1
|
Zhang N, Hu B, Zhang L, Gan M, Ding Q, Pan K, Wei J, Xu W, Chen D, Zheng S, Cai K, Zheng Z. Virome landscape of wild rodents and shrews in Central China. MICROBIOME 2025; 13:63. [PMID: 40033356 PMCID: PMC11874709 DOI: 10.1186/s40168-025-02059-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/07/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND Wild rodents and shrews serve as vital sentinel species for monitoring zoonotic viruses due to their close interaction with human environments and role as natural reservoirs for diverse viral pathogens. Although several studies have explored viral diversity and assessed pathogenic risks in wild rodents and shrews, the full extent of this diversity remains insufficiently understood. RESULTS We conducted high-throughput sequencing on 1113 small mammals collected from 97 townships across seven cities in Hubei Province during 2021, supplemented by publicly available data from 2014 and 2016-2017. This analysis revealed a diverse array of novel viruses spanning several viral families, including Arenaviridae, Hepeviridae, Chuviridae, Paramyxoviridae, Arteriviridae, Nodaviridae, Rhabdoviridae, Dicistroviridae, Astroviridae, and Picornaviridae. Phylogenetic analysis and genome structure characterization highlighted the discovery of these novel viruses, enhancing our understanding of viral diversity and evolution. Key host species such as Chodsigoa smithii, Anourosorex squamipes, Niviventer niviventer, and Apodemus agrarius were identified as significant contributors to viral circulation, making them crucial targets for future surveillance. Additionally, the central Plain of Hubei Province was recognized as a critical geographic hub for viral transmission, underscoring its importance in monitoring and controlling viral spread. Machine learning models were employed to assess the zoonotic potential of the identified viruses, revealing that families such as Arenaviridae, Coronaviridae, Hantaviridae, Arteriviridae, Astroviridae, Hepeviridae, Lispiviridae, Nairoviridae, Nodaviridae, Paramyxoviridae, Rhabdoviridae, Picornaviridae, and Picobirnaviridae possess a high likelihood of infecting humans. Notably, rodent-derived Rotavirus A, HTNV, and SEOV displayed almost complete amino acid identity with their human-derived counterparts, indicating a significant risk for human outbreaks. CONCLUSION This study provides a comprehensive virome landscape for wild rodents and shrews in Central China, highlighting novel viruses and the critical roles of specific host species and regions in viral transmission. By identifying key species and hotspots for viral spread and assessing the zoonotic potential of the discovered viruses, this research enhances our understanding of virus ecology and the factors driving zoonotic disease emergence. The findings emphasize the need for targeted surveillance and proactive strategies to mitigate the risks of zoonotic spillovers, contributing to global public health preparedness. Video Abstract.
Collapse
Affiliation(s)
- Nailou Zhang
- State Key Laboratory of Virology and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Bing Hu
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei, 430079, China
| | - Li Zhang
- Xianning Municipal Center for Disease Control and Prevention, Xianning, Hubei, 437000, China
| | - Min Gan
- State Key Laboratory of Virology and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Qingwen Ding
- State Key Laboratory of Virology and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Kai Pan
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei, 430079, China
| | - Jinbo Wei
- State Key Laboratory of Virology and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Wen Xu
- State Key Laboratory of Virology and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Dan Chen
- State Key Laboratory of Virology and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Shaolong Zheng
- State Key Laboratory of Virology and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Kun Cai
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei, 430079, China.
| | - Zhenhua Zheng
- State Key Laboratory of Virology and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
2
|
Monteiro AFM, da Silva FS, Cruz ACR, da Silva SP, Queiroz ALN, Casseb LMN, Martins LC, Medeiros DBDA. Viral diversity in wild rodents in the regions of Canaã de Carajás and Curionopólis, State of Pará, Brazil. Front Microbiol 2025; 15:1502462. [PMID: 39839123 PMCID: PMC11747277 DOI: 10.3389/fmicb.2024.1502462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/10/2024] [Indexed: 01/23/2025] Open
Abstract
Wild rodents serve as crucial reservoirs for zoonotic viruses. Anthropogenic and environmental disruptions, particularly those induced by mining activities, can destabilize rodent populations and facilitate the emergence of viral agents. In the Canaã dos Carajás and Curionópolis regions of Brazil, significant environmental changes have occurred due to mining expansion, potentially creating conditions conducive to the emergence of rodent-associated viral diseases. This study aimed to investigate the viral diversity in wild rodents captured in Canaã dos Carajás and Curionópolis, Pará, between 2017 and 2019. A total of 102 rodent samples were taxonomically identified through karyotyping and screened for anti-Orthohantavirus antibodies using the ELISA method. Subsequently, nucleotide sequencing and bioinformatics analyses were conducted on 14 selected samples to characterize the virome. This selection was based on the most commonly associated rodent genera as reservoirs of Orthohantavirus and Mammarenavirus. Of the 102 samples tested via ELISA, 100 were negative, and two showed optical density at the cutoff point. Sequencing of the 14 samples generated approximately 520 million reads, with 409 million retained after quality control. These reads were categorized into 53 viral families, including both DNA and RNA viruses, with Retroviridae, Baculoviridae, and Microviridae being the most abundant. Viral contigs were identified, including one fragment related to Arenaviridae and three to Filoviridae. Metagenomic analysis revealed high viral diversity in the sampled rodents, with the presence of viral families of public health concern, such as Arenaviridae and Filoviridae. The findings suggest that increased human activities associated with mining may contribute to the emergence of these viruses, underscoring the need for ongoing surveillance to prevent potential outbreaks.
