1
|
Yang S, Cao Q, Yan K, Wang C, Song X, Bian X, Li S, Cheng Z, Zhang X, Wang Y, Guo R, Wang X, Song H, Fan B, Li B. Preparation and functional identification of various porcine cytokines. Cytokine 2025; 188:156880. [PMID: 39922016 DOI: 10.1016/j.cyto.2025.156880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/13/2025] [Accepted: 02/01/2025] [Indexed: 02/10/2025]
Abstract
The insufficiency of current Porcine Epidemic Diarrhea (PED) vaccines against highly pathogenic strains highlights the critical importance of enhancing mucosal immunity in the prevention and control of porcine enteric viral diseases. Due to limited research platforms, the understanding of the porcine mucosal immune system and its response mechanisms remains incomplete. This study employed prokaryotic expression and purification methods to obtain eight essential cytokines involved in mucosal immune responses (CD40L, IL-2, IL-6, TNF-α, IL-13, IL-17α, TGF-β, APRIL). By utilizing various cell models including porcine intestinal organoids, IPEC-J2, Vero-E6, porcine peripheral blood lymphocytes, and porcine Peyer's patch lymphocytes, the functions of these eight cytokines were identified through flow cytometry, immunoblotting, relative quantitative PCR, and CFSE proliferation assays. The results demonstrate that all eight purified proteins exhibit both protein activity and function. The purification of these molecules lays the groundwork for further exploration of the mucosal barrier of pigs and mucosal immune-related studies, as well as providing research tools for the prevention and control of enteric viral diseases in pigs.
Collapse
Affiliation(s)
- Shanshan Yang
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China; Jiangsu Key Laboratory for Food Quality and Safety-State, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Ministry of Agriculture, Nanjing, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Qiuxia Cao
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China; College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, Zhejiang, PR China
| | - Kexin Yan
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Chuanhong Wang
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Xu Song
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Xianyu Bian
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Sufen Li
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Zhenkong Cheng
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Xuehan Zhang
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Yi Wang
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Rongli Guo
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China; Jiangsu Key Laboratory for Food Quality and Safety-State, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Ministry of Agriculture, Nanjing, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Xiaodu Wang
- College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, Zhejiang, PR China
| | - Houhui Song
- College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, Zhejiang, PR China
| | - Baochao Fan
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China; Jiangsu Key Laboratory for Food Quality and Safety-State, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Ministry of Agriculture, Nanjing, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Bin Li
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China; Jiangsu Key Laboratory for Food Quality and Safety-State, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Ministry of Agriculture, Nanjing, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
2
|
Yan YR, Sun YH. Genotypic diversity and immunological implications of porcine circovirus: Inspiration from PCV1 to PCV4. Microb Pathog 2024; 196:106997. [PMID: 39369754 DOI: 10.1016/j.micpath.2024.106997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/16/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
Porcine circovirus (PCV) is a group of DNA viruses that cause diseases in pigs, with multiple genotypes ranging from PCV1 to PCV4. PCV1 is generally considered non-pathogenic, while PCV2 can cause severe immune system damage, especially associated with porcine multisystemic wasting syndrome (PMWS). PCV2 has a genetic homology of about 68 % but differs from PCV1 in antigenicity and phenotype. PCV3 and PCV4 have lower genetic homology with PCV1 and PCV2, with limited research available on their pathogenicity. During virus infection, the host's innate immune system detects PCVs through pattern recognition receptors (PRRs) like TLRs and NLRs. PCV disrupts immune pathways, including interferon and NF-κB pathways, aiding viral replication and causing immunosuppression. This review systematically compares the characteristics and pathogenicity of different genotypes of PCV and their interactions with the host's immune system, aiming to better understand the mechanisms of PCV infection and provide a theoretical basis for prevention and treatment.
