1
|
Saberi R, Hajjaran H, Fakhar M, Mirabedini Z, Mohebali M. Exploring the significant genetic diversity of Iranian isolates of Leishmania RNA virus 2 using whole genome sequence analysis. BMC Infect Dis 2024; 24:1407. [PMID: 39695969 DOI: 10.1186/s12879-024-10194-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/06/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Our work presents the whole genome sequence and phylogenetic analysis of five Leishmania RNA virus 2 (LRV2) isolates obtained from patients with cutaneous leishmaniasis (CL) in Iran. METHODS The whole genome sequencing of LRV2 was performed using a primer walking approach. The resulting sequences were analyzed for genetic and haplotype diversity, highlighting their independent evolution and significant genetic divergence. RESULTS The whole genome sequence of the current LRV2 showed high genetic and haplotype diversity. The study also revealed the existence of three distinct clades of LRV2, with the LRV2 sequences infecting L. major, L. aethiopica, and sauroleishmania belonging to separate lineages. These lineages have seemingly evolved independently, as the geographic distribution of their flagellate hosts does not overlap with the Leishmania species. The divergence between these three clades is attributed to considerable antiquity, leading to genetic modifications within the viruses residing in them and resulting in structural differences in their genome. CONCLUSIONS These findings contribute to our understanding of the genetic diversity and evolution of LRVs, providing valuable insights into their role in Leishmania infections. Further investigations are needed to understand the significance of these polymorphic sites and their potential impact on viral characteristics and disease outcomes.
Collapse
Affiliation(s)
- Reza Saberi
- Toxoplasmosis Research Center, Communicable Diseases Institute, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Homa Hajjaran
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahdi Fakhar
- Toxoplasmosis Research Center, Communicable Diseases Institute, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
- Iranian National Registry Centre for Lophomoniasis and Toxoplasmosis, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran.
- Department of Medical Microbiology and Immunology, School of Medicine, Qom University of Medical Sciences, Qom, Iran.
| | - Zahra Mirabedini
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mohebali
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Mazaherifar S, Erfanian S, Solhjoo K, Roustazadeh A, Darayesh M, Taghipour A, Falahi S, Kenarkoohi A, Badri M, Heidarnejadi SM, Rasti S, Abdoli A. Detection of Leishmania RNA Virus 2 (LRV2) among Clinical Isolates of Leishmania Major in Four Endemic Regions of Iran. Acta Parasitol 2024; 69:2046-2050. [PMID: 39190281 DOI: 10.1007/s11686-024-00915-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
PURPOSE Leishmania RNA viruses (LRV) are double-stranded RNA viruses (dsRNA viruses) that play a role in the pathogenesis of Leishmania parasites. Cutaneous leishmaniasis (CL) is endemic in various parts of Iran. Our aimed was to investigate presence of LRV among the Leishmania major isolates in four endemic regions of Iran. METHODS In a cross-sectional study, we assessed the presence of LRV1 and LRV2 in 181 clinical isolates of L. major from four endemic cities in Iran using reverse transcription polymerase chain reaction (RT-PCR). After RNA extraction and cDNA synthesis, RT-PCR tests were conducted with LRV1 and LRV2 specific primers. Human beta-actin and kmp genes served as internal and external controls, respectively, and the Allele ID software was used to optimize melting curves. RESULTS LRV2 was detected in 27.6% (50 out of 181) of L. major isolates, while no LRV1 was found. We did not observe a statistically significant difference in the presence of LRV2 based on age group, number, or location of lesions. CONCLUSION This study confirms the presence of LRV2 in clinical isolates of L. major from endemic regions of Iran. Further researches with larger sample sizes is recommended to explore the association between LRV and clinical symptoms as well as treatment response.
Collapse
Affiliation(s)
- Samaneh Mazaherifar
- Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran
- Department of Parasitology and Mycology, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Saiedeh Erfanian
- Research Center for NonCommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
- Department of Advanced Medical Sciences and Technologies, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Kavous Solhjoo
- Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran
- Department of Parasitology and Mycology, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Abazar Roustazadeh
- Research Center for NonCommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
- Department of Advanced Medical Sciences and Technologies, Jahrom University of Medical Sciences, Jahrom, Iran
- Department of Biochemistry and Nutrition, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mohammad Darayesh
- Research Center for NonCommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
- Department of Dermatology, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Ali Taghipour
- Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran
- Department of Parasitology and Mycology, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Shahab Falahi
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Azra Kenarkoohi
- Department of Microbiology, Ilam University of Medical Sciences, Ilam, Iran
| | - Milad Badri
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Sima Rasti
- Department of Parasitology and Mycology and Infectious Diseases Research Center, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, IR, Iran
| | - Amir Abdoli
- Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran.
