1
|
Ling J, Khan A, Denkewitz M, Maccarana M, Lundkvist Å, Li JP, Li J. Dual roles of exostosin glycosyltransferase 1 in Zika virus infection. Virulence 2025; 16:2458681. [PMID: 39927690 PMCID: PMC11812395 DOI: 10.1080/21505594.2025.2458681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 01/07/2025] [Accepted: 01/19/2025] [Indexed: 02/11/2025] Open
Abstract
Many factors involved in heparan sulfate (HS) biosynthesis and metabolism have been reported to play roles in viral infection. However, the detailed mechanisms are still not fully understood. In this study, we report that exostosin glycosyltransferase 1 (EXT1), the HS polymerase, is a critical regulatory factor for Zika virus (ZIKV) infection. Knocking out EXT1 dramatically restricts ZIKV infection, which is not due to the inhibition of virus entry resulting from HS deficiency, but mediated by the downregulation of autophagy. Induction of autophagy promotes ZIKV infection, and attenuated autophagy is found in distinct EXT1 knockout (EXT1-KO) cell lines. Induction of autophagy by rapamycin can relieve the ZIKV production defect in EXT1-KO cells. While over-expressing EXT1 results in the reduction of ZIKV production by targeting the viral envelope (E) protein and non-structural protein NS3 in a proteasome-dependent degradation manner. The different roles of EXT1 in ZIKV infection are further confirmed by the data that knocking down EXT1 at the early stage of ZIKV infection represses viral infection, whereas the increase of ZIKV infection is observed when knocking down EXT1 at the late stage of viral infection. This study discovers previously unrecognized intricate roles of EXT1 in ZIKV infection.
Collapse
Affiliation(s)
- Jiaxin Ling
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, Uppsala, Sweden
- Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Asifa Khan
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, Uppsala, Sweden
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Matthias Denkewitz
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, Uppsala, Sweden
- Institute of Medical Virology, University Hospital Frankfurt, Goethe University,Germany
| | - Marco Maccarana
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Åke Lundkvist
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, Uppsala, Sweden
- Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, Uppsala, Sweden
- SciLifeLab Uppsala, Uppsala University, Uppsala, Sweden
| | - Jinlin Li
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, Uppsala, Sweden
- Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Meng H, Qu Z, Guo L, Kong B, Yang H, Huang H, Shuai W. USP38 deletion improved diastolic dysfunction and arrhythmogenesis in heart failure mice with preserved ejection fraction. Heart Rhythm 2025:S1547-5271(25)02343-4. [PMID: 40252884 DOI: 10.1016/j.hrthm.2025.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/26/2025] [Accepted: 04/11/2025] [Indexed: 04/21/2025]
Abstract
BACKGROUND Ventricular arrhythmias (VAs) are commonly observed in patients with heart failure with preserved ejection fraction (HFpEF) and are strongly associated with increased mortality. Ubiquitin-specific protease 38 (USP38) has been implicated in cardiac electrical disorders. OBJECTIVE This study aimed to determine the effects of USP38 in VAs in a mouse model of HFpEF. METHODS We utilized cardiac-specific USP38 knockout and transgenic USP38 mice, along with their respective control groups. HFpEF mice were established by subjected to uninephrectomy and continuous saline or D-aldosterone infusion and given 1% sodium chloride drinking water for 4 weeks. Comprehensive assessments, including echocardiography, electrophysiological studies, histological analyses, and molecular evaluations, were conducted. RESULTS USP38 expression is significantly elevated in the heart of HFpEF mice. Deletion of USP38 markedly ameliorated HFpEF-induced left ventricular (LV) hypertrophy and cardiac diastolic dysfunction. Additionally, USP38 deletion reduced susceptibility to VAs, as evidenced by reversed electrical conduction, inhibited LV fibrosis, and increased CX43 expression. Mechanistically, USP38 deletion suppresses the activation of HIPK2 and its downstream mediators. Overexpression of HIPK2 in the hearts of cardiac-specific USP38 knockout mice partially negated the beneficial effects of USP38 deletion on diastolic dysfunction and arrhythmogenesis. Conversely, cardiac-specific overexpression of USP38 exacerbated cardiac diastolic dysfunction and increased susceptibility to VAs in HFpEF mice. CONCLUSION Knockout of USP38 reduced the susceptibility of HFpEF hearts to VAs by inhibiting HIPK2 activation. USP38 thus represents a novel therapeutic target for the treatment of HFpEF-related diastolic dysfunction and VAs.
