1
|
Stratton CE, Reisinger LS, Behringer DC, Gray SN, Larson ER, Bojko J. North American crayfish harbour diverse members of the Nudiviridae. Virology 2024; 598:110183. [PMID: 39029331 DOI: 10.1016/j.virol.2024.110183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Three novel crayfish-infecting nudiviruses from crayfish in North America represent the first genomic confirmation of nudiviruses in crayfish: Faxonius propinquus nudivirus (FpNV), Faxonius rusticus nudivirus (FrNV), and Faxonius virilis nudivirus (FvNV). Histopathology and electron microscopy revealed nuclear infections, including nuclear hypertrophy in hepatopancreatic epithelial cells and the presence of membrane-bound bacilliform virions. Metagenomic sequencing resulted in complete circular genome assembly, and phylogenetic analyses (based on nudivirus core genes) placed these viruses within the unofficial Epsilonnudivirus genus. One of the nudiviruses was detected in the antennal gland of its host, and another is correlated with invasive crayfish decline in one infected lake ecosystem - suggesting a potential route for viral transmission through water, and possible population level impact. This study highlights the importance of genomic and ecological data in elucidating the diversity and evolutionary relationships of the Nudiviridae, while expanding their known diversity and range of host species.
Collapse
Affiliation(s)
- Cheyenne E Stratton
- Fisheries and Aquatic Sciences, University of Florida, Gainesville, FL, 32653, USA
| | - Lindsey S Reisinger
- Fisheries and Aquatic Sciences, University of Florida, Gainesville, FL, 32653, USA
| | - Donald C Behringer
- Fisheries and Aquatic Sciences, University of Florida, Gainesville, FL, 32653, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Shannon N Gray
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, USA; Infectious Diseases and Immunology, University of Florida, Gainesville, FL, 32611, USA
| | - Eric R Larson
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL, 61801, USA
| | - Jamie Bojko
- School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BX, UK; National Horizons Centre, Teesside University, Darlington, DL1 1HG, UK.
| |
Collapse
|
2
|
Petersen JM, Burgess AL, van Oers MM, Herniou EA, Bojko J. Nudiviruses in free-living and parasitic arthropods: evolutionary taxonomy. Trends Parasitol 2024; 40:744-762. [PMID: 39019701 DOI: 10.1016/j.pt.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/19/2024]
Abstract
The nudiviruses (family: Nudiviridae) are large double-stranded DNA (dsDNA) viruses that infect insects and crustaceans, and have most recently been identified from ectoparasitic members (fleas and lice). This virus family was created in 2014 and has since been expanded via the discovery of multiple novel viral candidates or accepted members, sparking the need for a new taxonomic and evolutionary overview. Using current information (including data from public databases), we construct a new comprehensive phylogeny, encompassing 49 different nudiviruses. We use this novel phylogeny to propose a new taxonomic structure of the Nudiviridae by suggesting two new viral genera (Zetanudivirus and Etanudivirus), from ectoparasitic lice. We detail novel emerging relationships between nudiviruses and their hosts, considering their evolutionary history and ecological role.
Collapse
Affiliation(s)
- Jirka Manuel Petersen
- Laboratory of Virology, Wageningen University and Research, 6708, PB, Wageningen, The Netherlands; Institut de Recherche sur la Biologie de l'Insecte, UMR7261 CNRS - Université de Tours, 37200 Tours, France.
| | - Amy L Burgess
- School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BX, UK; National Horizons Centre, Teesside University, Darlington, DL1 1HG, UK
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University and Research, 6708, PB, Wageningen, The Netherlands
| | - Elisabeth A Herniou
- Institut de Recherche sur la Biologie de l'Insecte, UMR7261 CNRS - Université de Tours, 37200 Tours, France
| | - Jamie Bojko
- School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BX, UK; National Horizons Centre, Teesside University, Darlington, DL1 1HG, UK.
