1
|
Costa P, Pereira C, Romalde JL, Almeida A. A game of resistance: War between bacteria and phages and how phage cocktails can be the solution. Virology 2024; 599:110209. [PMID: 39186863 DOI: 10.1016/j.virol.2024.110209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
While phages hold promise as an antibiotic alternative, they encounter significant challenges in combating bacterial infections, primarily due to the emergence of phage-resistant bacteria. Bacterial defence mechanisms like superinfection exclusion, CRISPR, and restriction-modification systems can hinder phage effectiveness. Innovative strategies, such as combining different phages into cocktails, have been explored to address these challenges. This review delves into these defence mechanisms and their impact at each stage of the infection cycle, their challenges, and the strategies phages have developed to counteract them. Additionally, we examine the role of phage cocktails in the evolving landscape of antibacterial treatments and discuss recent studies that highlight the effectiveness of diverse phage cocktails in targeting essential bacterial receptors and combating resistant strains.
Collapse
Affiliation(s)
- Pedro Costa
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Carla Pereira
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Jesús L Romalde
- Department of Microbiology and Parasitology, CRETUS & CIBUS - Faculty of Biology, University of Santiago de Compostela, CP 15782 Santiago de Compostela, Spain.
| | - Adelaide Almeida
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
2
|
Królikowska D, Szymańska M, Krzyżaniak M, Guziński A, Matusiak R, Kajdanek A, Kaczorek-Łukowska E, Maszewska A, Wójcik EA, Dastych J. A New Approach for Phage Cocktail Design in the Example of Anti-Mastitis Solution. Pathogens 2024; 13:839. [PMID: 39452711 PMCID: PMC11510089 DOI: 10.3390/pathogens13100839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
The studies on phage therapy have shown an overall protective effect of phages in bacterial infections, thus providing an optimistic outlook on the future benefits of phage-based technologies for treating bacterial diseases. However, the therapeutic effect is highly affected by the proper composition of phage cocktails. The rational approach to the design of bacteriophage cocktails, which is the subject of this study, allowed for development of an effective anti-mastitis solution, composed of virulent bacteriophages acting on Escherichia coli and Staphylococcus aureus. Based on the in-depth bioinformatic characterization of bacteriophages and their in vitro evaluation, the cocktail of five phages against E. coli and three against S. aureus strains was composed. Its testing in the milk model experiment revealed a reduction in the number of S. aureus of 45% and 30% for E. coli strains, and in the study of biofilm prevention, it demonstrated 99% inhibition of biofilm formation for all tested S. aureus strains and a minimum of 50% for 50% of E. coli strains. Such insights justify the need for rational design of cocktails for phage therapy and indicate the potential of the developed cocktail in the treatment of diseased animals, but this requires further investigations to evaluate its in vivo efficacy.
Collapse
Affiliation(s)
- Daria Królikowska
- Proteon Pharmaceuticals, Tylna 3a, 90-364 Łódź, Poland; (M.S.); (M.K.); (A.G.); (R.M.); (A.K.); (A.M.); (E.A.W.); (J.D.)
| | - Marta Szymańska
- Proteon Pharmaceuticals, Tylna 3a, 90-364 Łódź, Poland; (M.S.); (M.K.); (A.G.); (R.M.); (A.K.); (A.M.); (E.A.W.); (J.D.)
| | - Marta Krzyżaniak
- Proteon Pharmaceuticals, Tylna 3a, 90-364 Łódź, Poland; (M.S.); (M.K.); (A.G.); (R.M.); (A.K.); (A.M.); (E.A.W.); (J.D.)
| | - Arkadiusz Guziński
- Proteon Pharmaceuticals, Tylna 3a, 90-364 Łódź, Poland; (M.S.); (M.K.); (A.G.); (R.M.); (A.K.); (A.M.); (E.A.W.); (J.D.)
| | - Rafał Matusiak
- Proteon Pharmaceuticals, Tylna 3a, 90-364 Łódź, Poland; (M.S.); (M.K.); (A.G.); (R.M.); (A.K.); (A.M.); (E.A.W.); (J.D.)
| | - Agnieszka Kajdanek
- Proteon Pharmaceuticals, Tylna 3a, 90-364 Łódź, Poland; (M.S.); (M.K.); (A.G.); (R.M.); (A.K.); (A.M.); (E.A.W.); (J.D.)
| | - Edyta Kaczorek-Łukowska
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719 Olsztyn, Poland;
| | - Agnieszka Maszewska
- Proteon Pharmaceuticals, Tylna 3a, 90-364 Łódź, Poland; (M.S.); (M.K.); (A.G.); (R.M.); (A.K.); (A.M.); (E.A.W.); (J.D.)
| | - Ewelina A. Wójcik
- Proteon Pharmaceuticals, Tylna 3a, 90-364 Łódź, Poland; (M.S.); (M.K.); (A.G.); (R.M.); (A.K.); (A.M.); (E.A.W.); (J.D.)
| | - Jarosław Dastych
- Proteon Pharmaceuticals, Tylna 3a, 90-364 Łódź, Poland; (M.S.); (M.K.); (A.G.); (R.M.); (A.K.); (A.M.); (E.A.W.); (J.D.)
| |
Collapse
|
3
|
Rodrigues HC, Sampaio GV, Bolsan AC, De Prá MC, Ghisi NDC, Gabiatti NC. Bacteriophages Against Bacterial Infections in Poultry Systems: A Scientometric Review. PHAGE (NEW ROCHELLE, N.Y.) 2024; 5:130-142. [PMID: 39372361 PMCID: PMC11447387 DOI: 10.1089/phage.2023.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Poultry production faces challenges from bacterial infections, aggravated by antibiotic resistance, affecting bird welfare and the industry's economy. Bacteriophages show promise as a solution, but their use in poultry systems is still limited. This study uses scientometric analysis to investigate the incidence of bacterial infections in poultry systems and bacteriophage application trends. The Web of Science database was used, and the articles were refined by searching for keywords that included the most rep orted bacteria in the different phases of poultry farming and the application of phages. The articles were analyzed using the CiteSpace and Excel software, allowing the evaluation of publication trends, influential countries, and correlations with antimicrobial resistance and the use of bacteriophages. Results highlight Escherichia coli prevalence in poultry systems and reveal a correlation between the number of publications and poultry productivity, with the United States and China leading both aspects. Findings offer insights into bacterial control gaps in poultry systems, underscoring the need for further research and practical strategies.
