1
|
Reddy K, Lee GQ, Reddy N, Chikowore TJB, Baisley K, Dong KL, Walker BD, Yu XG, Lichterfeld M, Ndung'u T. Differences in HIV-1 reservoir size, landscape characteristics, and decay dynamics in acute and chronic treated HIV-1 Clade C infection. eLife 2025; 13:RP96617. [PMID: 39976231 PMCID: PMC11841988 DOI: 10.7554/elife.96617] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025] Open
Abstract
Persisting HIV reservoir viruses in resting CD4 T cells and other cellular subsets are a barrier to cure efforts. Early antiretroviral therapy (ART) enables post-treatment viral control in some cases, but mechanisms remain unclear. We hypothesised that ART initiated before peak viremia impacts HIV-1 subtype C reservoirs. We studied 35 women at high risk of infection from Durban, South Africa, identified with hyperacute HIV by twice-weekly HIV-RNA testing. Participants included 11 starting ART at a median of 456 (297-1203) days post-onset of viremia (DPOV) and 24 at 1 (1-3) DPOV. Peripheral blood mononuclear cells (PBMCs) were used to measured total HIV-1 DNA by droplet digital PCR (ddPCR) and sequence viral reservoir genomes by full-length proviral sequencing (FLIP-seq). ART during hyperacute infection blunted peak viremia (p<0.0001), but contemporaneous total HIV-1 DNA did not differ (p=0.104). Over 1 year, a decline of total HIV-1 DNA was observed in early treated persons (p=0.0004), but not late treated. Among 697 viral genome sequences, the proviral genetic landscape differed between untreated, late treated, and early treated groups. Intact genomes after 1 year were higher in untreated (31%) versus late treated (14%) and early treated (0%). Treatment in both late and early infection caused more rapid decay of intact (13% and 51% per month) versus defective (2% and 35%) viral genomes. However, intact genomes persisted 1 year post chronic treatment but were undetectable with early ART. Early ART also reduced phylogenetic diversity of intact genomes and limited cytotoxic T lymphocyte immune escape variants in the reservoir. Overall, ART initiated in hyperacute HIV-1 subtype C infection did not impact reservoir seeding but was associated with rapid intact viral genome decay, reduced genetic complexity, and limited immune escape, which may accelerate reservoir clearance in combination with other interventional strategies.
Collapse
Affiliation(s)
| | | | - Nicole Reddy
- Africa Health Research InstituteDurbanSouth Africa
- University of KwaZulu-NatalDurbanSouth Africa
| | - Tatenda JB Chikowore
- Africa Health Research InstituteDurbanSouth Africa
- University College LondonLondonUnited Kingdom
| | - Kathy Baisley
- Africa Health Research InstituteDurbanSouth Africa
- London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Krista L Dong
- Ragon Institute of MGH, MIT and HarvardCambridgeUnited States
- HIV Pathogenesis Programme (HPP), The Doris Duke Medical Research Institute, University of KwaZulu-NatalDurbanSouth Africa
- Harvard Medical SchoolBostonUnited States
| | - Bruce D Walker
- Ragon Institute of MGH, MIT and HarvardCambridgeUnited States
- HIV Pathogenesis Programme (HPP), The Doris Duke Medical Research Institute, University of KwaZulu-NatalDurbanSouth Africa
- Harvard Medical SchoolBostonUnited States
| | - Xu G Yu
- Ragon Institute of MGH, MIT and HarvardCambridgeUnited States
- Harvard Medical SchoolBostonUnited States
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and HarvardCambridgeUnited States
- Harvard Medical SchoolBostonUnited States
- Brigham and Women's HospitalBostonUnited States
| | - Thumbi Ndung'u
- Africa Health Research InstituteDurbanSouth Africa
- University of KwaZulu-NatalDurbanSouth Africa
- University College LondonLondonUnited Kingdom
- Ragon Institute of MGH, MIT and HarvardCambridgeUnited States
- HIV Pathogenesis Programme (HPP), The Doris Duke Medical Research Institute, University of KwaZulu-NatalDurbanSouth Africa
| |
Collapse
|
2
|
Borrajo A. Breaking Barriers to an HIV-1 Cure: Innovations in Gene Editing, Immune Modulation, and Reservoir Eradication. Life (Basel) 2025; 15:276. [PMID: 40003685 PMCID: PMC11856976 DOI: 10.3390/life15020276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/04/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Recent advances in virology, particularly in the study of HIV-1, have significantly progressed the pursuit of a definitive cure for the disease. Emerging therapeutic strategies encompass innovative gene-editing technologies, immune-modulatory interventions, and next-generation antiretroviral agents. Efforts to eliminate or control viral reservoirs have also gained momentum, with the aim of achieving durable viral remission without the continuous requirement for antiretroviral therapy. Despite these promising developments, critical challenges persist in bridging the gap between laboratory findings and clinical implementation. This review provides a comprehensive analysis of recent breakthroughs, ongoing clinical trials, and the barriers that must be addressed to translate these advancements into effective treatments, emphasizing the multifaceted approaches being pursued to achieve a curative solution for HIV-1 infection.
Collapse
Affiliation(s)
- Ana Borrajo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
3
|
Załęski A, Lembas A, Dyda T, Osińska J, Jabłońska J, Stempkowska-Rejek J, Orzechowska J, Wiercińska-Drapało A. No Association Between HIV-1 Subtype and Primary Resistance Mutations with CD4 Reconstitution During Effective Antiretroviral Treatment: An Observational, Cohort Study. Int J Mol Sci 2025; 26:1410. [PMID: 40003876 PMCID: PMC11855707 DOI: 10.3390/ijms26041410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/02/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Some people with Human Immunodeficiency Virus (HIV) on effective antiretroviral therapy have persistent low lymphocyte CD4 counts and remain at an increased risk of Acquired Immunodeficiency Syndrome (AIDS). We investigated whether primary drug resistance mutations (DRMs) and HIV-1 subtype could be related to immunologic reconstitution in these people. In a multicenter, observational cohort study among treatment-naïve patients, we analyzed HIV-1 subtype, primary drug resistance mutations, CD4 counts, and CD4:CD8 ratios during effective antiretroviral therapy. We compared these variables between patients with different HIV subtypes and between those with or without drug-resistance mutations up to 48 weeks post-baseline. In 156 patients, CD4 count normalization (≥500 cells/µL) was observed in 39% of patients, while CD4:CD8 ratio ≥ 1 in 27% after treatment implementation. HIV-1 subtype B was present in 75% of the patients and subtype A in 22%. Primary resistance mutations were found in 57% of the individuals. The percentage of immunological nonrespondents did not differ significantly between those with different HIV subtypes or between those with or without primary resistance mutations (p > 0.05). In conclusion, there was no significant coincidence between the HIV subtype and primary drug resistance mutations with immunological reconstitution in patients receiving effective antiretroviral therapy.