| |
Collapse
|
3
|
Hernández-Pelegrín L, Huditz HI, García-Castillo P, de Ruijter NCA, van Oers MM, Herrero S, Ros VID. Covert RNA viruses in medflies differ in their mode of transmission and tissue tropism. J Virol 2024; 98:e0010824. [PMID: 38742874 PMCID: PMC11237731 DOI: 10.1128/jvi.00108-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/12/2024] [Indexed: 05/16/2024] Open
Abstract
Numerous studies have demonstrated the presence of covert viral infections in insects. These infections can be transmitted in insect populations via two main routes: vertical from parents to offspring, or horizontal between nonrelated individuals. Thirteen covert RNA viruses have been described in the Mediterranean fruit fly (medfly). Some of these viruses are established in different laboratory-reared and wild medfly populations, although variations in the viral repertoire and viral levels have been observed at different time points. To better understand these viral dynamics, we characterized the prevalence and levels of covert RNA viruses in two medfly strains, assessed the route of transmission of these viruses, and explored their distribution in medfly adult tissues. Altogether, our results indicated that the different RNA viruses found in medflies vary in their preferred route of transmission. Two iflaviruses and a narnavirus are predominantly transmitted through vertical transmission via the female, while a nodavirus and a nora virus exhibited a preference for horizontal transmission. Overall, our results give valuable insights into the viral tropism and transmission of RNA viruses in the medfly, contributing to the understanding of viral dynamics in insect populations. IMPORTANCE The presence of RNA viruses in insects has been extensively covered. However, the study of host-virus interaction has focused on viruses that cause detrimental effects to the host. In this manuscript, we uncovered which tissues are infected with covert RNA viruses in the agricultural pest Ceratitis capitata, and which is the preferred transmission route of these viruses. Our results showed that vertical and horizontal transmission can occur simultaneously, although each virus is transmitted more efficiently following one of these routes. Additionally, our results indicated an association between the tropism of the RNA virus and the preferred route of transmission. Overall, these results set the basis for understanding how viruses are established and maintained in medfly populations.
Collapse
Affiliation(s)
- Luis Hernández-Pelegrín
- Laboratory of Virology, Department of Plant Science, Wageningen University and Research, Wageningen, the Netherlands
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Valencia, Spain
| | - Hannah-Isadora Huditz
- Laboratory of Virology, Department of Plant Science, Wageningen University and Research, Wageningen, the Netherlands
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Valencia, Spain
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, Vienna, Austria
| | - Pablo García-Castillo
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Valencia, Spain
| | - Norbert C. A. de Ruijter
- Laboratory of Cell and Developmental Biology, Department of Plant Science, Wageningen University and Research, Wageningen, the Netherlands
| | - Monique M. van Oers
- Laboratory of Virology, Department of Plant Science, Wageningen University and Research, Wageningen, the Netherlands
| | - Salvador Herrero
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Valencia, Spain
| | - Vera I. D. Ros
- Laboratory of Virology, Department of Plant Science, Wageningen University and Research, Wageningen, the Netherlands
| |
Collapse
|
4
|
Alfonso P, Butković A, Fernández R, Riesgo A, Elena SF. Unveiling the hidden viromes across the animal tree of life: insights from a taxonomic classification pipeline applied to invertebrates of 31 metazoan phyla. mSystems 2024; 9:e0012424. [PMID: 38651902 PMCID: PMC11097642 DOI: 10.1128/msystems.00124-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
Invertebrates constitute the majority of animal species on Earth, including most disease-causing agents or vectors, with more diverse viromes when compared to vertebrates. Recent advancements in high-throughput sequencing have significantly expanded our understanding of invertebrate viruses, yet this knowledge remains biased toward a few well-studied animal lineages. In this study, we analyze invertebrate DNA and RNA viromes for 31 phyla using 417 publicly available RNA-Seq data sets from diverse environments in the marine-terrestrial and marine-freshwater gradients. This study aims to (i) estimate virome compositions at the family level for the first time across the animal tree of life, including the first exploration of the virome in several phyla, (ii) quantify the diversity of invertebrate viromes and characterize the structure of invertebrate-virus infection networks, and (iii) investigate host phylum and habitat influence on virome differences. Results showed that a set of few viral families of eukaryotes, comprising Retroviridae, Flaviviridae, and several families of giant DNA viruses, were ubiquitous and highly abundant. Nevertheless, some differences emerged between phyla, revealing for instance a less diverse virome in Ctenophora compared to the other animal phyla. Compositional analysis of the viromes showed that the host phylum explained over five times more variance in composition than its habitat. Moreover, significant similarities were observed between the viromes of some phylogenetically related phyla, which could highlight the influence of co-evolution in shaping invertebrate viromes.IMPORTANCEThis study significantly enhances our understanding of the global animal virome by characterizing the viromes of previously unexamined invertebrate lineages from a large number of animal phyla. It showcases the great diversity of viromes within each phylum and investigates the role of habitat shaping animal viral communities. Furthermore, our research identifies dominant virus families in invertebrates and distinguishes phyla with analogous viromes. This study sets the road toward a deeper understanding of the virome across the animal tree of life.