Collapse
Affiliation(s)
- Hong Meng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, P.R. of China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, P.R. of China; Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, P.R. of China
| | - Zongze Qu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, P.R. of China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, P.R. of China; Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, P.R. of China
| | - Liang Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, P.R. of China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, P.R. of China; Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, P.R. of China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, P.R. of China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, P.R. of China; Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, P.R. of China
| | - Hongjie Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, P.R. of China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, P.R. of China; Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, P.R. of China.
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, P.R. of China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, P.R. of China; Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, P.R. of China.
| | - Wei Shuai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, P.R. of China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, P.R. of China; Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, P.R. of China.
| |
Collapse
|
3
|
Li C, Tang C, Liu X, Liu Y, Zhang L, Shi J, Li Q, Sun M, Li Y. E3 ubiquitin ligase MARCH5 positively regulates Japanese encephalitis virus infection by catalyzing the K27-linked polyubiquitination of viral E protein and inhibiting MAVS-mediated type I interferon production. mBio 2025; 16:e0020825. [PMID: 40071916 PMCID: PMC11980370 DOI: 10.1128/mbio.00208-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/13/2025] [Indexed: 04/10/2025] Open
Abstract
Membrane-associated RING-CH-type finger (MARCH) proteins, a class of E3 ubiquitin ligases, have been reported to be involved in the infection of multiple viruses and the regulation of type I interferon (IFN) production. However, the specific role and mechanisms by which MARCH proteins influence Japanese encephalitis virus (JEV) infection remain poorly understood. Here, we systematically investigate the functional relevance of MARCH proteins in JEV replication by examining the effects of siRNA-mediated knockdown of MARCHs on viral infection. We identified MARCH5 as a positive regulator of JEV replication. The knockout of MARCH5 dramatically reduced viral yields, whereas its overexpression significantly enhanced JEV replication. Mechanistically, MARCH5 specifically interacts with the JEV envelope (E) protein and promotes its K27-linked polyubiquitination at the lysine (K) residues 136 and 166. This ubiquitination enhances viral attachment to permissive cells. Substituting these lysine residues with arginine (R) attenuated JEV replication in vitro and reduced viral virulence in vivo. Furthermore, JEV infection upregulated the expression of MARCH5. We also discovered that MARCH5 degrades mitochondrial antiviral-signaling protein (MAVS) through the ubiquitin-proteasome pathway by catalyzing its K48-linked ubiquitination, thereby inhibiting type I IFN production in JEV-infected cells. This suppression of type I IFN further facilitates JEV infection. In conclusion, these findings disclosed a novel role of MARCH5 in positively regulating JEV infection and revealed an important mechanism employed by MARCH5 to regulate the innate immune response.IMPORTANCEJEV is the leading cause of viral encephalitis in many countries of Asia with an estimated 100,000 clinical human cases and causes economic loss to the swine industry. Until now, there is no clinically approved antiviral for the treatment of JEV infection. Although vaccination prophylaxis is widely regarded as the most effective strategy for preventing Japanese encephalitis (JE), the incidence of JE cases continues to rise. Thus, a deeper understanding of virus-host interaction will enrich our knowledge of the mechanisms underlying JEV infection and identify novel targets for the development of next-generation live-attenuated vaccines and antiviral therapies. To the best of our knowledge, this study is the first to identify MARCH5 as a pro-viral host factor that facilitates JEV infection. We elucidated two distinct mechanisms by which MARCH5 promotes JEV infection. First, MARCH5 interacts with viral E protein and mediates the K27-linked ubiquitination of E protein at the K136 and K166 residues to facilitate efficient viral attachment. Furthermore, double mutations of K136R-K166R attenuated JEV infection in vitro and reduced viral virulence in mice. Second, the upregulated expression of MARCH5 induced by JEV infection further suppresses the RIG-I-like receptor (RLR) signaling pathway to benefit viral infection. MARCH5 downregulates type I IFN production by conjugating the K48-linked polyubiquitin at the K286 of MAVS, which leads to MAVS degradation through the ubiquitin-proteasome pathway. In summary, this study provides novel insights into the role played by MARCH proteins in JEV infection and identifies specific ubiquitination sites on JEV E protein that could be targeted for viral attenuation and the development of antiviral therapeutics.
