1
|
Minch B, Moniruzzaman M. Expansion of the genomic and functional diversity of global ocean giant viruses. NPJ VIRUSES 2025; 3:32. [PMID: 40295861 PMCID: PMC12012013 DOI: 10.1038/s44298-025-00122-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 04/14/2025] [Indexed: 04/30/2025]
Abstract
Giant viruses (GVs) play crucial roles in the global ocean microbial food web and biogeochemistry. Recent metagenomic advances have uncovered >1800 new GV genomes from the world's oceans. While this rapid increase in genomic information is impressive, it is nowhere close to the extensive genomic information available for other marine entities-e.g., prokaryotes and their "virome". We present 230 new high-quality GV genomes (genomes with 4 or more marker genes) and 398 partial genomes from nine global ocean datasets. Notably, we identified numerous GV genomes from the Baltic Sea, offering insights into their phylogenomics, metabolic potential, and environmental drivers in one of the largest brackish water ecosystems. We discovered new GV functions and identified a significant functional divide between the Imitervirales and Algavirales orders. Additionally, we evaluated factors affecting GV abundance through a case study on the Baltic Sea dataset. Our study significantly expands the marine GV genomic and functional diversity, broadening our understanding of their roles in the food web and biogeochemistry.
Collapse
Affiliation(s)
- Benjamin Minch
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Sciences, University of Miami, Miami, FL, USA
| | - Mohammad Moniruzzaman
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Sciences, University of Miami, Miami, FL, USA.
| |
Collapse
|
2
|
Wang H, Meng L, Otaegi-Ugartemendia S, Condezo GN, Blanc-Mathieu R, Stokke R, Langvad MR, Brandt D, Kalinowski J, Dahle H, San Martín C, Ogata H, Sandaa RA. Haptophyte-infecting viruses change the genome condensing proteins of dinoflagellates. Commun Biol 2025; 8:510. [PMID: 40155463 PMCID: PMC11953307 DOI: 10.1038/s42003-025-07905-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/10/2025] [Indexed: 04/01/2025] Open
Abstract
Giant viruses are extraordinary members of the virosphere due to their structural complexity and high diversity in gene content. Haptophytes are ecologically important primary producers in the ocean, and all known viruses that infect haptophytes are giant viruses. However, little is known about the specifics of their infection cycles and the responses they trigger in their host cells. Our in-depth electron microscopic, phylogenomic and virion proteomic analyses of two haptophyte-infecting giant viruses, Haptolina ericina virus RF02 (HeV RF02) and Prymnesium kappa virus RF02 (PkV RF02), unravel their large capacity for host manipulation and arsenals that function during the infection cycle from virus entry to release. The virus infection induces significant morphological changes in the host cell that is manipulated to build a virus proliferation factory. Both viruses' genomes encode a putative nucleoprotein (dinoflagellate/viral nucleoprotein; DVNP), which was also found in the virion proteome of PkV RF02. Phylogenetic analysis suggests that DVNPs are widespread in marine giant metaviromes. Furthermore, the analysis shows that the dinoflagellate homologues were possibly acquired from viruses of the order Imitervirales. These findings enhance our understanding of how viruses impact the biology of microalgae, providing insights into evolutionary biology, ecosystem dynamics, and nutrient cycling in the ocean.
Collapse
Affiliation(s)
- Haina Wang
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| | - Lingjie Meng
- Institute for Chemical Research, Kyoto University, Uji, Japan
| | | | | | | | - Runar Stokke
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
| | | | - David Brandt
- Bielefeld University, CeBiTec, Bielefeld, Germany
| | | | - Håkon Dahle
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | | | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Ruth-Anne Sandaa
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
3
|
Nunes-Alves AK, Abrahão JS, de Farias ST. Yaravirus brasiliense genomic structure analysis and its possible influence on the metabolism. Genet Mol Biol 2025; 48:e20240139. [PMID: 39918235 PMCID: PMC11803573 DOI: 10.1590/1678-4685-gmb-2024-0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/11/2024] [Indexed: 02/11/2025] Open
Abstract
Here we analyze the Yaravirus brasiliense, an amoeba-infecting 80-nm-sized virus with a 45-kbp dsDNA, using structural molecular modeling. Almost all of its 74 genes were previously identified as ORFans. Considering its unprecedented genetic content, we analyzed Yaravirus genome to understand its genetic organization, its proteome, and how it interacts with its host. We reported possible functions for all Yaravirus proteins. Our results suggest the first ever report of a fragment proteome, in which the proteins are separated in modules and joined together at a protein level. Given the structural resemblance between some Yaravirus proteins and proteins related to tricarboxylic acid cycle (TCA), glyoxylate cycle, and the respiratory complexes, our work also allows us to hypothesize that these viral proteins could be modulating cell metabolism by upregulation. The presence of these TCA cycle-related enzymes specifically could be trying to overcome the cycle's control points, since they are strategic proteins that maintain malate and oxaloacetate levels. Therefore, we propose that Yaravirus proteins are redirecting energy and resources towards viral production, and avoiding TCA cycle control points, "unlocking" the cycle. Altogether, our data helped understand a previously almost completely unknown virus, and a little bit more of the incredible diversity of viruses.
Collapse
Affiliation(s)
- Ana Karoline Nunes-Alves
- Universidade Federal da Paraíba, Departamento de Biologia Molecular,
Laboratório de Genética Evolutiva Paulo Leminski, João Pessoa, PB, Brazil
| | - Jônatas Santos Abrahão
- Universidade Federal de Minas Gerais, Instituto de Ciências
Biológicas, Departamento de Microbiologia, Laboratório de Vírus, Belo Horizonte, MG,
Brazil
| | - Sávio Torres de Farias
- Universidade Federal da Paraíba, Departamento de Biologia Molecular,
Laboratório de Genética Evolutiva Paulo Leminski, João Pessoa, PB, Brazil
- Network of Researchers on the Chemical Evolution of Life (NoRCEL),
Leeds, United Kingdom
| |
Collapse
|
4
|
Tee HS, Ku C. Host-Calibrated Time Tree Caps the Age of Giant Viruses. Mol Biol Evol 2025; 42:msaf033. [PMID: 39976376 PMCID: PMC11840718 DOI: 10.1093/molbev/msaf033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/21/2025] Open
Abstract
Viruses are widespread parasites with important impacts on public health, economy, and ecosystems. However, little is known about their origins, ages, and early evolutionary relationships with hosts. Here, we infer the maximum divergence times for eukaryotic giant DNA viruses (phylum Nucleocytoviricota) with dating analyses calibrated by host taxon ages of virus lineages with specific host ranges. The last common ancestor of Nucleocytoviricota existed after 1,000 million years ago, suggesting a much later origin than that of the eukaryotes. The early evolution of Nucleocytoviricota either coincided with or postdated a substantial increase in the oxygen levels on the Earth's surface during the Neoproterozoic Era. The lineage diversification of giant viruses was frequently associated with host shifts, including two major transitions from amoebozoan hosts to animal hosts that eventually led to the emergence of iridoviruses and African swine fever viruses within the last 450 million years. These results outline the evolutionary timescale of a major virus group and are pivotal for further understanding the virus-host interactions and their potential ecological roles in the Earth's history.
Collapse
Affiliation(s)
- Hwee Sze Tee
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Chuan Ku
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
5
|
Langley CA, Dietzen PA, Emerman M, Tenthorey JL, Malik HS. Antiviral Mx proteins have an ancient origin and widespread distribution among eukaryotes. Proc Natl Acad Sci U S A 2025; 122:e2416811122. [PMID: 39854241 PMCID: PMC11789081 DOI: 10.1073/pnas.2416811122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025] Open
Abstract
Mx proteins, first identified in mammals, encode potent antiviral activity against a wide range of viruses. Mx proteins arose within the Dynamin superfamily of proteins (DSP), which mediate critical cellular processes, such as endocytosis and mitochondrial, plastid, and peroxisomal dynamics. Despite their crucial role, the evolutionary origins of Mx proteins are poorly understood. Through comprehensive phylogenomic analyses with progressively expanded taxonomic sampling, we demonstrate that Mx proteins predate the interferon signaling system in vertebrates. Our analyses find an ancient monophyletic DSP lineage in eukaryotes that groups vertebrate and invertebrate Mx proteins with fungal MxF proteins, the largely uncharacterized plant and algal Dynamin 4A/4C proteins, and representatives from several other eukaryotic lineages, suggesting that Mx-like proteins date back close to the origin of Eukarya. Our phylogenetic analyses also find host-encoded and nucleocytoplasmic large DNA viruses-encoded DSPs interspersed in four distinct DSP lineages, indicating recurrent viral theft of host DSPs. Our analyses thus reveal an ancient history of viral and antiviral functions encoded by the Dynamin superfamily in eukaryotes.