- Department of Parasitology and Mycology, Jahrom University of Medical Sciences, Jahrom, Iran.
| |
Collapse
|
3
|
Kostygov AY, Grybchuk D, Heeren S, Gerasimov ES, Klocek D, Reddy A, Sádlová J, Pacáková L, Kohl A, Stejskal F, Volf P, Dujardin JC, Yurchenko V. A novel strain of Leishmania braziliensis harbors not a toti- but a bunyavirus. PLoS Negl Trop Dis 2024; 18:e0012767. [PMID: 39729426 PMCID: PMC11717295 DOI: 10.1371/journal.pntd.0012767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/09/2025] [Accepted: 12/09/2024] [Indexed: 12/29/2024] Open
Abstract
Leishmania is a genus of the family Trypanosomatidae that unites obligatory parasitic flagellates causing a variety of vector-borne diseases collectively called leishmaniasis. The symptoms range from relatively innocuous skin lesions to complete failures of visceral organs. The disease is exacerbated if a parasite harbors Leishmania RNA viruses (LRVs) of the family Pseudototiviridae. Screening a novel isolate of L. braziliensis, we revealed that it possesses not a toti-, but a bunyavirus of the family Leishbuviridae. To the best of our knowledge, this is a very first discovery of a bunyavirus infecting a representative of the Leishmania subgenus Viannia. We suggest that these viruses may serve as potential factors of virulence in American leishmaniasis and encourage researchers to test leishmanial strains for the presence of not only LRVs, but also other RNA viruses.
Collapse
Affiliation(s)
- Alexei Yu. Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Danyil Grybchuk
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Senne Heeren
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Donnamae Klocek
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Aditya Reddy
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Jovana Sádlová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Lenka Pacáková
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Alain Kohl
- Centre for Neglected Tropical Diseases, Departments of Tropical Disease Biology and Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - František Stejskal
- Department of Infectious Diseases, 2 Faculty of Medicine and Clinics of Infectious, Parasitic, and Tropical Diseases, Bulovka University Hospital, Charles University, Prague, Czechia
- Department of Infectious Diseases, Regional Hospital Liberec, Liberec, Czechia
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Jean-Claude Dujardin
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| |
Collapse
|
4
|
Bonilla AA, Pineda V, Calzada JE, Saldaña A, Laurenti MD, Goya S, Abrego L, González K. Epidemiology and Genetic Characterization of Leishmania RNA Virus in Leishmania ( Viannia) spp. Isolates from Cutaneous Leishmaniasis Endemic Areas in Panama. Microorganisms 2024; 12:1317. [PMID: 39065086 PMCID: PMC11279101 DOI: 10.3390/microorganisms12071317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Leishmania (Viannia) spp. can harbor a double-stranded RNA virus known as Leishmania RNA virus 1 (LRV-1), whose presence has been reported in nine countries across the Americas and seven Leishmania species. Here, we studied 100 Leishmania (Viannia) isolates from patients with cutaneous leishmaniasis collected from different endemic areas in Panama from 2016 to 2022. We identified L. (V.) panamensis, L. (V.) guyanensis, L. (V.) braziliensis/guyanensis hybrid, and L. (V.) panamensis sp.1. (genetic variant). LRV-1 was detected by RT-PCR in 9% of L. (Viannia) isolates (eight cases in L. (V.) panamensis, and one in L. (V.) guyanensis). Phylogenetic analysis based on sequencing data classified all LRV-1 isolates within genotype A, suggesting that LRV phylogenetic proximity is closely aligned with geographical distribution or to the phylogenetic proximity of the Leishmania host in the case of the L. (V.) panamensis and L. (V.) guyanensis in Panama.