Collapse
Affiliation(s)
- Andrzej Załęski
- Hospital for Infectious Diseases in Warsaw, 01-201 Warsaw, Poland; (A.Z.)
- Department of Infectious Diseases, Tropical Diseases and Hepatology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Agnieszka Lembas
- Hospital for Infectious Diseases in Warsaw, 01-201 Warsaw, Poland; (A.Z.)
- Department of Infectious Diseases, Tropical Diseases and Hepatology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Tomasz Dyda
- Hospital for Infectious Diseases in Warsaw, 01-201 Warsaw, Poland; (A.Z.)
- Molecular Diagnostics Laboratory, Hospital for Infectious Diseases in Warsaw, 01-201 Warsaw, Poland
| | - Joanna Osińska
- Infectious Diseases Clinical Ward in Ostróda, Department of Family Medicine and Infectious Diseases, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Joanna Jabłońska
- Hospital for Infectious Diseases in Warsaw, 01-201 Warsaw, Poland; (A.Z.)
- Department of Infectious Diseases, Tropical Diseases and Hepatology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Justyna Stempkowska-Rejek
- Department of Infectious Diseases and Hepatology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Justyna Orzechowska
- Medical Center in Łańcut, Clinical Department of Infectious Diseases, College of Medical Sciences, University of Rzeszów, 35-959 Rzeszów, Poland
| | - Alicja Wiercińska-Drapało
- Hospital for Infectious Diseases in Warsaw, 01-201 Warsaw, Poland; (A.Z.)
- Department of Infectious Diseases, Tropical Diseases and Hepatology, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|
4
|
Nascimento RO, Minan BM, Duarte LCGC, Panjwani CMBRG, Ferreira SMS, França GM. Incidence of opportunistic diseases after the "treat all" strategy: 10 years cohort for HIV. BRAZ J BIOL 2025; 84:e291515. [PMID: 39936800 DOI: 10.1590/1519-6984.291515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/26/2024] [Indexed: 02/13/2025] Open
Abstract
High active anti-retroviral therapy (HAART) has improved the life expectancy of people living with HIV/AIDS (PLWHA) and reduced the development of opportunistic diseases, supporting a strategy introduced in 2014, which sought to enhance prevention with early treatment and for all. This was a retrospective and comparative cohort study before and after the implementation of "treat all" strategy, based on primary and secondary data, extracted from the medical records followed at the Specialized Care Service between 2009 and 2018 and from public databases. Of the 892 patients selected, 790 were active, 28 abandoned treatment and 40 died, 92%, 3.3% and 4.7%, respectively. About 440 (51.2%) started follow-up between 2009 and 2013, before the "treat all" strategy, and 417 (48.9%) started follow-up after 2014, when the national recommendation was already the "treat all" strategy. A total of 508 (58.2%) male patients were counted, the mean age was 33.5 years on the date of entry, most of them had a total of 8 to 11 years of study (21.1%) and about 6.5% of the patients were illiterate. The main routes of HIV transmission were heterosexual intercourse (67.95%) and MSM (men who have sex with men) (31%). The mean CD4 cell count at presentation was 392 cells/mm3 and 23% of participants had a CD4 count less than 200 cells/mm3. Elevated levels of viral load were found at entry, with 30% having at least 100,000 copies/mL. During the ten years of observation, there were 245 episodes of opportunistic diseases. The five most common opportunistic diseases during the study period were tuberculosis (28.6%), herpes zoster (23.3%), oral candidiasis (15.5%), neurotoxoplasmosis (11.4%) and pneumocystosis (6.1%). Forty patients died during the study period, 4.7% of the total. There was a reduction in opportunistic infections in the second group of the study, especially for oral candidiasis (p = 0.03), as well as a better response to LogCV treatment (1.28±1.97). It is concluded that the diagnosis and treatment strategy has shown over the years an effective reduction in opportunistic infections.
Collapse
Affiliation(s)
- R O Nascimento
- Centro Universitário CESMAC, Mestrado Profissional Pesquisa em Saúde - MPPS, Maceió, AL, Brasil
| | - B M Minan
- Centro Universitário CESMAC, Odontologia, Maceió, AL, Brasil
| | - L C G C Duarte
- Centro Universitário CESMAC, Odontologia, Maceió, AL, Brasil
| | - C M B R G Panjwani
- Universidade Federal de Alagoas - UFAL, Faculdade de Odontologia - FOUFAL, Maceió, AL, Brasil
| | - S M S Ferreira
- Centro Universitário CESMAC, Mestrado Profissional Pesquisa em Saúde - MPPS, Maceió, AL, Brasil
| | - G M França
- Centro Universitário CESMAC, Mestrado Profissional Pesquisa em Saúde - MPPS, Maceió, AL, Brasil
| |
Collapse
|
5
|
Li Z, Lao Y, Yan R, Li F, Guan X, Dong Z. N6-methyladenosine in inflammatory diseases: Important actors and regulatory targets. Gene 2025; 936:149125. [PMID: 39613051 DOI: 10.1016/j.gene.2024.149125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/17/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
N6-methyladenosine (m6A) is one of the most prevalent epigenetic modifications in eukaryotic cells. It regulates RNA function and stability by modifying RNA methylation through writers, erasers, and readers. As a result, m6A plays a critical role in a wide range of biological processes. Inflammation is a common and fundamental pathological process. Numerous studies have investigated the role of m6A modifications in inflammatory diseases. This review highlights the mechanisms by which m6A contributes to inflammation, focusing on pathogen-induced infectious diseases, autoimmune disorders, allergic conditions, and metabolic disorder-related inflammatory diseases.
