biotechnology, REVA University, Bengaluru-560064, Karnataka, India
| | - Ayantika Santra
- Department of Biochemistry, Indian Academy Degree College, Bengaluru, 560 043, India
| | | | - Swetha Pulakuntla
- Department of Biotechnology, REVA University, Bengaluru-560064, Karnataka, India
| | - Ankita Chatterjee
- Department of Biotechnology, REVA University, Bengaluru-560064, Karnataka, India
| | - Kameswara Rao Badri
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Morehouse School of Medicine, GA, Atlanta-30310, USA; Clinical Analytical Chemistry Laboratory, COVID-19 Testing Laboratory, Morehouse School of Medicine, GA, Atlanta-30310, USA.
| | - Vaddi Damodara Reddy
- Department of Biotechnology, REVA University, Bengaluru-560064, Karnataka, India.
| |
Collapse
|
21
|
Liu L, Jiao Y, Yang M, Wu L, Long G, Hu W. Network Pharmacology, Molecular Docking and Molecular Dynamics to Explore the Potential Immunomodulatory Mechanisms of Deer Antler. Int J Mol Sci 2023; 24:10370. [PMID: 37373516 DOI: 10.3390/ijms241210370] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/29/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The use of deer antlers dates back thousands of years in Chinese history. Deer antlers have antitumor, anti-inflammatory, and immunomodulatory properties and can be used in treating neurological diseases. However, only a few studies have reported the immunomodulatory mechanism of deer antler active compounds. Using network pharmacology, molecular docking, and molecular dynamics simulation techniques, we analyzed the underlying mechanism by which deer antlers regulate the immune response. We identified 4 substances and 130 core targets that may play immunomodulatory roles, and the beneficial and non-beneficial effects in the process of immune regulation were analyzed. The targets were enriched in pathways related to cancer, human cytomegalovirus infection, the PI3K-Akt signaling pathway, human T cell leukemia virus 1 infection, and lipids and atherosclerosis. Molecular docking showed that AKT1, MAPK3, and SRC have good binding activity with 17 beta estradiol and estrone. Additionally, the molecular dynamics simulation of the molecular docking result using GROMACS software (version: 2021.2) was performed and we found that the AKT1-estrone complex, 17 beta estradiol-AKT1 complex, estrone-MAPK3 complex, and 17 beta estradiol-MAPK3 complex had relatively good binding stability. Our research sheds light on the immunomodulatory mechanism of deer antlers and provides a theoretical foundation for further exploration of their active compounds.
Collapse
Affiliation(s)
- Lingyu Liu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Yu Jiao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Mei Yang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Lei Wu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Guohui Long
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Wei Hu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
22
|
Huang XY, Chen Q, Sun MX, Zhou HY, Ye Q, Chen W, Peng JY, Qi YN, Zhai JQ, Tian Y, Liu ZX, Huang YJ, Deng YQ, Li XF, Wu A, Yang X, Yang G, Shen Y, Qin CF. A pangolin-origin SARS-CoV-2-related coronavirus: infectivity, pathogenicity, and cross-protection by preexisting immunity. Cell Discov 2023; 9:59. [PMID: 37330497 DOI: 10.1038/s41421-023-00557-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/29/2023] [Indexed: 06/19/2023] Open
Abstract
Virus spillover remains a major challenge to public health. A panel of SARS-CoV-2-related coronaviruses have been identified in pangolins, while the infectivity and pathogenicity of these pangolin-origin coronaviruses (pCoV) in humans remain largely unknown. Herein, we comprehensively characterized the infectivity and pathogenicity of a recent pCoV isolate (pCoV-GD01) in human cells and human tracheal epithelium organoids and established animal models in comparison with SARS-CoV-2. pCoV-GD01 showed similar infectivity to SARS-CoV-2 in human cells and organoids. Remarkably, intranasal inoculation of pCoV-GD01 caused severe lung pathological damage in hACE2 mice and could transmit among cocaged hamsters. Interestingly, in vitro neutralization assays and animal heterologous challenge experiments demonstrated that preexisting immunity induced by SARS-CoV-2 infection or vaccination was sufficient to provide at least partial cross-protection against pCoV-GD01 challenge. Our results provide direct evidence supporting pCoV-GD01 as a potential human pathogen and highlight the potential spillover risk.
Collapse
Affiliation(s)
- Xing-Yao Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Qi Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Meng-Xu Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Hang-Yu Zhou
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qing Ye
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Wu Chen
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, Guangdong, China
| | - Jin-Yu Peng
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yi-Ni Qi
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Jun-Qiong Zhai
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, Guangdong, China
| | - Ying Tian
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Zi-Xin Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Yi-Jiao Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Yong-Qiang Deng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Xiao-Feng Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Aiping Wu
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Guan Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.
| | - Yongyi Shen
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, Guangdong, China.
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China.
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
23
|
Chan AP, Siddique A, Desplat Y, Choi Y, Ranganathan S, Choudhary KS, Khalid MF, Diaz J, Bezney J, DeAscanis D, George Z, Wong S, Selleck W, Bowers J, Zismann V, Reining L, Highlander S, Brown K, Armstrong JR, Hakak Y, Schork NJ. A CRISPR-enhanced metagenomic NGS test to improve pandemic preparedness. CELL REPORTS METHODS 2023; 3:100463. [PMID: 37323571 PMCID: PMC10110940 DOI: 10.1016/j.crmeth.2023.100463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/22/2022] [Accepted: 04/10/2023] [Indexed: 06/17/2023]
Abstract
The lack of preparedness for detecting and responding to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogen (i.e., COVID-19) has caused enormous harm to public health and the economy. Testing strategies deployed on a population scale at day zero, i.e., the time of the first reported case, would be of significant value. Next-generation sequencing (NGS) has such capabilities; however, it has limited detection sensitivity for low-copy-number pathogens. Here, we leverage the CRISPR-Cas9 system to effectively remove abundant sequences not contributing to pathogen detection and show that NGS detection sensitivity of SARS-CoV-2 approaches that of RT-qPCR. The resulting sequence data can also be used for variant strain typing, co-infection detection, and individual human host response assessment, all in a single molecular and analysis workflow. This NGS work flow is pathogen agnostic and, therefore, has the potential to transform how large-scale pandemic response and focused clinical infectious disease testing are pursued in the future.
Collapse
Affiliation(s)
- Agnes P. Chan
- The Translational Genomics Research Institute (TGen), An Affiliate of the City of Hope National Medical Center, Phoenix, AZ 85004, USA
| | | | | | - Yongwook Choi
- The Translational Genomics Research Institute (TGen), An Affiliate of the City of Hope National Medical Center, Phoenix, AZ 85004, USA
| | | | | | | | - Josh Diaz
- Jumpcode Genomics, San Diego, CA 92121, USA
| | - Jon Bezney
- Jumpcode Genomics, San Diego, CA 92121, USA
| | | | | | - Shukmei Wong
- The Translational Genomics Research Institute (TGen), An Affiliate of the City of Hope National Medical Center, Phoenix, AZ 85004, USA
| | - William Selleck
- The Translational Genomics Research Institute (TGen), An Affiliate of the City of Hope National Medical Center, Phoenix, AZ 85004, USA
| | - Jolene Bowers
- The Translational Genomics Research Institute (TGen), An Affiliate of the City of Hope National Medical Center, Phoenix, AZ 85004, USA
| | - Victoria Zismann
- The Translational Genomics Research Institute (TGen), An Affiliate of the City of Hope National Medical Center, Phoenix, AZ 85004, USA
| | - Lauren Reining
- The Translational Genomics Research Institute (TGen), An Affiliate of the City of Hope National Medical Center, Phoenix, AZ 85004, USA
| | - Sarah Highlander
- The Translational Genomics Research Institute (TGen), An Affiliate of the City of Hope National Medical Center, Phoenix, AZ 85004, USA
| | | | | | | | - Nicholas J. Schork
- The Translational Genomics Research Institute (TGen), An Affiliate of the City of Hope National Medical Center, Phoenix, AZ 85004, USA
- The University of California, San Diego, San Diego, CA 92093, USA
- The Scripps Research Institute, San Diego, CA 92037, USA
| |
Collapse
|
24
|
Viral Metagenomic Analysis of the Fecal Samples in Domestic Dogs (Canis lupus familiaris). Viruses 2023; 15:v15030685. [PMID: 36992396 PMCID: PMC10058366 DOI: 10.3390/v15030685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Canine diarrhea is a common intestinal illness that is usually caused by viruses, bacteria, and parasites, and canine diarrhea may induce morbidity and mortality of domestic dogs if treated improperly. Recently, viral metagenomics was applied to investigate the signatures of the enteric virome in mammals. In this research, the characteristics of the gut virome in healthy dogs and dogs with diarrhea were analyzed and compared using viral metagenomics. The alpha diversity analysis indicated that the richness and diversity of the gut virome in the dogs with diarrhea were much higher than the healthy dogs, while the beta diversity analysis revealed that the gut virome of the two groups was quite different. At the family level, the predominant viruses in the canine gut virome were certified to be Microviridae, Parvoviridae, Siphoviridae, Inoviridae, Podoviridae, Myoviridae, and others. At the genus level, the predominant viruses in the canine gut virome were certified to be Protoparvovirus, Inovirus, Chlamydiamicrovirus, Lambdavirus, Dependoparvovirus, Lightbulbvirus, Kostyavirus, Punavirus, Lederbergvirus, Fibrovirus, Peduovirus, and others. However, the viral communities between the two groups differed significantly. The unique viral taxa identified in the healthy dogs group were Chlamydiamicrovirus and Lightbulbvirus, while the unique viral taxa identified in the dogs with diarrhea group were Inovirus, Protoparvovirus, Lambdavirus, Dependoparvovirus, Kostyavirus, Punavirus, and other viruses. Phylogenetic analysis based on the near-complete genome sequences showed that the CPV strains collected in this study together with other CPV Chinese isolates clustered into a separate branch, while the identified CAV-2 strain D5-8081 and AAV-5 strain AAV-D5 were both the first near-complete genome sequences in China. Moreover, the predicted bacterial hosts of phages were certified to be Campylobacter, Escherichia, Salmonella, Pseudomonas, Acinetobacter, Moraxella, Mediterraneibacter, and other commensal microbiota. In conclusion, the enteric virome of the healthy dogs group and the dogs with diarrhea group was investigated and compared using viral metagenomics, and the viral communities might influence canine health and disease by interacting with the commensal gut microbiome.