Collapse
Affiliation(s)
- Armando Assair Bonilla
- Programa de Maestría en Ciencias Parasitológicas, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panama 3366, Panama;
| | - Vanessa Pineda
- Departamento de Investigación en Parasitología, Instituto de Conmemorativo Gorgas de Estudios de la Salud, Panama 0816-02593, Panama; (V.P.); (J.E.C.)
| | - José Eduardo Calzada
- Departamento de Investigación en Parasitología, Instituto de Conmemorativo Gorgas de Estudios de la Salud, Panama 0816-02593, Panama; (V.P.); (J.E.C.)
- Facultad de Medicina Veterinaria, Universidad de Panamá, Panama 3366, Panama
| | - Azael Saldaña
- Centro de Investigación y Diagnóstico de Enfermedades Parasitarias (CIDEP), Facultad de Medicina, Universidad de Panamá, Panama 3366, Panama;
| | - Marcia Dalastra Laurenti
- Laboratório de Patologia de Moléstias Infecciosas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05508-270, SP, Brazil;
| | - Stephanie Goya
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA;
| | - Leyda Abrego
- Departamento de Investigación en Virología y Biotecnología, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama 0816-02593, Panama
- Departamento de Microbiología y Parasitología, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panama 3366, Panama
| | - Kadir González
- Departamento de Investigación en Parasitología, Instituto de Conmemorativo Gorgas de Estudios de la Salud, Panama 0816-02593, Panama; (V.P.); (J.E.C.)
- Departamento de Microbiología Humana, Facultad de Medicina, Universidad de Panamá, Panama 3366, Panama
| |
Collapse
|
5
|
Grybchuk D, Galan A, Klocek D, Macedo DH, Wolf YI, Votýpka J, Butenko A, Lukeš J, Neri U, Záhonová K, Kostygov AY, Koonin EV, Yurchenko V. Identification of diverse RNA viruses in Obscuromonas flagellates (Euglenozoa: Trypanosomatidae: Blastocrithidiinae). Virus Evol 2024; 10:veae037. [PMID: 38774311 PMCID: PMC11108086 DOI: 10.1093/ve/veae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/03/2024] [Accepted: 04/29/2024] [Indexed: 05/24/2024] Open
Abstract
Trypanosomatids (Euglenozoa) are a diverse group of unicellular flagellates predominately infecting insects (monoxenous species) or circulating between insects and vertebrates or plants (dixenous species). Monoxenous trypanosomatids harbor a wide range of RNA viruses belonging to the families Narnaviridae, Totiviridae, Qinviridae, Leishbuviridae, and a putative group of tombus-like viruses. Here, we focus on the subfamily Blastocrithidiinae, a previously unexplored divergent group of monoxenous trypanosomatids comprising two related genera: Obscuromonas and Blastocrithidia. Members of the genus Blastocrithidia employ a unique genetic code, in which all three stop codons are repurposed to encode amino acids, with TAA also used to terminate translation. Obscuromonas isolates studied here bear viruses of three families: Narnaviridae, Qinviridae, and Mitoviridae. The latter viral group is documented in trypanosomatid flagellates for the first time. While other known mitoviruses replicate in the mitochondria, those of trypanosomatids appear to reside in the cytoplasm. Although no RNA viruses were detected in Blastocrithidia spp., we identified an endogenous viral element in the genome of B. triatomae indicating its past encounter(s) with tombus-like viruses.