Collapse
Affiliation(s)
- Zewen Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China; Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Yongfeng Lao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China; Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Rui Yan
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China; Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Fuhan Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China; Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Xin Guan
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China; Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhilong Dong
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China; Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China.
| |
Collapse
|
6
|
Reddy K, Lee GQ, Reddy N, Chikowore TJ, Baisley K, Dong KL, Walker BD, Yu XG, Lichterfeld M, Ndung’u T. Differences in HIV-1 reservoir size, landscape characteristics and decay dynamics in acute and chronic treated HIV-1 Clade C infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.16.24302713. [PMID: 38947072 PMCID: PMC11213047 DOI: 10.1101/2024.02.16.24302713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background Persisting HIV reservoir viruses in resting CD4 T cells and other cellular subsets are the main barrier to cure efforts. Antiretroviral therapy (ART) intensification by early initiation has been shown to enable post-treatment viral control in some cases but the underlying mechanisms are not fully understood. We hypothesized that ART initiated during the hyperacute phase of infection before peak will affect the size, decay dynamics and landscape characteristics of HIV-1 subtype C viral reservoirs. Methods We studied 35 women at high risk of infection from Durban, South Africa identified with hyperacute HIV infection by twice weekly testing for plasma HIV-1 RNA. Study participants included 11 who started ART at a median of 456 (297-1203) days post onset of viremia (DPOV), and 24 who started ART at a median of 1 (1-3) DPOV. We used peripheral blood mononuclear cells (PBMC) to measure total HIV-1 DNA by ddPCR and to sequence reservoir viral genomes by full length individual proviral sequencing (FLIP-seq) from onset of detection of HIV up to 1 year post treatment initiation. Results Whereas ART in hyperacute infection blunted peak viremia compared to untreated individuals (p<0.0001), there was no difference in total HIV-1 DNA measured contemporaneously (p=0.104). There was a steady decline of total HIV DNA in early treated persons over 1 year of ART (p=0.0004), with no significant change observed in the late treated group. Total HIV-1 DNA after one year of treatment was lower in the early treated compared to the late treated group (p=0.02). Generation of 697 single viral genome sequences revealed a difference in the longitudinal proviral genetic landscape over one year between untreated, late treated, and early treated infection: the relative contribution of intact genomes to the total pool of HIV-1 DNA after 1 year was higher in untreated infection (31%) compared to late treated (14%) and early treated infection (0%). Treatment initiated in both late and early infection resulted in a more rapid decay of intact (13% and 51% per month) versus defective (2% and 35% per month) viral genomes. However, intact genomes were still observed one year post chronic treatment initiation in contrast to early treatment where intact genomes were no longer detectable. Moreover, early ART reduced phylogenetic diversity of intact genomes and limited the seeding and persistence of cytotoxic T lymphocyte immune escape variants in the reservoir. Conclusions Overall, our results show that whereas ART initiated in hyperacute HIV-1 subtype C infection did not impact reservoir seeding, it was nevertheless associated with more rapid decay of intact viral genomes, decreased genetic complexity and immune escape in reservoirs, which could accelerate reservoir clearance when combined with other interventional strategies.
Collapse
Affiliation(s)
- Kavidha Reddy
- Africa Health Research Institute, Durban, South Africa
| | | | - Nicole Reddy
- Africa Health Research Institute, Durban, South Africa
- University of KwaZulu-Natal, Durban, South Africa
| | - Tatenda J.B. Chikowore
- Africa Health Research Institute, Durban, South Africa
- University College of London, London, UK
| | - Kathy Baisley
- Africa Health Research Institute, Durban, South Africa
- London School of Hygiene and Tropical Medicine, London, UK
| | - Krista L. Dong
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- HIV Pathogenesis Programme (HPP), The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Harvard Medical School, Boston, Massachusetts, USA
| | - Bruce D. Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- HIV Pathogenesis Programme (HPP), The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Harvard Medical School, Boston, Massachusetts, USA
| | - Xu G. Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Brigham and Women’s Hospital, Boston, MA, USA
| | - Thumbi Ndung’u
- Africa Health Research Institute, Durban, South Africa
- University of KwaZulu-Natal, Durban, South Africa
- University College of London, London, UK
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- HIV Pathogenesis Programme (HPP), The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
7
|
Thompson LJP, Genovese J, Hong Z, Singh MV, Singh VB. HIV-Associated Neurocognitive Disorder: A Look into Cellular and Molecular Pathology. Int J Mol Sci 2024; 25:4697. [PMID: 38731913 PMCID: PMC11083163 DOI: 10.3390/ijms25094697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Despite combined antiretroviral therapy (cART) limiting HIV replication to undetectable levels in the blood, people living with HIV continue to experience HIV-associated neurocognitive disorder (HAND). HAND is associated with neurocognitive impairment, including motor impairment, and memory loss. HIV has been detected in the brain within 8 days of estimated exposure and the mechanisms for this early entry are being actively studied. Once having entered into the central nervous system (CNS), HIV degrades the blood-brain barrier through the production of its gp120 and Tat proteins. These proteins are directly toxic to endothelial cells and neurons, and propagate inflammatory cytokines by the activation of immune cells and dysregulation of tight junction proteins. The BBB breakdown is associated with the progression of neurocognitive disease. One of the main hurdles for treatment for HAND is the latent pool of cells, which are insensitive to cART and prolong inflammation by harboring the provirus in long-lived cells that can reactivate, causing damage. Multiple strategies are being studied to combat the latent pool and HAND; however, clinically, these approaches have been insufficient and require further revisions. The goal of this paper is to aggregate the known mechanisms and challenges associated with HAND.