Collapse
|
25
|
A bat MERS-like coronavirus circulates in pangolins and utilizes human DPP4 and host proteases for cell entry. Cell 2023; 186:850-863.e16. [PMID: 36803605 PMCID: PMC9933427 DOI: 10.1016/j.cell.2023.01.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/17/2022] [Accepted: 01/12/2023] [Indexed: 02/18/2023]
Abstract
It is unknown whether pangolins, the most trafficked mammals, play a role in the zoonotic transmission of bat coronaviruses. We report the circulation of a novel MERS-like coronavirus in Malayan pangolins, named Manis javanica HKU4-related coronavirus (MjHKU4r-CoV). Among 86 animals, four tested positive by pan-CoV PCR, and seven tested seropositive (11 and 12.8%). Four nearly identical (99.9%) genome sequences were obtained, and one virus was isolated (MjHKU4r-CoV-1). This virus utilizes human dipeptidyl peptidase-4 (hDPP4) as a receptor and host proteases for cell infection, which is enhanced by a furin cleavage site that is absent in all known bat HKU4r-CoVs. The MjHKU4r-CoV-1 spike shows higher binding affinity for hDPP4, and MjHKU4r-CoV-1 has a wider host range than bat HKU4-CoV. MjHKU4r-CoV-1 is infectious and pathogenic in human airways and intestinal organs and in hDPP4-transgenic mice. Our study highlights the importance of pangolins as reservoir hosts of coronaviruses poised for human disease emergence.
Collapse
|
26
|
Genomic Analysis of the Suspicious SARS-CoV-2 Sequences in the Public Sequencing Database. Microbiol Spectr 2023; 11:e0342622. [PMID: 36622170 PMCID: PMC9927258 DOI: 10.1128/spectrum.03426-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
SARS-CoV-2 has infected more than 600 million people. However, the origin of the virus is still unclear; knowing where the virus came from could help us prevent future zoonotic epidemics. Sequencing data, particularly metagenomic data, can profile the genomes of all species in the sample, including those not recognized at the time, thus allowing for the identification of the progenitor of SARS-CoV-2 in samples collected before the pandemic. We analyzed the data from 5,196 SARS-CoV-2-positive sequencing runs in the NCBI's SRA database with collection dates prior to 2020 or unknown. We found that the mutation patterns obtained from these suspicious SARS-CoV-2 reads did not match the genome characteristics of an unknown progenitor of the virus, suggesting that they may derive from circulating SARS-CoV-2 variants or other coronaviruses. Despite a negative result for tracking the progenitor of SARS-CoV-2, the methods developed in the study could assist in pinpointing the origin of various pathogens in the future. IMPORTANCE Sequences that are homologous to the SARS-CoV-2 genome were found in numerous sequencing runs that were not associated with the SARS-CoV-2 studies in the public database. It is unclear whether they are derived from the possible progenitor of SARS-CoV-2 or contamination of more recent SARS-CoV-2 variants circulated in the population due to the lack of information on the collection, library preparation, and sequencing processes. We have developed a computational framework to infer the evolutionary relationship between sequences based on the comparison of mutations, which enabled us to rule out the possibility that these suspicious sequences originate from unknown progenitors of SARS-CoV-2.
Collapse
|
27
|
Retracing Phylogenetic, Host and Geographic Origins of Coronaviruses with Coloured Genomic Bootstrap Barcodes: SARS-CoV and SARS-CoV-2 as Case Studies. Viruses 2023; 15:v15020406. [PMID: 36851620 PMCID: PMC9961909 DOI: 10.3390/v15020406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Phylogenetic trees of coronaviruses are difficult to interpret because they undergo frequent genomic recombination. Here, we propose a new method, coloured genomic bootstrap (CGB) barcodes, to highlight the polyphyletic origins of human sarbecoviruses and understand their host and geographic origins. The results indicate that SARS-CoV and SARS-CoV-2 contain genomic regions of mixed ancestry originating from horseshoe bat (Rhinolophus) viruses. First, different regions of SARS-CoV share exclusive ancestry with five Rhinolophus viruses from Southwest China (RfYNLF/31C: 17.9%; RpF46: 3.3%; RspSC2018: 2.0%; Rpe3: 1.3%; RaLYRa11: 1.0%) and 97% of its genome can be related to bat viruses from Yunnan (China), supporting its emergence in the Rhinolophus species of this province. Second, different regions of SARS-CoV-2 share exclusive ancestry with eight Rhinolophus viruses from Yunnan (RpYN06: 5.8%; RaTG13: 4.8%; RmYN02: 3.8%), Laos (RpBANAL103: 3.3%; RmarBANAL236: 1.7%; RmBANAL52: 1.0%; RmBANAL247: 0.7%), and Cambodia (RshSTT200: 2.3%), and 98% of its genome can be related to bat viruses from northern Laos and Yunnan, supporting its emergence in the Rhinolophus species of this region. Although CGB barcodes are very useful in retracing the origins of human sarbecoviruses, further investigations are needed to better take into account the diversity of coronaviruses in bats from Cambodia, Laos, Myanmar, Thailand and Vietnam.
Collapse
|
28
|
Jiang JZ, Fang YF, Wei HY, Zhu P, Liu M, Yuan WG, Yang LL, Guo YX, Jin T, Shi M, Yao T, Lu J, Ye LT, Shi SK, Wang M, Duan M, Zhang DC. A remarkably diverse and well-organized virus community in a filter-feeding oyster. MICROBIOME 2023; 11:2. [PMID: 36611217 PMCID: PMC9825006 DOI: 10.1186/s40168-022-01431-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Viruses play critical roles in the marine environment because of their interactions with an extremely broad range of potential hosts. Many studies of viruses in seawater have been published, but viruses that inhabit marine animals have been largely neglected. Oysters are keystone species in coastal ecosystems, yet as filter-feeding bivalves with very large roosting numbers and species co-habitation, it is not clear what role they play in marine virus transmission and coastal microbiome regulation. RESULTS Here, we report a Dataset of Oyster Virome (DOV) that contains 728,784 nonredundant viral operational taxonomic unit contigs (≥ 800 bp) and 3473 high-quality viral genomes, enabling the first comprehensive overview of both DNA and RNA viral communities in the oyster Crassostrea hongkongensis. We discovered tremendous diversity among novel viruses that inhabit this oyster using multiple approaches, including reads recruitment, viral operational taxonomic units, and high-quality virus genomes. Our results show that these viruses are very different from viruses in the oceans or other habitats. In particular, the high diversity of novel circoviruses that we found in the oysters indicates that oysters may be potential hotspots for circoviruses. Notably, the viruses that were enriched in oysters are not random but are well-organized communities that can respond to changes in the health state of the host and the external environment at both compositional and functional levels. CONCLUSIONS In this study, we generated a first "knowledge landscape" of the oyster virome, which has increased the number of known oyster-related viruses by tens of thousands. Our results suggest that oysters provide a unique habitat that is different from that of seawater, and highlight the importance of filter-feeding bivalves for marine virus exploration as well as their essential but still invisible roles in regulating marine ecosystems. Video Abstract.
Collapse
Affiliation(s)
- Jing-Zhe Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China.