Collapse
Affiliation(s)
- Heloisa Campeão Rodrigues
- Graduate Program in Biotechnology (PPGBIOTEC), Universidade Tecnológica Federal do Paraná, Dois Vizinhos, Brazil
| | - Gabrielli Vaz Sampaio
- Interunit Graduate Program in Biotechnology (IB IPT), Universidade de São Paulo, São Paulo, Brazil
| | - Alice Chiapetti Bolsan
- Graduate Program in Urban Environmental Sustainability (PPGSAU), Universidade Tecnológica Federal do Paraná, Curitiba, Brazil
| | - Marina Celant De Prá
- Graduate Program in Biotechnology (PPGBIOTEC), Universidade Tecnológica Federal do Paraná, Dois Vizinhos, Brazil
| | - Nédia de Castilhos Ghisi
- Graduate Program in Biotechnology (PPGBIOTEC), Universidade Tecnológica Federal do Paraná, Dois Vizinhos, Brazil
| | - Naiana Cristine Gabiatti
- Graduate Program in Biotechnology (PPGBIOTEC), Universidade Tecnológica Federal do Paraná, Dois Vizinhos, Brazil
| |
Collapse
|
4
|
Watts A, Wigley P. Avian Pathogenic Escherichia coli: An Overview of Infection Biology, Antimicrobial Resistance and Vaccination. Antibiotics (Basel) 2024; 13:809. [PMID: 39334984 PMCID: PMC11429189 DOI: 10.3390/antibiotics13090809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/01/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Avian Pathogenic Escherichia coli (APEC) is an extraintestinal pathotype of E. coli that leads to a range of clinical manifestations, including respiratory, systemic and reproductive infections of chickens in both egg and meat production. Unlike most E. coli pathotypes, APEC is not defined by specific virulence genes but rather is a collection of several distinct genotypes that can act as both primary and secondary pathogens leading to colibacillosis. Recent measures to reduce antimicrobials both as growth promoters and as flock-level therapeutics are considered to have led to increased numbers of animals affected. Nevertheless, antimicrobial resistance is a considerable problem in APEC, with resistance to third and fourth-generation cephalosporins via extended-spectrum beta-lactamases (ESBLs), fluoroquinolones and colistin seen as a particular concern. The need to control APEC without antimicrobial use at the flock level has seen an increased focus on vaccination. Currently, a few commercial vaccines are already available, and a range of approaches are being applied to develop new vaccines, and other controls, such as bacteriophage or probiotics, are attracting interest. The lack of a single defined APEC genotype presents challenges to these approaches.
Collapse
Affiliation(s)
- Amyleigh Watts
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston CH64 7TE, UK;
| | - Paul Wigley
- Bristol Veterinary School, University of Bristol, Bristol BS40 5DU, UK
| |
Collapse
|
5
|
Shen S, Fu B, Deng L, Zhu G, Shi H, Tian G, Han C, Yi P, Peng L. Paeoniflorin protects chicken against APEC-induced acute lung injury by affecting the endocannabinoid system and inhibiting the PI3K/AKT and NF-κB signaling pathways. Poult Sci 2024; 103:103866. [PMID: 38833957 PMCID: PMC11179074 DOI: 10.1016/j.psj.2024.103866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is the causative agent of chicken colibacillosis. Paeoniflorin, a natural ingredient extracted from Paeonia lactiflora, has a variety of pharmacological effects including anti-inflammatory and immunomodulatory. However, its effects and mechanism in APEC-induced acute lung injury (ALI) in chicken is not clear. The aim of this study was to investigate the protective effect of paeoniflorin on APEC-induced ALI and its possible mechanism. Paeoniflorin (25, 50, and 100 mg/kg) was administered by gavage for 5 d starting at 9 d of age and the chicken were infected with APEC by intraperitoneal injection at 12 d of age. The tissues were collected after APEC infection for 36 h for analysis. The results showed that paeoniflorin significantly alleviated the symptoms, increased the survival rate and body weight gain of APEC-infected chicken, and improved the histopathological damages, and reduced APEC loads in lung tissues. In addition, paeoniflorin restored the gene expression of ZO-1, Occludin and Claudin-3 during APEC infection. Moreover, paeoniflorin pretreatment significantly affected the endocannabinoid system (ECs) by increasing DAGL, decreasing MAGL, increasing secretion of 2-AG. Then, paeoniflorin significantly decreased the secretion of IL-1β, IL-6 and TNF-α in lung tissues, and decreased the mRNA expression of CXCL8, CXCL12, CCL1, CCL5, and CCL17. In addition, paeoniflorin significantly reduced the phosphorylation levels of PI3K, AKT, P65, and IκB. In summary, we found that paeoniflorin inhibited APEC-induced ALI, and its mechanism may be through affecting ECs and inhibiting the activation of PI3K/AKT and NF-κB signaling pathways, which provides a new idea for the prevention and treatment of chicken colibacillosis.
Collapse
Affiliation(s)
- Siyang Shen
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Bendong Fu
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China; State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, Changchun, Jilin 130062, China
| | - Ling Deng
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Guoqiang Zhu
- Animal Husbandry and Veterinary Station, Diao town Zhangqiu district, Jinan, Shandong 250204, China
| | - Haitao Shi
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Guang Tian
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Chi Han
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Pengfei Yi
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China; State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, Changchun, Jilin 130062, China
| | - Luyuan Peng
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China; State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, Changchun, Jilin 130062, China.
| |
Collapse
|
6
|
Bozidis P, Markou E, Gouni A, Gartzonika K. Does Phage Therapy Need a Pan-Phage? Pathogens 2024; 13:522. [PMID: 38921819 PMCID: PMC11206709 DOI: 10.3390/pathogens13060522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
The emergence of multidrug-resistant bacteria is undoubtedly one of the most serious global health threats. One response to this threat that has been gaining momentum over the past decade is 'phage therapy'. According to this, lytic bacteriophages are used for the treatment of bacterial infections, either alone or in combination with antimicrobial agents. However, to ensure the efficacy and broad applicability of phage therapy, several challenges must be overcome. These challenges encompass the development of methods and strategies for the host range manipulation and bypass of the resistance mechanisms developed by pathogenic bacteria, as has been the case since the advent of antibiotics. As our knowledge and understanding of the interactions between phages and their hosts evolves, the key issue is to define the host range for each application. In this article, we discuss the factors that affect host range and how this determines the classification of phages into different categories of action. For each host range group, recent representative examples are provided, together with suggestions on how the different groups can be used to combat certain types of bacterial infections. The available methodologies for host range expansion, either through sequential adaptation to a new pathogen or through genetic engineering techniques, are also reviewed.