Collapse
Affiliation(s)
| | - Jessica Genovese
- Department of Life Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA
| | - Zhenzi Hong
- Department of Life Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA
| | - Meera Vir Singh
- Department of Neurology, University of Rochester, Rochester, NY 14642, USA
| | - Vir Bahadur Singh
- Department of Life Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA
| |
Collapse
|
8
|
Ranga U, Panchapakesan A, Saini C. HIV-1 subtypes and latent reservoirs. Curr Opin HIV AIDS 2024; 19:87-92. [PMID: 38169308 DOI: 10.1097/coh.0000000000000835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
PURPOSE OF REVIEW We explore the current status of research on HIV-1 subtype-specific variations and their impact on HIV-1 latency. We also briefly address the controversy surrounding the decision-making process governing the ON/OFF states of HIV-1 transcription, specifically focusing on the regulatory elements, the long terminal repeat (LTR), and Tat. Understanding the decision-making process is crucial for developing effective intervention strategies, such as the 'shock-and-kill' approach, to reactivate latent HIV-1. RECENT FINDINGS Attention has been drawn to subtype-specific transcription factor binding site (TFBS) variations and the possible impact of these variations on viral latency. Further, diverse subtype-specific assays have been developed to quantify the latent viral reservoirs. One interesting observation is the relatively larger latent reservoirs in HIV-1B infection than those of other viral subtypes, which needs rigorous validation. The emergence of LTR-variant viral strains in HIV-1C demonstrating significantly higher levels of latency reversal has been reported. SUMMARY Despite persistent and substantial efforts, latent HIV-1 remains a formidable challenge to a functional cure. Determined and continued commitment is needed to understand the ON/OFF decision-making process of HIV-1 latency, develop rigorous assays for accurately quantifying the latent reservoirs, and identify potent latency-reversing agents and cocktails targeting multiple latency stages. The review emphasizes the importance of including diverse viral subtypes in future latency research.
Collapse
Affiliation(s)
- Udaykumar Ranga
- HIV-AIDS Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka
| | - Arun Panchapakesan
- Molecular Biology Laboratory, Y R Gaitonde Centre for AIDS Research and Education (YRG CARE), Chennai, Tamil Nadu, India
| | - Chhavi Saini
- HIV-AIDS Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka
| |
Collapse
|
9
|
Załęski A, Lembas A, Dyda T, Siwak E, Osińska J, Suchacz M, Stempkowska-Rejek J, Strycharz M, Orzechowska J, Wiercińska-Drapało A. Changes in Primary HIV-1 Drug Resistance Due to War Migration from Eastern Europe. J Immigr Minor Health 2024; 26:15-22. [PMID: 37973713 PMCID: PMC10771373 DOI: 10.1007/s10903-023-01559-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2023] [Indexed: 11/19/2023]
Abstract
In recent years, especially as a result of war in Ukraine, enormous movements of migration to Poland from eastern European countries have been reported, including people living with Human Immunodeficiency Virus (HIV). We have conducted multi-center, prospective study, which aimed to establish HIV-1 subtype and assess the presence of primary drug resistance mutations to nucleoside reverse transcriptase inhibitors, non-nucleoside reverse transcriptase inhibitors and protease inhibitors in antiretroviral treatment naïve patients. The clinical trial recruited 117 individuals during 2 years period (2020-2022). The prevalence of HIV-1 subtype A was statistically significantly more frequent in Ukrainian, and HIV-1 subtype B in Polish patients (p < 0.05). Drug resistance mutations were detected in 44% of all cases and the comparison of presence of mutations in the analyzed groups, as well as in the subgroups of subtype A and B HIV-1 has not revealed any significant differences (p > 0.05), nevertheless Polish patients had multidrug resistance mutations more frequent (p < 0.05). The results from our trial show no increased risk of transmission of multidrug resistant HIV strains in our cohort of Ukrainian migrants.Clinical trials. Gov number NCT04636736; date of registration: November 19, 2020.
Collapse
Affiliation(s)
- Andrzej Załęski
- Hospital for Infectious Diseases in Warsaw, Warsaw, Poland
- Department of Infectious Diseases, Tropical Diseases and Hepatology, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Lembas
- Hospital for Infectious Diseases in Warsaw, Warsaw, Poland.
- Department of Infectious Diseases, Tropical Diseases and Hepatology, Medical University of Warsaw, Warsaw, Poland.
| | - Tomasz Dyda
- Hospital for Infectious Diseases in Warsaw, Warsaw, Poland
- Molecular Diagnostics Laboratory, Hospital for Infectious Diseases in Warsaw, Warsaw, Poland
| | - Ewa Siwak
- Hospital for Infectious Diseases in Warsaw, Warsaw, Poland
- Department of Infectious Diseases, Tropical Diseases and Hepatology, Medical University of Warsaw, Warsaw, Poland
- HIV Out-Patient Clinic, Hospital for Infectious Diseases in Warsaw, Warsaw, Poland
| | - Joanna Osińska
- Infectious Diseases Clinical Ward in Ostróda, Department of Family Medicine and Infectious Diseases, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Magdalena Suchacz
- Hospital for Infectious Diseases in Warsaw, Warsaw, Poland
- Department of Infectious Diseases, Tropical Diseases and Hepatology, Medical University of Warsaw, Warsaw, Poland
| | | | - Marta Strycharz
- Clinical Department of Infectious Diseases and Hepatology, Medical University of Lodz, Lodz, Poland
| | - Justyna Orzechowska
- Clinical Department of Infectious Diseases, College of Medical Sciences, Medical Center in Łańcut, University of Rzeszów, Rzeszów, Poland
| | - Alicja Wiercińska-Drapało
- Hospital for Infectious Diseases in Warsaw, Warsaw, Poland
- Department of Infectious Diseases, Tropical Diseases and Hepatology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
10
|
Valdebenito S, Ono A, Rong L, Eugenin EA. The role of tunneling nanotubes during early stages of HIV infection and reactivation: implications in HIV cure. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2023; 2:169-186. [PMID: 37476291 PMCID: PMC10355284 DOI: 10.1515/nipt-2022-0015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/30/2022] [Indexed: 07/22/2023]
Abstract
Tunneling nanotubes (TNTs), also called cytonemes or tumor microtubes, correspond to cellular processes that enable long-range communication. TNTs are plasma membrane extensions that form tubular processes that connect the cytoplasm of two or more cells. TNTs are mostly expressed during the early stages of development and poorly expressed in adulthood. However, in disease conditions such as stroke, cancer, and viral infections such as HIV, TNTs proliferate, but their role is poorly understood. TNTs function has been associated with signaling coordination, organelle sharing, and the transfer of infectious agents such as HIV. Here, we describe the critical role and function of TNTs during HIV infection and reactivation, as well as the use of TNTs for cure strategies.