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
- Tianjin Agricultural University, Tianjin, 300384, China.
| | - Yi-Fei Fang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
- Shanghai Majorbio Bio-Pharm Technology Co Ltd, Shanghai, 201203, China
| | - Hong-Ying Wei
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
- Guangdong Magigene Biotechnology Co Ltd, Guangzhou, 510000, Guangdong, China
| | - Peng Zhu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Min Liu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Wen-Guang Yuan
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Li-Ling Yang
- Tianjin Agricultural University, Tianjin, 300384, China
| | | | - Tao Jin
- Guangdong Magigene Biotechnology Co Ltd, Guangzhou, 510000, Guangdong, China
| | - Mang Shi
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Tuo Yao
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China
| | - Jie Lu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China
| | - Ling-Tong Ye
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China
| | - Shao-Kun Shi
- Shenzhen Fisheries Development Research Center, Shenzhen, 518067, Guangdong, China
| | - Meng Wang
- Bureau of Agriculture and Rural Affairs of Conghua District, Guangzhou, 510925, Guangdong, China
| | - Ming Duan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China, Hubei.
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China.
| |
Collapse
|
29
|
Nino Barreat JG, Kamada AJ, Reuben de Souza C, Katzourakis A. Discovery of novel papillomaviruses in the critically endangered Malayan and Chinese pangolins. Biol Lett 2023; 19:20220464. [PMID: 36596463 PMCID: PMC9810420 DOI: 10.1098/rsbl.2022.0464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/28/2022] [Indexed: 01/05/2023] Open
Abstract
Pangolins are scaly and toothless mammals which are distributed across Africa and Asia. Currently, the Malayan, Chinese and Philippine pangolins are designated as critically endangered species. Although few pangolin viruses have been described, their viromes have received more attention following the discovery that they harbour sarbecoviruses related to SARS-CoV-2. Using large-scale genome mining, we discovered novel lineages of papillomaviruses infecting the Malayan and Chinese pangolins. We were able to assemble three complete circular papillomavirus genomes with an intact coding capacity and five additional L1 genes encoding the major capsid protein. Phylogenetic analysis revealed that seven out of eight L1 sequences formed a monophyletic group which is the sister lineage to the Tupaia belangeri papillomavirus 1, isolated from Yunnan province in China. Additionally, a single L1 sequence assembled from a Chinese pangolin was placed in a clade closer to Alphapapillomavirus and Omegapapillomavirus. Examination of the SRA data from 95 re-sequenced genomes revealed that 49.3% of Malayan pangolins and 50% of Chinese pangolins were positive for papillomavirus reads. Our results indicate that pangolins in South-East Asia are the hosts of diverse and highly prevalent papillomaviruses, and highlight the value of in silico mining of host sequencing data for the discovery of novel viruses.
Collapse
|
30
|
Jiao W, Liu L, Zeng Z, Li L, Chen J. Differences in gut microbes in captive pangolins and the effects of captive breeding. Front Microbiol 2022; 13:1053925. [PMID: 36560954 PMCID: PMC9763570 DOI: 10.3389/fmicb.2022.1053925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
Intestinal microorganisms are crucial for health and have a significant impact on biological processes, such as metabolism, immunity, and neural regulation. Although pangolin are protected animals in China and listed as critically endangered (CR) level by The International Union for Conservation of Nature (IUCN), the population of wild pangolins has decreased sharply in recent decades. Captive breeding has been adopted to protect pangolins, but the survival is low due to gastrointestinal infections, diarrhea, and parasitic infections. Studies on intestinal microbes in pangolins may reveal the relationship between intestinal microorganisms and health and assist protection. To explore the relationship between intestinal microorganisms and pangolin health, blood parameters and intestinal microorganisms of 10 pangolins (two Manis pentadactyla and eight Manis javanica) were studied at the Shenzhen Wildlife Rescue Center. There is difference among adult Sunda pangolins (M. javanica), adult Chinese pangolins (M. pentadactyla) and sub-adult Sunda pangolins (M. javanica) in intestinal microbial composition, diversity and phenotypic diversity, which suggested that adult Sunda pangolins occupied more diversity and proportion of microbial species to resist environmental pressure than the others. Due to the captive breeding serum cortisol of pangolins was increased, and the intestinal microbial structure changed, which may affect immunity. This study provides a scientific basis for the rescue of pangolins through artificial breeding.
Collapse
Affiliation(s)
- Wenjing Jiao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China,*Correspondence: Wenjing Jiao
| | - Lina Liu
- Shenzhen Management Bureau of Natural Reserve, Guangdong, China
| | - Zhiliao Zeng
- Shenzhen Management Bureau of Natural Reserve, Guangdong, China
| | - Linmiao Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jinping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China,Jinping Chen
| |
Collapse
|
31
|
Que T, Li J, He Y, Chen P, Lin W, He M, Yu L, Wu A, Tan L, Li Y, Hu Y, Tong Y. Human parainfluenza 3 and respiratory syncytial viruses detected in pangolins. Emerg Microbes Infect 2022; 11:1657-1663. [PMID: 35678141 PMCID: PMC9225696 DOI: 10.1080/22221751.2022.2086071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Pangolins have gained increasing global attention owing to their public health significance as potential zoonotic hosts since the identification of SARS-CoV-2-related viruses in them. Moreover, these animals could carry other respiratory viruses. In this study, we investigated the virome composition of 16 pangolins that died in 2018 with symptoms of pneumonia using metagenomic approaches. A total of eight whole virus sequences belonging to the Paramyxoviridae or Pneumoviridae families were identified, including one human parainfluenza virus 3, one human respiratory syncytial virus A, and six human respiratory syncytial virus B. All of these sequences showed more than 99% nucleotide identity with the virus isolated from humans at the whole-genome level and clustered with human viruses in the phylogenetic tree. Our findings provide evidence that pangolins are susceptible to HPIV3 and HRSV infection. Therefore, public awareness of the threat of pangolin-borne pathogens is essential to stop their human consumption and to prevent zoonotic viral transmission.
Collapse
Affiliation(s)
- Tengcheng Que
- Guangxi Zhuang Autonomous Region Terrestrial Wildlife Medical-aid and Monitoring Epidemic Diseases Research Center, Nanning, P.R. People's Republic of China
| | - Jing Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. People's Republic of China
| | - Yugan He
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. People's Republic of China
| | - Panyu Chen
- Guangxi Zhuang Autonomous Region Terrestrial Wildlife Medical-aid and Monitoring Epidemic Diseases Research Center, Nanning, P.R. People's Republic of China
| | - Wei Lin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. People's Republic of China
| | - Meihong He
- Guangxi Zhuang Autonomous Region Terrestrial Wildlife Medical-aid and Monitoring Epidemic Diseases Research Center, Nanning, P.R. People's Republic of China
| | - Lei Yu
- Guangxi Zhuang Autonomous Region Terrestrial Wildlife Medical-aid and Monitoring Epidemic Diseases Research Center, Nanning, P.R. People's Republic of China
| | - Aiqiong Wu
- Guangxi Zhuang Autonomous Region Terrestrial Wildlife Medical-aid and Monitoring Epidemic Diseases Research Center, Nanning, P.R. People's Republic of China
| | - Luohao Tan
- Guangxi Zhuang Autonomous Region Terrestrial Wildlife Medical-aid and Monitoring Epidemic Diseases Research Center, Nanning, P.R. People's Republic of China
| | - Yingjiao Li
- Guangxi Zhuang Autonomous Region Terrestrial Wildlife Medical-aid and Monitoring Epidemic Diseases Research Center, Nanning, P.R. People's Republic of China
| | - Yanling Hu
- School of Information and Management, Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, P. R. People's Republic of China
| | - Yigang Tong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. People's Republic of China
| |
Collapse
|
32
|
Forensic Analysis of Novel SARS2r-CoV Identified in Game Animal Datasets in China Shows Evolutionary Relationship to Pangolin GX CoV Clade and Apparent Genetic Experimentation. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2040068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Pangolins are the only animals other than bats proposed to have been infected with SARS-CoV-2 related coronaviruses (SARS2r-CoVs) prior to the COVID-19 pandemic. Here, we examine the novel SARS2r-CoV we previously identified in game animal metatranscriptomic datasets sequenced by the Nanjing Agricultural University in 2022, and find that sections of the partial genome phylogenetically group with Guangxi pangolin CoVs (GX PCoVs), while the full RdRp sequence groups with bat-SL-CoVZC45. While the novel SARS2r-CoV is found in 6 pangolin datasets, it is also found in 10 additional NGS datasets from 5 separate mammalian species and is likely related to contamination by a laboratory researched virus. Absence of bat mitochondrial sequences from the datasets, the fragmentary nature of the virus sequence and the presence of a partial sequence of a cloning vector attached to a SARS2r-CoV read suggests that it has been cloned. We find that NGS datasets containing the novel SARS2r-CoV are contaminated with significant Homo sapiens genetic material, and numerous viruses not associated with the host animals sampled. We further identify the dominant human haplogroup of the contaminating H. sapiens genetic material to be F1c1a1, which is of East Asian provenance. The association of this novel SARS2r-CoV with both bat CoV and the GX PCoV clades is an important step towards identifying the origin of the GX PCoVs.