Collapse
Affiliation(s)
- Pau Alfonso
- Instituto de Biología Integrativa de Sistemas (CSIC-Universitat de València), Paterna, València, Spain
| | - Anamarija Butković
- Institut Pasteur, Université Paris Cité, CNRS UMR6047 Archaeal Virology Unit, Paris, France
| | - Rosa Fernández
- Instituto de Biología Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Ana Riesgo
- Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
- Department of Life Sciences, Natural History Museum of London, London, United Kingdom
| | - Santiago F. Elena
- Instituto de Biología Integrativa de Sistemas (CSIC-Universitat de València), Paterna, València, Spain
- The Santa Fe Institute, Santa Fe, New Mexico, USA
| |
Collapse
|
5
|
Vasquez YM, Li Z, Xue AZ, Bennett GM. Chromosome-level genome assembly of the aster leafhopper (Macrosteles quadrilineatus) reveals the role of environment and microbial symbiosis in shaping pest insect genome evolution. Mol Ecol Resour 2024; 24:e13919. [PMID: 38146900 DOI: 10.1111/1755-0998.13919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/12/2023] [Accepted: 12/13/2023] [Indexed: 12/27/2023]
Abstract
Leafhoppers comprise over 20,000 plant-sap feeding species, many of which are important agricultural pests. Most species rely on two ancestral bacterial symbionts, Sulcia and Nasuia, for essential nutrition lacking in their phloem and xylem plant sap diets. To understand how pest leafhopper genomes evolve and are shaped by microbial symbioses, we completed a chromosomal-level assembly of the aster leafhopper's genome (ALF; Macrosteles quadrilineatus). We compared ALF's genome to three other pest leafhoppers, Nephotettix cincticeps, Homalodisca vitripennis, and Empoasca onukii, which have distinct ecologies and symbiotic relationships. Despite diverging ~155 million years ago, leafhoppers have high levels of chromosomal synteny and gene family conservation. Conserved genes include those involved in plant chemical detoxification, resistance to various insecticides, and defence against environmental stress. Positive selection acting upon these genes further points to ongoing adaptive evolution in response to agricultural environments. In relation to leafhoppers' general dependence on symbionts, species that retain the ancestral symbiont, Sulcia, displayed gene enrichment of metabolic processes in their genomes. Leafhoppers with both Sulcia and its ancient partner, Nasuia, showed genomic enrichment in genes related to microbial population regulation and immune responses. Finally, horizontally transferred genes (HTGs) associated with symbiont support of Sulcia and Nasuia are only observed in leafhoppers that maintain symbionts. In contrast, HTGs involved in non-symbiotic functions are conserved across all species. The high-quality ALF genome provides deep insights into how host ecology and symbioses shape genome evolution and a wealth of genetic resources for pest control targets.