Collapse
Affiliation(s)
- You-Rong Yan
- Jiangsu Agri-animal Husbandry Vocational College, No. 8 Fenghuang East Road, Hailing District, Taizhou City, Jiangsu Province, 225300, China.
| | - Ying-Hui Sun
- Shanghai Academy of Agricultural Sciences, No.2901 Beidi Road, Minhang District, Shanghai, 201106, China
| |
Collapse
|
3
|
Li C, Yang K, Song H, Xia C, Wu Q, Zhu J, Liu W, Gao T, Guo R, Liu Z, Yuan F, Tian Y, Zhou D. Porcine circovirus type 2 ORF5 induces an inflammatory response by up-regulating miR-21 levels through targeting nuclear ssc-miR-30d. Virus Res 2024; 346:199396. [PMID: 38763299 PMCID: PMC11144814 DOI: 10.1016/j.virusres.2024.199396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 05/21/2024]
Abstract
Porcine circovirus type 2 (PCV2) infection leads to multi-system inflammation in pigs, and this effect can be achieved by upregulating host miR-21. The underlying mechanism of miR-21 regulates PCV2-induced inflammation is already known, however, how PCV2 regulates miR-21 levels and function using both autonomic and host factors remains to be further revealed. Here we present the first evidence that PCV2 ORF5 induces an inflammatory response by up-regulating miR-21 level through targeting nuclear miR-30d. In this study, we found that overexpression of ORF5 significantly increased miR-21 level and promoted the expression of inflammatory cytokines and activation of the NF-κB pathway, while ORF5 mutation had the opposite effect. Moreover, the differential expression of miR-21 could significantly change the pro-inflammatory effect of ORF5, indicating that ORF5 promotes inflammatory response by up-regulating miR-21. Bioinformatics analysis and clinical detection found that nuclear miR-30d was significantly down-regulated after ORF5 overexpression and PCV2 infection, and targeted pri-miR-21 and PCV2 ORF5. Functionally, we found that miR-30d inhibited the levels of miR-21 and inflammatory cytokines in cells. Mechanistically, we demonstrated that ORF5 inhibits miR-30d expression levels through direct binding but not via the circRNA pathway, and miR-30d inhibits miR-21 levels by targeting pri-miR-21. In summary, the present study revealed the molecular mechanism of ORF5 upregulation of miR-21, further refined the molecular chain of PCV2-induced inflammatory response and elucidated the role of miRNAs in it.
Collapse
Affiliation(s)
- Chang Li
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Keli Yang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Haofei Song
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Chuqiao Xia
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Qiong Wu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Jiajia Zhu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Wei Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Ting Gao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Zewen Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Yongxiang Tian
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China.
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China.
| |
Collapse
|
4
|
Burgher Pulgaron Y, Provost C, Pesant MJ, Gagnon CA. Porcine Circovirus Modulates Swine Influenza Virus Replication in Pig Tracheal Epithelial Cells and Porcine Alveolar Macrophages. Viruses 2023; 15:v15051207. [PMID: 37243291 DOI: 10.3390/v15051207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
The pathogenesis of porcine circovirus type 2b (PCV2b) and swine influenza A virus (SwIV) during co-infection in swine respiratory cells is poorly understood. To elucidate the impact of PCV2b/SwIV co-infection, newborn porcine tracheal epithelial cells (NPTr) and immortalized porcine alveolar macrophages (iPAM 3D4/21) were co-infected with PCV2b and SwIV (H1N1 or H3N2 genotype). Viral replication, cell viability and cytokine mRNA expression were determined and compared between single-infected and co-infected cells. Finally, 3'mRNA sequencing was performed to identify the modulation of gene expression and cellular pathways in co-infected cells. It was found that PCV2b significantly decreased or improved SwIV replication in co-infected NPTr and iPAM 3D4/21 cells, respectively, compared to single-infected cells. Interestingly, PCV2b/SwIV co-infection synergistically up-regulated IFN expression in NPTr cells, whereas in iPAM 3D4/21 cells, PCV2b impaired the SwIV IFN induced response, both correlating with SwIV replication modulation. RNA-sequencing analyses revealed that the modulation of gene expression and enriched cellular pathways during PCV2b/SwIV H1N1 co-infection is regulated in a cell-type-dependent manner. This study revealed different outcomes of PCV2b/SwIV co-infection in porcine epithelial cells and macrophages and provides new insights on porcine viral co-infections pathogenesis.