Collapse
Affiliation(s)
- Adriana Freitas Moraes Monteiro
- Graduate Program in Virology, Evandro Chagas Institute — IEC/MS/SVSA, Ananindeua, Brazil
- Evandro Chagas Institute — IEC/MS/SVSA, Department of Arbovirology and Hemorragic Fevers, Ananindeua, Brazil
| | - Fábio Silva da Silva
- Evandro Chagas Institute — IEC/MS/SVSA, Department of Arbovirology and Hemorragic Fevers, Ananindeua, Brazil
| | - Ana Cecília Ribeiro Cruz
- Graduate Program in Virology, Evandro Chagas Institute — IEC/MS/SVSA, Ananindeua, Brazil
- Evandro Chagas Institute — IEC/MS/SVSA, Department of Arbovirology and Hemorragic Fevers, Ananindeua, Brazil
| | - Sandro Patroca da Silva
- Evandro Chagas Institute — IEC/MS/SVSA, Department of Arbovirology and Hemorragic Fevers, Ananindeua, Brazil
| | - Alice Louize Nunes Queiroz
- Evandro Chagas Institute — IEC/MS/SVSA, Department of Arbovirology and Hemorragic Fevers, Ananindeua, Brazil
| | - Livia Medeiros Neves Casseb
- Graduate Program in Virology, Evandro Chagas Institute — IEC/MS/SVSA, Ananindeua, Brazil
- Evandro Chagas Institute — IEC/MS/SVSA, Department of Arbovirology and Hemorragic Fevers, Ananindeua, Brazil
| | - Livia Carício Martins
- Graduate Program in Virology, Evandro Chagas Institute — IEC/MS/SVSA, Ananindeua, Brazil
- Evandro Chagas Institute — IEC/MS/SVSA, Department of Arbovirology and Hemorragic Fevers, Ananindeua, Brazil
| | - Daniele Barbosa de Almeida Medeiros
- Graduate Program in Virology, Evandro Chagas Institute — IEC/MS/SVSA, Ananindeua, Brazil
- Evandro Chagas Institute — IEC/MS/SVSA, Department of Arbovirology and Hemorragic Fevers, Ananindeua, Brazil
| |
Collapse
|
3
|
Flynn PJ, Moreau CS. Viral diversity and co-evolutionary dynamics across the ant phylogeny. Mol Ecol 2024; 33:e17519. [PMID: 39192682 DOI: 10.1111/mec.17519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/25/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
Knowledge of viral biodiversity within insects, particularly within ants, is extremely limited with only a few environmental viruses from invasive ant species identified to date. This study documents and explores the viral communities in ants. We comprehensively profile the metagenomes of a phylogenetically broad group of 35 ant species with varied ecological traits and report the discovery of 3710 novel and unique ant-associated viral genomes. These previously unknown viruses discovered within this study constitute over 95% of all currently described ant viruses, significantly increasing our knowledge of the ant virosphere. The identified RNA and DNA viruses fill gaps in insect-associated viral phylogenies and uncover evolutionary histories characterized by both frequent host switching and co-divergence. Many ants also host diverse bacterial communities, and we discovered that approximately one-third of these new ant-associated viruses are bacteriophages. Two ecological categories, bacterial abundance in the host and habitat degradation are both correlated with ant viral diversity and help to structure viral communities within ants. These data demonstrate that the ant virosphere is remarkably diverse phylogenetically and genomically and provide a substantial foundation for studies in virus ecology and evolution within eukaryotes. We highlight the importance of studying insect-associated viruses in natural ecosystems in order to more thoroughly and effectively understand host-microbe evolutionary dynamics.