Collapse
Affiliation(s)
- Silvana Valdebenito
- Department of Neurobiology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Akira Ono
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Libin Rong
- Department of Mathematics, University of Florida, Gainesville, FL, USA
| | - Eliseo A. Eugenin
- Department of Neurobiology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| |
Collapse
|
11
|
Liang T, Li G, Lu Y, Hu M, Ma X. The Involvement of Ubiquitination and SUMOylation in Retroviruses Infection and Latency. Viruses 2023; 15:v15040985. [PMID: 37112965 PMCID: PMC10144533 DOI: 10.3390/v15040985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Retroviruses, especially the pathogenic human immunodeficiency virus type 1 (HIV-1), have severely threatened human health for decades. Retroviruses can form stable latent reservoirs via retroviral DNA integration into the host genome, and then be temporarily transcriptional silencing in infected cells, which makes retroviral infection incurable. Although many cellular restriction factors interfere with various steps of the life cycle of retroviruses and the formation of viral latency, viruses can utilize viral proteins or hijack cellular factors to evade intracellular immunity. Many post-translational modifications play key roles in the cross-talking between the cellular and viral proteins, which has greatly determined the fate of retroviral infection. Here, we reviewed recent advances in the regulation of ubiquitination and SUMOylation in the infection and latency of retroviruses, focusing on both host defense- and virus counterattack-related ubiquitination and SUMOylation system. We also summarized the development of ubiquitination- and SUMOylation-targeted anti-retroviral drugs and discussed their therapeutic potential. Manipulating ubiquitination or SUMOylation pathways by targeted drugs could be a promising strategy to achieve a "sterilizing cure" or "functional cure" of retroviral infection.
Collapse
Affiliation(s)
- Taizhen Liang
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511400, China
- Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China
| | - Guojie Li
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511400, China
- Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China
| | - Yunfei Lu
- Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China
| | - Meilin Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511400, China
- Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China
| | - Xiancai Ma
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511400, China
- Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
12
|
Nühn MM, Gumbs SBH, Buchholtz NVEJ, Jannink LM, Gharu L, de Witte LD, Wensing AMJ, Lewin SR, Nijhuis M, Symons J. Shock and kill within the CNS: A promising HIV eradication approach? J Leukoc Biol 2022; 112:1297-1315. [PMID: 36148896 PMCID: PMC9826147 DOI: 10.1002/jlb.5vmr0122-046rrr] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 01/18/2023] Open
Abstract
The most studied HIV eradication approach is the "shock and kill" strategy, which aims to reactivate the latent reservoir by latency reversing agents (LRAs) and allowing elimination of these cells by immune-mediated clearance or viral cytopathic effects. The CNS is an anatomic compartment in which (persistent) HIV plays an important role in HIV-associated neurocognitive disorder. Restriction of the CNS by the blood-brain barrier is important for maintenance of homeostasis of the CNS microenvironment, which includes CNS-specific cell types, expression of transcription factors, and altered immune surveillance. Within the CNS predominantly myeloid cells such as microglia and perivascular macrophages are thought to be a reservoir of persistent HIV infection. Nevertheless, infection of T cells and astrocytes might also impact HIV infection in the CNS. Genetic adaptation to this microenvironment results in genetically distinct, compartmentalized viral populations with differences in transcription profiles. Because of these differences in transcription profiles, LRAs might have different effects within the CNS as compared with the periphery. Moreover, reactivation of HIV in the brain and elimination of cells within the CNS might be complex and could have detrimental consequences. Finally, independent of activity on latent HIV, LRAs themselves can have adverse neurologic effects. We provide an extensive overview of the current knowledge on compartmentalized (persistent) HIV infection in the CNS and on the "shock and kill" strategy. Subsequently, we reflect on the impact and promise of the "shock and kill" strategy on the elimination of persistent HIV in the CNS.
Collapse
Affiliation(s)
- Marieke M. Nühn
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Stephanie B. H. Gumbs
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Ninée V. E. J. Buchholtz
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Lisanne M. Jannink
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Lavina Gharu
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Lot D. de Witte
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands,Department of PsychiatryIcahn School of MedicineNew YorkNew YorkUSA
| | - Annemarie M. J. Wensing
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Sharon R. Lewin
- Department of Infectious DiseasesThe University of Melbourne at the Peter Doherty Institute of Immunity and InfectionMelbourneVICAustralia,Victorian Infectious Diseases ServiceThe Royal Melbourne Hospital at the Peter Doherty Institute of Immunity and InfectionMelbourneVICAustralia,Department of Infectious DiseasesAlfred Hospital and Monash UniversityMelbourneVICAustralia
| | - Monique Nijhuis
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Jori Symons
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| |
Collapse
|
13
|
Lau CY, Adan MA, Maldarelli F. Why the HIV Reservoir Never Runs Dry: Clonal Expansion and the Characteristics of HIV-Infected Cells Challenge Strategies to Cure and Control HIV Infection. Viruses 2021; 13:2512. [PMID: 34960781 PMCID: PMC8708047 DOI: 10.3390/v13122512] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 12/13/2022] Open
Abstract
Antiretroviral therapy (ART) effectively reduces cycles of viral replication but does not target proviral populations in cells that persist for prolonged periods and that can undergo clonal expansion. Consequently, chronic human immunodeficiency virus (HIV) infection is sustained during ART by a reservoir of long-lived latently infected cells and their progeny. This proviral landscape undergoes change over time on ART. One of the forces driving change in the landscape is the clonal expansion of infected CD4 T cells, which presents a key obstacle to HIV eradication. Potential mechanisms of clonal expansion include general immune activation, antigenic stimulation, homeostatic proliferation, and provirus-driven clonal expansion, each of which likely contributes in varying, and largely unmeasured, amounts to maintaining the reservoir. The role of clinical events, such as infections or neoplasms, in driving these mechanisms remains uncertain, but characterizing these forces may shed light on approaches to effectively eradicate HIV. A limited number of individuals have been cured of HIV infection in the setting of bone marrow transplant; information from these and other studies may identify the means to eradicate or control the virus without ART. In this review, we describe the mechanisms of HIV-1 persistence and clonal expansion, along with the attempts to modify these factors as part of reservoir reduction and cure strategies.