Collapse
Affiliation(s)
- Petros Bozidis
- Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (E.M.); (A.G.)
| | - Eleftheria Markou
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (E.M.); (A.G.)
| | - Athanasia Gouni
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (E.M.); (A.G.)
| | - Konstantina Gartzonika
- Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (E.M.); (A.G.)
| |
Collapse
|
7
|
Araújo D, Silva AR, Fernandes R, Serra P, Barros MM, Campos AM, Oliveira R, Silva S, Almeida C, Castro J. Emerging Approaches for Mitigating Biofilm-Formation-Associated Infections in Farm, Wild, and Companion Animals. Pathogens 2024; 13:320. [PMID: 38668275 PMCID: PMC11054384 DOI: 10.3390/pathogens13040320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
The importance of addressing the problem of biofilms in farm, wild, and companion animals lies in their pervasive impact on animal health and welfare. Biofilms, as resilient communities of microorganisms, pose a persistent challenge in causing infections and complicating treatment strategies. Recognizing and understanding the importance of mitigating biofilm formation is critical to ensuring the welfare of animals in a variety of settings, from farms to the wild and companion animals. Effectively addressing this issue not only improves the overall health of individual animals, but also contributes to the broader goals of sustainable agriculture, wildlife conservation, and responsible pet ownership. This review examines the current understanding of biofilm formation in animal diseases and elucidates the complex processes involved. Recognizing the limitations of traditional antibiotic treatments, mechanisms of resistance associated with biofilms are explored. The focus is on alternative therapeutic strategies to control biofilm, with illuminating case studies providing valuable context and practical insights. In conclusion, the review highlights the importance of exploring emerging approaches to mitigate biofilm formation in animals. It consolidates existing knowledge, highlights gaps in understanding, and encourages further research to address this critical facet of animal health. The comprehensive perspective provided by this review serves as a foundation for future investigations and interventions to improve the management of biofilm-associated infections in diverse animal populations.
Collapse
Affiliation(s)
- Daniela Araújo
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
- CEB—Centre of Biological Engineering Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Ana Rita Silva
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
| | - Rúben Fernandes
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
| | - Patrícia Serra
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
| | - Maria Margarida Barros
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Ana Maria Campos
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
| | - Ricardo Oliveira
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- AliCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Sónia Silva
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
- CEB—Centre of Biological Engineering Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Carina Almeida
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
- CEB—Centre of Biological Engineering Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- AliCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joana Castro
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
- CEB—Centre of Biological Engineering Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
8
|
Bisen M, Kharga K, Mehta S, Jabi N, Kumar L. Bacteriophages in nature: recent advances in research tools and diverse environmental and biotechnological applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22199-22242. [PMID: 38411907 DOI: 10.1007/s11356-024-32535-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/15/2024] [Indexed: 02/28/2024]
Abstract
Bacteriophages infect and replicate within bacteria and play a key role in the environment, particularly in microbial ecosystems and bacterial population dynamics. The increasing recognition of their significance stems from their wide array of environmental and biotechnological uses, which encompass the mounting issue of antimicrobial resistance (AMR). Beyond their therapeutic potential in combating antibiotic-resistant infections, bacteriophages also find vast applications such as water quality monitoring, bioremediation, and nutrient cycling within environmental sciences. Researchers are actively involved in isolating and characterizing bacteriophages from different natural sources to explore their applications. Gaining insights into key aspects such as the life cycle of bacteriophages, their host range, immune interactions, and physical stability is vital to enhance their application potential. The establishment of diverse phage libraries has become indispensable to facilitate their wide-ranging uses. Consequently, numerous protocols, ranging from traditional to cutting-edge techniques, have been developed for the isolation, detection, purification, and characterization of bacteriophages from diverse environmental sources. This review offers an exploration of tools, delves into the methods of isolation, characterization, and the extensive environmental applications of bacteriophages, particularly in areas like water quality assessment, the food sector, therapeutic interventions, and the phage therapy in various infections and diseases.
Collapse
Affiliation(s)
- Monish Bisen
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Kusum Kharga
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Sakshi Mehta
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Nashra Jabi
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Lokender Kumar
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India.
- Cancer Biology Laboratory, Raj Khosla Centre for Cancer Research, Shoolini University, Himachal Pradesh, Solan, 173229, India.
| |
Collapse
|
9
|
Nicolas M, Trotereau A, Culot A, Moodley A, Atterbury R, Wagemans J, Lavigne R, Velge P, Schouler C. Isolation and Characterization of a Novel Phage Collection against Avian-Pathogenic Escherichia coli. Microbiol Spectr 2023; 11:e0429622. [PMID: 37140373 PMCID: PMC10269720 DOI: 10.1128/spectrum.04296-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 04/12/2023] [Indexed: 05/05/2023] Open
Abstract
The increase in antibiotic-resistant avian-pathogenic Escherichia coli (APEC), the causative agent of colibacillosis in poultry, warrants urgent research and the development of alternative therapies. This study describes the isolation and characterization of 19 genetically diverse, lytic coliphages, 8 of which were tested in combination for their efficacy in controlling in ovo APEC infections. Genome homology analysis revealed that the phages belong to nine different genera, one of them being a novel genus (Nouzillyvirus). One phage, REC, was derived from a recombination event between two Phapecoctavirus phages (ESCO5 and ESCO37) isolated in this study. Twenty-six of the 30 APEC strains tested were lysed by at least one phage. Phages exhibited varying infectious capacities, with narrow to broad host ranges. The broad host range of some phages could be partially explained by the presence of receptor-binding protein carrying a polysaccharidase domain. To demonstrate their therapeutic potential, a phage cocktail consisting of eight phages belonging to eight different genera was tested against BEN4358, an APEC O2 strain. In vitro, this phage cocktail fully inhibited the growth of BEN4358. In a chicken lethality embryo assay, the phage cocktail enabled 90% of phage-treated embryos to survive infection with BEN4358, compared with 0% of nontreated embryos, indicating that these novel phages are good candidates to successfully treat colibacillosis in poultry. IMPORTANCE Colibacillosis, the most common bacterial disease affecting poultry, is mainly treated by antibiotics. Due to the increased prevalence of multidrug-resistant avian-pathogenic Escherichia coli, there is an urgent need to assess the efficacy of alternatives to antibiotherapy, such as phage therapy. Here, we have isolated and characterized 19 coliphages that belong to nine phage genera. We showed that a combination of 8 of these phages was efficacious in vitro to control the growth of a clinical isolate of E. coli. Used in ovo, this phage combination allowed embryos to survive APEC infection. Thus, this phage combination represents a promising treatment for avian colibacillosis.