Collapse
Affiliation(s)
- Peter J Flynn
- Committee on Evolutionary Biology, University of Chicago, Chicago, Illinois, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Corrie S Moreau
- Department of Entomology, Cornell University, Ithaca, New York, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
4
|
de Thoisy B, Gräf T, Mansur DS, Delfraro A, Dos Santos CND. The Risk of Virus Emergence in South America: A Subtle Balance Between Increasingly Favorable Conditions and a Protective Environment. Annu Rev Virol 2024; 11:43-65. [PMID: 38848594 DOI: 10.1146/annurev-virology-100422-024648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
South American ecosystems host astonishing biodiversity, with potentially great richness in viruses. However, these ecosystems have not yet been the source of any widespread, epidemic viruses. Here we explore a set of putative causes that may explain this apparent paradox. We discuss that human presence in South America is recent, beginning around 14,000 years ago; that few domestications of native species have occurred; and that successive immigration events associated with Old World virus introductions reduced the likelihood of spillovers and adaptation of local viruses into humans. Also, the diversity and ecological characteristics of vertebrate hosts might serve as protective factors. Moreover, although forest areas remained well preserved until recently, current brutal, sudden, and large-scale clear cuts through the forest have resulted in nearly no ecotones, which are essential for creating an adaptive gradient of microbes, hosts, and vectors. This may be temporarily preventing virus emergence. Nevertheless, the mid-term effect of such drastic changes in habitats and landscapes, coupled with explosive urbanization and climate changes, must not be overlooked by health authorities.
Collapse
Affiliation(s)
- Benoit de Thoisy
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Tiago Gräf
- Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz PR, Curitiba, Brazil;
| | - Daniel Santos Mansur
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia, e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Adriana Delfraro
- Sección Virología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | | |
Collapse
|
5
|
Koh C, Saleh MC. Translating mosquito viromes into vector management strategies. Trends Parasitol 2024; 40:10-20. [PMID: 38065789 DOI: 10.1016/j.pt.2023.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 01/06/2024]
Abstract
Mosquitoes are best known for transmitting human and animal viruses. However, they also harbour mosquito-specific viruses (MSVs) as part of their microbiota. These are a group of viruses whose diversity and prevalence overshadow their medically relevant counterparts. Although metagenomics sequencing has remarkably accelerated the discovery of these viruses, what we know about them is often limited to sequence information, leaving much of their fundamental biology to be explored. Understanding the biology and ecology of MSVs can enlighten our knowledge of virus-virus interactions and lead to new innovations in the management of mosquito-borne viral diseases. We retrace the history of their discovery and discuss research milestones that would line the path from mosquito virome knowledge to vector management strategies.
Collapse
Affiliation(s)
- Cassandra Koh
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, 75015 Paris, France.
| | - Maria-Carla Saleh
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, 75015 Paris, France
| |
Collapse
|
6
|
Rizotto LS, Bueno LM, Corrêa TC, Dos Santos de Moraes MV, de Oliveira Viana A, Silva LMN, Benassi JC, Scagion GP, Lopes BLT, de Assis IB, Ometto T, Dorlass EG, Cunha IN, Melinski RD, Leitão GL, Rodrigues RC, da Silva Pereira IM, D'ark Nunes Dos Santos L, Hingst-Zaher E, de Azevedo Junior SM, Junior WRT, de Araújo J, Durigon EL, Arns CW, Ferreira HL. Genetic diversity of adenovirus in neotropical bats from Brazil. Braz J Microbiol 2023; 54:3221-3230. [PMID: 37653362 PMCID: PMC10689316 DOI: 10.1007/s42770-023-01109-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023] Open
Abstract
Bats can harbor a diversity of viruses, such as adenovirus. Ten different species of bat adenoviruses (BtAdV A to J) have been previous described worlwide. In Brazil, BtAdV was described in three species of phyllostomid species: Artibeus lituratus, Desmodus rotundus, and Sturnira lilium. There are around 180 bat species in Brazil, with 67% inhabiting the Atlantic Forest, with few information about the circulation of BtAdV in this biome. We aimed to describe the molecular detection and the phylogenetic characterization and suggest a classification of BtAdVs circulating in bats from the Brazilian Atlantic Forest. We collected 382 oral and rectal swabs from 208 bats between 2014-2015 and 2020-2021 from São Paulo, Pernambuco, and Santa Catarina Brazilian states. The adenovirus detection was done by a nested PCR targeting the DNA polymerase gene, and all positive samples were sequenced by the Sanger method. The phylogenetic analyses were based on the amino acid sequences using the MEGA 7 and BEAST software. We obtained 16 positive animals (detection rate 7.7%) belonging to seven bat species: Artibeus lituratus, Carollia perspicillata, Sturnira lilium, Molossus molossus, and the first record of Phyllostomus discolor, Eptesicus diminutus, and Myotis riparius. The phylogenetic analysis based on partial amino acid sequences showed that all obtained AdV sequences belong to the Mastadenovirus genus. We observed a high genetic diversity of BtAdV and identified eleven potential BtAdV species circulating in Brazil (BtAdV K to U). Our results contribute to the epidemiological surveillance of adenovirus, increasing the knowledge about the viral diversity and the distribution of AdV in bats from the Atlantic Forest.