Collapse
Affiliation(s)
- Chenxi Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Chenyang Tang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiqian Liu
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- College of Life Science, Anqing Normal University, Anqing, Anhui, China
| | - Ying Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Linjie Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jing Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qingyu Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Mingan Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Yanhua Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| |
Collapse
|
4
|
Zhao S, Liu X, Luo R, Jian Z, Xu C, Hou Y, Liu X, Zhang P. USP38 functions as an oncoprotein by downregulating the p53 pathway through deubiquitination and stabilization of MDM2. Cell Death Differ 2025:10.1038/s41418-025-01462-2. [PMID: 39987355 DOI: 10.1038/s41418-025-01462-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 01/26/2025] [Accepted: 02/10/2025] [Indexed: 02/24/2025] Open
Abstract
Dysregulation of the MDM2-p53 pathway is a commonly observed phenomenon in cancer, where overexpression or amplification of MDM2 leads to increased degradation of p53. This results in reduced levels of p53, leading to the loss of its tumor-suppressive functions. The study focused on investigating the role of Ubiquitin-specific protease 38 (USP38) in cancer and its interaction with the MDM2-p53 axis. We revealed that USP38 positively correlates with MDM2 and negatively correlates with p53 expression. Mechanistically, USP38 directly binds to MDM2, functioning as a deubiquitinating enzyme (DUB) to stabilize MDM2 and suppress p53 expression. Knockout of USP38 hindered cancer cell proliferation, migration, and invasion, and enhanced apoptosis. Moreover, USP38 deficiency increased sensitivity to chemotherapy drugs and promoted ferroptosis in gastric and breast cancer cell lines. Importantly, these effects were found to be dependent on p53, as the downregulation of p53 reversed the phenotypic changes induced by USP38 knockout. These findings shed light on the oncogenic role of USP38 by modulating the MDM2-p53 axis, providing valuable insights into the molecular mechanisms of USP38 in cancer and potential therapeutic strategies for gastric and breast cancer.
Collapse
Affiliation(s)
- Shanyu Zhao
- Department of Pathology, School of Basic Medical Sciences, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
- Department of Pathology, School of Basic Medical Sciences, Dali University, Yunnan, China
| | - Xiaoli Liu
- Department of Pathology, School of Basic Medical Sciences, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
- Department of Pathology, General Hospital of Ningxia Medical University, Ningxia Hui Autonomous Region, China
| | - Rongkui Luo
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zitao Jian
- Department of Pathology, School of Basic Medical Sciences, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Chen Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Xiuping Liu
- Department of Pathology, School of Basic Medical Sciences, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
| | - Pingzhao Zhang
- Department of Pathology, School of Basic Medical Sciences, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
- Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Boytz R, Laurent-Rolle M. Balancing acts: The posttranslational modification tightrope of flavivirus replication. PLoS Pathog 2024; 20:e1012626. [PMID: 39466723 PMCID: PMC11516179 DOI: 10.1371/journal.ppat.1012626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
Posttranslational modifications (PTMs) such as phosphorylation, ubiquitination, SUMOylation, and ISGylation are involved in various cellular pathways, including innate immunity and disease processes. Many viruses have developed sophisticated mechanisms to modulate these host PTMs, either by inhibiting the interferon pathway or by enhancing the stability and function of viral proteins essential for replication. In this Pearl, we review the literature on how flaviviruses are impacted by and exploit posttranslational modifications to their advantage.
Collapse
Affiliation(s)
- RuthMabel Boytz
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Maudry Laurent-Rolle
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
6
|
Hu Q, Chen Y, Zhou Q, Deng S, Hou W, Yi Y, Li C, Tang J. ADAR promotes USP38 auto-deubiquitylation and stabilization in an RNA editing-independent manner in esophageal squamous cell carcinoma. J Biol Chem 2024; 300:107789. [PMID: 39303916 PMCID: PMC11525134 DOI: 10.1016/j.jbc.2024.107789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
Esophageal cancer is mainly divided into esophageal adenocarcinoma and esophageal squamous cell carcinoma (ESCC). China is one of the high-incidence areas of esophageal cancer, of which about 90% are ESCC. The deubiquitinase USP38 has been reported to play significant roles in several biological processes, including inflammatory responses, antiviral infection, cell proliferation, migration, invasion, DNA damage repair, and chemotherapy resistance. However, the role and mechanisms of USP38 in ESCC development remain still unclear. Furthermore, although many substrates of USP38 have been identified, few upstream regulatory factors of USP38 have been identified. In this study, we found that USP38 was significantly upregulated in esophageal cancer tissues. Knockdown of USP38 inhibited ESCC growth. USP38 stabilized itself through auto-deubiquitylation. In addition, we demonstrate that adenosine deaminase acting on RNA (ADAR) could enhance the stability of USP38 protein and facilitate USP38 auto-deubiquitylation by interacting with USP38 in an RNA editing-independent manner. ADAR inhibition of ESCC cell proliferation depended on USP38. In summary, these results highlight that the potential of targeting the ADAR-USP38 axis for ESCC treatment.