Collapse
Affiliation(s)
- Chuen-Yen Lau
- HIV Dynamics and Replication Program, NCI, NIH, Bethesda, MD 20892, USA; (C.-Y.L.); (M.A.A.)
| | - Matthew A. Adan
- HIV Dynamics and Replication Program, NCI, NIH, Bethesda, MD 20892, USA; (C.-Y.L.); (M.A.A.)
- Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Frank Maldarelli
- HIV Dynamics and Replication Program, NCI, NIH, Bethesda, MD 20892, USA; (C.-Y.L.); (M.A.A.)
| |
Collapse
|
14
|
Zaongo SD, Sun F, Chen Y. Are HIV-1-Specific Antibody Levels Potentially Useful Laboratory Markers to Estimate HIV Reservoir Size? A Review. Front Immunol 2021; 12:786341. [PMID: 34858439 PMCID: PMC8632222 DOI: 10.3389/fimmu.2021.786341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/28/2021] [Indexed: 12/27/2022] Open
Abstract
Despite the benefits achieved by the widespread availability of modern antiretroviral therapy (ART), HIV RNA integration into the host cell genome is responsible for the creation of latent HIV reservoirs, and represents a significant impediment to completely eliminating HIV infection in a patient via modern ART alone. Several methods to measure HIV reservoir size exist; however, simpler, cheaper, and faster tools are required in the quest for total HIV cure. Over the past few years, measurement of HIV-specific antibodies has evolved into a promising option for measuring HIV reservoir size, as they can be measured via simple, well-known techniques such as the western blot and enzyme-linked immunosorbent assay (ELISA). In this article, we re-visit the dynamic evolution of HIV-1-specific antibodies and the factors that may influence their levels in the circulation of HIV-positive individuals. Then, we describe the currently-known relationship between HIV-1-specific antibodies and HIV reservoir size based on study of data from contemporary literature published during the past 5 years. We conclude by highlighting current trends, and discussing the individual HIV-specific antibody that is likely to be the most reliable antibody for potential future utilization for quantification of HIV reservoir size.
Collapse
Affiliation(s)
- Silvere D Zaongo
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Feng Sun
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Yaokai Chen
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
15
|
Deeks SG, Archin N, Cannon P, Collins S, Jones RB, de Jong MAWP, Lambotte O, Lamplough R, Ndung'u T, Sugarman J, Tiemessen CT, Vandekerckhove L, Lewin SR. Research priorities for an HIV cure: International AIDS Society Global Scientific Strategy 2021. Nat Med 2021; 27:2085-2098. [PMID: 34848888 DOI: 10.1038/s41591-021-01590-5] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022]
Abstract
Despite the success of antiretroviral therapy (ART) for people living with HIV, lifelong treatment is required and there is no cure. HIV can integrate in the host genome and persist for the life span of the infected cell. These latently infected cells are not recognized as foreign because they are largely transcriptionally silent, but contain replication-competent virus that drives resurgence of the infection once ART is stopped. With a combination of immune activators, neutralizing antibodies, and therapeutic vaccines, some nonhuman primate models have been cured, providing optimism for these approaches now being evaluated in human clinical trials. In vivo delivery of gene-editing tools to either target the virus, boost immunity or protect cells from infection, also holds promise for future HIV cure strategies. In this Review, we discuss advances related to HIV cure in the last 5 years, highlight remaining knowledge gaps and identify priority areas for research for the next 5 years.
Collapse
Affiliation(s)
- Steven G Deeks
- University of California San Francisco, San Fransisco, CA, USA.
| | - Nancie Archin
- UNC HIV Cure Center, Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Paula Cannon
- University of Southern California, Los Angeles, CA, USA
| | | | - R Brad Jones
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | | | - Olivier Lambotte
- University Paris Saclay, AP-HP, Bicêtre Hospital, UMR1184 INSERM CEA, Le Kremlin Bicêtre, Paris, France
| | | | - Thumbi Ndung'u
- Africa Health Research Institute and University of KwaZulu-Natal, Durban, South Africa
- University College London, London, UK
- Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA, USA
| | - Jeremy Sugarman
- Berman Institute of Bioethics and Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Caroline T Tiemessen
- National Institute for Communicable Diseases and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Sharon R Lewin
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia.
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| |
Collapse
|
16
|
Acchioni C, Palermo E, Sandini S, Acchioni M, Hiscott J, Sgarbanti M. Fighting HIV-1 Persistence: At the Crossroads of "Shoc-K and B-Lock". Pathogens 2021; 10:pathogens10111517. [PMID: 34832672 PMCID: PMC8622007 DOI: 10.3390/pathogens10111517] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the success of highly active antiretroviral therapy (HAART), integrated HIV-1 proviral DNA cannot be eradicated from an infected individual. HAART is not able to eliminate latently infected cells that remain invisible to the immune system. Viral sanctuaries in specific tissues and immune-privileged sites may cause residual viral replication that contributes to HIV-1 persistence. The “Shock or Kick, and Kill” approach uses latency reversing agents (LRAs) in the presence of HAART, followed by cell-killing due to viral cytopathic effects and immune-mediated clearance. Different LRAs may be required for the in vivo reactivation of HIV-1 in different CD4+ T cell reservoirs, leading to the activation of cellular transcription factors acting on the integrated proviral HIV-1 LTR. An important requirement for LRA drugs is the reactivation of viral transcription and replication without causing a generalized immune activation. Toll-like receptors, RIG-I like receptors, and STING agonists have emerged recently as a new class of LRAs that augment selective apoptosis in reactivated T lymphocytes. The challenge is to extend in vitro observations to HIV-1 positive patients. Further studies are also needed to overcome the mechanisms that protect latently infected cells from reactivation and/or elimination by the immune system. The Block and Lock alternative strategy aims at using latency promoting/inducing agents (LPAs/LIAs) to block the ability of latent proviruses to reactivate transcription in order to achieve a long term lock down of potential residual virus replication. The Shock and Kill and the Block and Lock approaches may not be only alternative to each other, but, if combined together (one after the other), or given all at once [namely “Shoc-K(kill) and B(block)-Lock”], they may represent a better approach to a functional cure.