Collapse
Affiliation(s)
| | | | | | - Arshnee Moodley
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Robert Atterbury
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| | - Jeroen Wagemans
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Rob Lavigne
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
10
|
Jia PP, Yang YF, Junaid M, Jia HJ, Li WG, Pei DS. Bacteriophage-based techniques for elucidating the function of zebrafish gut microbiota. Appl Microbiol Biotechnol 2023; 107:2039-2059. [PMID: 36847856 DOI: 10.1007/s00253-023-12439-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 03/01/2023]
Abstract
Bacteriophages (or phages) are unique viruses that can specifically infect bacteria. Since their discovery by Twort and d'Herelle, phages with bacterial specificity have played important roles in microbial regulation. The intestinal microbiota and host health are intimately linked with nutrient, metabolism, development, and immunity aspects. However, the mechanism of interactions between the composition of the microbiota and their functions in maintaining host health still needs to be further explored. To address the lack of methodology and functions of intestinal microbiota in the host, we first proposed that, with the regulations of special intestinal microbiota and applications of germ-free (GF) zebrafish model, phages would be used to infect and reduce/eliminate the defined gut bacteria in the conventionally raised (CR) zebrafish and compared with the GF zebrafish colonized with defined bacterial strains. Thus, this review highlighted the background and roles of phages and their functional characteristics, and we also summarized the phage-specific infection of target microorganisms, methods to improve the phage specificity, and their regulation within the zebrafish model and gut microbial functional study. Moreover, the primary protocol of phage therapy to control the intestinal microbiota in zebrafish models from larvae to adults was recommended including phage screening from natural sources, identification of host ranges, and experimental design in the animal. A well understanding of the interaction and mechanism between phages and gut bacteria in the host can potentially provide powerful strategies or techniques for preventing bacteria-related human diseases by precisely regulating in vitro and in vivo, which will provide novel insights for phages' application and combined research in the future. KEY POINTS: • Zebrafish models for clarifying the microbial and phages' functions were discussed • Phages infect host bacteria with exquisite specificity and efficacy • Phages can reduce/eliminate the defined gut bacteria to clarify their function.
Collapse
Affiliation(s)
- Pan-Pan Jia
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Yi-Fan Yang
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Muhammad Junaid
- Joint Laboratory of Guangdong Province and Hong Kong Region On Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Huang-Jie Jia
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Wei-Guo Li
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
11
|
Śliwka P, Weber-Dąbrowska B, Żaczek M, Kuźmińska-Bajor M, Dusza I, Skaradzińska A. Characterization and Comparative Genomic Analysis of Three Virulent E. coli Bacteriophages with the Potential to Reduce Antibiotic-Resistant Bacteria in the Environment. Int J Mol Sci 2023; 24:ijms24065696. [PMID: 36982770 PMCID: PMC10059673 DOI: 10.3390/ijms24065696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/26/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
The emerging global crisis of antibiotic resistance demands new alternative antibacterial solutions. Although bacteriophages have been used to combat bacterial infections for over a century, a dramatic boost in phage studies has recently been observed. In the development of modern phage applications, a scientific rationale is strongly required and newly isolated phages need to be examined in detail. In this study, we present the full characterization of bacteriophages BF9, BF15, and BF17, with lytic activity against extended-spectrum β-lactamases (ESBLs)- and AmpC β-lactamases (AmpC)-producing Escherichia coli, the prevalence of which has increased significantly in livestock in recent decades, representing a great hazard to food safety and a public health risk. Comparative genomic and phylogenetic analysis indicated that BF9, BF15, and BF17 represent the genera Dhillonvirus, Tequatrovirus, and Asteriusvirus, respectively. All three phages significantly reduced in vitro growth of their bacterial host and retained the ability to lyse bacteria after preincubation at wide ranges of temperature (−20–40 °C) and pH (5–9). The results described herein indicate the lytic nature of BF9, BF15, and BF17, which, along with the absence of genes encoding toxins and bacterial virulence factors, represents an undoubted asset in terms of future phage application.
Collapse
Affiliation(s)
- Paulina Śliwka
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | - Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | - Maciej Żaczek
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | - Marta Kuźmińska-Bajor
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | - Izabela Dusza
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | - Aneta Skaradzińska
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
- Correspondence: ; Tel.: +48-71-320-7791
| |
Collapse
|
12
|
Phage Therapy in Germany-Update 2023. Viruses 2023; 15:v15020588. [PMID: 36851802 PMCID: PMC9960545 DOI: 10.3390/v15020588] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/03/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Bacteriophage therapy holds promise in addressing the antibiotic-resistance crisis, globally and in Germany. Here, we provide an overview of the current situation (2023) of applied phage therapy and supporting research in Germany. The authors, an interdisciplinary group working on patient-focused bacteriophage research, addressed phage production, phage banks, susceptibility testing, clinical application, ongoing translational research, the regulatory situation, and the network structure in Germany. They identified critical shortcomings including the lack of clinical trials, a paucity of appropriate regulation and a shortage of phages for clinical use. Phage therapy is currently being applied to a limited number of patients as individual treatment trials. There is presently only one site in Germany for large-scale good-manufacturing-practice (GMP) phage production, and one clinic carrying out permission-free production of medicinal products. Several phage banks exist, but due to varying institutional policies, exchange among them is limited. The number of phage research projects has remarkably increased in recent years, some of which are part of structured networks. There is a demand for the expansion of production capacities with defined quality standards, a structured registry of all treated patients and clear therapeutic guidelines. Furthermore, the medical field is still poorly informed about phage therapy. The current status of non-approval, however, may also be regarded as advantageous, as insufficiently restricted use of phage therapy without adequate scientific evidence for effectiveness and safety must be prevented. In close coordination with the regulatory authorities, it seems sensible to first allow some centers to treat patients following the Belgian model. There is an urgent need for targeted networking and funding, particularly of translational research, to help advance the clinical application of phages.