Collapse
Affiliation(s)
- Qingyong Hu
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China.
| | - Yahui Chen
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Qianru Zhou
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Shanshan Deng
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Wei Hou
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China; Department of Pathology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yong Yi
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Chenghua Li
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiancai Tang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China.
| |
Collapse
|
7
|
Huang C, Jiang T, Pan W, Feng T, Zhou X, Wu Q, Ma F, Dai J. Ubiquitination of NS1 Confers Differential Adaptation of Zika Virus in Mammalian Hosts and Mosquito Vectors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408024. [PMID: 39159062 PMCID: PMC11497017 DOI: 10.1002/advs.202408024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Indexed: 08/21/2024]
Abstract
Arboviruses, transmitted by medical arthropods, pose a serious health threat worldwide. During viral infection, Post Translational Modifications (PTMs) are present on both host and viral proteins, regulating multiple processes of the viral lifecycle. In this study, a mammalian E3 ubiquitin ligase WWP2 (WW domain containing E3 ubiquitin ligase 2) is identified, which interacts with the NS1 protein of Zika virus (ZIKV) and mediates K63 and K48 ubiquitination of Lys 265 and Lys 284, respectively. WWP2-mediated NS1 ubiquitination leads to NS1 degradation via the ubiquitin-proteasome pathway, thereby inhibiting ZIKV infection in mammalian hosts. Simultaneously, it is found Su(dx), a protein highly homologous to host WWP2 in mosquitoes, is capable of ubiquitinating NS1 in mosquito cells. Unexpectedly, ubiquitination of NS1 in mosquitoes does not lead to NS1 degradation; instead, it promotes viral infection in mosquitoes. Correspondingly, the NS1 K265R mutant virus is less infectious to mosquitoes than the wild-type (WT) virus. The above results suggest that the ubiquitination of the NS1 protein confers different adaptations of ZIKV to hosts and vectors, and more importantly, this explains why NS1 K265-type strains have become predominantly endemic in nature. This study highlights the potential application in antiviral drug and vaccine development by targeting viral proteins' PTMs.
Collapse
Affiliation(s)
- Chenxiao Huang
- Institutes of Biology and Medical SciencesMOE Key Laboratory of Geriatric Diseases and ImmunologyJiangsu Key Laboratory of Infection and ImmunitySoochow UniversitySuzhou215000China
- Department of Clinical LaboratoryThe Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu School of Nanjing Medical UniversitySuzhou215000China
| | - Tao Jiang
- Institutes of Biology and Medical SciencesMOE Key Laboratory of Geriatric Diseases and ImmunologyJiangsu Key Laboratory of Infection and ImmunitySoochow UniversitySuzhou215000China
| | - Wen Pan
- Institutes of Biology and Medical SciencesMOE Key Laboratory of Geriatric Diseases and ImmunologyJiangsu Key Laboratory of Infection and ImmunitySoochow UniversitySuzhou215000China
| | - Tingting Feng
- Institutes of Biology and Medical SciencesMOE Key Laboratory of Geriatric Diseases and ImmunologyJiangsu Key Laboratory of Infection and ImmunitySoochow UniversitySuzhou215000China
| | - Xia Zhou
- School of Biology and Basic Medical ScienceSuzhou Medical College of Soochow UniversitySuzhou215000China
| | - Qihan Wu
- Shanghai‐MOST Key Laboratory of Health and Disease GenomicsNHC Key Lab of Reproduction RegulationShanghai Institute for Biomedical and Pharmaceutical TechnologiesShanghai200000China
| | - Feng Ma
- National Key Laboratory of Immunity and Inflammationand CAMS Key Laboratory of Synthetic Biology Regulatory ElementsSuzhou Institute of Systems MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeSuzhou215123China
| | - Jianfeng Dai
- Institutes of Biology and Medical SciencesMOE Key Laboratory of Geriatric Diseases and ImmunologyJiangsu Key Laboratory of Infection and ImmunitySoochow UniversitySuzhou215000China
| |
Collapse
|
8
|
Velez-Brochero M, Behera P, Afreen KS, Odle A, Rajsbaum R. Ubiquitination in viral entry and replication: Mechanisms and implications. Adv Virus Res 2024; 119:1-38. [PMID: 38897707 DOI: 10.1016/bs.aivir.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The ubiquitination process is a reversible posttranslational modification involved in many essential cellular functions, such as innate immunity, cell signaling, trafficking, protein stability, and protein degradation. Viruses can use the ubiquitin system to efficiently enter host cells, replicate and evade host immunity, ultimately enhancing viral pathogenesis. Emerging evidence indicates that enveloped viruses can carry free (unanchored) ubiquitin or covalently ubiquitinated viral structural proteins that can increase the efficiency of viral entry into host cells. Furthermore, viruses continuously evolve and adapt to take advantage of the host ubiquitin machinery, highlighting its importance during virus infection. This review discusses the battle between viruses and hosts, focusing on how viruses hijack the ubiquitination process at different steps of the replication cycle, with a specific emphasis on viral entry. We discuss how ubiquitination of viral proteins may affect tropism and explore emerging therapeutics strategies targeting the ubiquitin system for antiviral drug discovery.