Collapse
|
33
|
Lina Z, Kai W, Fuyu A, Dongliang Z, Hailing Z, Xuelin X, Ce G, Hongmei Y, Yingjie K, Zhidong Z, Rongguang L, Yan H. Fatal canine parvovirus type 2a and 2c infections in wild Chinese pangolins (Manis pentadactyla) in southern China. Transbound Emerg Dis 2022; 69:4002-4008. [PMID: 36070349 PMCID: PMC10087772 DOI: 10.1111/tbed.14703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 02/04/2023]
Abstract
The Chinese pangolin (Manis pentadactyla) is a critically endangered scale-covered mammal belonging to the order Pholidota. Wild pangolins are notably susceptible to pathogen infection and are typically characterized by impoverished health. However, little is currently known regarding the viruses prevalent among pangolins. In this study, we report the detection of two subtypes of canine parvovirus type 2 (CPV-2), namely CPV-2a and CPV-2c, both of which caused severe diarrheal disease in two post-rescue pangolins with fatal consequences. As in CPV-2-infected dogs, intensive lesion of the mucosal layer of the small intestines is a prominent feature in infected pangolins. Moreover, the immunochemistry results demonstrated that CPV-2 antigens were distributed in the crypts of small intestine. Additionally, typical parvovirus-associated CPV-2 were detected after four passages in F81 cells, and typical parvovirus-like particles, approximately 20 nm in diameter, were observed in the cell supernatants. Phylogenetic analysis revealed that the VP2 viral protein sequences (GenBank accession number OP208805) isolated from one pangolin (termed P1) were classified as CPV-2c, with 99.8% identity to a CPV-2c strain (MN832850) isolated from a Taiwanese pangolin found in Taiwan Province. In contrast, VP2 sequences (#OP208806) obtained from the second pangolin (P2) were classified as CPV-2a, with 99.8% identity to a CPV-2a strain (KY386858) isolated from southern China. In this study, we thus confirmed the infection of pangolins with CPV-2c in mainland China and demonstrated that CPV-2a also can infect pangolins. Based on these findings, we recommend that further investigations should be conducted to establish the interspecies transmission of these viruses among wild pangolins, wild carnivores, and stray dogs.
Collapse
Affiliation(s)
- Zhang Lina
- Eco-Engineering Department, Guangdong Eco-Engineering Polytechnic, Guangzhou, China
| | - Wang Kai
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
| | - An Fuyu
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
| | - Zhang Dongliang
- Key Laboratory of Special Animal Epidemic Disease of Ministry of Agriculture and Rural Affairs, Institute of Special Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zhang Hailing
- Key Laboratory of Special Animal Epidemic Disease of Ministry of Agriculture and Rural Affairs, Institute of Special Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xu Xuelin
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
| | - Guo Ce
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
| | - Yan Hongmei
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
| | - Kuang Yingjie
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
| | - Zhang Zhidong
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
| | - Lu Rongguang
- School of Medicine, Chinese University of Hongkong Shenzhen, Shenzhen, China
| | - Hua Yan
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
| |
Collapse
|
34
|
Al-Khalaifah H, Alotaibi M, Al-Nasser A. The relation between avian coronaviruses and SARS-CoV-2 coronavirus. Front Microbiol 2022; 13:976462. [PMID: 36312988 PMCID: PMC9608149 DOI: 10.3389/fmicb.2022.976462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/20/2022] [Indexed: 01/04/2023] Open
Abstract
The coronaviruses (CoVs) are a family of ribonucleic acid viruses that are present in both mammals and birds. SARS-CoV and MERS-CoV originated in bats, and there is a possibility that this could be the case for SARS-CoV-2 as well. There is already evidence that a probable intermediary host is responsible for the emergence of viruses in humans as was the case for SARS-CoVs and MERS-CoV. As the SARS-CoV-2 originated from a live animal market, there is always the question if domestic animals are susceptible to these viruses and the possible risk of zoonotic transmission with mammals, including humans. This uncertainty of the transmission of the COVID-19 virus between humans and animals is of great significance worldwide. Hence, this paper focuses on the avian CoVs and their possible relation and interaction with SARS-CoV-2.
Collapse
|
35
|
Quinteros JA, Noormohammadi AH, Lee SW, Browning GF, Diaz‐Méndez A. Genomics and pathogenesis of the avian coronavirus infectious bronchitis virus. Aust Vet J 2022; 100:496-512. [PMID: 35978541 PMCID: PMC9804484 DOI: 10.1111/avj.13197] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/25/2022] [Accepted: 05/02/2022] [Indexed: 01/05/2023]
Abstract
Infectious bronchitis virus (IBV) is a member of the family Coronaviridae, together with viruses such as SARS-CoV, MERS-CoV and SARS-CoV-2 (the causative agent of the COVID-19 global pandemic). In this family of viruses, interspecies transmission has been reported, so understanding their pathobiology could lead to a better understanding of the emergence of new serotypes. IBV possesses a single-stranded, non-segmented RNA genome about 27.6 kb in length that encodes several non-structural and structural proteins. Most functions of these proteins have been confirmed in IBV, but some other proposed functions have been based on research conducted on other members of the family Coronaviridae. IBV has variable tissue tropism depending on the strain, and can affect the respiratory, reproductive, or urinary tracts; however, IBV can also replicate in other organs. Additionally, the pathogenicity of IBV is also variable, with some strains causing only mild clinical signs, while infection with others results in high mortality rates in chickens. This paper extensively and comprehensibly reviews general aspects of coronaviruses and, more specifically, IBV, with emphasis on protein functions and pathogenesis. The pathogenicity of the Australian strains of IBV is also reviewed, describing the variability between the different groups of strains, from the classical to the novel and recombinant strains. Reverse genetic systems, cloning and cell culture growth techniques applicable to IBV are also reviewed.
Collapse
Affiliation(s)
- JA Quinteros
- Asia‐Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural SciencesThe University of MelbourneParkvilleVictoriaAustralia
- Present address:
Escuela de Ciencias Agrícolas y VeterinariasUniversidad Viña del Mar, Agua Santa 7055 2572007Viña del MarChile
| | - AH Noormohammadi
- Asia‐Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural SciencesThe University of MelbourneWerribeeVictoriaAustralia
| | - SW Lee
- Asia‐Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural SciencesThe University of MelbourneParkvilleVictoriaAustralia
- College of Veterinary MedicineKonkuk UniversitySeoulRepublic of Korea
| | - GF Browning
- Asia‐Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural SciencesThe University of MelbourneParkvilleVictoriaAustralia
| | - A Diaz‐Méndez
- Asia‐Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural SciencesThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
36
|
Silva TDS, Salvato RS, Gregianini TS, Gomes IA, Pereira EC, de Oliveira E, de Menezes AL, Barcellos RB, Godinho FM, Riediger I, Debur MDC, de Oliveira CM, Ribeiro-Rodrigues R, Miyajima F, Dias FS, Abbud A, do Monte-Neto R, Calzavara-Silva CE, Siqueira MM, Wallau GL, Resende PC, Fernandes GDR, Alves P. Molecular characterization of a new SARS-CoV-2 recombinant cluster XAG identified in Brazil. Front Med (Lausanne) 2022; 9:1008600. [PMID: 36250091 PMCID: PMC9554242 DOI: 10.3389/fmed.2022.1008600] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Recombination events have been described in the Coronaviridae family. Since the beginning of the SARS-CoV-2 pandemic, a variable degree of selection pressure has acted upon the virus, generating new strains with increased fitness in terms of viral transmission and antibody scape. Most of the SC2 variants of concern (VOC) detected so far carry a combination of key amino acid changes and indels. Recombination may also reshuffle existing genetic profiles of distinct strains, potentially giving origin to recombinant strains with altered phenotypes. However, co-infection and recombination events are challenging to detect and require in-depth curation of assembled genomes and sequencing reds. Here, we present the molecular characterization of a new SARS-CoV-2 recombinant between BA.1.1 and BA.2.23 Omicron lineages identified in Brazil. We characterized four mutations that had not been previously described in any of the recombinants already identified worldwide and described the likely breaking points. Moreover, through phylogenetic analysis, we showed that the newly named XAG lineage groups in a highly supported monophyletic clade confirmed its common evolutionary history from parental Omicron lineages and other recombinants already described. These observations were only possible thanks to the joint effort of bioinformatics tools auxiliary in genomic surveillance and the manual curation of experienced personnel, demonstrating the importance of genetic, and bioinformatic knowledge in genomics.