Collapse
|
13
|
Abstract
The mosquito microbiota has a profound impact on multiple biological processes ranging from reproduction to disease transmission. Interestingly, the adult mosquito microbiota is largely derived from the larval microbiota, which in turn is dependent on the microbiota of their water habitat. The larval microbiota not only plays a crucial role in larval development but also has a significant impact on the adult stage of the mosquito. By precisely engineering the larval microbiota, it is feasible to alter larval development and other life history traits of the mosquitoes. Bacteriophages, given their host specificity, can serve as a tool for modulating the microbiota. For this proof-of-principle study, we selected representative strains of five common Anopheles mosquito-associated bacterial genera, namely, Enterobacter, Serratia, Pseudomonas, Elizabethkingia, and Asaia. Our results with monoaxenic cultures showed that Anopheles larvae with Enterobacter and Pseudomonas displayed normal larval development with no significant mortality. However, monoaxenic Anopheles larvae with Elizabethkingia showed delayed larval development and higher mortality. Serratia and Asaia gnotobiotic larvae failed to develop past the first instar. We isolated and characterized three novel bacteriophages (EP1, SP1, and EKP1) targeting Enterobacter, Serratia, and Elizabethkingia, respectively, and utilized a previously characterized bacteriophage (GH1) targeting Pseudomonas to modulate larval water microbiota. Gnotobiotic Anopheles larvae with all five bacterial genera showed reduced survival and larval development with the addition of bacteriophages EP1 and GH1, targeting Enterobacter and Pseudomonas, respectively. The effect was synergistic when both EP1 and GH1 were added together. Our results demonstrate a novel application of bacteriophages for mosquito control. IMPORTANCE Mosquitoes are efficient vectors of multiple human and animal pathogens. The biology of mosquitoes is strongly affected by their associated microbiota. Because of the important role of the larval microbiota in mosquito biology, the microbiota can potentially serve as a target for altering mosquito life-history traits. Our study provides proof of principle that bacteriophages can be used as tools to modulate the mosquito larval habitat microbiota and can, in turn, affect larval development and survival. These results highlight the utility of bacteriophages in mosquito microbiota research and also provide a new potential mosquito control tool.
Collapse
|
14
|
Wu J, Zeng H, Qian X, Li Y, Xue F, Ren J, Dai J, Tang F. Pre-treatment with phages achieved greater protection of mice against infection with Shiga toxin-producing Escherichia coli than post-treatment. Res Vet Sci 2022; 150:72-78. [PMID: 35809415 DOI: 10.1016/j.rvsc.2022.03.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/14/2022] [Accepted: 03/19/2022] [Indexed: 12/20/2022]
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a group of pathogen that can cause various diseases in both humans and animals, such as watery diarrhea, hemorrhagic colitis, and uremia syndrome. Due to the serious situation of antibiotic resistance, phage therapy is considered to have a great potential in combating bacterial diseases. In this study, three phages (NJ-10, NJ-20, and NJ-38) with strong abilities to lyse virulent STEC strain CVCC193 cells in vitro were isolated. Subsequently, the therapeutic effects of the three phages were investigated in mice infected with CVCC193 cells. The results showed that the survival rates of mice injected with the phages at 3 h after challenge with CVCC193 cells were 40%-50%, while the survival rates of mice injected with the phages at 24 h before challenge were 80%-100%, indicating that pre-treatment with phages had better therapeutic effects than post-treatment. Pathological changes, bacterial loads in different organs, and serum levels of inflammatory factors of the infected mice were also detected. The results showed that the mice injected with the phages at 3 h after or 24 h before challenge with CVCC193 cells had significantly decreased organ lesions, bacterial loads, and serum levels of inflammatory factors as compared to infected mice without phage treatment. These results suggested that phages NJ-10, NJ-20, and NJ-38 can potentially protect against STEC infections.
Collapse
Affiliation(s)
- Jiaoling Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Hang Zeng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinjie Qian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yihao Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Xue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianluan Ren
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; School of Life Science and Technology, China Pharmaceutical University, Nanjing 210095, China
| | - Fang Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
15
|
Complete Genome Sequence of a Gamaleyavirus Phage, Lytic against Avian Pathogenic Escherichia coli. Microbiol Resour Announc 2022; 11:e0089622. [PMID: 36286993 PMCID: PMC9670874 DOI: 10.1128/mra.00896-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report the complete genome sequence of the lytic bacteriophage vB_EcoS_Uz1, which was isolated from wastewater near Almaty, Kazakhstan using the avian pathogen Escherichia coli host. Its complete genome is 72,583 bp in length, with a GC content of 43%. vB_EcoS_Uz1 belongs to the Gamaleyavirus genus of the Caudoviricetes class.
Collapse
|
16
|
Alexyuk P, Bogoyavlenskiy A, Alexyuk M, Akanova K, Moldakhanov Y, Berezin V. Isolation and Characterization of Lytic Bacteriophages Active against Clinical Strains of E. coli and Development of a Phage Antimicrobial Cocktail. Viruses 2022; 14:v14112381. [PMID: 36366479 PMCID: PMC9697832 DOI: 10.3390/v14112381] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 01/31/2023] Open
Abstract
Pathogenic E. coli cause urinary tract, soft tissue and central nervous system infections, sepsis, etc. Lytic bacteriophages can be used to combat such infections. We investigated six lytic E. coli bacteriophages isolated from wastewater. Transmission electron microscopy and whole genome sequencing showed that the isolated bacteriophages are tailed phages of the Caudoviricetes class. One-step growth curves revealed that their latent period of reproduction is 20-30 min, and the average value of the burst size is 117-155. During co-cultivation with various E. coli strains, the phages completely suppressed bacterial host culture growth within the first 4 h at MOIs 10-7 to 10-3. The host range lysed by each bacteriophage varied from six to two bacterial strains out of nine used in the study. The cocktail formed from the isolated bacteriophages possessed the ability to completely suppress the growth of all the E. coli strains used in the study within 6 h and maintain its lytic activity for 8 months of storage. All the isolated bacteriophages may be useful in fighting pathogenic E. coli strains and in the development of phage cocktails with a long storage period and high efficiency in the treatment of bacterial infections.