Collapse
Affiliation(s)
- Laís Santos Rizotto
- Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, FMVZ-USP, São Paulo, SP, Brazil
| | - Larissa Mayumi Bueno
- Department of Veterinary Medicine, University of São Paulo, FZEA-USP, 225 Av. Duque de Caxias Norte, Pirassununga, SP, Brazil
| | - Thaís Camilo Corrêa
- Department of Veterinary Medicine, University of São Paulo, FZEA-USP, 225 Av. Duque de Caxias Norte, Pirassununga, SP, Brazil
| | | | | | | | - Julia Cristina Benassi
- Department of Veterinary Medicine, University of São Paulo, FZEA-USP, 225 Av. Duque de Caxias Norte, Pirassununga, SP, Brazil
| | | | | | | | - Tatiana Ometto
- Biomedical Science Institute, University of São Paulo, ICB-USP, São Paulo, SP, Brazil
| | - Erick Gustavo Dorlass
- Biomedical Science Institute, University of São Paulo, ICB-USP, São Paulo, SP, Brazil
| | | | | | | | - Roberta Costa Rodrigues
- Laboratory of Ornithology, Department of Biology, Federal Rural University of Pernambuco, UFRPE, Recife, PE, Brazil
| | | | - Lilia D'ark Nunes Dos Santos
- Laboratory of Ornithology, Department of Biology, Federal Rural University of Pernambuco, UFRPE, Recife, PE, Brazil
| | | | | | | | - Jansen de Araújo
- Biomedical Science Institute, University of São Paulo, ICB-USP, São Paulo, SP, Brazil
| | - Edison Luiz Durigon
- Biomedical Science Institute, University of São Paulo, ICB-USP, São Paulo, SP, Brazil
| | - Clarice Weis Arns
- Institute of Biology, University of Campinas, UNICAMP, Campinas, SP, Brazil
| | - Helena Lage Ferreira
- Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, FMVZ-USP, São Paulo, SP, Brazil.
- Department of Veterinary Medicine, University of São Paulo, FZEA-USP, 225 Av. Duque de Caxias Norte, Pirassununga, SP, Brazil.
| |
Collapse
|
7
|
Talaga S, Duchemin JB. Mosquitoes (Diptera: Culicidae) of the Amazonian savannas of French Guiana with a description of two new species. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2023; 49:15-27. [PMID: 38147298 DOI: 10.52707/1081-1710-49.1.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/26/2023] [Indexed: 12/27/2023]
Abstract
Amazonian savannas are among the most noteworthy landscape components of the coastal plain of French Guiana. Although they cover only 0.22% of the territory, they bring together a large part of the animal and plant diversity of this overseas region of France. This article outlines the results of the first study dedicated to mosquitoes (Diptera: Culicidae) of Amazonian savannas. Samplings were conducted in eight independent savannas evenly distributed along a transect of 170 km on the coastal plain of French Guiana. A total of 50 mosquito species were recorded, which is about 20% of the culicid fauna currently known in French Guiana. Among them, Culex (Melanoconion) organaboensis sp. nov. and Cx. (Mel.) zabanicus sp. nov. are newly described based on both morphological features of the male genitalia and a DNA barcode obtained from type specimens. Diagnostic characters to assist their identification are provided and their placement within the infrasubgeneric classification of the subgenus Melanoconion is discussed.
Collapse
Affiliation(s)
- Stanislas Talaga
- Institut Pasteur de la Guyane, Vectopôle Amazonien Emile Abonnenc, Unité d'Entomologie Médicale, 97300, Cayenne, French Guiana,
| | - Jean-Bernard Duchemin
- Institut Pasteur de la Guyane, Vectopôle Amazonien Emile Abonnenc, Unité d'Entomologie Médicale, 97300, Cayenne, French Guiana
| |
Collapse
|
8
|
Minias P. The effects of urban life on animal immunity: Adaptations and constraints. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165085. [PMID: 37379938 DOI: 10.1016/j.scitotenv.2023.165085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
Land transformation, including urbanization, is a dominant form of anthropogenic change to the global environment at the dawn of the Anthropocene epoch. More and more species are brought into direct contact with humans, being either required to develop broad-scale adaptations to urban environment or filtered out from urbanized areas. While behavioural or physiological adaptations are at the forefront of urban biology research, there is accumulating evidence for divergent pathogen pressure across urbanization gradients, requiring adjustments in host immune function. At the same time, host immunity may be constrained by unfavourable components of an urban environment, such as poor-quality food resources, disturbance, or pollution. Here, I reviewed existing evidence for adaptations and constrains in the immune system of urban animals, focusing on the recent implementation of metabarcoding, genomic, transcriptomic, and epigenomic approaches in urban biology research. I show that spatial variation in pathogen pressure across urban and non-urban landscapes is highly complex and may be context-dependent, but there is solid evidence for pathogen-driven immunostimulation in urban-dwelling animals. I also show that genes coding for molecules directly involved in interactions with pathogens are the prime candidates for immunogenetic adaptations to urban life. Evidence emerging from landscape genomics and transcriptomics show that immune adaptations to urban life may have a polygenic nature, but immune traits may not be among the key biological functions experiencing broad-scale microevolutionary changes in response to urbanization. Finally, I provided recommendations for future research, including i) a better integration of different 'omic' approaches to obtain a more complete picture of immune adaptations to urban life in non-model animal taxa, ii) quantification of fitness landscapes for immune phenotypes and genotypes across urbanization gradient, and iii) much broader taxonomic coverage (including invertebrates) necessary to draw more robust conclusions on how general (or taxa-specific) are immune responses of animals to urbanization.