Collapse
Affiliation(s)
- Yaima Burgher Pulgaron
- Swine and Poultry Infectious Diseases Research Center (CRIPA-FRQ), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Chantale Provost
- Molecular Diagnostic Laboratory, Centre de Diagnostic Vétérinaire de l'Université de Montréal (CDVUM), Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Marie-Jeanne Pesant
- Swine and Poultry Infectious Diseases Research Center (CRIPA-FRQ), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Carl A Gagnon
- Swine and Poultry Infectious Diseases Research Center (CRIPA-FRQ), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Molecular Diagnostic Laboratory, Centre de Diagnostic Vétérinaire de l'Université de Montréal (CDVUM), Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
5
|
Du Q, Shi T, Wang H, Zhu C, Yang N, Tong D, Huang Y. The ultrasonically treated nanoliposomes containing PCV2 DNA vaccine expressing gC1qR binding site mutant Cap is efficient in mice. Front Microbiol 2023; 13:1077026. [PMID: 36713188 PMCID: PMC9874303 DOI: 10.3389/fmicb.2022.1077026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Nowadays, vaccines are broadly used to prevent porcine circovirus type 2 (PCV2) infection-induced expenditures, but the virus is still spreading among pigs. The current PCV2 vaccines all rely on the immunogenicity of Cap, yet our previous studies found that Cap is also the major component mediating the PCV2 infection-induced immune suppression through its interaction with host gC1qR. Thereby, new vaccines are still necessary for PCV2 prevention and control. In this study, we constructed a new PCV2 DNA vaccine expressing the gC1qR binding site mutant Cap. We introduced the Intron A and WPRE elements into the vector to improve the Cap expression level, and fused the IL-2 secretory signal peptides to the N-terminal of Cap to mediate the secretion of Cap. We also screened and selected chemokines CXCL12, CCL22, and CCL25 to migrate dendritic cells. In addition, we contained the vectors with PEI and then ultrasonic them into nano size to enhance the entrance of the vectors. Finally, the animal experiments showed that the new PCV2 DNA vaccine expressing the gC1qR binding site mutant Cap could induce stronger humoral and cellular immune responses than the PCV2 DNA vaccine expressing the wild-type Cap and the non-ultrasonic treated PCV2 DNA vaccine in mice, and protect the mice from PCV2 infection and lung lesions. The results indicate the new PCV2 DNA vaccine expressing the gC1qR binding site mutant Cap has a certain development value, and provide new insight into the development of novel PCV2 vaccines.
Collapse
Affiliation(s)
- Qian Du
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China,Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education, Xianyang, China
| | - Tengfei Shi
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China,Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education, Xianyang, China
| | - Huaxin Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China,Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education, Xianyang, China
| | - Changlei Zhu
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China,Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education, Xianyang, China
| | - Nan Yang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China,Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education, Xianyang, China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China,Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education, Xianyang, China,*Correspondence: Dewen Tong,
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China,Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education, Xianyang, China,Yong Huang,
| |
Collapse
|
6
|
Wang Z, Chen J, Zhang QG, Huang K, Ma D, Du Q, Tong D, Huang Y. Porcine circovirus type 2 infection inhibits the activation of type I interferon signaling via capsid protein and host gC1qR. Vet Microbiol 2022; 266:109354. [DOI: 10.1016/j.vetmic.2022.109354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022]
|
7
|
Cao M, Yang J, Wang X, Hu W, Xie X, Zhao Y, Liu M, Wei Y, Yu M, Hu T. Sophora subprostrate polysaccharide regulates histone acetylation to inhibit inflammation in PCV2-infected murine splenic lymphocytes in vitro and in vivo. Int J Biol Macromol 2021; 191:668-678. [PMID: 34560152 DOI: 10.1016/j.ijbiomac.2021.09.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 09/10/2021] [Accepted: 09/18/2021] [Indexed: 11/26/2022]
Abstract
Porcine circovirus type 2 (PCV2) has caused large economic losses in the swine industry worldwide; therefore, research on relevant therapeutic medicines is still urgently needed. To define the relationship between histone acetylation and inflammation induced by PCV2, we investigated whether traditional Chinese medicinal polysaccharides could alleviate viral infection by regulating histone acetylation. In this study, Sophora subprostrate polysaccharide (SSP)-treated PCV2-infected murine splenic lymphocytes in vitro and murine spleen in vivo were used to explore the regulatory effects of SSP on inflammation and histone acetylation caused by PCV2. SSP at different concentrations significantly reduced the secretion levels of the proinflammatory cytokines TNF-α and IL-6, the activity of COX-2, the mRNA expression levels of TNF-α, IL-6, iNOS and COX-2 and the protein expression levels of iNOS and COX-2 but promoted the secretion and mRNA expression levels of IL-10. Furthermore, the different concentrations of SSP significantly regulated the activity of histone acetylase (HAT) and the mRNA expression of HAT1, increased the activity of histone deacetylase (HDAC) and the mRNA expression of HDAC1 and reduced the protein expression levels of Ac-H3 and Ac-H4. Overall, SSP inhibited inflammation in PCV2-infected murine splenic lymphocytes by regulating histone acetylation in vitro and in vivo, thus playing an important role in PCV2 infection.