Collapse
Affiliation(s)
- Caroline A. Langley
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA98195
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA98109
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Peter A. Dietzen
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA98195
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA98109
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Michael Emerman
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA98109
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Jeannette L. Tenthorey
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA98109
- Cellular Molecular Pharmacology Department, University of California San Francisco, San Francisco, CA94143
| | - Harmit S. Malik
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA98109
- HHMI, Fred Hutchinson Cancer Center, Seattle, WA98109
| |
Collapse
|
6
|
Fang Y, Meng L, Xia J, Gotoh Y, Hayashi T, Nagasaki K, Endo H, Okazaki Y, Ogata H. Genome-resolved year-round dynamics reveal a broad range of giant virus microdiversity. mSystems 2025; 10:e0116824. [PMID: 39714212 PMCID: PMC11748492 DOI: 10.1128/msystems.01168-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/03/2024] [Indexed: 12/24/2024] Open
Abstract
Giant viruses are crucial for marine ecosystem dynamics because they regulate microeukaryotic community structure, accelerate carbon and nutrient cycles, and drive the evolution of their hosts through co-evolutionary processes. Previously reported long-term observations revealed that these viruses display seasonal fluctuations in abundance. However, the underlying genetic mechanisms driving such dynamics of these viruses remain largely unknown. In this study, we investigated the dynamics of giant viruses using time-series metagenomes from eutrophic coastal seawater samples collected over 20 months. A newly developed computational pipeline generated 1,065 high-quality genomes covering six major giant virus lineages. These genomic data revealed year-round recovery of the viral community structure at the study site and distinct dynamics of viral populations that were classified as persistent (n = 9), seasonal (n = 389), sporadic (n = 318), or others. By profiling the intra-species nucleotide-resolved microdiversity through read mapping, we also identified year-round recovery dynamics at subpopulation level for viruses classified as persistent or seasonal. Our results further indicated that giant viruses with broader niche breadth tended to exhibit higher levels of microdiversity. We argue that greater microdiversity of viruses likely enhances adaptability and thus survival under the virus-host arms race during prolonged interactions with their hosts.IMPORTANCERecent genome-resolved metagenomic surveys have uncovered the vast genomic diversity of giant viruses, which play significant roles in aquatic ecosystems by acting as bloom terminators and influencing biogeochemical cycles. However, the relationship between the ecological dynamics of giant viruses and underlying genetic structures of viral populations remains unresolved. In this study, we performed deep metagenomic sequencing of seawater samples collected across a time-series from a coastal area in Japan. The results revealed a significant positive correlation between microdiversity and temporal persistence of giant virus populations, suggesting that population structure is a crucial factor for adaptation and survival in the interactions with their hosts.
Collapse
Grants
- 21H05057 MEXT | Japan Society for the Promotion of Science (JSPS)
- Nos. 2018-31 Kyoto University | Institute for Chemical Research, Kyoto University (ICR)
- Nos. 2017-25 Kyoto University | Institute for Chemical Research, Kyoto University (ICR)
- 22H00384 MEXT | Japan Society for the Promotion of Science (JSPS)
- 22H00385 MEXT | Japan Society for the Promotion of Science (JSPS)
- 16H06279 MEXT | Japan Society for the Promotion of Science (JSPS)
- 16H06429 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 16K21723 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 16H06437 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- Nos. 2021-33 Kyoto University | Institute for Chemical Research, Kyoto University (ICR)
- Nos. 2019-33 Kyoto University | Institute for Chemical Research, Kyoto University (ICR)
Collapse
Affiliation(s)
- Yue Fang
- Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Lingjie Meng
- Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Jun Xia
- Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Yasuhiro Gotoh
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keizo Nagasaki
- Faculty of Science and Technology, Kochi University, Kochi, Japan
| | - Hisashi Endo
- Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Yusuke Okazaki
- Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Uji, Japan
| |
Collapse
|
7
|
Schulz F, Yan Y, Weiner AK, Ahsan R, Katz LA, Woyke T. Protists as mediators of complex microbial and viral associations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.29.630703. [PMID: 39803511 PMCID: PMC11722414 DOI: 10.1101/2024.12.29.630703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Microbial eukaryotes (aka protists) are known for their important roles in nutrient cycling across different ecosystems. However, the composition and function of protist-associated microbiomes remains largely elusive. Here, we employ cultivation-independent single-cell isolation and genome-resolved metagenomics to provide detailed insights into underexplored microbiomes and viromes of over 100 currently uncultivable ciliates and amoebae isolated from diverse environments. Our findings reveal unique microbiome compositions and hint at an intricate network of complex interactions and associations with bacterial symbionts and viruses. We observed stark differences between ciliates and amoebae in terms of microbiome and virome compositions, highlighting the specificity of protist-microbe interactions. Over 115 of the recovered microbial genomes were affiliated with known endosymbionts of eukaryotes, including diverse members of the Holosporales, Rickettsiales, Legionellales, Chlamydiae, Dependentiae , and more than 250 were affiliated with possible host-associated bacteria of the phylum Patescibacteria. We also identified more than 80 giant viruses belonging to diverse viral lineages, of which some were actively expressing genes in single cell transcriptomes, suggesting a possible association with the sampled protists. We also revealed a wide range of other viruses that were predicted to infect eukaryotes or host-associated bacteria. Our results provide further evidence that protists serve as mediators of complex microbial and viral associations, playing a critical role in ecological networks. The frequent co-occurrence of giant viruses and diverse microbial symbionts in our samples suggests multipartite associations, particularly among amoebae. Our study provides a preliminary assessment of the microbial diversity associated with lesser-known protist lineages and paves the way for a deeper understanding of protist ecology and their roles in environmental and human health.
Collapse
Affiliation(s)
| | - Ying Yan
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
| | - Agnes K.M. Weiner
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
| | - Ragib Ahsan
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
- University of Massachusetts Amherst, Program in Organismic and Evolutionary Biology, Amherst, Massachusetts, USA
| | - Laura A. Katz
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
- University of Massachusetts Amherst, Program in Organismic and Evolutionary Biology, Amherst, Massachusetts, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Berkeley, California, USA
- University of California Merced, Life and Environmental Sciences, Merced, California, USA
| |
Collapse
|
8
|
Chase EE, Pitot T, Bouchard S, Triplet S, Przybyla C, Gobet A, Desnues C, Blanc G. Viral dynamics in a high-rate algal pond reveals a burst of Phycodnaviridae diversity correlated with episodic algal mortality. mBio 2024; 15:e0280324. [PMID: 39530688 PMCID: PMC11633385 DOI: 10.1128/mbio.02803-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
This study explores virus-host dynamics in a unique environment: an industrial high-rate algal pond (HRAP). A wealth of novel DNA algal viruses are revealed, including members of Nucleocytoviricota "giant viruses" and the enigmatic Preplasmiviricota (e.g., virophages and polinton-like viruses). Several species of single-celled eukaryotic photosynthetic algae are identified (Chlorophyta) as putative hosts, with alternating dominant populations during the year of study. We specifically observe a surprising diversity of giant viruses from the family Phycodnaviridae (Nucleocytoviricota), including phylogenetically related but highly diversified genotypes appearing in the HRAP that we suggest are implicated in bloom collapse. We hypothesize that these related Phycodnaviridae lineages infect the same algal species of the genus Picochlorum that has been identified in the HRAP. This study establishes a baseline for comprehending the role viruses play in algal farming and emphasizes the necessity of controlling the viral load in future culture system development to optimize algal growth. IMPORTANCE The virosphere is ubiquitous, but we have yet to characterize many environments where viruses exist. In an industrial polyculture of microalgae, a wealth of viruses persist, their diversity and dynamics changing over time and consequently give evidence of their evolution and ecological strategies. Several notable infectious agents of the culture's algae appear, including giant viruses, polinton-like viruses, and a virophage. As our reliance and interest in algal compound-based cosmetics, pharmaceuticals, and bio-plastics increases, so must our understanding of these systems, including the unique viruses that appear there.