Collapse
Affiliation(s)
- Danyil Grybchuk
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava 710 00, Czechia
- Central European Institute of Technology, Masaryk University, Brno 625 00, Czechia
| | - Arnau Galan
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava 710 00, Czechia
| | - Donnamae Klocek
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava 710 00, Czechia
| | - Diego H Macedo
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava 710 00, Czechia
| | - Yuri I Wolf
- National Center for Biotechnology Information, NLM, National Institutes of Health, Bethesda 20894, USA
| | - Jan Votýpka
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice 370 05, Czechia
- Department of Parasitology, Faculty of Science, Charles University, Prague 128 00, Czechia
| | - Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava 710 00, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice 370 05, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice 370 05, Czechia
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice 370 05, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice 370 05, Czechia
| | - Uri Neri
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 39040, Israel
| | - Kristína Záhonová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava 710 00, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice 370 05, Czechia
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec 252 50, Czechia
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Alexei Yu Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava 710 00, Czechia
- Zoological Institute of the Ruian Academy of Sciences, St. Petersburg 199034, Russia
| | - Eugene V Koonin
- National Center for Biotechnology Information, NLM, National Institutes of Health, Bethesda 20894, USA
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava 710 00, Czechia
| |
Collapse
|
6
|
Heeren S, Maes I, Sanders M, Lye LF, Adaui V, Arevalo J, Llanos-Cuentas A, Garcia L, Lemey P, Beverley SM, Cotton JA, Dujardin JC, Van den Broeck F. Diversity and dissemination of viruses in pathogenic protozoa. Nat Commun 2023; 14:8343. [PMID: 38102141 PMCID: PMC10724245 DOI: 10.1038/s41467-023-44085-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
Viruses are the most abundant biological entities on Earth and play a significant role in the evolution of many organisms and ecosystems. In pathogenic protozoa, the presence of viruses has been linked to an increased risk of treatment failure and severe clinical outcome. Here, we studied the molecular epidemiology of the zoonotic disease cutaneous leishmaniasis in Peru and Bolivia through a joint evolutionary analysis of Leishmania braziliensis and their dsRNA Leishmania virus 1. We show that parasite populations circulate in tropical rainforests and are associated with single viral lineages that appear in low prevalence. In contrast, groups of hybrid parasites are geographically and ecologically more dispersed and associated with an increased prevalence, diversity and spread of viruses. Our results suggest that parasite gene flow and hybridization increased the frequency of parasite-virus symbioses, a process that may change the epidemiology of leishmaniasis in the region.
Collapse
Affiliation(s)
- Senne Heeren
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Ilse Maes
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | | | - Lon-Fye Lye
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Vanessa Adaui
- Laboratory of Biomolecules, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Jorge Arevalo
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Alejandro Llanos-Cuentas
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Lineth Garcia
- Instituto de Investigación Biomédicas e Investigación Social, Universidad Mayor de San Simon, Cochabamba, Bolivia
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Stephen M Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - James A Cotton
- Welcome Sanger Institute, Hinxton, UK
- School of Biodiversity, One Health and Comparative Medicine, Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jean-Claude Dujardin
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | - Frederik Van den Broeck
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
Klocek D, Grybchuk D, Tichá L, Votýpka J, Volf P, Kostygov AY, Yurchenko V. Evolution of RNA viruses in trypanosomatids: new insights from the analysis of Sauroleishmania. Parasitol Res 2023; 122:2279-2286. [PMID: 37490143 PMCID: PMC10495512 DOI: 10.1007/s00436-023-07928-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
RNA viruses play an important role in Leishmania biology and virulence. Their presence was documented in three (out of four) Leishmania subgenera. Sauroleishmania of reptiles remained the only underinvestigated group. In this work, we analyzed the viral occurrence in Sauroleishmania spp. and detected RNA viruses in three out of seven isolates under study. These viruses were of two families-Narnaviridae and Totiviridae. Phylogenetic inferences demonstrated that totiviruses from L. adleri and L. tarentolae group together within a larger cluster of LRV2s, while a narnavirus of L. gymnodactyli appeared as a phylogenetic relative of narnaviruses of Blechomonas spp. Taken together, our work not only expanded the range of trypanosomatids that can host RNA viruses but also shed new light on the evolution and potential routes of viral transmission in these flagellates.
Collapse
Affiliation(s)
- Donnamae Klocek
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Danyil Grybchuk
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Lucie Tichá
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Jan Votýpka
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Alexei Yu Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia.
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia.
| |
Collapse
|
8
|
Rêgo FD, da Silva ES, Lopes VV, Teixeira-Neto RG, Belo VS, Fonseca AA, Pereira DA, Pena HP, Laurenti MD, Araújo GV, da Matta VLR, Chouman IH, Burrin TB, Sandoval CM, Barrouin-Melo SM, de Pinho FA, de Andrade HM, Nunes RV, Gontijo CMF, Soccol VT, Klocek D, Grybchuk D, Macedo DH, do Monte-Neto RL, Yurchenko V, Soares RP. First report of putative Leishmania RNA virus 2 (LRV2) in Leishmania infantum strains from canine and human visceral leishmaniasis cases in the southeast of Brazil. Mem Inst Oswaldo Cruz 2023; 118:e230071. [PMID: 37729273 PMCID: PMC10511063 DOI: 10.1590/0074-02760230071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/31/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Leishmania RNA virus 1 (LRV1) is commonly found in South American Leishmania parasites belonging to the subgenus Viannia, whereas Leishmania RNA virus 2 (LRV2) was previously thought to be restricted to the Old-World pathogens of the subgenus Leishmania. OBJECTIVES In this study, we investigated the presence of LRV2 in strains of Leishmania (L.) infantum, the causative agent of visceral leishmaniasis (VL), originating from different hosts, clinical forms, and geographical regions. METHODS A total of seventy-one isolates were screened for LRV2 using semi-nested reverse transcription-polymerase chain reaction (RT-PCR) targeting the RNA-dependent RNA polymerase (RdRp) gene. FINDINGS We detected LRV2 in two L. infantum isolates (CUR268 and HP-EMO) from canine and human cases, respectively. MAIN CONCLUSIONS To the best of our knowledge, this is the first detection of LRV2 in the New World.