Collapse
Affiliation(s)
- Yumary M Vasquez
- Department of Life and Environmental Sciences, University of California, Merced, Merced, California, USA
| | - Zheng Li
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Allen Z Xue
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Gordon M Bennett
- Department of Life and Environmental Sciences, University of California, Merced, Merced, California, USA
| |
Collapse
|
6
|
Shen L, Zhang Z, Wang R, Wu S, Wang Y, Fu S. Metatranscriptomic data mining together with microfluidic card uncovered the potential pathogens and seasonal RNA viral ecology in a drinking water source. J Appl Microbiol 2024; 135:lxad310. [PMID: 38130237 DOI: 10.1093/jambio/lxad310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/26/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023]
Abstract
AIMS Despite metatranscriptomics becoming an emerging tool for pathogen surveillance, very little is known about the feasibility of this approach for understanding the fate of human-derived pathogens in drinking water sources. METHODS AND RESULTS We conducted multiplexed microfluidic cards and metatranscriptomic sequencing of the drinking water source in a border city of North Korea in four seasons. Microfluidic card detected norovirus, hepatitis B virus (HBV), enterovirus, and Vibrio cholerae in the water. Phylogenetic analyses showed that environmental-derived sequences from norovirus GII.17, genotype C of HBV, and coxsackievirus A6 (CA6) were genetically related to the local clinical isolates. Meanwhile, metatranscriptomic assembly suggested that several bacterial pathogens, including Acinetobacter johnsonii and V. cholerae might be prevalent in the studied region. Metatranscriptomic analysis recovered 349 species-level groups with substantial viral diversity without detection of norovirus, HBV, and CA6. Seasonally distinct virus communities were also found. Specifically, 126, 73, 126, and 457 types of viruses were identified in spring, summer, autumn, and winter, respectively. The viromes were dominated by the Pisuviricota phylum, including members from Marnaviridae, Dicistroviridae, Luteoviridae, Potyviridae, Picornaviridae, Astroviridae, and Picobirnaviridae families. Further phylogenetic analyses of RNA (Ribonucleic Acid)-dependent RNA polymerase (RdRp) sequences showed a diverse set of picorna-like viruses associated with shellfish, of which several novel picorna-like viruses were also identified. Additionally, potential animal pathogens, including infectious bronchitis virus, Bat dicibavirus, Bat nodavirus, Bat picornavirus 2, infectious bursal disease virus, and Macrobrachium rosenbergii nodavirus were also identified. CONCLUSIONS Our data illustrate the divergence between microfluidic cards and metatranscriptomics, highlighting that the combination of both methods facilitates the source tracking of human viruses in challenging settings without sufficient clinical surveillance.
Collapse
Affiliation(s)
- Lixin Shen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Department of Microbiology, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Ziqiang Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Department of Microbiology, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Rui Wang
- College of Marine Science and Environment, Dalian Ocean University, Dalian 116023, China
| | - Shuang Wu
- College of Food Technology and Sciences, Shanghai Ocean University, Shanghai 200093, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yongjie Wang
- College of Food Technology and Sciences, Shanghai Ocean University, Shanghai 200093, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 200093, China
| | - Songzhe Fu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Department of Microbiology, College of Life Sciences, Northwest University, Xi'an 710069, China
| |
Collapse
|
7
|
Rodríguez-Negrete EA, Grande-Pérez A. Quantification of Virion-Sense and Complementary-Sense DNA Strands of Circular Single-Stranded DNA Viruses. Methods Mol Biol 2024; 2724:93-109. [PMID: 37987901 DOI: 10.1007/978-1-0716-3485-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Circular ssDNA viruses are ubiquitous and can be found in both prokaryotes and eukaryotes. To understand the interaction of ssDNA viruses with their hosts, it is important to characterize the dynamics of viral sense (VS) and complementary-sense (CS) viral strands during the infection process. Here, we present a simple and rapid protocol that allows sensitive and accurate determination of the VS and CS strands generated during viral infection.The method consists of a two-step qPCR in which the first step uses a strand-specific (CS or VS) labeled primer and T4 DNA polymerase that lacks strand displacement activity and makes a single copy per VS or CS strand. Next, the T4 DNA polymerase and unincorporated oligonucleotides are removed by a silica membrane spin column. Finally, the purified VS or CS strands are quantified by qPCR in a second step in which amplification uses a tag primer and a specific primer. Absolute quantification of VS and CS strands is obtained by extrapolating the Cq data to a standard curve of ssDNA, which can be generated by phagemid expression. Quantification of VS and CS strands of two geminiviruses in infections of Solanum lycopersicum (tomato) and Nicotiana benthamiana plants using this method is shown.
Collapse
Affiliation(s)
- Edgar A Rodríguez-Negrete
- Instituto Politécnico Nacional, CIIDIR Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave, Sinaloa, Mexico
| | - Ana Grande-Pérez
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain.
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.
| |
Collapse
|
8
|
Bezuidt OKI, Makhalanyane TP. Phylogenomic analysis expands the known repertoire of single-stranded DNA viruses in benthic zones of the South Indian Ocean. ISME COMMUNICATIONS 2024; 4:ycae065. [PMID: 38800127 PMCID: PMC11128263 DOI: 10.1093/ismeco/ycae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024]
Abstract
Single-stranded (ss) DNA viruses are ubiquitous and constitute some of the most diverse entities on Earth. Most studies have focused on ssDNA viruses from terrestrial environments resulting in a significant deficit in benthic ecosystems including aphotic zones of the South Indian Ocean (SIO). Here, we assess the diversity and phylogeny of ssDNA in deep waters of the SIO using a combination of established viral taxonomy tools and a Hidden Markov Model based approach. Replication initiator protein-associated (Rep) phylogenetic reconstruction and sequence similarity networks were used to show that the SIO hosts divergent and as yet unknown circular Rep-encoding ssDNA viruses. Several sequences appear to represent entirely novel families, expanding the repertoire of known ssDNA viruses. Results suggest that a small proportion of these viruses may be circular genetic elements, which may strongly influence the diversity of both eukaryotes and prokaryotes in the SIO. Taken together, our data show that the SIO harbours a diverse assortment of previously unknown ssDNA viruses. Due to their potential to infect a variety of hosts, these viruses may be crucial for marine nutrient recycling through their influence of the biological carbon pump.