Collapse
Affiliation(s)
- E. E. Chase
- Microbiologie Environnementale Biotechnologie, Institut Méditerranéen d'Océanologie, Campus de Luminy, Marseille, France
- Institut hospitalo-universitaire (IHU) Méditerranée infection, Marseille, France
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, Tennessee, USA
| | - T. Pitot
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, Québec, Canada
| | - S. Bouchard
- Microbiologie Environnementale Biotechnologie, Institut Méditerranéen d'Océanologie, Campus de Luminy, Marseille, France
| | - S. Triplet
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - C. Przybyla
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - A. Gobet
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - C. Desnues
- Microbiologie Environnementale Biotechnologie, Institut Méditerranéen d'Océanologie, Campus de Luminy, Marseille, France
- Institut hospitalo-universitaire (IHU) Méditerranée infection, Marseille, France
| | - G. Blanc
- Microbiologie Environnementale Biotechnologie, Institut Méditerranéen d'Océanologie, Campus de Luminy, Marseille, France
| |
Collapse
|
9
|
Carvalho JVRP, Carlson RM, Ghosh J, Queiroz VF, de Oliveira EG, Botelho BB, Filho CAC, Agarkova IV, McClung OW, Van Etten JL, Dunigan DD, Rodrigues RAL. Genomics and evolutionary analysis of Chlorella variabilis-infecting viruses demarcate criteria for defining species of giant viruses. J Virol 2024; 98:e0036124. [PMID: 39404263 PMCID: PMC11575271 DOI: 10.1128/jvi.00361-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/28/2024] [Indexed: 11/20/2024] Open
Abstract
Chloroviruses exhibit a close relationship with their hosts with the phenotypic aspect of their ability to form lytic plaques having primarily guided the taxonomy. However, with the isolation of viruses that are only able to complete their replication cycle in one strain of Chlorella variabilis, systematic challenges emerged. In this study, we described the genomic features of 53 new chlorovirus isolates and used them to elucidate part of the evolutionary history and taxonomy of this clade. Our analysis revealed new chloroviruses with the largest genomes to date (>400 kbp) and indicated that four genomic features are statistically different in the viruses that only infect the Syngen 2-3 strain of C. variabilis (OSy viruses). We found large regions of dissimilarity in the genomes of viruses PBCV-1 and OSy-NE5 when compared with the other genomes. These regions contained genes related to the interaction with the host cell machinery and viral capsid proteins, which provided insights into the evolution of the replicative and structural modules in these giant viruses. Phylogenetic analysis using hallmark genes of Nucleocytoviricota revealed that OSy-viruses evolved from the NC64A-viruses, possibly emerging as a result of the strict relationship with their hosts. Merging phylogenetics and nucleotide identity analyses, we propose strategies to demarcate viral species, resulting in seven new species of chloroviruses. Collectively, our results show how genomic data can be used as lines of evidence to demarcate viral species. Using the chloroviruses as a case study, we expect that similar initiatives will emerge using the basis exhibited here.IMPORTANCEChloroviruses are a group of giant viruses with long dsDNA genomes that infect different species of Chlorella-like green algae. They are host-specific, and some isolates can only replicate within a single strain of Chlorella variabilis. The genomics of these viruses is still poorly explored, and the characterization of new isolates provides important data on their genetic diversity and evolution. In this work, we describe 53 new chlorovirus genomes, including many isolated from alkaline lakes for the first time. Through comparative genomics and molecular phylogeny, we provide evidence of genomic gigantism in chloroviruses and show that a subset of viruses became highly specific for their hosts at a particular point in evolutionary history. We propose criteria to demarcate species of chloroviruses, paving the way for an update in the taxonomy of other groups of viruses. This study is a new and important piece in the complex puzzle of giant algal viruses.
Collapse
Affiliation(s)
- João Victor R. P. Carvalho
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Roger M. Carlson
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, USA
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska, USA
| | - Jayadri Ghosh
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, USA
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska, USA
| | - Victória F. Queiroz
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ellen G. de Oliveira
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bruna B. Botelho
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Clécio A. C. Filho
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Irina V. Agarkova
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, USA
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska, USA
| | - O. William McClung
- Department of Mathematics and Computer Science, Nebraska Wesleyan University, Lincoln, Nebraska, USA
| | - James L. Van Etten
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, USA
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska, USA
| | - David D. Dunigan
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, USA
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska, USA
| | - Rodrigo A. L. Rodrigues
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
10
|
Aggarwal T, Kondabagil K. Proteome-scale structural prediction of the giant Marseillevirus reveals conserved folds and putative homologs of the hypothetical proteins. Arch Virol 2024; 169:222. [PMID: 39414627 DOI: 10.1007/s00705-024-06155-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/02/2024] [Indexed: 10/18/2024]
Abstract
A significant proportion of the highly divergent and novel proteins of giant viruses are termed "hypothetical" due to the absence of detectable homologous sequences in the existing databases. The quality of genome and proteome annotations often relies on the identification of signature sequences and motifs in order to assign putative functions to the gene products. These annotations serve as the first set of information for researchers to develop workable hypotheses for further experimental research. The structure-function relationship of proteins suggests that proteins with similar functions may also exhibit similar folding patterns. Here, we report the first proteome-wide structure prediction of the giant Marseillevirus. We use AlphaFold-predicted structures and their comparative analysis with the experimental structures in the PDB database to preliminarily annotate the viral proteins. Our work highlights the conservation of structural folds in proteins with highly divergent sequences and reveals potentially paralogous relationships among them. We also provide evidence for gene duplication and fusion as contributing factors to giant viral genome expansion and evolution. With the easily accessible AlphaFold and other advanced bioinformatics tools for high-confidence de novo structure prediction, we propose a combined sequence and predicted-structure-based proteome annotation approach for the initial characterization of novel and complex organisms or viruses.
Collapse
Affiliation(s)
- Tanvi Aggarwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.
| |
Collapse
|
11
|
Langley CA, Dietzen PA, Emerman M, Tenthorey JL, Malik HS. Antiviral Mx proteins have an ancient origin and widespread distribution among eukaryotes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606855. [PMID: 39149278 PMCID: PMC11326297 DOI: 10.1101/2024.08.06.606855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
First identified in mammals, Mx proteins are potent antivirals against a broad swathe of viruses. Mx proteins arose within the Dynamin superfamily of proteins (DSP), mediating critical cellular processes, such as endocytosis and mitochondrial, plastid, and peroxisomal dynamics. And yet, the evolutionary origins of Mx proteins are poorly understood. Using a series of phylogenomic analyses with stepwise increments in taxonomic coverage, we show that Mx proteins predate the interferon signaling system in vertebrates. Our analyses find an ancient monophyletic DSP lineage in eukaryotes that groups vertebrate and invertebrate Mx proteins with previously undescribed fungal MxF proteins, the relatively uncharacterized plant and algal Dynamin 4A/4C proteins, and representatives from several early-branching eukaryotic lineages. Thus, Mx-like proteins date back close to the origin of Eukarya. Our phylogenetic analyses also reveal that host-encoded and NCLDV (nucleocytoplasmic large DNA viruses)-encoded DSPs are interspersed in four distinct DSP lineages, indicating recurrent viral theft of host DSPs. Our analyses thus reveal an ancient history of viral and antiviral functions encoded by the Dynamin superfamily in eukaryotes.