Collapse
Affiliation(s)
- Felipe Dutra Rêgo
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Grupo de Pesquisa em Biotecnologia Aplicada ao Estudo de Patógenos, Belo Horizonte, MG, Brasil
| | - Eduardo Sérgio da Silva
- Universidade Federal de São João Del Rei, Laboratório de Doenças Parasitárias e Infecciosas, Divinópolis, MG, Brasil
| | - Valeriana Valadares Lopes
- Universidade Federal de São João Del Rei, Laboratório de Doenças Parasitárias e Infecciosas, Divinópolis, MG, Brasil
| | | | - Vinícius Silva Belo
- Universidade Federal de São João Del Rei, Laboratório de Doenças Parasitárias e Infecciosas, Divinópolis, MG, Brasil
| | - Antônio Augusto Fonseca
- Ministério da Agricultura, Pecuária e Abastecimento, Laboratório Nacional Agropecuária, Pedro Leopoldo, MG, Brasil
| | - Diego Andrade Pereira
- Universidade Federal de São João Del Rei, Laboratório de Doenças Parasitárias e Infecciosas, Divinópolis, MG, Brasil
| | - Heber Paulino Pena
- Universidade Federal de São João Del Rei, Laboratório de Doenças Parasitárias e Infecciosas, Divinópolis, MG, Brasil
| | - Márcia Dalastra Laurenti
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Patologia, Laboratório de Patologia de Moléstias Infecciosas, São Paulo, SP, Brasil
| | - Gabriela V Araújo
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Patologia, Laboratório de Patologia de Moléstias Infecciosas, São Paulo, SP, Brasil
| | - Vânia Lúcia Ribeiro da Matta
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Patologia, Laboratório de Patologia de Moléstias Infecciosas, São Paulo, SP, Brasil
| | - Islam Hussein Chouman
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Patologia, Laboratório de Patologia de Moléstias Infecciosas, São Paulo, SP, Brasil
| | - Thainá Bergantin Burrin
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Patologia, Laboratório de Patologia de Moléstias Infecciosas, São Paulo, SP, Brasil
| | - Carmen M Sandoval
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Patologia, Laboratório de Patologia de Moléstias Infecciosas, São Paulo, SP, Brasil
| | - Stella Maria Barrouin-Melo
- Universidade Federal da Bahia, Departamento de Anatomia, Patologia e Clínicas Veterinárias, Escola de Medicina Veterinária, Laboratório de Infectologia Veterinária, Salvador, BA, Brasil
| | - Flaviane Alves de Pinho
- Universidade Federal da Bahia, Departamento de Anatomia, Patologia e Clínicas Veterinárias, Escola de Medicina Veterinária, Laboratório de Infectologia Veterinária, Salvador, BA, Brasil
| | - Hélida Monteiro de Andrade
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Laboratório de Leishmanioses, Belo Horizonte, MG, Brasil
| | - Ramon Vieira Nunes
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Laboratório de Leishmanioses, Belo Horizonte, MG, Brasil
| | - Célia Maria Ferreira Gontijo
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Grupo de Pesquisa em Biotecnologia Aplicada ao Estudo de Patógenos, Belo Horizonte, MG, Brasil
| | - Vanete Thomaz Soccol
- Universidade Federal do Paraná, Departamento de Engenharia de Bioprocessos e Biotecnologia, Curitiba, PR, Brasil
| | - Donnamae Klocek
- University of Ostrava, Faculty of Science, Life Science Research Centre, Ostrava, Czech Republic
| | - Danyil Grybchuk
- University of Ostrava, Faculty of Science, Life Science Research Centre, Ostrava, Czech Republic