Collapse
Affiliation(s)
- Chiara Acchioni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
| | - Enrico Palermo
- Istituto Pasteur Italia—Cenci Bolognetti Foundation, Viale Regina Elena 291, 00161 Rome, Italy; (E.P.); (J.H.)
| | - Silvia Sandini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
| | - Marta Acchioni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
| | - John Hiscott
- Istituto Pasteur Italia—Cenci Bolognetti Foundation, Viale Regina Elena 291, 00161 Rome, Italy; (E.P.); (J.H.)
| | - Marco Sgarbanti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
- Correspondence: ; Tel.: +39-06-4990-3266
| |
Collapse
|
17
|
Zaongo SD, Wang Y, Ma P, Song FZ, Chen YK. Selective elimination of host cells harboring replication-competent human immunodeficiency virus reservoirs: a promising therapeutic strategy for HIV cure. Chin Med J (Engl) 2021; 134:2776-2787. [PMID: 34620750 PMCID: PMC8667983 DOI: 10.1097/cm9.0000000000001797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Indexed: 10/27/2022] Open
Abstract
ABSTRACT Many seminal advances have been made in human immunodeficiency virus (HIV)/AIDS research over the past four decades. Treatment strategies, such as gene therapy and immunotherapy, are yielding promising results to effectively control HIV infection. Despite this, a cure for HIV/AIDS is not envisioned in the near future. A recently published academic study has raised awareness regarding a promising alternative therapeutic option for HIV/AIDS, referred to as "selective elimination of host cells capable of producing HIV" (SECH). Similar to the "shock and kill strategy," the SECH approach requires the simultaneous administration of drugs targeting key mechanisms in specific cells to efficiently eliminate HIV replication-competent cellular reservoirs. Herein, we comprehensively review the specific mechanisms targeted by the SECH strategy. Briefly, the suggested cocktail of drugs should contain (i) latency reversal agents to promote the latency reversal process in replication-competent reservoir cells, (ii) pro-apoptotic and anti-autophagy drugs to induce death of infected cells through various pathways, and finally (iii) drugs that eliminate new cycles of infection by prevention of HIV attachment to host cells, and by HIV integrase inhibitor drugs. Finally, we discuss three major challenges that are likely to restrict the application of the SECH strategy in HIV/AIDS patients.
Collapse
Affiliation(s)
- Silvere D. Zaongo
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing 400036, China
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yue Wang
- Institute for Medical Device Standardization Administration; National Institutes for Food and Drug Control, Beijing 100050, China
| | - Ping Ma
- Department of Infectious Diseases, Tianjin Second People Hospital, Tianjin 300192, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Fang-Zhou Song
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yao-Kai Chen
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing 400036, China
| |
Collapse
|
18
|
The Intact Non-Inducible Latent HIV-1 Reservoir is Established In an In Vitro Primary T CM Cell Model of Latency. J Virol 2021; 95:JVI.01297-20. [PMID: 33441346 PMCID: PMC8092701 DOI: 10.1128/jvi.01297-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The establishment of HIV-1 latency has hindered an HIV-1 cure. "Shock and Kill" strategies to target this reservoir aim to induce the latent provirus with latency reversing agents (LRAs). However, recent studies have shown that the majority of the intact HIV-1 viral reservoir found in ART-suppressed HIV infected individuals is not inducible. We sought to understand whether this non-inducible reservoir is established, and thus able to be studied, in an in vitro primary TCM model of latency. Furthermore, we wanted to expand this model system to include R5-tropic and non-B subtype viruses. To that end, we generated our TCM model of latency with an R5 subtype B virus, AD8 and an R5 subtype C virus, MJ4. Our results demonstrate that both intact and defective proviruses are generated in this model. Less than 50% of intact proviruses are inducible regardless of viral strain in the context of maximal stimulation through the TCR or with different clinically relevant LRAs including the HDAC inhibitors SAHA and MS-275, the PKC agonist Ingenol 3,20-dibenzoate or the SMAC mimetic AZD-5582. Our findings suggest that current LRA strategies are insufficient to effectively reactivate intact latent HIV-1 proviruses in primary CD4 TCM cells and that the mechanisms involved in the generation of the non-inducible HIV-1 reservoir can be studied using this primary in vitro model.Importance: HIV-1 establishes a latent reservoir that persists under antiretroviral therapy. Antiretroviral therapy is able to stop the spread of the virus and the progression of the disease but does not target this latent reservoir. If antiretroviral therapy is stopped, the virus is able to resume replication and the disease progresses. Recently, it has been demonstrated that most of the latent reservoir capable of generating replication competent virus cannot be induced in the laboratory setting. However, the mechanisms that influence the generation of this intact and non-inducible latent reservoir are still under investigation. Here we demonstrate the generation of defective, intact and intact non-inducible latent HIV-1 in a TCM model of latency using different HIV-1 strains. Thus, the mechanisms which control inducibility can be studied using this primary cell model of latency, which may accelerate our understanding of the latent reservoir and the development of curative strategies.
Collapse
|
19
|
Schlösser M, Kartashev VV, Mikkola VH, Shemshura A, Saukhat S, Kolpakov D, Suladze A, Tverdokhlebova T, Hutt K, Heger E, Knops E, Böhm M, Di Cristanziano V, Kaiser R, Sönnerborg A, Zazzi M, Bobkova M, Sierra S. HIV-1 Sub-Subtype A6: Settings for Normalised Identification and Molecular Epidemiology in the Southern Federal District, Russia. Viruses 2020; 12:v12040475. [PMID: 32331438 PMCID: PMC7232409 DOI: 10.3390/v12040475] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 01/08/2023] Open
Abstract
Russia has one of the largest and fastest growing HIV epidemics. However, epidemiological data are scarce. Sub-subtype A6 is most prevalent in Russia but its identification is challenging. We analysed protease/reverse transcriptase-, integrase-sequences, and epidemiological data from 303 patients to develop a methodology for the systematisation of A6 identification and to describe the HIV epidemiology in the Russian Southern Federal District. Drug consumption (32.0%) and heterosexual contact (27.1%) were the major reported transmission risks. This study successfully established the settings for systematic identification of A6 samples. Low frequency of subtype B (3.3%) and large prevalence of sub-subtype A6 (69.6%) and subtype G (23.4%) were detected. Transmitted PI- (8.8%) and NRTI-resistance (6.4%) were detected in therapy-naive patients. In therapy-experienced patients, 17.3% of the isolates showed resistance to PIs, 50.0% to NRTI, 39.2% to NNRTIs, and 9.5% to INSTIs. Multiresistance was identified in 52 isolates, 40 corresponding to two-class resistance and seven to three-class resistance. Two resistance-associated-mutations significantly associated to sub-subtype A6 samples: A62VRT and G190SRT. This study establishes the conditions for a systematic annotation of sub-subtype A6 to normalise epidemiological studies. Accurate knowledge on South Russian epidemiology will allow for the development of efficient regional frameworks for HIV-1 infection management.