Collapse
Affiliation(s)
- Caroline A. Langley
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA
| | - Peter A. Dietzen
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA
| | - Michael Emerman
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA
| | - Jeannette L. Tenthorey
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA
- Cellular Molecular Pharmacology, University of California San Francisco, San Francisco, CA
| | - Harmit S. Malik
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|
12
|
Wu J, Meng L, Gaïa M, Hikida H, Okazaki Y, Endo H, Ogata H. Gene Transfer Among Viruses Substantially Contributes to Gene Gain of Giant Viruses. Mol Biol Evol 2024; 41:msae161. [PMID: 39093595 PMCID: PMC11334073 DOI: 10.1093/molbev/msae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
The phylum Nucleocytoviricota comprises a diverse group of double-stranded DNA viruses that display a wide range of gene repertoires. Although these gene repertoires determine the characteristics of individual viruses, the evolutionary processes that have shaped the gene repertoires of extant viruses since their common ancestor are poorly characterized. In this study, we aimed to address this gap in knowledge by using amalgamated likelihood estimation, a probabilistic tree reconciliation method that infers evolutionary scenarios by distinguishing origination, gene duplications, virus-to-virus horizontal gene transfer (vHGT), and gene losses. We analyzed over 4,700 gene families from 195 genomes spanning all known viral orders. The evolutionary reconstruction suggests a history of extensive gene gains and losses during the evolution of these viruses, notably with vHGT contributing to gene gains at a comparable level to duplications and originations. The vHGT frequently occurred between phylogenetically closely related viruses, as well as between distantly related viruses with an overlapping host range. We observed a pattern of massive gene duplications that followed vHGTs for gene families that was potentially related to host range control and virus-host arms race. These results suggest that vHGT represents a previously overlooked, yet important, evolutionary force that integrates the evolutionary paths of multiple viruses and affects shaping of Nucleocytoviricota virus gene repertoires.
Collapse
Affiliation(s)
- Junyi Wu
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Lingjie Meng
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Morgan Gaïa
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, Evry F-91057, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris F-75016, France
| | - Hiroyuki Hikida
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Yusuke Okazaki
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Hisashi Endo
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Hiroyuki Ogata
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan
| |
Collapse
|
13
|
Maio N, Heffner AL, Rouault TA. Iron‑sulfur clusters in viral proteins: Exploring their elusive nature, roles and new avenues for targeting infections. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119723. [PMID: 38599324 PMCID: PMC11139609 DOI: 10.1016/j.bbamcr.2024.119723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/13/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Viruses have evolved complex mechanisms to exploit host factors for replication and assembly. In response, host cells have developed strategies to block viruses, engaging in a continuous co-evolutionary battle. This dynamic interaction often revolves around the competition for essential resources necessary for both host cell and virus replication. Notably, iron, required for the biosynthesis of several cofactors, including iron‑sulfur (FeS) clusters, represents a critical element in the ongoing competition for resources between infectious agents and host. Although several recent studies have identified FeS cofactors at the core of virus replication machineries, our understanding of their specific roles and the cellular processes responsible for their incorporation into viral proteins remains limited. This review aims to consolidate our current knowledge of viral components that have been characterized as FeS proteins and elucidate how viruses harness these versatile cofactors to their benefit. Its objective is also to propose that viruses may depend on incorporation of FeS cofactors more extensively than is currently known. This has the potential to revolutionize our understanding of viral replication, thereby carrying significant implications for the development of strategies to target infections.
Collapse
Affiliation(s)
- Nunziata Maio
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA.
| | - Audrey L Heffner
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA; Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tracey A Rouault
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| |
Collapse
|
14
|
Arthofer P, Panhölzl F, Delafont V, Hay A, Reipert S, Cyran N, Wienkoop S, Willemsen A, Sifaoui I, Arberas-Jiménez I, Schulz F, Lorenzo-Morales J, Horn M. A giant virus infecting the amoeboflagellate Naegleria. Nat Commun 2024; 15:3307. [PMID: 38658525 PMCID: PMC11043551 DOI: 10.1038/s41467-024-47308-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Giant viruses (Nucleocytoviricota) are significant lethality agents of various eukaryotic hosts. Although metagenomics indicates their ubiquitous distribution, available giant virus isolates are restricted to a very small number of protist and algal hosts. Here we report on the first viral isolate that replicates in the amoeboflagellate Naegleria. This genus comprises the notorious human pathogen Naegleria fowleri, the causative agent of the rare but fatal primary amoebic meningoencephalitis. We have elucidated the structure and infection cycle of this giant virus, Catovirus naegleriensis (a.k.a. Naegleriavirus, NiV), and show its unique adaptations to its Naegleria host using fluorescence in situ hybridization, electron microscopy, genomics, and proteomics. Naegleriavirus is only the fourth isolate of the highly diverse subfamily Klosneuvirinae, and like its relatives the NiV genome contains a large number of translation genes, but lacks transfer RNAs (tRNAs). NiV has acquired genes from its Naegleria host, which code for heat shock proteins and apoptosis inhibiting factors, presumably for host interactions. Notably, NiV infection was lethal to all Naegleria species tested, including the human pathogen N. fowleri. This study expands our experimental framework for investigating giant viruses and may help to better understand the basic biology of the human pathogen N. fowleri.
Collapse
Affiliation(s)
- Patrick Arthofer
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
- University of Vienna, Doctoral School in Microbiology and Environmental Science, Vienna, Austria
| | - Florian Panhölzl
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | - Vincent Delafont
- Ecologie et Biologie des Interactions Laboratory (EBI), Microorganisms, hosts & environments team, Université de Poitiers, UMR CNRS, Poitiers, France
| | - Alban Hay
- Ecologie et Biologie des Interactions Laboratory (EBI), Microorganisms, hosts & environments team, Université de Poitiers, UMR CNRS, Poitiers, France
| | - Siegfried Reipert
- University of Vienna, Research Support Facilities UBB, Vienna, Austria
| | - Norbert Cyran
- University of Vienna, Research Support Facilities UBB, Vienna, Austria
| | - Stefanie Wienkoop
- University of Vienna, Department of Functional and Evolutionary Ecology, Division of Molecular Systems Biology, Vienna, Austria
| | - Anouk Willemsen
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, and Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Islas Canarias, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Iñigo Arberas-Jiménez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, and Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Islas Canarias, Spain
| | - Frederik Schulz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, USA
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, and Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Islas Canarias, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Matthias Horn
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria.
| |
Collapse
|
15
|
Buscaglia M, Iriarte JL, Schulz F, Díez B. Adaptation strategies of giant viruses to low-temperature marine ecosystems. THE ISME JOURNAL 2024; 18:wrae162. [PMID: 39178288 PMCID: PMC11512752 DOI: 10.1093/ismejo/wrae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/16/2024] [Accepted: 08/22/2024] [Indexed: 08/25/2024]
Abstract
Microbes in marine ecosystems have evolved their gene content to thrive successfully in the cold. Although this process has been reasonably well studied in bacteria and selected eukaryotes, less is known about the impact of cold environments on the genomes of viruses that infect eukaryotes. Here, we analyzed cold adaptations in giant viruses (Nucleocytoviricota and Mirusviricota) from austral marine environments and compared them with their Arctic and temperate counterparts. We recovered giant virus metagenome-assembled genomes (98 Nucleocytoviricota and 12 Mirusviricota MAGs) from 61 newly sequenced metagenomes and metaviromes from sub-Antarctic Patagonian fjords and Antarctic seawater samples. When analyzing our data set alongside Antarctic and Arctic giant viruses MAGs already deposited in the Global Ocean Eukaryotic Viral database, we found that Antarctic and Arctic giant viruses predominantly inhabit sub-10°C environments, featuring a high proportion of unique phylotypes in each ecosystem. In contrast, giant viruses in Patagonian fjords were subject to broader temperature ranges and showed a lower degree of endemicity. However, despite differences in their distribution, giant viruses inhabiting low-temperature marine ecosystems evolved genomic cold-adaptation strategies that led to changes in genetic functions and amino acid frequencies that ultimately affect both gene content and protein structure. Such changes seem to be absent in their mesophilic counterparts. The uniqueness of these cold-adapted marine giant viruses may now be threatened by climate change, leading to a potential reduction in their biodiversity.