| | - Diego Henrique Macedo
- University of Ostrava, Faculty of Science, Life Science Research Centre, Ostrava, Czech Republic
| | - Rubens Lima do Monte-Neto
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Grupo de Pesquisa em Biotecnologia Aplicada ao Estudo de Patógenos, Belo Horizonte, MG, Brasil
| | - Vyacheslav Yurchenko
- University of Ostrava, Faculty of Science, Life Science Research Centre, Ostrava, Czech Republic
| | - Rodrigo Pedro Soares
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Grupo de Pesquisa em Biotecnologia Aplicada ao Estudo de Patógenos, Belo Horizonte, MG, Brasil
| |
Collapse
|
9
|
Santana MCDO, Chourabi K, Cantanhêde LM, Cupolillo E. Exploring Host-Specificity: Untangling the Relationship between Leishmania ( Viannia) Species and Its Endosymbiont Leishmania RNA Virus 1. Microorganisms 2023; 11:2295. [PMID: 37764139 PMCID: PMC10535429 DOI: 10.3390/microorganisms11092295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
A relevant aspect in the epidemiology of Tegumentary Leishmaniasis (TL) are the Leishmania parasites carrying a viral endosymbiont, Leishmania RNA Virus 1 (LRV1), a dsRNA virus. Leishmania parasites carrying LRV1 are prone to causing more severe TL symptoms, increasing the likelihood of unfavorable clinical outcomes. LRV1 has been observed in the cultured strains of five L. (Viannia) species, and host specificity was suggested when studying the LRV1 from L. braziliensis and L. guyanensis strains. The coevolution hypothesis of LRV1 and Leishmania was based on phylogenetic analyses, implying an association between LRV1 genotypes, Leishmania species, and their geographic origins. This study aimed to investigate LRV1 specificity relative to Leishmania (Viannia) species hosts by analyzing LRV1 from L. (Viannia) species. To this end, LRV1 was screened in L. (Viannia) species other than L. braziliensis or L. guyanensis, and it was detected in 11 out of 15 L. naiffi and two out of four L. shawi. Phylogenetic analyses based on partial LRV1 genomic sequencing supported the hypothesis of host specificity, as LRV1 clustered according to their respective Leishmania species' hosts. These findings underscore the importance of investigating Leishmania and LRV1 coevolution and its impact on Leishmania (Viannia) species dispersion and pathogenesis in the American Continent.
Collapse
Affiliation(s)
- Mayara Cristhine de Oliveira Santana
- Leishmaniasis Research Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040360, Brazil; (M.C.d.O.S.); (L.M.C.)
- Instituto Nacional de Ciência e Tecnologia de Epidemiologia da Amazônia Ocidental, INCT EpiAmO, Porto Velho 76812100, Brazil
| | - Khaled Chourabi
- Leishmaniasis Research Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040360, Brazil; (M.C.d.O.S.); (L.M.C.)
- Instituto Nacional de Ciência e Tecnologia de Epidemiologia da Amazônia Ocidental, INCT EpiAmO, Porto Velho 76812100, Brazil
| | - Lilian Motta Cantanhêde
- Leishmaniasis Research Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040360, Brazil; (M.C.d.O.S.); (L.M.C.)
- Instituto Nacional de Ciência e Tecnologia de Epidemiologia da Amazônia Ocidental, INCT EpiAmO, Porto Velho 76812100, Brazil
| | - Elisa Cupolillo
- Leishmaniasis Research Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040360, Brazil; (M.C.d.O.S.); (L.M.C.)