Collapse
|
17
|
Fitness Trade-Offs in Phage Cocktail-Resistant Salmonella enterica Serovar Enteritidis Results in Increased Antibiotic Susceptibility and Reduced Virulence. Microbiol Spectr 2022; 10:e0291422. [PMID: 36165776 PMCID: PMC9603643 DOI: 10.1128/spectrum.02914-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The rapid emergence of phage-resistant bacterial mutants is a major challenge for phage therapy. Phage cocktails have been considered one approach to mitigate this issue. However, the synergistic effect of randomly selected phages in the cocktails is ambiguous. Here, we rationally designed a phage cocktail consisting of four phages that utilize the lipopolysaccharide (LPS) O antigen, the LPS outer core, the LPS inner core, and the outer membrane proteins BtuB and TolC on the Salmonella enterica serovar Enteritidis cell surface as receptors. We demonstrated that the four-phage cocktail could significantly delay the emergence of phage-resistant bacterial mutants compared to the single phage. To investigate the fitness costs associated with phage resistance, we characterized a total of 80 bacterial mutants resistant to a single phage or the four-phage cocktail. We observed that mutants resistant to the four-phage cocktail were more sensitive to several antibiotics than the single-phage-resistant mutants. In addition, all mutants resistant to the four-phage cocktail had significantly reduced virulence compared to wild-type strains. Our mouse model of Salmonella Enteritidis infection also indicated that the four-phage cocktail exhibited an enhanced therapeutic effect. Together, our work demonstrates an efficient strategy to design phage cocktails by combining phages with different bacterial receptors, which can steer the evolution of phage-resistant strains toward clinically exploitable phenotypes. IMPORTANCE The selection pressure of phage promotes bacterial mutation, which results in a fitness cost. Such fitness trade-offs are related to the host receptor of the phage; therefore, we can utilize knowledge of bacterial receptors used by phages as a criterion for designing phage cocktails. Here, we evaluated the efficacy of a phage cocktail made up of phages that target four different receptors on Salmonella Enteritidis through in vivo and in vitro experiments. Importantly, we found that pressure from phage cocktails with different receptors can drive phage-resistant bacterial mutants to evolve in a direction that entails more severe fitness costs, resulting in reduced virulence and increased susceptibility to antibiotics. These findings suggest that phage cocktail therapy using combinations of phages targeting different important receptors (e.g., LPS or the efflux pump AcrAB-TolC) on the host surface can steer the host bacteria toward more detrimental surface mutations than single-phage therapy, resulting in more favorable therapeutic outcomes.
Collapse
|
18
|
Wang Q, Liu N. Complete genome analysis of bacteriophage EFC1 infecting Enterococcus faecalis from chicken. Arch Microbiol 2022; 204:413. [PMID: 35732959 DOI: 10.1007/s00203-022-02838-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/20/2022] [Accepted: 03/10/2022] [Indexed: 11/02/2022]
Abstract
A novel lytic Enterococcus faecalis phage, EFC1, was isolated from the sewage of a farm in Handan, China, and its genome was analyzed and described. The phage could infect 87.5% of the chicken-derived Enterococcus faecalis preserved in our laboratory. The genome of phage EFC1 consists of a circular double-stranded DNA with a length of 56,099 bp and a G + C content of 39.96%, containing 89 predicted protein-coding genes as well as 2 tRNAs, which are involved in phage intron, structure, transcription, packaging, DNA replication, modification, cell lysis, and other functions, indicating the genetic and functional characteristics of this phage. Genome comparison analysis revealed that phage EFC1 can be regarded as new genus Saphexavirus phage in the Siphoviridae family.
Collapse
Affiliation(s)
- Qi Wang
- Department of Animal Medicine, College of Life Sciences and Food Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan, 056038, China
| | - Na Liu
- Department of Animal Medicine, College of Life Sciences and Food Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan, 056038, China.
| |
Collapse
|
19
|
Chen LK, Chang JC, Chu HT, Chen YT, Jiang HL, Wang LS, Teh SH, Yang HH, Chen DS, Li YZ, Chang CC, Sankhla D, Tseng CC. Preoptimized phage cocktail for use in aerosols against nosocomial transmission of carbapenem-resistant Acinetobacter baumannii: A 3-year prospective intervention study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113476. [PMID: 35367880 DOI: 10.1016/j.ecoenv.2022.113476] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Using bacteriophages (phages) as environmental sanitizers has been recognized as a potential alternative method to remove bacterial contamination in vitro; however, very few studies are available on the application of phages for infection control in hospitals. Here, we performed a 3-year prospective intervention study using aerosolized phage cocktails as biocontrol agents against carbapenem-resistant Acinetobacter baumannii (CRAB) infection in the hospital. When a CRAB-infected patient was identified in an intensive care unit (ICU), their surrounding environment was chosen for phage aerosol decontamination. Before decontamination, 501 clinical specimens from the patients were subjected to antibiotic resistance analysis and phage typing. The optimal phage cocktails were a combination of different phage families or were constructed by next-evolutionary phage typing with the highest score for the host lysis zone to prevent the development of environmental CRAB phage resistance. The phage infection percentage of the antibiotic-resistant A. baumannii strains was 97.1%, whereas the infection percentage in the antibiotic-susceptible strains was 79.3%. During the phage decontamination periods from 2017 to 2019, the percentage of carbapenem-resistant A. baumannii in test ICUs decreased significantly from 65.3% to 55%. The rate of new acquisitions of CRAB infection over the three years was 4.4 per 1000 patient-days, which was significantly lower than that in the control wards (8.9 per 1000 patient-days) where phage decontamination had never been performed. In conclusion, our results support the potential of phage cocktails to decrease CRAB infection rates, and the aerosol generation process may make this approach more comprehensive and time-saving.