Collapse
Affiliation(s)
- Marianne Buscaglia
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins 340, Santiago 8331150, Chile
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
- Millennium Institute Center for Genome Regulation (CGR), Av. Libertador Bernardo O’Higgins 340, Santiago 8331150, Chile
- Center for Climate and Resilience Research (CR)2, Universidad de Chile, Av. Blanco Encalada 2002, Santiago 8370449, Chile
| | - José Luis Iriarte
- Centro de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Avda. El Bosque 01789, Punta Arenas 6210445, Chile
- Instituto de Acuicultura y Medio Ambiente, Universidad Austral de Chile, Los Pinos s/n Balneario Pelluco, Puerto Montt 5500000, Chile
| | - Frederik Schulz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| | - Beatriz Díez
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins 340, Santiago 8331150, Chile
- Millennium Institute Center for Genome Regulation (CGR), Av. Libertador Bernardo O’Higgins 340, Santiago 8331150, Chile
- Center for Climate and Resilience Research (CR)2, Universidad de Chile, Av. Blanco Encalada 2002, Santiago 8370449, Chile
| |
Collapse
|
16
|
Vieira HH, Bulzu PA, Kasalický V, Haber M, Znachor P, Piwosz K, Ghai R. Isolation of a widespread giant virus implicated in cryptophyte bloom collapse. THE ISME JOURNAL 2024; 18:wrae029. [PMID: 38401169 PMCID: PMC10960955 DOI: 10.1093/ismejo/wrae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/29/2024] [Accepted: 02/22/2024] [Indexed: 02/26/2024]
Abstract
Photosynthetic cryptophytes are ubiquitous protists that are major participants in the freshwater phytoplankton bloom at the onset of spring. Mortality due to change in environmental conditions and grazing have been recognized as key factors contributing to bloom collapse. In contrast, the role of viral outbreaks as factors terminating phytoplankton blooms remains unknown from freshwaters. Here, we isolated and characterized a cryptophyte virus contributing to the annual collapse of a natural cryptophyte spring bloom population. This viral isolate is also representative for a clade of abundant giant viruses (phylum Nucleocytoviricota) found in freshwaters all over the world.
Collapse
Affiliation(s)
- Helena H Vieira
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
| | - Paul-Adrian Bulzu
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
| | - Vojtěch Kasalický
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
| | - Markus Haber
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
| | - Petr Znachor
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
| | - Kasia Piwosz
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, 81-332 Gdynia, Poland
| | - Rohit Ghai
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
| |
Collapse
|
17
|
Roach MJ, Beecroft SJ, Mihindukulasuriya KA, Wang L, Paredes A, Cárdenas LAC, Henry-Cocks K, Lima LFO, Dinsdale EA, Edwards RA, Handley SA. Hecatomb: an integrated software platform for viral metagenomics. Gigascience 2024; 13:giae020. [PMID: 38832467 PMCID: PMC11148595 DOI: 10.1093/gigascience/giae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/18/2024] [Accepted: 04/08/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Modern sequencing technologies offer extraordinary opportunities for virus discovery and virome analysis. Annotation of viral sequences from metagenomic data requires a complex series of steps to ensure accurate annotation of individual reads and assembled contigs. In addition, varying study designs will require project-specific statistical analyses. FINDINGS Here we introduce Hecatomb, a bioinformatic platform coordinating commonly used tasks required for virome analysis. Hecatomb means "a great sacrifice." In this setting, Hecatomb is "sacrificing" false-positive viral annotations using extensive quality control and tiered-database searches. Hecatomb processes metagenomic data obtained from both short- and long-read sequencing technologies, providing annotations to individual sequences and assembled contigs. Results are provided in commonly used data formats useful for downstream analysis. Here we demonstrate the functionality of Hecatomb through the reanalysis of a primate enteric and a novel coral reef virome. CONCLUSION Hecatomb provides an integrated platform to manage many commonly used steps for virome characterization, including rigorous quality control, host removal, and both read- and contig-based analysis. Each step is managed using the Snakemake workflow manager with dependency management using Conda. Hecatomb outputs several tables properly formatted for immediate use within popular data analysis and visualization tools, enabling effective data interpretation for a variety of study designs. Hecatomb is hosted on GitHub (github.com/shandley/hecatomb) and is available for installation from Bioconda and PyPI.
Collapse
Affiliation(s)
- Michael J Roach
- Flinders Accelerator for Microbiome Exploration, Flinders University, Adelaide, SA, Australia
- Adelaide Centre for Epigenetics, University of Adelaide, Adelaide, SA, 5005, Australia
- South Australian Immunogenomics Cancer Institute, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Sarah J Beecroft
- Harry Perkins Institute of Medical Research, Perth, WA, 6009, Australia
| | - Kathie A Mihindukulasuriya
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Leran Wang
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Anne Paredes
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Luis Alberto Chica Cárdenas
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kara Henry-Cocks
- Flinders Accelerator for Microbiome Exploration, Flinders University, Adelaide, SA, Australia
| | | | - Elizabeth A Dinsdale
- Flinders Accelerator for Microbiome Exploration, Flinders University, Adelaide, SA, Australia
| | - Robert A Edwards
- Flinders Accelerator for Microbiome Exploration, Flinders University, Adelaide, SA, Australia
| | - Scott A Handley
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
18
|
Gaïa M, Forterre P. From Mimivirus to Mirusvirus: The Quest for Hidden Giants. Viruses 2023; 15:1758. [PMID: 37632100 PMCID: PMC10458455 DOI: 10.3390/v15081758] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Our perception of viruses has been drastically evolving since the inception of the field of virology over a century ago. In particular, the discovery of giant viruses from the Nucleocytoviricota phylum marked a pivotal moment. Their previously concealed diversity and abundance unearthed an unprecedented complexity in the virus world, a complexity that called for new definitions and concepts. These giant viruses underscore the intricate interactions that unfold over time between viruses and their hosts, and are themselves suspected to have played a significant role as a driving force in the evolution of eukaryotes since the dawn of this cellular domain. Whether they possess exceptional relationships with their hosts or whether they unveil the actual depths of evolutionary connections between viruses and cells otherwise hidden in smaller viruses, the attraction giant viruses exert on the scientific community and beyond continues to grow. Yet, they still hold surprises. Indeed, the recent identification of mirusviruses connects giant viruses to herpesviruses, each belonging to distinct viral realms. This discovery substantially broadens the evolutionary landscape of Nucleocytoviricota. Undoubtedly, the years to come will reveal their share of surprises.
Collapse
Affiliation(s)
- Morgan Gaïa
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75012 Paris, France
| | - Patrick Forterre
- Institut de Biologie Intégrative de la Cellule (I2BC), CNRS, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
- Département de Microbiologie, Institut Pasteur, 75015 Paris, France
| |
Collapse
|
19
|
Widespread Distribution and Evolution of Poxviral Entry-Fusion Complex Proteins in Giant Viruses. Microbiol Spectr 2023:e0494422. [PMID: 36912656 PMCID: PMC10100723 DOI: 10.1128/spectrum.04944-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
Poxviruses are known to encode a set of proteins that form an entry-fusion complex (EFC) to mediate virus entry. However, the diversity, evolution, and origin of these EFC proteins remain poorly understood. Here, we identify the EFC protein homologs in poxviruses and other giant viruses of the phylum Nucleocytoviricota. The 11 EFC genes are present in almost all poxviruses, with the two smallest, G3 and O3, being absent in Entomopoxvirinae and basal lineages of Chordopoxvirinae. Five of the EFC genes are further grouped into two families, A16/G9/J5 and F9/L1, which are widely distributed across other major lineages of Nucleocytoviricota, including metagenome-assembled genomes, but are generally absent in viruses infecting algae or nonamoebozoan heterotrophic protists. The A16/G9/J5 and F9/L1 families cooccur, mostly as single copies, in 93% of the non-Poxviridae giant viruses that have at least one of them. Distribution and phylogenetic patterns suggest that both families originated in the ancestor of Nucleocytoviricota. In addition to the Poxviridae genes, homologs from each of the other Nucleocytoviricota families are largely clustered together, suggesting their ancient presence and vertical inheritance. Despite deep sequence divergences, we observed noticeable conservation of cysteine residues and predicted structures between EFC proteins of Poxviridae and other families. Overall, our study reveals widespread distribution of these EFC protein homologs beyond poxviruses, implies the existence of a conserved membrane fusion mechanism, and sheds light on host range and ancient evolution of Nucleocytoviricota. IMPORTANCE Fusion between virus and host membranes is critical for viruses to release genetic materials and to initiate infection. Whereas most viruses use a single protein for membrane fusion, poxviruses employ a multiprotein entry-fusion complex (EFC). We report that two major families of the EFC proteins are widely distributed within the virus phylum Nucleocytoviricota, which includes poxviruses and other double-stranded (dsDNA) giant viruses that infect animals, amoebozoans, algae, and various microbial eukaryotes. Each of these two protein families is structurally conserved, traces its origin to the root of Nucleocytoviricota, was passed down to the major subclades of Nucleocytoviricota, and is retained in most giant viruses known to infect animals and amoebozoans. The EFC proteins therefore represent a potential mechanism for virus entry in diverse giant viruses. We hypothesize that they may have facilitated the infection of an animal/amoebozoan-like host by the last Nucleocytoviricota common ancestor.