- Instituto Nacional de Ciência e Tecnologia de Epidemiologia da Amazônia Ocidental, INCT EpiAmO, Porto Velho 76812100, Brazil
| |
Collapse
|
10
|
Macedo DH, Grybchuk D, Režnarová J, Votýpka J, Klocek D, Yurchenko T, Ševčík J, Magri A, Dolinská MU, Záhonová K, Lukeš J, Servienė E, Jászayová A, Serva S, Malysheva MN, Frolov AO, Yurchenko V, Kostygov AY. Diversity of RNA viruses in the cosmopolitan monoxenous trypanosomatid Leptomonas pyrrhocoris. BMC Biol 2023; 21:191. [PMID: 37697369 PMCID: PMC10496375 DOI: 10.1186/s12915-023-01687-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/22/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Trypanosomatids are parasitic flagellates well known because of some representatives infecting humans, domestic animals, and cultural plants. Many trypanosomatid species bear RNA viruses, which, in the case of human pathogens Leishmania spp., influence the course of the disease. One of the close relatives of leishmaniae, Leptomonas pyrrhocoris, has been previously shown to harbor viruses of the groups not documented in other trypanosomatids. At the same time, this species has a worldwide distribution and high prevalence in the natural populations of its cosmopolitan firebug host. It therefore represents an attractive model to study the diversity of RNA viruses. RESULTS We surveyed 106 axenic cultures of L. pyrrhocoris and found that 64 (60%) of these displayed 2-12 double-stranded RNA fragments. The analysis of next-generation sequencing data revealed four viral groups with seven species, of which up to five were simultaneously detected in a single trypanosomatid isolate. Only two of these species, a tombus-like virus and an Ostravirus, were earlier documented in L. pyrrhocoris. In addition, there were four new species of Leishbuviridae, the family encompassing trypanosomatid-specific viruses, and a new species of Qinviridae, the family previously known only from metatranscriptomes of invertebrates. Currently, this is the only qinvirus with an unambiguously determined host. Our phylogenetic inferences suggest reassortment in the tombus-like virus owing to the interaction of different trypanosomatid strains. Two of the new Leishbuviridae members branch early on the phylogenetic tree of this family and display intermediate stages of genomic segment reduction between insect Phenuiviridae and crown Leishbuviridae. CONCLUSIONS The unprecedented wide range of viruses in one protist species and the simultaneous presence of up to five viral species in a single Leptomonas pyrrhocoris isolate indicate the uniqueness of this flagellate. This is likely determined by the peculiarity of its firebug host, a highly abundant cosmopolitan species with several habits ensuring wide distribution and profuseness of L. pyrrhocoris, as well as its exposure to a wider spectrum of viruses compared to other trypanosomatids combined with a limited ability to transmit these viruses to its relatives. Thus, L. pyrrhocoris represents a suitable model to study the adoption of new viruses and their relationships with a protist host.
Collapse
Affiliation(s)
- Diego H Macedo
- Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
- University of Stockholm, Stockholm, Sweden
| | - Danyil Grybchuk
- Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Jana Režnarová
- Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
- University Hospital in Ostrava, Ostrava, Czech Republic
| | - Jan Votýpka
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05, České Budějovice, Czech Republic
- Faculty of Science, Charles University, 128 44, Prague, Czech Republic
| | - Donnamae Klocek
- Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
| | - Tatiana Yurchenko
- Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
| | - Jan Ševčík
- Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
| | - Alice Magri
- Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Ozzano Dell'Emilia, 40064, Bologna, Italy
| | - Michaela Urda Dolinská
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy, 041 81, Košice, Slovakia
| | - Kristína Záhonová
- Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05, České Budějovice, Czech Republic
- Faculty of Science, Charles University, BIOCEV, 252 50, Vestec, Czech Republic
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05, České Budějovice, Czech Republic
- Faculty of Sciences, University of South Bohemia, 370 05, České Budějovice, Czech Republic
| | - Elena Servienė
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, 08412, Vilnius, Lithuania
| | - Alexandra Jászayová
- Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
- Institute of Parasitology, Slovak Academy of Sciences, 040 01, Košice, Slovakia
- University of Veterinary Medicine and Pharmacy, 041 81, Košice, Slovakia
| | - Saulius Serva
- Department of Biochemistry and Molecular Biology, Institute of Biosciences, Vilnius University, 10257, Vilnius, Lithuania
| | - Marina N Malysheva
- Zoological Institute of Russian Academy of Sciences, 199034, St. Petersburg, Russia
| | - Alexander O Frolov
- Zoological Institute of Russian Academy of Sciences, 199034, St. Petersburg, Russia
| | | | - Alexei Yu Kostygov
- Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic.