Collapse
Affiliation(s)
- Mixia Cao
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Jian Yang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China; College of Animal Science, Guizhou University, Guiyang 550025, PR China
| | - Xinrui Wang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Wenyue Hu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Xiaodong Xie
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Yi Zhao
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Mengqian Liu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Yingyi Wei
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Meiling Yu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Tingjun Hu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
8
|
Epidemiology and Evolution of Emerging Porcine Circovirus-like Viruses in Pigs with Hemorrhagic Dysentery and Diarrhea Symptoms in Central China from 2018 to 2021. Viruses 2021; 13:v13112282. [PMID: 34835090 PMCID: PMC8624291 DOI: 10.3390/v13112282] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
Porcine circovirus-like virus (PCLV) is a type of circular Rep-encoding single-stranded DNA virus and may be associated with the development of diarrheal symptoms in pigs. In this study, we retrospectively analyzed three years of past cases in Anhui, China, and reported a case of hemorrhagic enteritis and death in a pregnant sow possibly caused by PCLV. In addition, we analyzed the evolutionary characteristics of PCLV and found that mutation, recombination and selective pressure all played an important role in the evolution of PCLV. We identified N15D and T17S as well as L56T, T58R, K59Q, M62R, L75I and R190K mutations in two different branches, and we noted recombination events in the Rep of a group of Chinese strains. Analysis of selection pressure revealed that PCLV gained more positive selection, indicating that the virus is in a continuous evolutionary state. The PR2 plot, ENC-plot and neutrality analysis showed a greater role of natural selection than that of mutational pressure in the formation of codon usage patterns. This study is the first to identify PCLV in sows with hemorrhagic dysentery and death, and it provides new epidemiological information on PCLV infection in pigs in China.
Collapse
|
9
|
Wang Z, Chen J, Wu X, Ma D, Zhang X, Li R, Han C, Liu H, Yin X, Du Q, Tong D, Huang Y. PCV2 targets cGAS to inhibit type I interferon induction to promote other DNA virus infection. PLoS Pathog 2021; 17:e1009940. [PMID: 34543359 PMCID: PMC8483418 DOI: 10.1371/journal.ppat.1009940] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/30/2021] [Accepted: 09/03/2021] [Indexed: 01/28/2023] Open
Abstract
Viruses use diverse strategies to impair the antiviral immunity of host in order to promote infection and pathogenesis. Herein, we found that PCV2 infection promotes the infection of DNA viruses through inhibiting IFN-β induction in vivo and in vitro. In the early phase of infection, PCV2 promotes the phosphorylation of cGAS at S278 via activation of PI3K/Akt signaling, which directly silences the catalytic activity of cGAS. Subsequently, phosphorylation of cGAS at S278 can facilitate the K48-linked poly-ubiquitination of cGAS at K389, which can been served as a signal for recognizing by the ubiquitin-binding domain of histone deacetylase 6 (HDAC6), to promote the translocation of K48-ubiquitinated-cGAS from cytosol to autolysosome depending on the deacetylase activity of HDAC6, thereby eventually resulting in a markedly increased cGAS degradation in PCV2 infection-induced autophagic cells relative to Earle’s Balanced Salt Solution (EBSS)-induced autophagic cells (a typical starving autophagy). Importantly, we found that PCV2 Cap and its binding protein gC1qR act as predominant regulators to promote porcine cGAS phosphorylation and HDAC6 activation through mediating PI3K/AKT signaling and PKCδ signaling activation. Based on this finding, gC1qR-binding activity deficient PCV2 mutant (PCV2RmA) indeed shows a weakened inhibitory effect on IFN-β induction and a weaker boost effect for other DNA viruses infection compared to wild-type PCV2. Collectively, our findings illuminate a systematic regulation mechanism by which porcine circovirus counteracts the cGAS-STING signaling pathway to inhibit the type I interferon induction and