Collapse
|
20
|
Elimination of Foreign Sequences in Eukaryotic Viral Reference Genomes Improves the Accuracy of Virome Analysis. mSystems 2022; 7:e0090722. [PMID: 36286492 PMCID: PMC9765019 DOI: 10.1128/msystems.00907-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Widespread in public databases, foreign contaminant sequences pose a substantial obstacle in genomic analyses. Such contamination in viral genome databases is also notorious but more complicated and often causes questionable results in various applications, particularly in virome-based virus detection. Here, we conducted comprehensive screening and identification of the foreign sequences hidden in the largest eukaryotic viral genome collections of GenBank and UniProt using a scrutiny pipeline, which enables us to rigorously detect those problematic viral sequences (PVSs) with origins in hosts, vectors, and laboratory components. As a result, a total of 766 nucleotide PVSs and 276 amino acid PVSs with lengths up to 6,605 bp were determined, which were widely distributed in 39 families with many involving highly public health-concerning viruses, such as hepatitis C virus, Crimean-Congo hemorrhagic fever virus, and filovirus. The majority of these PVSs are genomic fragments of hosts including humans and bacteria. However, they cannot simply be regarded as foreign contaminants, since parts of them are results of natural occurrence or artificial engineering of viruses. Nevertheless, they severely disturb such sequence-based analyses as genome annotation, taxonomic assignment, and virome profiling. Therefore, we provide a clean version of the eukaryotic viral reference data set by the removal of these PVSs, which allows more accurate virome analysis with less time consumed than with other comprehensive databases. IMPORTANCE High-throughput sequencing-based viromics highly depends on reference databases, but foreign contamination is widespread in public databases and often leads to confusing and even wrong conclusions in genomic analysis and viromic profiling. To address this issue, we systematically detected and identified the contamination in the largest viral sequence collections of GenBank and UniProt based on a stringent scrutiny pipeline. We found hundreds of PVSs that are related to hosts, vectors, and laboratory components. By the removal of them, the resulting data set greatly improves the accuracy and efficiency of eukaryotic virome profiling. These results refresh our knowledge of the type and origin of PVSs and also have warning implications for viromic analysis. Viromic practitioners should be aware of these problems caused by PVSs and need to realize that a careful review of bioinformatic results is necessary for a reliable conclusion.
Collapse
|
21
|
Schulz F, Abergel C, Woyke T. Giant virus biology and diversity in the era of genome-resolved metagenomics. Nat Rev Microbiol 2022; 20:721-736. [PMID: 35902763 DOI: 10.1038/s41579-022-00754-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 11/09/2022]
Abstract
The discovery of giant viruses, with capsids as large as some bacteria, megabase-range genomes and a variety of traits typically found only in cellular organisms, was one of the most remarkable breakthroughs in biology. Until recently, most of our knowledge of giant viruses came from ~100 species-level isolates for which genome sequences were available. However, these isolates were primarily derived from laboratory-based co-cultivation with few cultured protists and algae and, thus, did not reflect the true diversity of giant viruses. Although virus co-cultures enabled valuable insights into giant virus biology, many questions regarding their origin, evolution and ecological importance remain unanswered. With advances in sequencing technologies and bioinformatics, our understanding of giant viruses has drastically expanded. In this Review, we summarize our understanding of giant virus diversity and biology based on viral isolates as laboratory cultivation has enabled extensive insights into viral morphology and infection strategies. We then explore how cultivation-independent approaches have heightened our understanding of the coding potential and diversity of the Nucleocytoviricota. We discuss how metagenomics has revolutionized our perspective of giant viruses by revealing their distribution across our planet's biomes, where they impact the biology and ecology of a wide range of eukaryotic hosts and ultimately affect global nutrient cycles.
Collapse
Affiliation(s)
- Frederik Schulz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Chantal Abergel
- Aix Marseille University, CNRS, IGS UMR7256, IMM FR3479, IM2B, IO, Marseille, France
| | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. .,University of California Merced, Merced, CA, USA.
| |
Collapse
|
22
|
Brahim Belhaouari D, Pires De Souza GA, Lamb DC, Kelly SL, Goldstone JV, Stegeman JJ, Colson P, La Scola B, Aherfi S. Metabolic arsenal of giant viruses: Host hijack or self-use? eLife 2022; 11:e78674. [PMID: 35801640 PMCID: PMC9270025 DOI: 10.7554/elife.78674] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/22/2022] [Indexed: 12/11/2022] Open
Abstract
Viruses generally are defined as lacking the fundamental properties of living organisms in that they do not harbor an energy metabolism system or protein synthesis machinery. However, the discovery of giant viruses of amoeba has fundamentally challenged this view because of their exceptional genome properties, particle sizes and encoding of the enzyme machinery for some steps of protein synthesis. Although giant viruses are not able to replicate autonomously and still require a host for their multiplication, numerous metabolic genes involved in energy production have been recently detected in giant virus genomes from many environments. These findings have further blurred the boundaries that separate viruses and living organisms. Herein, we summarize information concerning genes and proteins involved in cellular metabolic pathways and their orthologues that have, surprisingly, been discovered in giant viruses. The remarkable diversity of metabolic genes described in giant viruses include genes encoding enzymes involved in glycolysis, gluconeogenesis, tricarboxylic acid cycle, photosynthesis, and β-oxidation. These viral genes are thought to have been acquired from diverse biological sources through lateral gene transfer early in the evolution of Nucleo-Cytoplasmic Large DNA Viruses, or in some cases more recently. It was assumed that viruses are capable of hijacking host metabolic networks. But the giant virus auxiliary metabolic genes also may represent another form of host metabolism manipulation, by expanding the catalytic capabilities of the host cells especially in harsh environments, providing the infected host cells with a selective evolutionary advantage compared to non-infected cells and hence favoring the viral replication. However, the mechanism of these genes' functionality remains unclear to date.