Collapse
Affiliation(s)
| | | | | | | | | | - Eneida de Oliveira
- Laboratório Municipal de Referência, Setor de Biologia Molecular, Belo Horizonte, Brazil
| | - André Luiz de Menezes
- Laboratório Municipal de Referência, Setor de Biologia Molecular, Belo Horizonte, Brazil
| | | | | | - Irina Riediger
- Laboratório Central de Saúde Pública do Estado do Paraná, Curitiba, Brazil
| | | | | | | | | | | | | | | | | | | | - Gabriel Luz Wallau
- Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | | | - Pedro Alves
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| |
Collapse
|
37
|
Photocatalytic Inactivation of Viruses and Prions: Multilevel Approach with Other Disinfectants. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2040054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ag, Cu, Zn, Ti, and Au nanoparticles show enhanced photocatalytic properties. Efficient indoor disinfection strategies are imperative to manage the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Virucidal agents, such as ethanol, sodium hypochlorite, 222-nm UV light, and electrolyzed water inactivate SARS-CoV-2 in indoor environments. Tungsten trioxide (WO3) photocatalyst and visible light disinfect abiotic surfaces against SARS-CoV-2. The titanium dioxide (TiO2)/UV system inactivates SARS-CoV-2 in aerosols and on deliberately contaminated TiO2-coated glass slide surfaces in photocatalytic chambers, wherein 405-nm UV light treatment for 20 min sterilizes the environment and generates reactive oxygen species (ROS) that inactivate the virus by targeting S and envelope proteins and viral RNA. Mesoscopic calcium bicarbonate solution (CAC-717) inactivates pathogens, such as prions, influenza virus, SARS-CoV-2, and noroviruses, in fluids; it presumably acts similarly on human and animal skin. The molecular complexity of cementitious materials promotes the photocatalysis of microorganisms. In combination, the two methods can reduce the pathogen load in the environment. As photocatalysts and CAC-717 are potent disinfectants for prions, disinfectants against prionoids could be developed by combining photocatalysis, gas plasma methodology, and CAC-717 treatment, especially for surgical devices and instruments.
Collapse
|
38
|
A curated data resource of 214K metagenomes for characterization of the global antimicrobial resistome. PLoS Biol 2022; 20:e3001792. [PMID: 36067158 PMCID: PMC9447899 DOI: 10.1371/journal.pbio.3001792] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/09/2022] [Indexed: 11/19/2022] Open
Abstract
The growing threat of antimicrobial resistance (AMR) calls for new epidemiological surveillance methods, as well as a deeper understanding of how antimicrobial resistance genes (ARGs) have been transmitted around the world. The large pool of sequencing data available in public repositories provides an excellent resource for monitoring the temporal and spatial dissemination of AMR in different ecological settings. However, only a limited number of research groups globally have the computational resources to analyze such data. We retrieved 442 Tbp of sequencing reads from 214,095 metagenomic samples from the European Nucleotide Archive (ENA) and aligned them using a uniform approach against ARGs and 16S/18S rRNA genes. Here, we present the results of this extensive computational analysis and share the counts of reads aligned. Over 6.76∙108 read fragments were assigned to ARGs and 3.21∙109 to rRNA genes, where we observed distinct differences in both the abundance of ARGs and the link between microbiome and resistome compositions across various sampling types. This collection is another step towards establishing global surveillance of AMR and can serve as a resource for further research into the environmental spread and dynamic changes of ARGs. The growing threat of antimicrobial resistance (AMR) calls for new epidemiological surveillance methods and a deeper understanding of how resistance genes are transmitted around the world. This study presents a large-scale remapping of sequencing reads of publicly available metagenomic datasets that can be used to monitor the global prevalence of AMR genes.
Collapse
|
39
|
Shi YN, Li LM, Zhou JB, Hua Y, Zeng ZL, Yu YP, Liu P, Yuan ZG, Chen JP. Detection of a novel Pestivirus strain in Java ticks (Amblyomma javanense) and the hosts Malayan pangolin (Manis javanica) and Chinese pangolin (Manis pentadactyla). Front Microbiol 2022; 13:988730. [PMID: 36118205 PMCID: PMC9479695 DOI: 10.3389/fmicb.2022.988730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Pangolins are endangered animals and are listed in the CITES Appendix I of the Convention International Trade Endangered Species of Wild Fauna and Flora as well as being the national first-level protected wild animal in China. Based on a few reports on pangolins infected with pestiviruses of the Flaviviridae family, Pestivirus infections in pangolins have attracted increasing attention. Pangolin pestivirus is a pathogen that may cause diseases such as acute diarrhea and acute hemorrhagic syndrome. To better understand the epidemiology and genomic characterization of pestiviruses carried by pangolins, we detected pestiviruses in dead Malayan pangolin using metavirome sequencing technology and obtained a Pestivirus sequence of 12,333 nucleotides (named Guangdong pangolin Pestivirus, GDPV). Phylogenetic tree analysis based on the entire coding sequence, NS3 gene or RdRp gene sequences, showed that GDPV was closely related to previously reported pangolin-derived Pestivirus and clustered into a separate branch. Molecular epidemiological investigation revealed that 15 Pestivirus-positive tissues from two pangolins individuals with a positivity rate of 5.56%, and six Amblyomma javanense carried pestiviruses with a positivity rate of 19.35%. Moreover, the RdRp gene of the Pestivirus carried by A. javanense showed a high similarity to that carried by pangolins (93–100%), indicating A. javanense is likely to represent the vector of Pestivirus transmission. This study expands the diversity of viruses carried by pangolins and provides an important reference value for interrupting the transmission route of the virus and protecting the health of pangolins.
Collapse
Affiliation(s)
- Yuan-Ni Shi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Lin-Miao Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Jia-Bin Zhou
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Yan Hua
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, Guangdong, China
| | - Zhi-Liao Zeng
- Shenzhen Management Bureau of Natural Reserve, Shenzhen, Guangdong, China
| | - Ye-Pin Yu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Ping Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Zi-Guo Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
- *Correspondence: Zi-Guo Yuan,
| | - Jin-Ping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
- Jin-Ping Chen,
| |
Collapse
|
40
|
Mitra J, Kodavati M, Provasek VE, Rao KS, Mitra S, Hamilton DJ, Horner PJ, Vahidy FS, Britz GW, Kent TA, Hegde ML. SARS-CoV-2 and the central nervous system: Emerging insights into hemorrhage-associated neurological consequences and therapeutic considerations. Ageing Res Rev 2022; 80:101687. [PMID: 35843590 PMCID: PMC9288264 DOI: 10.1016/j.arr.2022.101687] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/20/2022] [Accepted: 07/07/2022] [Indexed: 01/27/2023]
Abstract
Coronavirus disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continues to impact our lives by causing widespread illness and death and poses a threat due to the possibility of emerging strains. SARS-CoV-2 targets angiotensin-converting enzyme 2 (ACE2) before entering vital organs of the body, including the brain. Studies have shown systemic inflammation, cellular senescence, and viral toxicity-mediated multi-organ failure occur during infectious periods. However, prognostic investigations suggest that both acute and long-term neurological complications, including predisposition to irreversible neurodegenerative diseases, can be a serious concern for COVID-19 survivors, especially the elderly population. As emerging studies reveal sites of SARS-CoV-2 infection in different parts of the brain, potential causes of chronic lesions including cerebral and deep-brain microbleeds and the likelihood of developing stroke-like pathologies increases, with critical long-term consequences, particularly for individuals with neuropathological and/or age-associated comorbid conditions. Our recent studies linking the blood degradation products to genome instability, leading to cellular senescence and ferroptosis, raise the possibility of similar neurovascular events as a result of SARS-CoV-2 infection. In this review, we discuss the neuropathological consequences of SARS-CoV-2 infection in COVID survivors, focusing on possible hemorrhagic damage in brain cells, its association to aging, and the future directions in developing mechanism-guided therapeutic strategies.