promote DNA virus infection, and identify gC1qR as an important regulator for the immunosuppression induced by PCV2. PCV2 is well known for its ability to induce immunosuppression in pigs. However, how PCV2 infection interferes cGAS-STING signaling is still poorly understood. Herein, we demonstrate that PCV2 infection can phosphorylate porcine cGAS via gC1qR-mediated PI3K/AKT signaling to silence the catalytic activity of cGAS, while activates PKCδ signaling to promote histone deacetylase 6 (HDAC6) activation depending on the assistance of gC1qR. Subsequently, phosphorylation of cGAS facilitates the poly-ubiquitination of cGAS, then ubiquitinated-cGAS proteins are recruited and transported to autolysosome by activated HDAC6 depending on its deacetylase activity and ubiquitin-binding function, thereby eventually resulting in the autophagic degradation of cGAS in PCV2-infected cells. This study reveals that PCV2 can inhibit the activation of cGAS signaling pathway through two different mechanisms at different stages of infection and clarifies the internal relationship and cooperation model between these two mechanisms.
Collapse
Affiliation(s)
- Zhenyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jing Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xingchen Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Dan Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiaohua Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Ruizhen Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Cong Han
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Haixin Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiangrui Yin
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qian Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- * E-mail: (DT); (YH)
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- * E-mail: (DT); (YH)
| |
Collapse
|
10
|
Rakibuzzaman A, Ramamoorthy S. Comparative immunopathogenesis and biology of recently discovered porcine circoviruses. Transbound Emerg Dis 2021; 68:2957-2968. [PMID: 34288522 DOI: 10.1111/tbed.14244] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/02/2021] [Accepted: 07/16/2021] [Indexed: 12/15/2022]
Abstract
Porcine circoviruses are important pathogens of production swine. Porcine circovirus type 1 (PCV1) is non-pathogenic, and discovered as a contaminant of a porcine kidney cell line, PK-15. The discovery of pathogenic variant, PCV2, occurred in the late 90s in association with post-weaning multi-systemic wasting disease syndrome (PMWS), which is characterized by wasting, respiratory signs and lymphadenopathy in weanling pigs. A new PCV type, designated as PCV3, was discovered in 2016, in pigs manifesting porcine dermatitis and nephropathy syndrome (PDNS), respiratory distress and reproductive failure. Pathological manifestations of PCV3 Infections include systemic inflammation, vasculitis and myocarditis. A fourth PCV type, PCV4, was identified in 2020 in pigs with PDNS, respiratory and enteric signs. All the pathogenic PCV types are detected in both healthy and morbid pigs. They cause chronic, systemic infections with various clinical manifestations. Dysregulation of the immune system homeostasis is a pivotal trigger for pathogenesis in porcine circoviral infections. While the study of PCV3 immunobiology is still in its infancy lessons learned from PCV2 and other circular replication-associated protein (Rep)-encoding single stranded (ss) (CRESS) DNA viruses can inform the field of exploration for PCV3. Viral interactions with the innate immune system, interference with dendritic cell function coupled with the direct loss of lymphocytes compromises both innate and adaptive immunity in PCV2 infections. Dysregulated immune responses leading to the establishment of a pro-inflammatory state, immune complex associated hypersensitivity, and the necrosis of lymphocytes and immune cells are key features of PCV3 immunopathogenesis. A critical overview of the comparative immunopathology of PCV2 and PCV3/4, and directions for future research in the field are presented in this review.
Collapse
Affiliation(s)
- Agm Rakibuzzaman
- Department of Microbiological Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Sheela Ramamoorthy
- Department of Microbiological Sciences, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|