Collapse
Affiliation(s)
- Djamal Brahim Belhaouari
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), IHU Méditerranée Infection, Marseille, France, Aix-Marseille UniversitéMarseilleFrance
| | - Gabriel Augusto Pires De Souza
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), IHU Méditerranée Infection, Marseille, France, Aix-Marseille UniversitéMarseilleFrance
| | - David C Lamb
- Faculty of Medicine, Health and Life Sciences, Institute of Life Science, Swansea UniversitySwanseaUnited Kingdom
| | - Steven L Kelly
- Faculty of Medicine, Health and Life Sciences, Institute of Life Science, Swansea UniversitySwanseaUnited Kingdom
| | - Jared V Goldstone
- Biology Department, Woods Hole Oceanographic InstitutionWoods HoleUnited States
| | - John J Stegeman
- Biology Department, Woods Hole Oceanographic InstitutionWoods HoleUnited States
| | - Philippe Colson
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), IHU Méditerranée Infection, Marseille, France, Aix-Marseille UniversitéMarseilleFrance
- Assistance Publique - Hôpitaux de Marseille (AP-HM)MarseilleFrance
| | - Bernard La Scola
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), IHU Méditerranée Infection, Marseille, France, Aix-Marseille UniversitéMarseilleFrance
- Assistance Publique - Hôpitaux de Marseille (AP-HM)MarseilleFrance
| | - Sarah Aherfi
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), IHU Méditerranée Infection, Marseille, France, Aix-Marseille UniversitéMarseilleFrance
- Assistance Publique - Hôpitaux de Marseille (AP-HM)MarseilleFrance
| |
Collapse
|
23
|
Sun Y, Zhang Y, Zhang X. Complementary Effects of Virus Population Are Required for Efficient Virus Infection. Front Microbiol 2022; 13:877702. [PMID: 35633682 PMCID: PMC9137883 DOI: 10.3389/fmicb.2022.877702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
It is believed that the virions of a virus infecting a host may share the identical viral genome and characteristics. However, the role of genomic heterogeneity of the virions of a virus in virus infection has not been extensively explored. To address this issue, white spot syndrome virus (WSSV), a DNA virus infecting crustaceans, was characterized in the current study. In WSSV, differences in two nucleotides of the viral genome generated two types of WSSV, forming a virus population that consisted of Type A WSSV (encoding WSSV lncRNA-24) and Type B WSSV (encoding the wsv195 gene) at a ratio of 1:3. The virus populations in all virus-infected cells and tissues of different hosts exhibited a stable 1:3 structure. WSSV lncRNA-24 in Type A WSSV promoted virus infection by binding to shrimp and WSSV miRNAs, while the wsv195 gene in Type B WSSV played an essential role in virus infection. Loss of Type A WSSV or Type B WSSV in the WSSV population led to a 100-fold decrease in viral copy number in shrimp. Simultaneous loss of both types of WSSV prevented virus infection. These results indicated that the virus infection process was completed by two types of WSSV encoding different functional genes, revealing the complementary effects of WSSV population. Therefore, our study highlights the importance of the complementarity of virus population components in virus infection.
Collapse
Affiliation(s)
| | | | - Xiaobo Zhang
- College of Life Sciences and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Irwin NAT, Pittis AA, Richards TA, Keeling PJ. Systematic evaluation of horizontal gene transfer between eukaryotes and viruses. Nat Microbiol 2021; 7:327-336. [PMID: 34972821 DOI: 10.1038/s41564-021-01026-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 11/12/2021] [Indexed: 01/19/2023]
Abstract
Gene exchange between viruses and their hosts acts as a key facilitator of horizontal gene transfer and is hypothesized to be a major driver of evolutionary change. Our understanding of this process comes primarily from bacteria and phage co-evolution, but the mode and functional importance of gene transfers between eukaryotes and their viruses remain anecdotal. Here we systematically characterized viral-eukaryotic gene exchange across eukaryotic and viral diversity, identifying thousands of transfers and revealing their frequency, taxonomic distribution and projected functions. Eukaryote-derived viral genes, abundant in the Nucleocytoviricota, highlighted common strategies for viral host-manipulation, including metabolic reprogramming, proteolytic degradation and extracellular modification. Furthermore, viral-derived eukaryotic genes implicate genetic exchange in the early evolution and diversification of eukaryotes, particularly through viral-derived glycosyltransferases, which have impacted structures as diverse as algal cell walls, trypanosome mitochondria and animal tissues. These findings illuminate the nature of viral-eukaryotic gene exchange and its impact on the evolution of viruses and their eukaryotic hosts.
Collapse
Affiliation(s)
- Nicholas A T Irwin
- Merton College, University of Oxford, Oxford, UK. .,Department of Zoology, University of Oxford, Oxford, UK. .,Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Alexandros A Pittis
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
25
|
Sun TW, Ku C. Unraveling gene content variation across eukaryotic giant viruses based on network analyses and host associations. Virus Evol 2021; 7:veab081. [PMID: 34754514 PMCID: PMC8570155 DOI: 10.1093/ve/veab081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/31/2021] [Accepted: 09/15/2021] [Indexed: 12/31/2022] Open
Abstract
The nucleocytoplasmic large DNA viruses (NCLDVs, phylum Nucleocytoviricota) infect vertebrates, invertebrates, algae, amoebae, and other unicellular organisms across supergroups of eukaryotes and in various ecosystems. The expanding collection of their genome sequences has revolutionized our view of virus genome size and coding capacity. Phylogenetic trees based on a few core genes are commonly used as a model to understand their evolution. However, the tree topology can differ between analyses, and the vast majority of encoded genes might not share a common evolutionary history. To explore the whole-genome variation and evolution of NCLDVs, we dissected their gene contents using clustering, network, and comparative analyses. Our updated core-gene tree served as a framework to classify NCLDVs into families and intrafamilial lineages, but networks of individual genomes and family pangenomes showed patterns of gene sharing that contradict with the tree topology, in particular at higher taxonomic levels. Clustering of NCLDV genomes revealed variable granularity and degrees of gene sharing within each family, which cannot be inferred from the tree. At the level of NCLDV families, a correlation exists between gene content variation, but not core-gene sequence divergence, and host supergroup diversity. In addition, there is significantly higher gene sharing between divergent viruses that infect similar host types. The identified shared genes would be a useful resource for further functional analyses of NCLDV–host interactions. Overall this study provides a comprehensive view of gene repertoire variation in NCLDVs at different taxonomic levels, as well as a novel approach to studying the extremely diverse giant virus genomes.
Collapse
Affiliation(s)
- Tsu-Wang Sun
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chuan Ku
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
26
|
Mönttinen HAM, Bicep C, Williams TA, Hirt RP. The genomes of nucleocytoplasmic large DNA viruses: viral evolution writ large. Microb Genom 2021; 7. [PMID: 34542398 PMCID: PMC8715426 DOI: 10.1099/mgen.0.000649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The nucleocytoplasmic large DNA viruses (NCLDVs) are a diverse group that currently contain the largest known virions and genomes, also called giant viruses. The first giant virus was isolated and described nearly 20 years ago. Their genome sizes were larger than for any other known virus at the time and it contained a number of genes that had not been previously described in any virus. The origin and evolution of these unusually complex viruses has been puzzling, and various mechanisms have been put forward to explain how some NCLDVs could have reached genome sizes and coding capacity overlapping with those of cellular microbes. Here we critically discuss the evidence and arguments on this topic. We have also updated and systematically reanalysed protein families of the NCLDVs to further study their origin and evolution. Our analyses further highlight the small number of widely shared genes and extreme genomic plasticity among NCLDVs that are shaped via combinations of gene duplications, deletions, lateral gene transfers and de novo creation of protein-coding genes. The dramatic expansions of the genome size and protein-coding gene capacity characteristic of some NCLDVs is now increasingly understood to be driven by environmental factors rather than reflecting relationships to an ancient common ancestor among a hypothetical cellular lineage. Thus, the evolution of NCLDVs is writ large viral, and their origin, like all other viral lineages, remains unknown.
Collapse
Affiliation(s)
- Heli A M Mönttinen
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Present address: Institute of Biotechnology, Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, Viikki Biocenter 2, Helsinki 00014, Finland
| | - Cedric Bicep
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Present address: Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont Ferrand, France
| | - Tom A Williams
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,School of Biological Sciences, University of Bristol, 24 Tyndall Ave., Bristol, BS8 1TH, UK
| | - Robert P Hirt
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
27
|
Abstract
Giant DNA viruses of eukaryotes are notable for their extraordinary genome size and coding capacity. Once thought to be oddities in the virus world, these elusive microbes have turned out to be widely occurring in marine, freshwater, and terrestrial ecosystems and are commonly associated with diverse hosts, in particular microbial eukaryotes. This commentary discusses how new sequencing techniques and information can inform us about the interactions between giant viruses and eukaryotic hosts during the viral replication cycle and their implications for ecological and evolutionary processes across different spatiotemporal scales.