Collapse
Affiliation(s)
- Joy Mitra
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Manohar Kodavati
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Vincent E Provasek
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; College of Medicine, Texas A&M University, College Station, TX, USA
| | - K S Rao
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation Deemed to be University, Green Fields, Vaddeswaram, Andhra Pradesh 522502, India
| | - Sankar Mitra
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Dale J Hamilton
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX 77030, USA; Weill Cornell Medical College, New York, USA
| | - Philip J Horner
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; Weill Cornell Medical College, New York, USA
| | - Farhaan S Vahidy
- Center for Outcomes Research, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Gavin W Britz
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; Weill Cornell Medical College, New York, USA
| | - Thomas A Kent
- Center for Genomics and Precision Medicine, Department of Translational Medical Sciences, Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Houston, TX, USA
| | - Muralidhar L Hegde
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; Weill Cornell Medical College, New York, USA.
| |
Collapse
|
41
|
Shi W, Shi M, Que TC, Cui XM, Ye RZ, Xia LY, Hou X, Zheng JJ, Jia N, Xie X, Wu WC, He MH, Wang HF, Wei YJ, Wu AQ, Zhang SF, Pan YS, Chen PY, Wang Q, Li SS, Zhong YL, Li YJ, Tan LH, Zhao L, Jiang JF, Hu YL, Cao WC. Trafficked Malayan pangolins contain viral pathogens of humans. Nat Microbiol 2022; 7:1259-1269. [PMID: 35918420 PMCID: PMC9352580 DOI: 10.1038/s41564-022-01181-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 06/21/2022] [Indexed: 12/03/2022]
Abstract
Pangolins are the most trafficked wild animal in the world according to the World Wildlife Fund. The discovery of SARS-CoV-2-related coronaviruses in Malayan pangolins has piqued interest in the viromes of these wild, scaly-skinned mammals. We sequenced the viromes of 161 pangolins that were smuggled into China and assembled 28 vertebrate-associated viruses, 21 of which have not been previously reported in vertebrates. We named 16 members of Hunnivirus, Pestivirus and Copiparvovirus pangolin-associated viruses. We report that the l-protein has been lost from all hunniviruses identified in pangolins. Sequences of four human-associated viruses were detected in pangolin viromes, including respiratory syncytial virus, Orthopneumovirus, RotavirusA and Mammalian orthoreovirus. The genomic sequences of five mammal-associated and three tick-associated viruses were also present. Notably, a coronavirus related to HKU4-CoV, which was originally found in bats, was identified. The presence of these viruses in smuggled pangolins identifies these mammals as a potential source of emergent pathogenic viruses. Multiple pathogenic viruses are identified in a large set of pangolins, which shows that trading pangolins for scales or flesh may increase the risk of emergence of viral infections.
Collapse
Affiliation(s)
- Wenqiang Shi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Mang Shi
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, P. R. China
| | - Teng-Cheng Que
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, Guangxi, P. R. China
| | - Xiao-Ming Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China.,Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Run-Ze Ye
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Luo-Yuan Xia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China.,Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Xin Hou
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, P. R. China
| | - Jia-Jing Zheng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China.,College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China.,Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Xing Xie
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Wei-Chen Wu
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, P. R. China
| | - Mei-Hong He
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, Guangxi, P. R. China
| | - Hui-Feng Wang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Yong-Jie Wei
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, Guangxi, P. R. China
| | - Ai-Qiong Wu
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, Guangxi, P. R. China
| | - Sheng-Feng Zhang
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Yu-Sheng Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Pan-Yu Chen
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, Guangxi, P. R. China
| | - Qian Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China.,Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Shou-Sheng Li
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, Guangxi, P. R. China
| | - Yan-Li Zhong
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, Guangxi, P. R. China
| | - Ying-Jiao Li
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, Guangxi, P. R. China
| | - Luo-Hao Tan
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, Guangxi, P. R. China
| | - Lin Zhao
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China. .,Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, P. R. China.
| | - Yan-Ling Hu
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, P. R. China. .,Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, P. R. China.
| | - Wu-Chun Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China. .,Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, P. R. China. .,Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China.
| |
Collapse
|
42
|
Zhang D, Zheng M, Zhang Y, Feng G, Peng C, Li C, Li Y, Zhang H, Li N, Xiao P. Multiple Novel Mosquito-Borne Zoonotic Viruses Revealed in Pangolin Virome. Front Cell Infect Microbiol 2022; 12:874003. [PMID: 35846764 PMCID: PMC9277073 DOI: 10.3389/fcimb.2022.874003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/04/2022] [Indexed: 01/01/2023] Open
Abstract
Swab samples were collected from 34 pangolins in Guangxi Province, China. Metavirome sequencing and bioinformatics approaches were undertaken to determine the abundant viral sequences in the viromes. The results showed that the viral sequences belong to 24 virus taxonomic families. To verify the results, PCR combined with phylogenetic analysis was conducted. Some viral sequences including Japanese encephalitis virus (JEV), Getah virus (GETV), and chikungunya virus (CHIKV) were detected. On the basis of the metavirome analysis, seven segments belonging to JEV were further identified through PCR amplification. Sequence comparison showed that, among seven sequences, JEV-China/P2020E-1 displayed the highest nucleotide (80.6%), with the JEV isolated in South Korea, 1988, and all of which belonging to genotype III. Seven CHIKV sequences were detected, with the highest homology (80.6%) to the Aedes africanus in Côte d’Ivoire, 1993. Moreover, passage from BHK-21 to Vero cells makes the newly isolated CHIKV-China/P2020-1 more contagious. In addition, the newly verified GETV sequences shared 86.4% identity with the 1955 GETV isolated from Malaysia. Some sudden and recurrent viruses have also been observed from the virome of pangolin in Guangxi Province, China; hence, dissemination tests will be implemented in the future.
Collapse
Affiliation(s)
- Duo Zhang
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, China
| | - Min Zheng
- Guangxi Centre for Animal Disease Control and Prevention, Nanning, China
| | - Ying Zhang
- College of Veterinary Medicine, College of Animal Science, Jilin University, Changchun, China
| | - Guanrong Feng
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, China
| | - Chengcheng Peng
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, China
| | - Chenghui Li
- College of Agriculture, Yanbian University, Yanji, China
| | - Yiquan Li
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - He Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Nan Li
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, China
| | - Pengpeng Xiao
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, China
| |
Collapse
|
43
|
Schindell BG, Allardice M, McBride JA, Dennehy B, Kindrachuk J. SARS-CoV-2 and the Missing Link of Intermediate Hosts in Viral Emergence - What We Can Learn From Other Betacoronaviruses. FRONTIERS IN VIROLOGY 2022; 2. [DOI: 10.3389/fviro.2022.875213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The emergence of SARS-CoV-2 in 2019 has resulted in a global pandemic with devastating human health and economic consequences. The development of multiple vaccines, antivirals and supportive care modalities have aided in our efforts to gain control of the pandemic. However, the emergence of multiple variants of concern and spillover into numerous nonhuman animal species could protract the pandemic. Further, these events also increase the difficulty in simultaneously monitoring viral evolution across multiple species and predicting future spillback potential into the human population. Here, we provide historic context regarding the roles of reservoir and intermediate hosts in coronavirus circulation and discuss current knowledge of these for SARS-CoV-2. Increased understanding of SARS-CoV-2 zoonoses are fundamental for efforts to control the global health and economic impacts of COVID-19.
Collapse
|
44
|
Li L, Zhang L, Zhou J, He X, Yu Y, Liu P, Huang W, Xiang Z, Chen J. Epidemiology and Genomic Characterization of Two Novel SARS-Related Coronaviruses in Horseshoe Bats from Guangdong, China. mBio 2022; 13:e0046322. [PMID: 35467426 PMCID: PMC9239062 DOI: 10.1128/mbio.00463-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/04/2022] [Indexed: 01/11/2023] Open
Abstract
Severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) and SARS-CoV-2, the causative agents of SARS, which broke out in 2003, and coronavirus disease 2019 (COVID-2019), which broke out in 2019, probably originated in Rhinolophus sinicus and R. affinis, respectively. Rhinolophus bats are important hosts for coronaviruses. Many SARS-related coronaviruses (SARSr-CoVs) have been detected in bats from different areas of China; however, the diversity of bat SARSr-CoVs is increasing, and their transmission mechanisms have attracted much attention. Here, we report the findings of SARSr-CoVs in R. sinicus and R. affinis from South China from 2008 to 2021. The full-length genome sequences of the two novel SARSr-CoVs obtained from Guangdong shared 83 to 88% and 71 to 72% nucleotide identities with human SARS-CoV and SARS-CoV-2, respectively, while sharing high similarity with human SARS-CoV in hypervariable open reading frame 8 (ORF8). Significant recombination occurred between the two novel SARSr-CoVs. Phylogenetic analysis showed that the two novel bat SARSr-CoVs from Guangdong were more distant than the bat SARSr-CoVs from Yunnan to human SARS-CoV. We found that transmission in bats contributes more to virus diversity than time. Although our results of the sequence analysis of the receptor-binding motif (RBM) and the expression pattern of angiotensin-converting enzyme 2 (ACE2) inferred that these viruses could not directly infect humans, risks still exist after some unpredictable mutations. Thus, this study increased our understanding of the genetic diversity and transmission of SARSr-CoVs carried by bats in the field. IMPORTANCE Severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 probably originated from the SARS-related coronaviruses (SARSr-CoVs) carried by Rhinolophus bats from Yunnan, China. Systematic investigations of the reservoir hosts carrying SARSr-CoVs in Guangdong and the reservoir distribution and transmission are urgently needed to prevent future outbreaks. Here, we detected SARSr-CoV in Rhinolophus bat samples from Guangdong in 2009 and 2021 and found that the transmission of SARSr-CoV from different host populations contributes more to increased virus diversity than time. Bat SARSr-CoVs in Guangdong had genetic diversity, and Guangdong was also the hot spot for SARSr-CoVs. We once again prove that R. sinicus plays an important role in the maintenance of the SARS-CoVs. Besides, the SARSr-CoVs are mainly transmitted through the intestines in bats, and these SARSr-CoVs found in Guangdong could not use human ACE2 (hACE2), but whether they can pass through intermediate hosts or directly infect humans requires further research. Our findings demonstrate the ability of SARSr-CoVs to spread across species.