Collapse
Affiliation(s)
- Maria Velez-Brochero
- Center for Virus-Host-Innate Immunity and Department of Medicine, Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, NJ, United States
| | - Padmanava Behera
- Center for Virus-Host-Innate Immunity and Department of Medicine, Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, NJ, United States
| | - Kazi Sabrina Afreen
- Center for Virus-Host-Innate Immunity and Department of Medicine, Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, NJ, United States
| | - Abby Odle
- Center for Virus-Host-Innate Immunity and Department of Medicine, Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, NJ, United States
| | - Ricardo Rajsbaum
- Center for Virus-Host-Innate Immunity and Department of Medicine, Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, NJ, United States.
| |
Collapse
|
9
|
Zhang T, Su F, Wang B, Liu L, Lu Y, Su H, Ling R, Yue P, Dai H, Yang T, Yang J, Chen R, Wu R, Zhu K, Zhao D, Hou X. Ubiquitin specific peptidase 38 epigenetically regulates KLF transcription factor 5 to augment malignant progression of lung adenocarcinoma. Oncogene 2024; 43:1190-1202. [PMID: 38409551 DOI: 10.1038/s41388-024-02985-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/28/2024]
Abstract
Protein ubiquitination is a common post-translational modification and a critical mechanism for regulating protein stability. This study aimed to explore the role and potential molecular mechanism of ubiquitin-specific peptidase 38 (USP38) in the progression of lung adenocarcinoma (LUAD). USP38 expression was significantly higher in patients with LUAD than in their counterparts, and higher USP38 expression was closely associated with a worse prognosis. USP38 silencing suppresses the proliferation of LUAD cells in vitro and impedes the tumorigenic activity of cells in xenograft mouse models in vivo. Further, we found that USP38 affected the protein stability of transcription factor Krüppel-like factors 5 (KLF5) by inhibiting its degradation. Subsequent mechanistic investigations showed that the N-terminal of USP38 (residues 1-400aa) interacted with residues 1-200aa of KLF5, thereby stabilizing the KLF5 protein by deubiquitination. Moreover, we found that PIAS1-mediated SUMOylation of USP38 was promoted, whereas SENP2-mediated de-SUMOylation of USP38 suppressed the deubiquitination effects of USP38 on KLF5. Additionally, our results demonstrated that KLF5 overexpression restored the suppression of the malignant properties of LUAD cells by USP38 knockdown. SUMOylation of USP38 enhances the deubiquitination and stability of KLF5, thereby augmenting the malignant progression of LUAD.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China
| | - Fei Su
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China.
| | - Bofang Wang
- The second clinical medical college of Lanzhou University, Lanzhou, Gansu, PR China
| | - Lixin Liu
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China
| | - Yongbin Lu
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China
| | - Hongxin Su
- Department of Radiotherapy, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China
| | - Ruijiang Ling
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China
| | - Peng Yue
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China
| | - Huanyu Dai
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China
| | - Tianning Yang
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China
| | - Jingru Yang
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China
| | - Rui Chen
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China
| | - Ruiyue Wu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, PR China
| | - Kaili Zhu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, PR China
| | - Da Zhao
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China.
| | - Xiaoming Hou
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China.