Collapse
Affiliation(s)
- Li-Kuang Chen
- Institute of Medical Sciences, Department of Laboratory Diagnostic, College of Medicine, Tzu Chi University, Hualien, Taiwan; Branch of Clinical Pathology, Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan.
| | - Jui-Chih Chang
- Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Section 3, Zhongyang Rd., Hualien, Taiwan; Department of Surgery, School of Medicine, Tzu Chi University, No. 701, Section 3, Zhongyang Rd., Hualien, Taiwan.
| | - Hsiu-Tzu Chu
- Department of Laboratory Medicine, Clinical Pathology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan; Department and Graduate Institute of Public Health, Tzu Chi University, Hualien, Taiwan.
| | - Yi-Ting Chen
- Department and Graduate Institute of Public Health, Tzu Chi University, Hualien, Taiwan.
| | - Hui-Li Jiang
- Unit of Infection Control and Management, Buddhist Tzu Chi General Hospital, Hualien, Taiwan.
| | - Lih-Shinn Wang
- Division of Infectious Diseases, Department of Internal Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan.
| | - Soon-Hian Teh
- Division of Infectious Diseases, Department of Internal Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan.
| | - Hui-Hua Yang
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
| | - Dar-Sen Chen
- School of Pharmacy, China Medical University, Taiwan.
| | - Yu-Zhong Li
- Department of Laboratory Medicine, Clinical Pathology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan.
| | - Chin-Cheng Chang
- Department of Laboratory Medicine, Clinical Pathology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan.
| | - Debangana Sankhla
- Department of Laboratory Medicine, Clinical Pathology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan.
| | - Chun-Chieh Tseng
- Department and Graduate Institute of Public Health, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
20
|
Biocontrol Approaches against Escherichia coli O157:H7 in Foods. Foods 2022; 11:foods11050756. [PMID: 35267389 PMCID: PMC8909014 DOI: 10.3390/foods11050756] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 12/11/2022] Open
Abstract
Shiga-toxin-producing Escherichia coli O157:H7 is a well-known water- and food-borne zoonotic pathogen that can cause gastroenteritis in humans. It threatens the health of millions of people each year; several outbreaks of E. coli O157:H7 infections have been linked to the consumption of contaminated plant foods (e.g., lettuce, spinach, tomato, and fresh fruits) and beef-based products. To control E. coli O157:H7 in foods, several physical (e.g., irradiation, pasteurization, pulsed electric field, and high-pressure processing) and chemical (e.g., using peroxyacetic acid; chlorine dioxide; sodium hypochlorite; and organic acids, such as acetic, lactic, and citric) methods have been widely used. Although the methods are quite effective, they are not applicable to all foods and carry intrinsic disadvantages (alteration of sensory properties, toxicity, etc.). Therefore, the development of safe and effective alternative methods has gained increased attention recently. Biocontrol agents, including bacteriophages, probiotics, antagonistic bacteria, plant-derived natural compounds, bacteriocins, endolysins, and enzymes, are rapidly emerging as effective, selective, relatively safe for human consumption, and environmentally friendly alternatives. This paper summarizes advances in the application of biocontrol agents for E. coli O157:H7 control in foods.
Collapse
|
21
|
Steffan SM, Shakeri G, Kehrenberg C, Peh E, Rohde M, Plötz M, Kittler S. Campylobacter Bacteriophage Cocktail Design Based on an Advanced Selection Scheme. Antibiotics (Basel) 2022; 11:228. [PMID: 35203830 PMCID: PMC8868561 DOI: 10.3390/antibiotics11020228] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 11/17/2022] Open
Abstract
Campylobacteriosis is a worldwide-occurring disease and has been the most commonly reported zoonotic gastrointestinal infection in the European Union in recent years. The development of successful phage-based intervention strategies will require a better understanding of phage-bacteria interactions to facilitate advances in phage cocktail design. Therefore, this study aimed to investigate the effects of newly isolated group II and group III phages and their combinations on current Campylobacter field strains. A continuous workflow for host range and efficiency of plating (EOP) value determination was combined with a qPCR-based phage group identification and a liquid-based planktonic killing assay (PKA). An advanced analysis scheme allowed us to evaluate phage cocktails by their efficacy in inhibiting bacterial population growth and the resulting phage concentrations. The results of this study indicate that data obtained from PKAs are more accurate than host range data based on plaque formation (EOP). Planktonic killing assays with Campylobacter appear to be a useful tool for a straightforward cocktail design. Results show that a group II phage vB_CcM-LmqsCP218-2c2 and group III phage vB_CjM-LmqsCP1-1 mixture would be most promising for practical applications against Campylobacter coli and Campylobacter jejuni.
Collapse
Affiliation(s)
- Severin Michael Steffan
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany; (S.M.S.); (E.P.); (M.P.)
| | - Golshan Shakeri
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad 9177948974, Iran;
| | - Corinna Kehrenberg
- Institute for Veterinary Food Science, Justus-Liebig-University Giessen, Frankfurter Straße 92, 35392 Giessen, Germany;
| | - Elisa Peh
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany; (S.M.S.); (E.P.); (M.P.)
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research GmbH, Inhoffenstraße 7, 38124 Braunschweig, Germany;
| | - Madeleine Plötz
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany; (S.M.S.); (E.P.); (M.P.)
| | - Sophie Kittler
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany; (S.M.S.); (E.P.); (M.P.)
| |
Collapse
|
22
|
Steffan SM, Shakeri G, Hammerl JA, Kehrenberg C, Peh E, Rohde M, Jackel C, Plotz M, Kittler S. Isolation and Characterization of Group III Campylobacter jejuni-Specific Bacteriophages From Germany and Their Suitability for Use in Food Production. Front Microbiol 2021; 12:761223. [PMID: 34956123 PMCID: PMC8696038 DOI: 10.3389/fmicb.2021.761223] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
Campylobacter spp. are a major cause of bacterial foodborne diarrhea worldwide. While thermophilic Campylobacter species asymptomatically colonize the intestines of chickens, most human infections in industrial countries have been attributed to consumption of chicken meat or cross-contaminated products. Bacteriophages (phages) are natural predators of bacteria and their use at different stages of the food production chain has been shown to reduce the public health burden of human campylobacteriosis. However, regarding regulatory issues, the use of lytic phages in food is still under discussion and evaluation. This study aims to identify lytic phages suitable for reducing Campylobacter bacteria along the food production chain. Therefore, four of 19 recently recovered phages were further characterized in detail for their lytic efficacy against different Campylobacter field strains and their suitability under food production settings at different temperatures and pH values. Based on the results of this study, the phages vB_CjM-LmqsCP1-4 and vB_CjM-LmqsCP1-5 appear to be promising candidates for the reduction of Campylobacter jejuni in food production settings.