Collapse
Affiliation(s)
- Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237 Łódź, Poland.
| |
Collapse
|
9
|
Chen YM, Hu SJ, Lin XD, Tian JH, Lv JX, Wang MR, Luo XQ, Pei YY, Hu RX, Song ZG, Holmes EC, Zhang YZ. Host traits shape virome composition and virus transmission in wild small mammals. Cell 2023; 186:4662-4675.e12. [PMID: 37734372 DOI: 10.1016/j.cell.2023.08.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/13/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023]
Abstract
Bats, rodents, and shrews are the most important animal sources of human infectious diseases. However, the evolution and transmission of viruses among them remain largely unexplored. Through the meta-transcriptomic sequencing of internal organ and fecal samples from 2,443 wild bats, rodents, and shrews sampled from four Chinese habitats, we identified 669 viruses, including 534 novel viruses, thereby greatly expanding the mammalian virome. Our analysis revealed high levels of phylogenetic diversity, identified cross-species virus transmission events, elucidated virus origins, and identified cases of invertebrate viruses in mammalian hosts. Host order and sample size were the most important factors impacting virome composition and patterns of virus spillover. Shrews harbored a high richness of viruses, including many invertebrate-associated viruses with multi-organ distributions, whereas rodents carried viruses with a greater capacity for host jumping. These data highlight the remarkable diversity of mammalian viruses in local habitats and their ability to emerge in new hosts.
Collapse
Affiliation(s)
- Yan-Mei Chen
- State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Shu-Jian Hu
- State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Xian-Dan Lin
- Wenzhou Center for Disease Control and Prevention, Wenzhou, Zhejiang 325002, China
| | - Jun-Hua Tian
- Wuhan Center for Disease Control and Prevention, Wuhan, Hubei 430022, China
| | - Jia-Xin Lv
- State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Miao-Ruo Wang
- Longquan Center for Disease Control and Prevention, Longquan, Zhejiang 323799, China
| | - Xiu-Qi Luo
- State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Yuan-Yuan Pei
- State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Rui-Xue Hu
- State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Zhi-Gang Song
- State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia; Laboratory of Data Discovery for Health Limited, Hong Kong SAR, China
| | - Yong-Zhen Zhang
- State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai 200438, China.
| |
Collapse
|
10
|
da Paz TYB, Hernández LHA, Silva SPD, Silva FSD, Barros BCVD, Casseb LMN, Guimarães RJDPSE, Vasconcelos PFDC, Cruz ACR. Novel Rodent Arterivirus Detected in the Brazilian Amazon. Viruses 2023; 15:v15051150. [PMID: 37243236 DOI: 10.3390/v15051150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
As part of a continuous effort to investigate the viral communities associated with wild mammals at the human-animal interface in an Amazonian metropolitan region, this study describes the detection of a novel rodent-borne arterivirus. A sample containing pooled organs of Oecomys paricola was submitted to RNA sequencing, and four sequences taxonomically assigned as related to the Arteriviridae family were recovered, corresponding to an almost complete genome of nearly 13 kb summed. In the phylogenetic analysis with the standard domains used for taxa demarcation in the family, the tentatively named Oecomys arterivirus 1 (OAV-1) was placed within the clade of rodent- and porcine-associated viruses, corresponding to the Variarterivirinae subfamily. The divergence analysis, based on the same amino acid alignment, corroborated the hypothesis that the virus may represent a new genus within the subfamily. These findings contribute to the expansion of the current knowledge about the diversity, host and geographical range of the viral family. Arterivirids are non-human pathogens and are usually species-specific, but the susceptibility of cell lines derived from different organisms should be conducted to confirm these statements for this proposed new genus in an initial attempt to assess its spillover potential.