Collapse
Affiliation(s)
- Oliver K I Bezuidt
- DSI/NRF South African Research Chair in Marine Microbiomics, Department of Biochemistry, Genetics and Microbiology, microbiome@UP, University of Pretoria, Pretoria, 0028, South Africa
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Thulani P Makhalanyane
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa
- Centre for Epidemic Response and Innovation, The School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
9
|
Butina TV, Zemskaya TI, Bondaryuk AN, Petrushin IS, Khanaev IV, Nebesnykh IA, Bukin YS. Viral Diversity in Samples of Freshwater Gastropods Benedictia baicalensis (Caenogastropoda: Benedictiidae) Revealed by Total RNA-Sequencing. Int J Mol Sci 2023; 24:17022. [PMID: 38069344 PMCID: PMC10707223 DOI: 10.3390/ijms242317022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Previously, the main studies were focused on viruses that cause disease in commercial and farmed shellfish and cause damage to food enterprises (for example, Ostreavirusostreidmalaco1, Aurivirus haliotidmalaco1 and Aquabirnavirus tellinae). Advances in high-throughput sequencing technologies have extended the studies to natural populations of mollusks (and other invertebrates) as unexplored niches of viral diversity and possible sources of emerging diseases. These studies have revealed a huge diversity of mostly previously unknown viruses and filled gaps in the evolutionary history of viruses. In the present study, we estimated the viral diversity in samples of the Baikal endemic gastropod Benedictia baicalensis using metatranscriptomic analysis (total RNA-sequencing); we were able to identify a wide variety of RNA-containing viruses in four samples (pools) of mollusks collected at three stations of Lake Baikal. Most of the identified viral genomes (scaffolds) had only distant similarities to known viruses or (in most cases) to metagenome-assembled viral genomes from various natural samples (mollusks, crustaceans, insects and others) mainly from freshwater ecosystems. We were able to identify viruses similar to those previously identified in mollusks (in particular to the picornaviruses Biomphalaria virus 1 and Biomphalaria virus 3 from the freshwater gastropods); it is possible that picorna-like viruses (as well as a number of other identified viruses) are pathogenic for Baikal gastropods. Our results also suggested that Baikal mollusks, like other species, may bioaccumulate or serve as a reservoir for numerous viruses that infect a variety of organisms (including vertebrates).
Collapse
Affiliation(s)
| | - Tamara I. Zemskaya
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia; (T.V.B.); (A.N.B.); (I.S.P.); (I.V.K.); (I.A.N.); (Y.S.B.)
| | | | | | | | | | | |
Collapse
|
10
|
Bojko J, Walters E, Burgess A, Behringer DC. Rediscovering "Baculovirus-A" (Johnson, 1976): The complete genome of 'Callinectes sapidus nudivirus'. J Invertebr Pathol 2022; 194:107822. [PMID: 36030880 DOI: 10.1016/j.jip.2022.107822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/04/2022] [Accepted: 08/21/2022] [Indexed: 11/29/2022]
Abstract
Callinectes sapidus, or the 'blue crab', supports an extensive east-coast USA fishery and was one of the first crustacean species in which viruses were observed. Pioneering research by Dr Phyllis Johnson led to these initial discoveries, one of which included the discovery of a virus termed "Baculovirus-A". This virus was considered a potential member of the Baculoviridae, Nimaviridae, or Nudiviridae, in which all viral members are rod-shaped dsDNA viruses found in the nucleus of their host cell. With the availability of genomic and bioinformatic tools, such as Illumina HiSeq and assembly programs, it is now possible to assemble the genomes of viruses and gain additional genomic insight, which can shed light on viral taxonomy. Using these tools, alongside electron micrographs and histology slides, we reveal that the hepatopancreas-infecting 'Baculovirus-A' from Callinectes sapidus is a member of the Nudiviridae, resembling genetic and protein similarity to other crab and lobster infecting nudiviruses from the Gammanudivirus genus. Histologically, the virus causes nuclear hypertrophy as observed for other gammanuriviruses. The genome of the virus is circular, 122,436 bp in length, and encodes a predicted 98 protein coding genes, including all of the nudivirus core genes. The prevalence of virus from across Florida, USA, is provided alongside a genomic comparison of the new viral genome against other Gammanudivirus species, revealing the average prevalence to be 2.2% and that Callinectes sapidus nudivirus is distantly similar to the recently described Carcinus maenas nudivirus from Canada.