| |
Collapse
|
10
|
Zhai Y, Du Y, Yuan H, Fan S, Chen X, Wang J, He W, Han S, Zhang Y, Hu M, Zhang G, Kong Z, Wan B. Ubiquitin-specific proteinase 1 stabilizes PRRSV nonstructural protein Nsp1β to promote viral replication by regulating K48 ubiquitination. J Virol 2024; 98:e0168623. [PMID: 38376196 PMCID: PMC10949481 DOI: 10.1128/jvi.01686-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/26/2024] [Indexed: 02/21/2024] Open
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) can lead to severe reproductive problems in sows, pneumonia in weaned piglets, and increased mortality, significantly negatively impacting the economy. Post-translational changes are essential for the host-dependent replication and long-term infection of PRRSV. Uncertainty surrounds the function of the ubiquitin network in PRRSV infection. Here, we screened 10 deubiquitinating enzyme inhibitors and found that the ubiquitin-specific proteinase 1 (USP1) inhibitor ML323 significantly inhibited PRRSV replication in vitro. Importantly, we found that USP1 interacts with nonstructural protein 1β (Nsp1β) and deubiquitinates its K48 to increase protein stability, thereby improving PRRSV replication and viral titer. Among them, lysine at position 45 is essential for Nsp1β protein stability. In addition, deficiency of USP1 significantly reduced viral replication. Moreover, ML323 loses antagonism to PRRSV rSD16-K45R. This study reveals the mechanism by which PRRSV recruits the host factor USP1 to promote viral replication, providing a new target for PRRSV defense.IMPORTANCEDeubiquitinating enzymes are critical factors in regulating host innate immunity. The porcine reproductive and respiratory syndrome virus (PRRSV) nonstructural protein 1β (Nsp1β) is essential for producing viral subgenomic mRNA and controlling the host immune system. The host inhibits PRRSV proliferation by ubiquitinating Nsp1β, and conversely, PRRSV recruits the host protein ubiquitin-specific proteinase 1 (USP1) to remove this restriction. Our results demonstrate the binding of USP1 to Nsp1β, revealing a balance of antagonism between PRRSV and the host. Our research identifies a brand-new PRRSV escape mechanism from the immune response.
Collapse
Affiliation(s)
- Yunyun Zhai
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- International Joint Research Center for National Animal Immunology, Zhengzhou, Henan, China
| | - Yongkun Du
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- International Joint Research Center for National Animal Immunology, Zhengzhou, Henan, China
| | - Hang Yuan
- Zhengzhou Shengda University of Economic Business & Management, Zhengzhou, China
| | - Shuai Fan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- International Joint Research Center for National Animal Immunology, Zhengzhou, Henan, China
| | - Xing Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- International Joint Research Center for National Animal Immunology, Zhengzhou, Henan, China
| | - Jiang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- International Joint Research Center for National Animal Immunology, Zhengzhou, Henan, China
| | - Wenrui He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- International Joint Research Center for National Animal Immunology, Zhengzhou, Henan, China
| | - Shichong Han
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- International Joint Research Center for National Animal Immunology, Zhengzhou, Henan, China
| | - Yuhang Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- International Joint Research Center for National Animal Immunology, Zhengzhou, Henan, China
| | - Man Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- International Joint Research Center for National Animal Immunology, Zhengzhou, Henan, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- International Joint Research Center for National Animal Immunology, Zhengzhou, Henan, China
- Peking University, Beijing, China
- Longhu Laboratory, Zhengzhou, China
| | | | - Bo Wan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- International Joint Research Center for National Animal Immunology, Zhengzhou, Henan, China
| |
Collapse
|
11
|
Borges PHO, Ferreira SB, Silva FP. Recent Advances on Targeting Proteases for Antiviral Development. Viruses 2024; 16:366. [PMID: 38543732 PMCID: PMC10976044 DOI: 10.3390/v16030366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 05/23/2024] Open
Abstract
Viral proteases are an important target for drug development, since they can modulate vital pathways in viral replication, maturation, assembly and cell entry. With the (re)appearance of several new viruses responsible for causing diseases in humans, like the West Nile virus (WNV) and the recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), understanding the mechanisms behind blocking viral protease's function is pivotal for the development of new antiviral drugs and therapeutical strategies. Apart from directly inhibiting the target protease, usually by targeting its active site, several new pathways have been explored to impair its activity, such as inducing protein aggregation, targeting allosteric sites or by inducing protein degradation by cellular proteasomes, which can be extremely valuable when considering the emerging drug-resistant strains. In this review, we aim to discuss the recent advances on a broad range of viral proteases inhibitors, therapies and molecular approaches for protein inactivation or degradation, giving an insight on different possible strategies against this important class of antiviral target.