Collapse
Affiliation(s)
- Thito Y Bezerra da Paz
- Parasite Biology in the Amazon Region Graduate Program, Pará State University, Belém 66087-670, Brazil
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Ministry of Health, Ananindeua 67030-000, Brazil
| | - Leonardo H Almeida Hernández
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Ministry of Health, Ananindeua 67030-000, Brazil
| | - Sandro Patroca da Silva
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Ministry of Health, Ananindeua 67030-000, Brazil
| | - Fábio Silva da Silva
- Parasite Biology in the Amazon Region Graduate Program, Pará State University, Belém 66087-670, Brazil
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Ministry of Health, Ananindeua 67030-000, Brazil
| | - Bruno C Veloso de Barros
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Ministry of Health, Ananindeua 67030-000, Brazil
| | - Livia M Neves Casseb
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Ministry of Health, Ananindeua 67030-000, Brazil
| | - Ricardo J de Paula Souza E Guimarães
- Geoprocessing Laboratory, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Ministry of Health, Ananindeua 67030-000, Brazil
| | - Pedro F da Costa Vasconcelos
- Parasite Biology in the Amazon Region Graduate Program, Pará State University, Belém 66087-670, Brazil
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Ministry of Health, Ananindeua 67030-000, Brazil
| | - Ana C Ribeiro Cruz
- Parasite Biology in the Amazon Region Graduate Program, Pará State University, Belém 66087-670, Brazil
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Ministry of Health, Ananindeua 67030-000, Brazil
| |
Collapse
|
11
|
Mull N, Schexnayder A, Stolt A, Sironen T, Forbes KM. Effects of habitat management on rodent diversity, abundance, and virus infection dynamics. Ecol Evol 2023; 13:e10039. [PMID: 37113517 PMCID: PMC10126759 DOI: 10.1002/ece3.10039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/06/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
As anthropogenic factors continue to degrade natural areas, habitat management is needed to restore and maintain biodiversity. However, the impacts of different habitat management regimes on ecosystems have largely focused on vegetation analyses, with limited evaluation of downstream effects on wildlife. We compared the effects of grassland management regimes (prescribed burning, cutting/haying, or no active management) on rodent communities and the viruses they hosted. Rodents were trapped in 13 existing grassland sites in Northwest Arkansas, USA during 2020 and 2021. Rodent blood samples were screened for antibodies against three common rodent-borne virus groups: orthohantaviruses, arenaviruses, and orthopoxviruses. We captured 616 rodents across 5953 trap nights. Burned and unmanaged sites had similarly high abundance and diversity, but burned sites had a higher proportion of grassland species than unmanaged sites; cut sites had the highest proportion of grassland species but the lowest rodent abundance and diversity. A total of 38 rodents were seropositive for one of the three virus groups (34 orthohantavirus, three arenavirus, and one orthopoxvirus). Thirty-six seropositive individuals were found in burned sites, and two orthohantavirus-seropositive individuals were found in cut sites. Cotton rats and prairie voles, two grassland species, accounted for 97% of the rodents seropositive for orthohantavirus. Our study indicates that prescribed burns lead to a diverse and abundant community of grassland rodent species compared with other management regimes; as keystone taxa, these results also have important implications for many other species in food webs. Higher prevalence of antibodies against rodent-borne viruses in burned prairies shows an unexpected consequence likely resulting from robust host population densities supported by the increased habitat quality of these sites. Ultimately, these results provide empirical evidence that can inform grassland restoration and ongoing management strategies.
Collapse
Affiliation(s)
- Nathaniel Mull
- Department of Biological SciencesUniversity of ArkansasFayettevilleArkansasUSA
| | - Amy Schexnayder
- Department of Biological SciencesUniversity of ArkansasFayettevilleArkansasUSA
| | - Abigail Stolt
- Department of Biological SciencesUniversity of ArkansasFayettevilleArkansasUSA
| | - Tarja Sironen
- Department of VirologyUniversity of HelsinkiHelsinkiFinland
- Department of Veterinary BiosciencesUniversity of HelsinkiHelsinkiFinland
| | - Kristian M. Forbes
- Department of Biological SciencesUniversity of ArkansasFayettevilleArkansasUSA
| |
Collapse
|
12
|
He X, Wang X, Fan G, Li F, Wu W, Wang Z, Fu M, Wei X, Ma S, Ma X. Metagenomic analysis of viromes in tissues of wild Qinghai vole from the eastern Tibetan Plateau. Sci Rep 2022; 12:17239. [PMID: 36241909 PMCID: PMC9562062 DOI: 10.1038/s41598-022-22134-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/10/2022] [Indexed: 01/06/2023] Open
Abstract
Rodents are natural reservoirs of diverse zoonotic viruses and widely distributed on the Tibetan Plateau. A comprehensive understanding of the virome in local rodent species could provide baseline of viral content and assist in efforts to reduce the risk for future emergence of rodent related zoonotic diseases. A total of 205 tissue and fecal samples from 41 wild Qinghai voles were collected. Metagenomic analyses were performed to outline the characteristics of the viromes, and phylogenetic analyses were used to identify the novel viral genomes. The virome distribution among five tissues (liver, lung, spleen, small intestine with content and feces) was also compared. We identified sequences related to 46 viral families. Novel viral genomes from distinct evolutionary lineages with known viruses were characterized for their genomic and evolutionary characteristics, including Hepatovirus, Hepacivirus, Rotavirus, and Picobirnavirus. Further analyses revealed that the core virome harbored by rodent internal tissues were quite different from the virome found in intestine and fecal samples. These findings provide an overview of the viromes in wild Qinghai voles, which are unique and the most common rodent species in the eastern Tibetan Plateau. A high diversity of viruses is likely present in rodent species in this area.