Collapse
Affiliation(s)
- Linmiao Li
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, China
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Libiao Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Jiabin Zhou
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Xiangyang He
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Yepin Yu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Ping Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Wenzhong Huang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Zuofu Xiang
- College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Jinping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
45
|
Gu X, Huang D, Chen J, Li X, Zhou Y, Huang M, Liu Y, Yu P. Bacterial Inactivation and Biofilm Disruption through Indigenous Prophage Activation Using Low-Intensity Cold Atmospheric Plasma. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8920-8931. [PMID: 35438974 DOI: 10.1021/acs.est.2c01516] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biofilms can be pervasive and problematic in water treatment and distribution systems but are difficult to eradicate due to hindered penetration of antimicrobial chemicals. Here, we demonstrate that indigenous prophages activated by low-intensity plasma have the potential for efficient bacterial inactivation and biofilm disruption. Specifically, low-intensity plasma treatment (i.e., 35.20 W) elevated the intracellular oxidative reactive species (ROS) levels by 184%, resulting in the activation of prophage lambda (λ) within antibiotic-resistant Escherichia coli K-12 (lambda+) [E. coli (λ+)]. The phage activation efficiency was 6.50-fold higher than the conventional mitomycin C induction. Following a cascading effect, the activated phages were released upon the lysis of E. coli (λ+), which propagated further and lysed phage-susceptible E. coli K-12 (lambda-) [E. coli (λ-)] within the biofilm. Bacterial intracellular ROS analysis and ROS scavenger tests revealed the importance of plasma-generated ROS (e.g., •OH, 1O2, and •O2-) and associated intracellular oxidative stress on prophage activation. In a mixed-species biofilm on a permeable membrane surface, our "inside-out" strategy could inactivate total bacteria by 49% and increase the membrane flux by 4.33-fold. Furthermore, the metagenomic analysis revealed that the decrease in bacterial abundance was closely associated with the increase in phage levels. As a proof-of-concept, this is the first demonstration of indigenous prophage activations by low-intensity plasma for antibiotic-resistant bacterial inactivation and biofilm eradication, which opens up a new avenue for managing associated microbial problems.
Collapse
Affiliation(s)
- Xia Gu
- College of Environmental Science and Engineering, Donghua University, Songjiang, Shanghai 201620, China
| | - Dan Huang
- College of Environment and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Juhong Chen
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061-0131, United States
| | - Xiang Li
- College of Environmental Science and Engineering, Donghua University, Songjiang, Shanghai 201620, China
| | - Yongquan Zhou
- College of Environmental Science and Engineering, Donghua University, Songjiang, Shanghai 201620, China
| | - Manhong Huang
- College of Environmental Science and Engineering, Donghua University, Songjiang, Shanghai 201620, China
| | - Yanan Liu
- College of Environmental Science and Engineering, Donghua University, Songjiang, Shanghai 201620, China
| | - Pingfeng Yu
- College of Environment and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
46
|
Wang X, Ren Z, Wang L, Chen J, Zhang P, Chen JP, Chen X, Li L, Lin X, Qi N, Luo S, Xiang R, Yuan Z, Zhang J, Wang G, Sun MH, Huang Y, Hua Y, Zou J, Hou F, Huang Z, Du S, Xiang H, Sun M, Liu Q, Liao M. Identification of coronaviruses in farmed wild animals reveals their evolutionary origins in Guangdong, southern China. Virus Evol 2022; 8:veac049. [PMID: 35795295 PMCID: PMC9252129 DOI: 10.1093/ve/veac049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 05/15/2022] [Accepted: 06/19/2022] [Indexed: 11/16/2022] Open
Abstract
Coronavirus infections cause diseases that range from mild to severe in mammals and birds. In this study, we detected coronavirus infections in 748 farmed wild animals of 23 species in Guangdong, southern China, by RT-PCR and metagenomic analysis. We identified four coronaviruses in these wild animals and analysed their evolutionary origins. Coronaviruses detected in Rhizomys sinensis were genetically grouped into canine and rodent coronaviruses, which were likely recombinants of canine and rodent coronaviruses. The coronavirus found in Phasianus colchicus was a recombinant pheasant coronavirus of turkey coronavirus and infectious bronchitis virus. The coronavirus in Paguma larvata had a high nucleotide identity (94.6-98.5 per cent) with a coronavirus of bottlenose dolphin (Tursiops truncates). These findings suggested that the wildlife coronaviruses may have experienced homologous recombination and/or crossed the species barrier, likely resulting in the emergence of new coronaviruses. It is necessary to reduce human-animal interactions by prohibiting the eating and raising of wild animals, which may contribute to preventing the emergence of the next coronavirus pandemic.
Collapse
Affiliation(s)
- Xiaohu Wang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Key Laboratory for prevention and control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang, Wushan Street, Tianhe District, Guangzhou 510640, China
| | - Zhaowen Ren
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Key Laboratory for prevention and control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang, Wushan Street, Tianhe District, Guangzhou 510640, China
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510600, China
| | - Lu Wang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Key Laboratory for prevention and control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang, Wushan Street, Tianhe District, Guangzhou 510640, China
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510600, China
| | - Jing Chen
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Key Laboratory for prevention and control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang, Wushan Street, Tianhe District, Guangzhou 510640, China
| | - Pian Zhang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Key Laboratory for prevention and control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang, Wushan Street, Tianhe District, Guangzhou 510640, China
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510600, China
| | - Jin-Ping Chen
- Institute of Zoology, Guangdong Academy of Sciences, No. 105 Xingang West Road, Haizhu District, Guangzhou 510260, China
| | - Xiaofan Chen
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Key Laboratory for prevention and control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang, Wushan Street, Tianhe District, Guangzhou 510640, China
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510600, China
| | - Linmiao Li
- Institute of Zoology, Guangdong Academy of Sciences, No. 105 Xingang West Road, Haizhu District, Guangzhou 510260, China
| | - Xuhui Lin
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Key Laboratory for prevention and control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang, Wushan Street, Tianhe District, Guangzhou 510640, China
| | - Nanshan Qi
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Key Laboratory for prevention and control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang, Wushan Street, Tianhe District, Guangzhou 510640, China
| | - Shengjun Luo
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Key Laboratory for prevention and control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang, Wushan Street, Tianhe District, Guangzhou 510640, China
| | - Rong Xiang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Key Laboratory for prevention and control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang, Wushan Street, Tianhe District, Guangzhou 510640, China
| | - Ziguo Yuan
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510600, China
| | - Jianfeng Zhang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Key Laboratory for prevention and control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang, Wushan Street, Tianhe District, Guangzhou 510640, China
| | - Gang Wang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Key Laboratory for prevention and control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang, Wushan Street, Tianhe District, Guangzhou 510640, China
| | - Min-Hua Sun
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Key Laboratory for prevention and control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang, Wushan Street, Tianhe District, Guangzhou 510640, China
| | - Yuan Huang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Key Laboratory for prevention and control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang, Wushan Street, Tianhe District, Guangzhou 510640, China
| | - Yan Hua
- Guangdong Provincial Wildlife Rescue Center, No. 139 Yuxi Road, Tianhe District, Guangzhou 510520, China
| | - Jiejian Zou
- Guangdong Provincial Wildlife Rescue Center, No. 139 Yuxi Road, Tianhe District, Guangzhou 510520, China
| | - Fanghui Hou
- Guangdong Provincial Wildlife Rescue Center, No. 139 Yuxi Road, Tianhe District, Guangzhou 510520, China
| | - Zhong Huang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Key Laboratory for prevention and control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang, Wushan Street, Tianhe District, Guangzhou 510640, China
| | - Shouwen Du
- Department of Infectious Diseases, The Second Clinical Medical College (Shenzhen People’s Hospital) of Jinan University, No. 1017 Dongmen North Road, Luohu District, Shenzhen 518020, China