Collapse
Affiliation(s)
- Pedro Henrique Oliveira Borges
- Laboratory of Organic Synthesis and Biological Prospecting, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil;
- Laboratory of Experimental and Computational Biochemistry of Drugs, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Sabrina Baptista Ferreira
- Laboratory of Organic Synthesis and Biological Prospecting, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil;
| | - Floriano Paes Silva
- Laboratory of Experimental and Computational Biochemistry of Drugs, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
12
|
Xiao Z, Pan Y, Kong B, Meng H, Shuai W, Huang H. Ubiquitin-specific protease 38 promotes inflammatory atrial fibrillation induced by pressure overload. Europace 2023; 26:euad366. [PMID: 38288617 PMCID: PMC10823351 DOI: 10.1093/europace/euad366] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/05/2023] [Indexed: 02/01/2024] Open
Abstract
AIMS Atrial structural and electrical remodelling is a major reason for the initiation and perpetuation of atrial fibrillation (AF). Ubiquitin-specific protease 38 (USP38) is a deubiquitinating enzyme, but its function in the heart remains unknown. The aim of this study was to investigate the effect of USP38 in pressure overload-induced AF. METHODS AND RESULTS Cardiac-specific knockout USP38 and cardiac-specific transgenic USP38 mice and their corresponding control mice were used in this study. After 4 weeks with or without aortic banding (AB) surgery, atrial echocardiography, atrial histology, electrophysiological study, and molecular analysis were assessed. Ubiquitin-specific protease 38 knockout mice showed a remarkable improvement in vulnerability to AF, atrial weight and diameter, atrial fibrosis, and calcium-handling protein expression after AB surgery. Conversely, USP38 overexpression further increased susceptibility to AF by exacerbating atrial structural and electrical remodelling. Mechanistically, USP38 interacted with and deubiquitinated nuclear factor-kappa B (NF-κB), and USP38 overexpression increased the level of p-NF-κB in vivo and in vitro, accompanied by the upregulation of NOD-like receptor protein 3 (NLRP3) and inflammatory cytokines, suggesting that USP38 contributes to adverse effects by driving NF-κB/NLRP3-mediated inflammatory responses. CONCLUSION Overall, our study indicates that USP38 promotes pressure overload-induced AF through targeting NF-κB/NLRP3-mediated inflammatory responses.
Collapse
Affiliation(s)
- Zheng Xiao
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, Hubei, China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, China
| | - Yucheng Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, Hubei, China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, Hubei, China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, China
| | - Hong Meng
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, Hubei, China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, China
| | - Wei Shuai
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, Hubei, China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, Hubei, China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, China
| |
Collapse
|
13
|
Brango-Vanegas J, Leite ML, de Oliveira KBS, da Cunha NB, Franco OL. From exploring cancer and virus targets to discovering active peptides through mRNA display. Pharmacol Ther 2023; 252:108559. [PMID: 37952905 DOI: 10.1016/j.pharmthera.2023.108559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
During carcinogenesis, neoplastic cells accumulate mutations in genes important for cellular homeostasis, producing defective proteins. Viral infections occur when viral capsid proteins bind to the host cell receptor, allowing the virus to enter the cells. In both cases, proteins play important roles in cancer development and viral infection, so these targets can be exploited to develop alternative treatments. mRNA display technology is a very powerful tool for the development of peptides capable of acting on specific targets in neoplastic cells or on viral capsid proteins. mRNA display technology allows the selection and evolution of peptides with desired functional properties from libraries of many nucleic acid variants. Among other advantages of this technology, the use of flexizymes allows the production of peptides with unnatural amino acid residues, which can enhance the activity of these molecules. From target immobilization, peptides with greater specificity for the targets of interest are generated during the selection rounds. Herein, we will explore the use of mRNA display technology for the development of active peptides after successive rounds of selection, using proteins present in neoplastic cells and viral particles as targets.
Collapse
Affiliation(s)
- José Brango-Vanegas
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | - Michel Lopes Leite
- Departamento de Biologia Molecular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, DF, Brazil
| | - Kamila Botelho Sampaio de Oliveira
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | - Nicolau Brito da Cunha
- Universidade de Brasília, Faculdade de Agronomia e Medicina Veterinária, Campus Darcy Ribeiro, Brasília, DF, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil.
| |
Collapse
|
14
|
Abstract
Zika virus (ZIKV) is an emerging virus from the Flaviviridae family that is transmitted to humans by mosquito vectors and represents an important health problem. Infections in pregnant women are of major concern because of potential devastating consequences during pregnancy and have been associated with microcephaly in newborns. ZIKV has a unique ability to use the host machinery to promote viral replication in a tissue-specific manner, resulting in characteristic pathological disorders. Recent studies have proposed that the host ubiquitin system acts as a major determinant of ZIKV tropism by providing the virus with an enhanced ability to enter new cells. In addition, ZIKV has developed mechanisms to evade the host immune response, thereby allowing the establishment of viral persistence and enhancing viral pathogenesis. We discuss recent reports on the mechanisms used by ZIKV to replicate efficiently, and we highlight potential new areas of research for the development of therapeutic approaches.