Collapse
Affiliation(s)
- Xiaozhou He
- grid.198530.60000 0000 8803 2373NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China ,grid.9227.e0000000119573309Chinese Center for Disease Control and Prevention - Wuhan Institute of Virology, Chinese Academy of Sciences Joint Research Center for Emerging Infectious Diseases and Biosafety, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Xu Wang
- grid.508378.1National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, People’s Republic of China
| | - Guohao Fan
- grid.198530.60000 0000 8803 2373NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China ,grid.9227.e0000000119573309Chinese Center for Disease Control and Prevention - Wuhan Institute of Virology, Chinese Academy of Sciences Joint Research Center for Emerging Infectious Diseases and Biosafety, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Fan Li
- grid.198530.60000 0000 8803 2373NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Weiping Wu
- grid.508378.1National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, People’s Republic of China
| | - Zhenghuan Wang
- grid.22069.3f0000 0004 0369 6365School of Life Sciences, East China Normal University, Shanghai, People’s Republic of China
| | - Meihua Fu
- grid.430328.eShanghai Municipal Center for Disease Control and Prevention, Shanghai, People’s Republic of China
| | - Xu Wei
- grid.22069.3f0000 0004 0369 6365School of Life Sciences, East China Normal University, Shanghai, People’s Republic of China
| | - Shuo Ma
- grid.22069.3f0000 0004 0369 6365School of Life Sciences, East China Normal University, Shanghai, People’s Republic of China
| | - Xuejun Ma
- grid.198530.60000 0000 8803 2373NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China ,grid.9227.e0000000119573309Chinese Center for Disease Control and Prevention - Wuhan Institute of Virology, Chinese Academy of Sciences Joint Research Center for Emerging Infectious Diseases and Biosafety, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| |
Collapse
|
13
|
Heraud JM, Lavergne A, Njouom R. Special Issue: “Viral Genetic Diversity”. Viruses 2022; 14:v14030570. [PMID: 35336977 PMCID: PMC8954497 DOI: 10.3390/v14030570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Jean-Michel Heraud
- National Reference Laboratory for Rabies and Viral Encephalitis, Institut Pasteur de Dakar, Dakar 12900, Senegal
- Correspondence: ; Tel.: +221-770923244
| | - Anne Lavergne
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, Cayenne 97306, French Guiana;
| | - Richard Njouom
- Virology Department, Centre Pasteur du Cameroun, Yaounde, Cameroon;
| |
Collapse
|
14
|
Du H, Zhang L, Zhang X, Yun F, Chang Y, Tuersun A, Aisaiti K, Ma Z. Metagenome-Assembled Viral Genomes Analysis Reveals Diversity and Infectivity of the RNA Virome of Gerbillinae Species. Viruses 2022; 14:356. [PMID: 35215951 PMCID: PMC8874536 DOI: 10.3390/v14020356] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 11/21/2022] Open
Abstract
Rodents are a known reservoir for extensive zoonotic viruses, and also possess a propensity to roost in human habitation. Therefore, it is necessary to identify and catalogue the potentially emerging zoonotic viruses that are carried by rodents. Here, viral metagenomic sequencing was used for zoonotic virus detection and virome characterization on 32 Great gerbils of Rhombomys opimus, Meriones meridianus, and Meiiones Unguiculataus species in Xinjiang, Northwest China. In total, 1848 viral genomes that are potentially pathogenic to rodents and humans, as well as to other wildlife, were identified namely Retro-, Flavi-, Pneumo-, Picobirna-, Nairo-, Arena-, Hepe-, Phenui-, Rhabdo-, Calici-, Reo-, Corona-, Orthomyxo-, Peribunya-, and Picornaviridae families. In addition, a new genotype of rodent Hepacivirus was identified in heart and lung homogenates of seven viscera pools and phylogenetic analysis revealed the closest relationship to rodent Hepacivirus isolate RtMm-HCV/IM2014 that was previously reported to infect rodents from Inner Mongolia, China. Moreover, nine new genotype viral sequences that corresponded to Picobirnaviruses (PBVs), which have a bi-segmented genome and belong to the family Picobirnaviridae, comprising of three segment I and six segment II sequences, were identified in intestines and liver of seven viscera pools. In the two phylogenetic trees that were constructed using ORF1 and ORF2 of segment I, the three segment I sequences were clustered into distinct clades. Additionally, phylogenetic analysis showed that PBV sequences were distributed in the whole tree that was constructed using the RNA-dependent RNA polymerase (RdRp) gene of segment II with high diversity, sharing 68.42-82.67% nucleotide identities with other genogroup I and genogroup II PBV strains based on the partial RdRp gene. By RNA sequencing, we found a high degree of biodiversity of Retro-, Flavi-, Pneumo-, and Picobirnaridae families and other zoonotic viruses in gerbils, indicating that zoonotic viruses are a common presence in gerbils from Xinjiang, China. Therefore, further research is needed to determine the zoonotic potential of these viruses that are carried by other rodent species from different ecosystems and wildlife in general.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhenghai Ma
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (H.D.); (L.Z.); (X.Z.); (F.Y.); (Y.C.); (A.T.); (K.A.)