| | - Hua Xiang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Key Laboratory for prevention and control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang, Wushan Street, Tianhe District, Guangzhou 510640, China
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510600, China
| | - Mingfei Sun
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Key Laboratory for prevention and control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang, Wushan Street, Tianhe District, Guangzhou 510640, China
| | - Quan Liu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Key Laboratory for prevention and control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang, Wushan Street, Tianhe District, Guangzhou 510640, China
- School of Life Sciences and Engineering, Foshan University, No. 33 Guangyun Road, Shishan Town, Nanhai District, Foshan 528225, China
| | - Ming Liao
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Key Laboratory for prevention and control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang, Wushan Street, Tianhe District, Guangzhou 510640, China
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510600, China
| |
Collapse
|
47
|
Chakraborty C, Bhattacharya M, Nandi SS, Mohapatra RK, Dhama K, Agoramoorthy G. Appearance and re-appearance of zoonotic disease during the pandemic period: long-term monitoring and analysis of zoonosis is crucial to confirm the animal origin of SARS-CoV-2 and monkeypox virus. Vet Q 2022; 42:119-124. [PMID: 35658858 PMCID: PMC9225752 DOI: 10.1080/01652176.2022.2086718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 12/16/2022] Open
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, India
| | | | - Shyam Sundar Nandi
- ICMR-National Institute of Virology, (Mumbai Unit), Indian Council of Medical Research, Haffkine Institute Compound, Mumbai, India
| | - Ranjan K. Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, Odisha, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | | |
Collapse
|
48
|
Frutos R, Pliez O, Gavotte L, Devaux CA. There is no "origin" to SARS-CoV-2. ENVIRONMENTAL RESEARCH 2022; 207:112173. [PMID: 34626592 PMCID: PMC8493644 DOI: 10.1016/j.envres.2021.112173] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 05/04/2023]
Abstract
Since the beginning of the COVID-19 pandemic in 2020 caused by SARS-CoV-2, the question of the origin of this virus has been a highly debated issue. Debates have been, and are still, very disputed and often violent between the two main hypotheses: a natural origin through the "spillover" model or a laboratory-leak origin. Tenants of these two options are building arguments often based on the discrepancies of the other theory. The main problem is that it is the initial question of the origin itself which is biased. Charles Darwin demonstrated in 1859 that all species are appearing through a process of evolution, adaptation and selection. There is no determined origin to any animal or plant species, simply an evolutionary and selective process in which chance and environment play a key role. The very same is true for viruses. There is no determined origin to viruses, simply also an evolutionary and selective process in which chance and environment play a key role. However, in the case of viruses the process is slightly more complex because the "environment" is another living organism. Pandemic viruses already circulate in humans prior to the emergence of a disease. They are simply not capable of triggering an epidemic yet. They must evolve in-host, i.e. in-humans, for that. The evolutionary process which gave rise to SARS-CoV-2 is still ongoing with regular emergence of novel variants more adapted than the previous ones. The real relevant question is how these viruses can emerge as pandemic viruses and what the society can do to prevent the future emergence of pandemic viruses.
Collapse
Affiliation(s)
| | | | | | - Christian A Devaux
- MEPHI, Aix-Marseille Université, IRD, AP-HM, IHU-Méditerranée Infection, Marseille, France; CNRS, Marseille, France
| |
Collapse
|
49
|
Zhou W, Xie M, Xie Y, Liang H, Li M, Ran C, Zhou Z. Effect of dietary supplementation of Cetobacterium somerae XMX-1 fermentation product on gut and liver health and resistance against bacterial infection of the genetically improved farmed tilapia (GIFT, Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2022; 124:332-342. [PMID: 35430347 DOI: 10.1016/j.fsi.2022.04.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
The purpose of this study was to evaluate the effects of Cetobacterium somerae XMX-1 fermentation product on gut and liver health and resistance against bacterial infection in genetically improved farmed tilapia (GIFT, Oreochromis niloticus). Fingerling GIFTs (n = 120; initial weight 1.33 ± 0.00 g) were randomly assigned to twelve 90-L tanks (four tanks per diet, 10 fish per tank) with three groups: control group (basal high fat diet), 1% XMX-1 group and 2% XMX-1 group (basal diet supplemented with 10 and 20 g XMX-1/kg feed respectively). After 49 days feeding trial, the growth performance and gut and liver health parameters of tilapia were evaluated. Also the gut microbiota and virome were detected by sequencing. 2% XMX-1 fermentation product had no effect on growth performance. For gut health, the expression of hypoxia-inducible factor-lα (Hif-1α) tend to increase in 1% XMX-1 group (P = 0.053). The expression of intestinal interleukin-6 (IL-6) and tumor growth factor β (TGF-β) was significantly down-regulated in 1% and 2% XMX-1 groups (P < 0.05), and the intestinal expression of interleukin-1β (IL-1β) had a trend to decrease (P = 0.08) in 1% XMX-1 group versus control. 1% and 2% XMX-1 groups also increased the intestinal expression of tight junction genes Claudin (P = 0.06 and 0.07, respectively). For liver health, XMX-1 fermentation product significantly decreased liver TAG (P < 0.05). Furthermore, the hepatic expression of lipid synthesis gene fatty acid synthase (FAS) was significantly decreased and the expression of lipid catabolism related-gene uncoupling protein 2 (UCP2) was significantly increased in 1% XMX-1 and 2% XMX-1 groups (P < 0.01). And the hepatic expression of IL-1β and IL-6 significantly decreased in 1% XMX-1 and 2% XMX-1 groups (P < 0.05). XMX-1 fermentation product increased the abundance of Fusobacteria in the gut microbiota and 2% XMX-1 group led to alteration in the virome composition at family level. Lastly, the time of tilapia death post Aeromoans challenge was delayed in 1% XMX-1 and 2% XMX-1 groups compared with control. To sum up, our results show that the dietary supplementation of XMX-1 fermentation product can improve the gut and liver health as well as the resistance against pathogenic bacteria of tilapia.
Collapse
Affiliation(s)
- Wei Zhou
- Sino-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mingxu Xie
- Sino-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yadong Xie
- Sino-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hui Liang
- Sino-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ming Li
- Sino-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Zhigang Zhou
- Sino-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
50
|
Soraci L, Lattanzio F, Soraci G, Gambuzza ME, Pulvirenti C, Cozza A, Corsonello A, Luciani F, Rezza G. COVID-19 Vaccines: Current and Future Perspectives. Vaccines (Basel) 2022; 10:608. [PMID: 35455357 PMCID: PMC9025326 DOI: 10.3390/vaccines10040608] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 12/16/2022] Open
Abstract
Currently available vaccines against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) are highly effective but not able to keep the coronavirus disease 2019 (COVID-19) pandemic completely under control. Alternative R&D strategies are required to induce a long-lasting immunological response and to reduce adverse events as well as to favor rapid development and large-scale production. Several technological platforms have been used to develop COVID-19 vaccines, including inactivated viruses, recombinant proteins, DNA- and RNA-based vaccines, virus-vectored vaccines, and virus-like particles. In general, mRNA vaccines, protein-based vaccines, and vectored vaccines have shown a high level of protection against COVID-19. However, the mutation-prone nature of the spike (S) protein affects long-lasting vaccine protection and its effectiveness, and vaccinated people can become infected with new variants, also showing high virus levels. In addition, adverse effects may occur, some of them related to the interaction of the S protein with the angiotensin-converting enzyme 2 (ACE-2). Thus, there are some concerns that need to be addressed and challenges regarding logistic problems, such as strict storage at low temperatures for some vaccines. In this review, we discuss the limits of vaccines developed against COVID-19 and possible innovative approaches.
Collapse
Affiliation(s)
- Luca Soraci
- Unit of Geriatric Medicine, Italian National Research Center on Aging (IRCCS INRCA), 87100 Cosenza, Italy; (L.S.); (A.C.)
| | - Fabrizia Lattanzio
- Scientific Direction, Italian National Research Center on Aging (IRCCS INRCA), 60121 Ancona, Italy;
| | - Giulia Soraci
- Department of Obstetrics and Gynecology, University of Ferrara, 44121 Ferrara, Italy;
| | - Maria Elsa Gambuzza
- Territorial Office of Messina, Italian Ministry of Health, 98122 Messina, Italy
| | | | - Annalisa Cozza
- Laboratory of Pharmacoepidemiology and Biostatistics, Italian National Research Center on Aging (IRCCS INRCA), 87100 Cosenza, Italy;
| | - Andrea Corsonello
- Unit of Geriatric Medicine, Italian National Research Center on Aging (IRCCS INRCA), 87100 Cosenza, Italy; (L.S.); (A.C.)
- Laboratory of Pharmacoepidemiology and Biostatistics, Italian National Research Center on Aging (IRCCS INRCA), 87100 Cosenza, Italy;
| | - Filippo Luciani
- Infectious Diseases Unit of Annunziata Hospital, 87100 Cosenza, Italy;
| | - Giovanni Rezza
- Health Prevention Directorate, Italian Ministry of Health, 00144 Rome, Italy;
| |
Collapse
|