Collapse
Affiliation(s)
- Jamie Bojko
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK; Teesside University, Middlesbrough TS1 3BX, UK.
| | - Erin Walters
- Florida Fish and Wildlife Research Institute, St. Petersburg, Florida 33701, USA
| | - Amy Burgess
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK; Teesside University, Middlesbrough TS1 3BX, UK
| | - Donald C Behringer
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA; Fisheries and Aquatic Sciences, University of Florida, Gainesville, FL 32653, USA
| |
Collapse
|
11
|
Porter AF, Cobbin J, Li CX, Eden JS, Holmes EC. Metagenomic Identification of Viral Sequences in Laboratory Reagents. Viruses 2021; 13:v13112122. [PMID: 34834931 PMCID: PMC8625350 DOI: 10.3390/v13112122] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 12/16/2022] Open
Abstract
Metagenomic next-generation sequencing has transformed the discovery and diagnosis of infectious disease, with the power to characterise the complete 'infectome' (bacteria, viruses, fungi, parasites) of an individual host organism. However, the identification of novel pathogens has been complicated by widespread microbial contamination in commonly used laboratory reagents. Using total RNA sequencing ("metatranscriptomics") we documented the presence of contaminant viral sequences in multiple 'blank' negative control sequencing libraries that comprise a sterile water and reagent mix. Accordingly, we identified 14 viral sequences in 7 negative control sequencing libraries. As in previous studies, several circular replication-associated protein encoding (CRESS) DNA virus-like sequences were recovered in the blank control libraries, as well as contaminating sequences from the Totiviridae, Tombusviridae and Lentiviridae families of RNA virus. These data suggest that viral contamination of common laboratory reagents is likely commonplace and can comprise a wide variety of viruses.
Collapse
Affiliation(s)
- Ashleigh F. Porter
- The Peter Doherty Institute of Immunity and Infection, Department of Microbiology and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia;
| | - Joanna Cobbin
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (J.C.); (J.-S.E.)
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ci-Xiu Li
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, China;
| | - John-Sebastian Eden
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (J.C.); (J.-S.E.)
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Centre for Virus Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
| | - Edward C. Holmes
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (J.C.); (J.-S.E.)
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Correspondence:
| |
Collapse
|
12
|
Discovery and Characterization of Actively Replicating DNA and Retro-Transcribing Viruses in Lower Vertebrate Hosts Based on RNA Sequencing. Viruses 2021; 13:v13061042. [PMID: 34072878 PMCID: PMC8227577 DOI: 10.3390/v13061042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/16/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
In a previous study, a metatranscriptomics survey of RNA viruses in several important lower vertebrate host groups revealed huge viral diversity, transforming the understanding of the evolution of vertebrate-associated RNA virus groups. However, the diversity of the DNA and retro-transcribing viruses in these host groups was left uncharacterized. Given that RNA sequencing is capable of revealing viruses undergoing active transcription and replication, we collected previously generated datasets associated with lower vertebrate hosts, and searched them for DNA and retro-transcribing viruses. Our results revealed the complete genome, or “core gene sets”, of 18 vertebrate-associated DNA and retro-transcribing viruses in cartilaginous fishes, ray-finned fishes, and amphibians, many of which had high abundance levels, and some of which showed systemic infections in multiple organs, suggesting active transcription or acute infection within the host. Furthermore, these new findings recharacterized the evolutionary history in the families Hepadnaviridae, Papillomaviridae, and Alloherpesviridae, confirming long-term virus–host codivergence relationships for these virus groups. Collectively, our results revealed reliable and sufficient information within metatranscriptomics sequencing to characterize not only RNA viruses, but also DNA and retro-transcribing viruses, and therefore established a key methodology that will help us to understand the composition and evolution of the total “infectome” within a diverse range of vertebrate hosts.