Collapse
|
28
|
Kijima S, Delmont TO, Miyazaki U, Gaia M, Endo H, Ogata H. Discovery of Viral Myosin Genes With Complex Evolutionary History Within Plankton. Front Microbiol 2021; 12:683294. [PMID: 34163457 PMCID: PMC8215601 DOI: 10.3389/fmicb.2021.683294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/12/2021] [Indexed: 12/14/2022] Open
Abstract
Nucleocytoplasmic large DNA viruses (NCLDVs) infect diverse eukaryotes and form a group of viruses with capsids encapsulating large genomes. Recent studies are increasingly revealing a spectacular array of functions encoded in their genomes, including genes for energy metabolisms, nutrient uptake, as well as cytoskeleton. Here, we report the discovery of genes homologous to myosins, the major eukaryotic motor proteins previously unrecognized in the virosphere, in environmental genomes of NCLDVs from the surface of the oceans. Phylogenetic analyses indicate that most viral myosins (named "virmyosins") belong to the Imitervirales order, except for one belonging to the Phycodnaviridae family. On the one hand, the phylogenetic positions of virmyosin-encoding Imitervirales are scattered within the Imitervirales. On the other hand, Imitervirales virmyosin genes form a monophyletic group in the phylogeny of diverse myosin sequences. Furthermore, phylogenetic trends for the virmyosin genes and viruses containing them were incongruent. Based on these results, we argue that multiple transfers of myosin homologs have occurred not only from eukaryotes to viruses but also between viruses, supposedly during co-infections of the same host. Like other viruses that use host motor proteins for their intracellular transport or motility, these viruses may use the virally encoded myosins for the intracellular trafficking of giant viral particles.
Collapse
Affiliation(s)
- Soichiro Kijima
- Chemical Life Science, Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Tom O. Delmont
- Metabolic Genomics, Genoscope, Institut de Biologie François Jacob, CEA, CNRS, Univ Evry, Université Paris Saclay, Évry-Courcouronnes, France
| | - Urara Miyazaki
- Chemical Life Science, Institute for Chemical Research, Kyoto University, Uji, Japan
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Morgan Gaia
- Metabolic Genomics, Genoscope, Institut de Biologie François Jacob, CEA, CNRS, Univ Evry, Université Paris Saclay, Évry-Courcouronnes, France
| | - Hisashi Endo
- Chemical Life Science, Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Hiroyuki Ogata
- Chemical Life Science, Institute for Chemical Research, Kyoto University, Uji, Japan
| |
Collapse
|
29
|
Seltzner CA, Ferek JD, Thoden JB, Holden HM. Characterization of an aminotransferase from Acanthamoeba polyphaga Mimivirus. Protein Sci 2021; 30:1882-1894. [PMID: 34076307 DOI: 10.1002/pro.4139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 01/03/2023]
Abstract
Acanthamoeba polyphaga Mimivirus, a complex virus that infects amoeba, was first reported in 2003. It is now known that its DNA genome encodes for nearly 1,000 proteins including enzymes that are required for the biosynthesis of the unusual sugar 4-amino-4,6-dideoxy-d-glucose, also known as d-viosamine. As observed in some bacteria, the pathway for the production of this sugar initiates with a nucleotide-linked sugar, which in the Mimivirus is thought to be UDP-d-glucose. The enzyme required for the installment of the amino group at the C-4' position of the pyranosyl moiety is encoded in the Mimivirus by the L136 gene. Here, we describe a structural and functional analysis of this pyridoxal 5'-phosphate-dependent enzyme, referred to as L136. For this analysis, three high-resolution X-ray structures were determined: the wildtype enzyme/pyridoxamine 5'-phosphate/dTDP complex and the site-directed mutant variant K185A in the presence of either UDP-4-amino-4,6-dideoxy-d-glucose or dTDP-4-amino-4,6-dideoxy-d-glucose. Additionally, the kinetic parameters of the enzyme utilizing either UDP-d-glucose or dTDP-d-glucose were measured and demonstrated that L136 is efficient with both substrates. This is in sharp contrast to the structurally related DesI from Streptomyces venezuelae, whose three-dimensional architecture was previously reported by this laboratory. As determined in this investigation, DesI shows a profound preference in its catalytic efficiency for the dTDP-linked sugar substrate. This difference can be explained in part by a hydrophobic patch in DesI that is missing in L136. Notably, the structure of L136 reported here represents the first three-dimensional model for a virally encoded PLP-dependent enzyme and thus provides new information on sugar aminotransferases in general.
Collapse
Affiliation(s)
- Chase A Seltzner
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Justin D Ferek
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - James B Thoden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Hazel M Holden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
30
|
Quantitative Assessment of Nucleocytoplasmic Large DNA Virus and Host Interactions Predicted by Co-occurrence Analyses. mSphere 2021; 6:6/2/e01298-20. [PMID: 33883262 PMCID: PMC8546719 DOI: 10.1128/msphere.01298-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nucleocytoplasmic large DNA viruses (NCLDVs) are highly diverse and abundant in marine environments. However, the knowledge of their hosts is limited because only a few NCLDVs have been isolated so far. Taking advantage of the recent large-scale marine metagenomics census, in silico host prediction approaches are expected to fill the gap and further expand our knowledge of virus-host relationships for unknown NCLDVs. In this study, we built co-occurrence networks of NCLDVs and eukaryotic taxa to predict virus-host interactions using Tara Oceans sequencing data. Using the positive likelihood ratio to assess the performance of host prediction for NCLDVs, we benchmarked several co-occurrence approaches and demonstrated an increase in the odds ratio of predicting true positive relationships 4-fold compared to random host predictions. To further refine host predictions from high-dimensional co-occurrence networks, we developed a phylogeny-informed filtering method, Taxon Interaction Mapper, and showed it further improved the prediction performance by 12-fold. Finally, we inferred virophage-NCLDV networks to corroborate that co-occurrence approaches are effective for predicting interacting partners of NCLDVs in marine environments.IMPORTANCE NCLDVs can infect a wide range of eukaryotes, although their life cycle is less dependent on hosts compared to other viruses. However, our understanding of NCLDV-host systems is highly limited because few of these viruses have been isolated so far. Co-occurrence information has been assumed to be useful to predict virus-host interactions. In this study, we quantitatively show the effectiveness of co-occurrence inference for NCLDV host prediction. We also improve the prediction performance with a phylogeny-guided method, which leads to a concise list of candidate host lineages for three NCLDV families. Our results underpin the usage of co-occurrence approaches for the metagenomic exploration of the ecology of this diverse group of viruses.
Collapse
|
31
|
Aylward FO, Moniruzzaman M. ViralRecall-A Flexible Command-Line Tool for the Detection of Giant Virus Signatures in 'Omic Data. Viruses 2021; 13:v13020150. [PMID: 33498458 PMCID: PMC7909515 DOI: 10.3390/v13020150] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/07/2021] [Accepted: 01/18/2021] [Indexed: 01/06/2023] Open
Abstract
Giant viruses are widespread in the biosphere and play important roles in biogeochemical cycling and host genome evolution. Also known as nucleo-cytoplasmic large DNA viruses (NCLDVs), these eukaryotic viruses harbor the largest and most complex viral genomes known. Studies have shown that NCLDVs are frequently abundant in metagenomic datasets, and that sequences derived from these viruses can also be found endogenized in diverse eukaryotic genomes. The accurate detection of sequences derived from NCLDVs is therefore of great importance, but this task is challenging owing to both the high level of sequence divergence between NCLDV families and the extraordinarily high diversity of genes encoded in their genomes, including some encoding for metabolic or translation-related functions that are typically found only in cellular lineages. Here, we present ViralRecall, a bioinformatic tool for the identification of NCLDV signatures in ‘omic data. This tool leverages a library of giant virus orthologous groups (GVOGs) to identify sequences that bear signatures of NCLDVs. We demonstrate that this tool can effectively identify NCLDV sequences with high sensitivity and specificity. Moreover, we show that it can be useful both for removing contaminating sequences in metagenome-assembled viral genomes as well as the identification of eukaryotic genomic loci that derived from NCLDV. ViralRecall is written in Python 3.5 and is freely available on GitHub: https://github.com/faylward/viralrecall.
Collapse
|