| |
Collapse
|
15
|
Bolatti EM, Viarengo G, Zorec TM, Cerri A, Montani ME, Hosnjak L, Casal PE, Bortolotto E, Di Domenica V, Chouhy D, Allasia MB, Barquez RM, Poljak M, Giri AA. Viral Metagenomic Data Analyses of Five New World Bat Species from Argentina: Identification of 35 Novel DNA Viruses. Microorganisms 2022; 10:microorganisms10020266. [PMID: 35208721 PMCID: PMC8880087 DOI: 10.3390/microorganisms10020266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/18/2022] Open
Abstract
Bats are natural reservoirs of a variety of zoonotic viruses, many of which cause severe human diseases. Characterizing viruses of bats inhabiting different geographical regions is important for understanding their viral diversity and for detecting viral spillovers between animal species. Herein, the diversity of DNA viruses of five arthropodophagous bat species from Argentina was investigated using metagenomics. Fecal samples of 29 individuals from five species (Tadarida brasiliensis, Molossus molossus, Eumops bonariensis, Eumops patagonicus, and Eptesicus diminutus) living at two different geographical locations, were investigated. Enriched viral DNA was sequenced using Illumina MiSeq, and the reads were trimmed and filtered using several bioinformatic approaches. The resulting nucleotide sequences were subjected to viral taxonomic classification. In total, 4,520,370 read pairs were sequestered by sequencing, and 21.1% of them mapped to viral taxa. Circoviridae and Genomoviridae were the most prevalent among vertebrate viral families in all bat species included in this study. Samples from the T. brasiliensis colony exhibited lower viral diversity than samples from other species of New World bats. We characterized 35 complete genome sequences of novel viruses. These findings provide new insights into the global diversity of bat viruses in poorly studied species, contributing to prevention of emerging zoonotic diseases and to conservation policies for endangered species.
Collapse
Affiliation(s)
- Elisa M. Bolatti
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, Rosario 2000, Argentina; (E.M.B.); (A.C.); (D.C.)
- Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina;
| | - Gastón Viarengo
- DETx MOL S.A., Centro Científico Tecnológico CONICET Rosario, Ocampo y Esmeralda, Rosario 2000, Argentina;
| | - Tomaz M. Zorec
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia; (T.M.Z.); (L.H.)
| | - Agustina Cerri
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, Rosario 2000, Argentina; (E.M.B.); (A.C.); (D.C.)
| | - María E. Montani
- Museo Provincial de Ciencias Naturales “Dr. Ángel Gallardo”, San Lorenzo 1949, Rosario 2000, Argentina;
- Programa de Conservación de los Murciélagos de Argentina, Miguel Lillo 251, San Miguel de Tucumán 4000, Argentina; (V.D.D.); (R.M.B.)
- Instituto PIDBA (Programa de Investigaciones de Biodiversidad Argentina), Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, San Miguel de Tucumán 4000, Argentina
| | - Lea Hosnjak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia; (T.M.Z.); (L.H.)
| | - Pablo E. Casal
- Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina;
| | - Eugenia Bortolotto
- Área Estadística y Procesamiento de Datos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina; (E.B.); (M.B.A.)
| | - Violeta Di Domenica
- Programa de Conservación de los Murciélagos de Argentina, Miguel Lillo 251, San Miguel de Tucumán 4000, Argentina; (V.D.D.); (R.M.B.)
| | - Diego Chouhy
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, Rosario 2000, Argentina; (E.M.B.); (A.C.); (D.C.)
- Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina;
- DETx MOL S.A., Centro Científico Tecnológico CONICET Rosario, Ocampo y Esmeralda, Rosario 2000, Argentina;
| | - María Belén Allasia
- Área Estadística y Procesamiento de Datos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina; (E.B.); (M.B.A.)
| | - Rubén M. Barquez
- Programa de Conservación de los Murciélagos de Argentina, Miguel Lillo 251, San Miguel de Tucumán 4000, Argentina; (V.D.D.); (R.M.B.)
- Instituto PIDBA (Programa de Investigaciones de Biodiversidad Argentina), Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, San Miguel de Tucumán 4000, Argentina
| | - Mario Poljak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia; (T.M.Z.); (L.H.)
- Correspondence: (M.P.); (A.A.G.); Tel.: +386-1-543-7454 (M.P.); +54-341-435-0661 (ext. 116) (A.A.G.); Fax: +54-341-439-0465 (A.A.G.)
| | - Adriana A. Giri
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, Rosario 2000, Argentina; (E.M.B.); (A.C.); (D.C.)
- Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina;
- Correspondence: (M.P.); (A.A.G.); Tel.: +386-1-543-7454 (M.P.); +54-341-435-0661 (ext. 116) (A.A.G.); Fax: +54-341-439-0465 (A.A.G.)
| |
Collapse
|