Collapse
|
13
|
Sadeghi M, Tomaru Y, Ahola T. RNA Viruses in Aquatic Unicellular Eukaryotes. Viruses 2021; 13:v13030362. [PMID: 33668994 PMCID: PMC7996518 DOI: 10.3390/v13030362] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/05/2021] [Accepted: 02/22/2021] [Indexed: 12/24/2022] Open
Abstract
Increasing sequence information indicates that RNA viruses constitute a major fraction of marine virus assemblages. However, only 12 RNA virus species have been described, infecting known host species of marine single-celled eukaryotes. Eight of these use diatoms as hosts, while four are resident in dinoflagellate, raphidophyte, thraustochytrid, or prasinophyte species. Most of these belong to the order Picornavirales, while two are divergent and fall into the families Alvernaviridae and Reoviridae. However, a very recent study has suggested that there is extraordinary diversity in aquatic RNA viromes, describing thousands of viruses, many of which likely use protist hosts. Thus, RNA viruses are expected to play a major ecological role for marine unicellular eukaryotic hosts. In this review, we describe in detail what has to date been discovered concerning viruses with RNA genomes that infect aquatic unicellular eukaryotes.
Collapse
Affiliation(s)
- Mohammadreza Sadeghi
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland
- Correspondence: (M.S.); (T.A.)
| | - Yuji Tomaru
- Environment and Fisheries Applied Techniques Research Department, Fisheries Technology Institute, Fisheries Research and Education Agency, Hatsukaichi, Hiroshima 739-0452, Japan;
| | - Tero Ahola
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland
- Correspondence: (M.S.); (T.A.)
| |
Collapse
|
14
|
Geoghegan JL, Di Giallonardo F, Wille M, Ortiz-Baez AS, Costa VA, Ghaly T, Mifsud JCO, Turnbull OMH, Bellwood DR, Williamson JE, Holmes EC. Virome composition in marine fish revealed by meta-transcriptomics. Virus Evol 2021; 7:veab005. [PMID: 33623709 PMCID: PMC7887440 DOI: 10.1093/ve/veab005] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Revealing the determinants of virome composition is central to placing disease emergence in a broader evolutionary context. Fish are the most species-rich group of vertebrates and so provide an ideal model system to study the factors that shape virome compositions and their evolution. We characterized the viromes of nineteen wild-caught species of marine fish using total RNA sequencing (meta-transcriptomics) combined with analyses of sequence and protein structural homology to identify divergent viruses that often evade characterization. From this, we identified twenty-five new vertebrate-associated viruses and a further twenty-two viruses likely associated with fish diet or their microbiomes. The vertebrate-associated viruses identified here included the first fish virus in the Matonaviridae (single-strand, negative-sense RNA virus). Other viruses fell within the Astroviridae, Picornaviridae, Arenaviridae, Reoviridae, Hepadnaviridae, Paramyxoviridae, Rhabdoviridae, Hantaviridae, Filoviridae, and Flaviviridae, and were sometimes phylogenetically distinct from known fish viruses. We also show how key metrics of virome composition-viral richness, abundance, and diversity-can be analysed along with host ecological and biological factors as a means to understand virus ecology. Accordingly, these data suggest that that the vertebrate-associated viromes of the fish sampled here are predominantly shaped by the phylogenetic history (i.e. taxonomic order) of their hosts, along with several biological factors including water temperature, habitat depth, community diversity and swimming behaviour. No such correlations were found for viruses associated with porifera, molluscs, arthropods, fungi, and algae, that are unlikely to replicate in fish hosts. Overall, these data indicate that fish harbour particularly large and complex viromes and the vast majority of fish viromes are undescribed.
Collapse
Affiliation(s)
- Jemma L Geoghegan
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand.,Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.,Institute of Environmental Science and Research, Wellington 5018, New Zealand
| | | | - Michelle Wille
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Ayda Susana Ortiz-Baez
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Vincenzo A Costa
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Timothy Ghaly
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Jonathon C O Mifsud
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Olivia M H Turnbull
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - David R Bellwood
- ARC Centre of Excellence for Coral Reef Studies and College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Jane E Williamson
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|