Collapse
Affiliation(s)
- Maria I Giraldo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA; ,
| | - Maria Gonzalez-Orozco
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA; ,
| | - Ricardo Rajsbaum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA; ,
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
- Current affiliation: Center for Virus-Host-Innate-Immunity; Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases; and Department of Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA;
| |
Collapse
|
15
|
Dong S, Xiao MZX, Liang Q. Modulation of cellular machineries by Zika virus-encoded proteins. J Med Virol 2023; 95:e28243. [PMID: 36262094 DOI: 10.1002/jmv.28243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 01/11/2023]
Abstract
The strain of Zika virus (ZIKV) that circulated during the 2015 epidemic in Brazil has been associated with more than 2000 cases of microcephaly from September 2015 through November 2016. The viral genome determines the biology and pathogenesis of a virus and the virus employs its own gene products to evade host immune surveillance, manipulate cellular machineries, and establish efficient replication. Therefore, understanding the functions of virus-encoded protein not only aids the knowledge of ZIKV biology but also guides the development of anti-ZIKV drugs. In this review, we focus on 10 proteins encoded by ZIKV and summarize their functions in ZIKV replication and pathogenesis according to studies published in the past 6 years.
Collapse
Affiliation(s)
- Shupeng Dong
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Maggie Z X Xiao
- Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Qiming Liang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Wang Y, Xu S, Han C, Huang Y, Wei J, Wei S, Qin Q. Modulatory effects of curcumin on Singapore grouper iridovirus infection-associated apoptosis and autophagy in vitro. FISH & SHELLFISH IMMUNOLOGY 2022; 131:84-94. [PMID: 36206994 DOI: 10.1016/j.fsi.2022.09.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Singapore grouper iridovirus (SGIV) with high pathogenicity can cause great economic losses to aquaculture industry. Thus, it is of urgency to find effective antiviral strategies to combat SGIV. Curcumin has been demonstrated effective antiviral activity on SGIV infection. However, the molecular mechanism behind this action needs to be further explanations. In view of the fact that apoptosis (type I programmed cell death) and autophagy (type II programmed cell death) were key regulators during SGIV infection, we aimed to investigate the relevance between antiviral activity of curcumin and SGIV-associated programmed and clarify the role of potential signaling pathways. Our results showed that curcumin suppressed SGIV-induced apoptosis. At the same time, the activities of caspase-3/8/9 and activating protein-1 (AP-1), P53, nuclear factor-κB (NF-ΚB) promoters were inhibited. Besides, the activation of extracellular regulated protein kinases (ERK), c-Jun N-terminal kinase (JNK) and p38 mitogen activate protein kinase (p38 MAPK) signal pathways were suppressed in curcumin-treated cells. On the other hand, curcumin down-regulated protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway to promote autophagy representing by increased LC3 II and Beclin1 expression. Curcumin also hindered the transition of cells from G1 to S phase, as well as down-regulating the expression of CyclinD1. Our findings revealed the resistance curcumin induced to the effects of DNA virus on cell apoptosis and autophagy and the insights gained from this study may be of assistance to understand the molecular mechanism of curcumin against DNA virus infection.
Collapse
Affiliation(s)
- Yuexuan Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Suifeng Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Chengzong Han
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Youhua Huang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jingguang Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shina Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 528478, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| |
Collapse
|
17
|
Cai D, Liu L, Tian B, Fu X, Yang Q, Chen J, Zhang Y, Fang J, Shen L, Wang Y, Gou L, Zuo Z. Dual-Role Ubiquitination Regulation Shuttling the Entire Life Cycle of the Flaviviridae. Front Microbiol 2022; 13:835344. [PMID: 35602051 PMCID: PMC9120866 DOI: 10.3389/fmicb.2022.835344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Ubiquitination is a reversible protein post-translational modification that regulates various pivotal physiological and pathological processes in all eukaryotes. Recently, the antiviral immune response is enhanced by the regulation of ubiquitination. Intriguingly, Flaviviridae viruses can ingeniously hijack the ubiquitination system to help them survive, which has become a hot topic among worldwide researchers. The Flaviviridae family members, such as HCV and CSFV, can cause serious diseases of humans and animals around the world. The multiple roles of ubiquitination involved in the life cycle of Flaviviridae family would open new sight for future development of antiviral tactic. Here, we discuss recent advances with regard to functional roles of ubiquitination and some ubiquitin-like modifications in the life cycle of Flaviviridae infection, shedding new light on the antiviral mechanism research and therapeutic drug development.
Collapse
Affiliation(s)
- Dongjie Cai
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lingli Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xingxin Fu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiyuan Yang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jie Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yilin Zhang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Laboratory of Animal Disease Prevention and Control Center, Agriculture and Rural Affairs Bureau of Luoping County, Luoping, China
| | - Jing Fang
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liuhong Shen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ya Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liping Gou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhicai Zuo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Zhicai Zuo,
| |
Collapse
|