Collapse
Affiliation(s)
- Severin Michael Steffan
- Institute for Food Quality and Food Safety, Foundation University of Veterinary Medicine Hannover, Hanover, Germany
| | - Golshan Shakeri
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Jens Andre Hammerl
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Corinna Kehrenberg
- Institute for Veterinary Food Science, Justus-Liebig-University Giessen, Giessen, Germany
| | - Elisa Peh
- Institute for Food Quality and Food Safety, Foundation University of Veterinary Medicine Hannover, Hanover, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research GmbH, Braunschweig, Germany
| | - Claudia Jackel
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Madeleine Plotz
- Institute for Food Quality and Food Safety, Foundation University of Veterinary Medicine Hannover, Hanover, Germany
| | - Sophie Kittler
- Institute for Food Quality and Food Safety, Foundation University of Veterinary Medicine Hannover, Hanover, Germany
| |
Collapse
|
23
|
Cheng X, Cao Z, Luo J, Hu R, Cao H, Guo X, Xing C, Yang F, Zhuang Y, Hu G. Baicalin ameliorates APEC-induced intestinal injury in chicks by inhibiting the PI3K/AKT-mediated NF-κB signaling pathway. Poult Sci 2021; 101:101572. [PMID: 34844111 PMCID: PMC8633683 DOI: 10.1016/j.psj.2021.101572] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 12/23/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is the causative agent of avian colibacillosis. Baicalin (BA) possesses multiple pharmacological effects, but the mechanism underlying its activity in APEC-induced intestinal injury remains unknown. This study aims to investigate the protective effects and possible mechanism of BA against APEC-induced intestinal injury. Sixty 1-day-old chicks were randomly divided into 4 groups: the control group (basal diet), E. coli group (basal diet), BAI10 group (10 mg/kg BA), and BAI20 group (20 mg/kg BA). After pretreatment with BA for 15 d and subsequent induction of APEC infection by pectoralis injection, the ileum was collected and analyzed. The results showed that BA-pretreatment demonstrated an alleviation of chicks in diarrhea rate, mortality, and histopathological changes in intestinal tissues after APEC infection. Additionally, following APEC infection, BA improved the intestinal barrier by elevating zona occludens (ZO)s (ZO-1, 2, 3), Claudins (Claudin1, 2, 3), Occludin, avian β-defensin (AvBD)s (AvBD1, 2, 4), lysozyme (Lyz) mRNA levels and ZO-1, Claudin1, and Occludin protein levels. Besides, the activities of total superoxide dismutase (T-SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) and the SOD-1 and CAT mRNA levels and SOD-1 protein level were elevated by BA pretreatment. BA pretreatment also decreased the malondialdehyde (MDA) content, heme oxygenase-1 (HO-1) and NADH quinone oxidoreductase 1 (NQO1) mRNA levels, and HO-1 protein level after APEC infection. BA alleviated the APEC-induced inflammatory response, including downregulating the mRNA levels of proinflammatory cytokines (tumor necrosis factor-α (TNF-α), interleukin [IL]-1β, IL-6, IL-8) and upregulating the mRNA levels of anti-inflammatory cytokines (IL-4, IL-10, IL-13, transforming growth factor-β [TGF-β]). Furthermore, BA decreased the mRNA and protein levels of phosphatidylinositol 3 kinase (PI3K), protein kinase B (AKT), and nuclear factor kappa-B (NF-κB) as well as the expression of the phosphorylated forms of these proteins after APEC infection. Collectively, our findings indicate that BA exerts a protective effect against APEC-induced intestinal injury in chicks by inhibiting the PI3K/AKT-mediated NF-κB pathway, suggesting that BA may be a potential therapeutic approach for avian colibacillosis.
Collapse
Affiliation(s)
- Xinyi Cheng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. China
| | - Zhanyou Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. China
| | - Junrong Luo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. China
| | - Ruiming Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. China.
| |
Collapse
|
24
|
Kittler S, Mengden R, Korf IHE, Bierbrodt A, Wittmann J, Plötz M, Jung A, Lehnherr T, Rohde C, Lehnherr H, Klein G, Kehrenberg C. Impact of Bacteriophage-Supplemented Drinking Water on the E. coli Population in the Chicken Gut. Pathogens 2020; 9:E293. [PMID: 32316373 PMCID: PMC7238078 DOI: 10.3390/pathogens9040293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 03/30/2020] [Accepted: 04/13/2020] [Indexed: 01/31/2023] Open
Abstract
Among intestinal coliform microbes in the broiler gut, there are potentially pathogenic Escherichia (E.) coli that can cause avian colibacillosis. The treatment with antibiotics favors the selection of multidrug-resistant bacteria and an alternative to this treatment is urgently required. A chicken model of intestinal colonization with an apathogenic model strain of E. coli was used to test if oral phage application can prevent or reduce the gut colonization of extraintestinal pathogenic E. coli variants in two individual experiments. The E. coli strain E28 was used as a model strain, which could be differentiated from other E. coli strains colonizing the broiler gut, and was susceptible to all cocktail phages applied. In the first trial, a mixture of six phages was continuously applied via drinking water. No reduction of the model E. coli strain E28 occurred, but phage replication could be demonstrated. In the second trial, the applied mixture was limited to the four phages, which showed highest efficacy in vitro. E. coli colonization was reduced in this trial, but again, no reduction of the E. coli strain E28 was observed. The results of the trials presented here can improve the understanding of the effect of phages on single strains in the multi-strain microbiota of the chicken gut.
Collapse
Affiliation(s)
- Sophie Kittler
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany;
| | - Ruth Mengden
- Food Inspection, Animal Welfare and Veterinary Service of the Land of Bremen, Border Control Post Bremerhaven, Senator-Borttscheller-Straße 8, 27568 Bremerhaven, Germany;
| | - Imke H. E. Korf
- Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany; (I.H.E.K.); (J.W.); (C.R.)
| | - Anna Bierbrodt
- Institute for Hazardous Materials Research, Waldring 97, 44789 Bochum, Germany;
| | - Johannes Wittmann
- Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany; (I.H.E.K.); (J.W.); (C.R.)
| | - Madeleine Plötz
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany;
| | - Arne Jung
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559 Hannover, Germany;
| | - Tatiana Lehnherr
- PTC Phage Technology Center GmbH, Siemensstraße 42, 59199 Bönen, Germany; (T.L.); (H.L.)
| | - Christine Rohde
- Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany; (I.H.E.K.); (J.W.); (C.R.)
| | - Hansjörg Lehnherr
- PTC Phage Technology Center GmbH, Siemensstraße 42, 59199 Bönen, Germany; (T.L.); (H.L.)
| | - Günter Klein
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany;
| | - Corinna Kehrenberg
- Institute for Veterinary Food Science, Justus-Liebig-University Giessen, Frankfurter Straße 92, 35392 Giessen, Germany;
| |
Collapse
|