Collapse
Affiliation(s)
- Madita Schlösser
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50935 Cologne, Germany; (M.S.); (V.H.M.); (K.H.); (E.H.); (E.K.); (M.B.); (V.D.C.); (R.K.)
| | - Vladimir V. Kartashev
- Russian Southern Federal Center for HIV Control, 344000 Rostov-na-Donu, Russia; (V.V.K.); (D.K.); (A.S.); (T.T.)
- Department of Infectious Diseases, Rostov State Medical University, 344022 Rostov-na-Donu, Russia;
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Visa H. Mikkola
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50935 Cologne, Germany; (M.S.); (V.H.M.); (K.H.); (E.H.); (E.K.); (M.B.); (V.D.C.); (R.K.)
| | - Andrey Shemshura
- Clinical Center of HIV/AIDS of the Ministry of Health of Krasnodar Region, 350015 Krasnodar, Russia;
| | - Sergey Saukhat
- Department of Infectious Diseases, Rostov State Medical University, 344022 Rostov-na-Donu, Russia;
| | - Dmitriy Kolpakov
- Russian Southern Federal Center for HIV Control, 344000 Rostov-na-Donu, Russia; (V.V.K.); (D.K.); (A.S.); (T.T.)
| | - Alexandr Suladze
- Russian Southern Federal Center for HIV Control, 344000 Rostov-na-Donu, Russia; (V.V.K.); (D.K.); (A.S.); (T.T.)
| | - Tatiana Tverdokhlebova
- Russian Southern Federal Center for HIV Control, 344000 Rostov-na-Donu, Russia; (V.V.K.); (D.K.); (A.S.); (T.T.)
| | - Katharina Hutt
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50935 Cologne, Germany; (M.S.); (V.H.M.); (K.H.); (E.H.); (E.K.); (M.B.); (V.D.C.); (R.K.)
| | - Eva Heger
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50935 Cologne, Germany; (M.S.); (V.H.M.); (K.H.); (E.H.); (E.K.); (M.B.); (V.D.C.); (R.K.)
| | - Elena Knops
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50935 Cologne, Germany; (M.S.); (V.H.M.); (K.H.); (E.H.); (E.K.); (M.B.); (V.D.C.); (R.K.)
| | - Michael Böhm
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50935 Cologne, Germany; (M.S.); (V.H.M.); (K.H.); (E.H.); (E.K.); (M.B.); (V.D.C.); (R.K.)
| | - Veronica Di Cristanziano
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50935 Cologne, Germany; (M.S.); (V.H.M.); (K.H.); (E.H.); (E.K.); (M.B.); (V.D.C.); (R.K.)
| | - Rolf Kaiser
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50935 Cologne, Germany; (M.S.); (V.H.M.); (K.H.); (E.H.); (E.K.); (M.B.); (V.D.C.); (R.K.)
| | - Anders Sönnerborg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Maurizio Zazzi
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy;
| | - Marina Bobkova
- Department of General Virology, Gamaleya Research Center of Epidemiology and Microbiology, 123098 Moscow, Russia;
| | - Saleta Sierra
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50935 Cologne, Germany; (M.S.); (V.H.M.); (K.H.); (E.H.); (E.K.); (M.B.); (V.D.C.); (R.K.)
- Correspondence: ; Tel.: +49-221-4788-5807
| |
Collapse
|
20
|
Patinote C, Karroum NB, Moarbess G, Cirnat N, Kassab I, Bonnet PA, Deleuze-Masquéfa C. Agonist and antagonist ligands of toll-like receptors 7 and 8: Ingenious tools for therapeutic purposes. Eur J Med Chem 2020; 193:112238. [PMID: 32203790 PMCID: PMC7173040 DOI: 10.1016/j.ejmech.2020.112238] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/17/2022]
Abstract
The discovery of the TLRs family and more precisely its functions opened a variety of gates to modulate immunological host responses. TLRs 7/8 are located in the endosomal compartment and activate a specific signaling pathway in a MyD88-dependant manner. According to their involvement into various autoimmune, inflammatory and malignant diseases, researchers have designed diverse TLRs 7/8 ligands able to boost or block the inherent signal transduction. These modulators are often small synthetic compounds and most act as agonists and to a much lesser extent as antagonists. Some of them have reached preclinical and clinical trials, and only one has been approved by the FDA and EMA, imiquimod. The key to the success of these modulators probably lies in their combination with other therapies as recently demonstrated. We gather in this review more than 360 scientific publications, reviews and patents, relating the extensive work carried out by researchers on the design of TLRs 7/8 modulators, which are classified firstly by their biological activities (agonist or antagonist) and then by their chemical structures, which total syntheses are not discussed here. This review also reports about 90 clinical cases, thereby showing the biological interest of these modulators in multiple pathologies.
Collapse
Affiliation(s)
- Cindy Patinote
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Nour Bou Karroum
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France; Tumorigenèse et Pharmacologie Antitumorale, Lebanese University, EDST, BP 90656, Fanar Jdeideh, Lebanon
| | - Georges Moarbess
- Tumorigenèse et Pharmacologie Antitumorale, Lebanese University, EDST, BP 90656, Fanar Jdeideh, Lebanon
| | - Natalina Cirnat
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Issam Kassab
- Tumorigenèse et Pharmacologie Antitumorale, Lebanese University, EDST, BP 90656, Fanar Jdeideh, Lebanon
| | | | | |
Collapse
|