| |
Collapse
|
11
|
Gerasimov ES, Novozhilova TS, Zimmer SL, Yurchenko V. Kinetoplast Genome of Leishmania spp. Is under Strong Purifying Selection. Trop Med Infect Dis 2023; 8:384. [PMID: 37624322 PMCID: PMC10458658 DOI: 10.3390/tropicalmed8080384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Instability is an intriguing characteristic of many protist genomes, and trypanosomatids are not an exception in this respect. Some regions of trypanosomatid genomes evolve fast. For instance, the trypanosomatid mitochondrial (kinetoplast) genome consists of fairly conserved maxicircle and minicircle molecules that can, nevertheless, possess high nucleotide substitution rates between closely related strains. Recent experiments have demonstrated that rapid laboratory evolution can result in the non-functionality of multiple genes of kinetoplast genomes due to the accumulation of mutations or loss of critical genomic components. An example of a loss of critical components is the reported loss of entire minicircle classes in Leishmania tarentolae during laboratory cultivation, which results in an inability to generate some correctly encoded genes. In the current work, we estimated the evolutionary rates of mitochondrial and nuclear genome regions of multiple natural Leishmania spp. We analyzed synonymous and non-synonymous substitutions and, rather unexpectedly, found that the coding regions of kinetoplast maxicircles are among the most variable regions of both genomes. In addition, we demonstrate that synonymous substitutions greatly predominate among maxicircle coding regions and that most maxicircle genes show signs of purifying selection. These results imply that maxicircles in natural Leishmania populations remain functional despite their high mutation rate.
Collapse
Affiliation(s)
- Evgeny S. Gerasimov
- Department of Molecular Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Institute for Information Transmission Problems, Russian Academy of Sciences, 127051 Moscow, Russia
| | - Tatiana S. Novozhilova
- Department of Molecular Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Sara L. Zimmer
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, MN 55812, USA
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| |
Collapse
|
12
|
Rosales-Chilama M, Y. Oviedo M, K. Quintero Y, L. Fernández O, Gómez MA. Leishmania RNA Virus Is Not Detected in All Species of the Leishmania Viannia Subgenus: The Case of L. (V.) panamensis in Colombia. Am J Trop Med Hyg 2023; 108:555-560. [PMID: 36716739 PMCID: PMC9978567 DOI: 10.4269/ajtmh.22-0551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2002] [Accepted: 11/21/2022] [Indexed: 01/31/2023] Open
Abstract
The endosymbiotic Leishmania RNA virus 1 (LRV1) has been associated with severity and clinical manifestations of American tegumentary leishmaniasis caused by species of the Leishmania (Viannia) subgenus. Between and within Leishmania species, and among endemic countries, the prevalence of LRV is highly variable. The LRV virus has not been detected in L. (V.) panamensis, the second-most prevalent species in Central America and Colombia. However, no systematic screening of LRV has been conducted in L. (V.) panamensis, and thus it is still controversial whether this virus is truly absent from the species. We sought to determine the prevalence of LRV1 in L. (V.) panamensis clinical strains isolated from patients with cutaneous leishmaniasis (CL), from different geographic areas of Colombia. We analyzed 219 clinical strains; 78% were L. (V.) panamensis, 18% were L. (V.) braziliensis, and 4% were L. (V.) guyanensis. Screening for LRV1 was performed by quantitative reverse transcription-polymerase chain reaction. The LRV1 was detected in 18% (7 of 40) of L. (V) braziliensis strains, and was not detected in any of the L. (V.) guyanensis or L. (V.) panamensis strains. The LRV1-positive L. (V). braziliensis strains came from the Amazon Basin. Of the seven LRV1-positive strains, two were isolated from patients with mucocutaneous leishmaniasis, and the remaining from patients with CL. Our results confirm the absence of LRV1 in L. (V.) panamensis in Colombia.
Collapse
Affiliation(s)
- Mariana Rosales-Chilama
- Centro Internacional de Entrenamiento e Investigaciones Médicas-CIDEIM, Cali, Colombia
- Universidad Icesi, Cali, Colombia
| | - Monica Y. Oviedo
- Centro Internacional de Entrenamiento e Investigaciones Médicas-CIDEIM, Cali, Colombia
| | - Yury K. Quintero
- Centro Internacional de Entrenamiento e Investigaciones Médicas-CIDEIM, Cali, Colombia
- Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Olga L. Fernández
- Centro Internacional de Entrenamiento e Investigaciones Médicas-CIDEIM, Cali, Colombia
- Universidad Icesi, Cali, Colombia
| | - María Adelaida Gómez
- Centro Internacional de Entrenamiento e Investigaciones Médicas-CIDEIM, Cali, Colombia
- Universidad Icesi, Cali, Colombia
| |
Collapse
|
13
|
Novozhilova TS, Chistyakov DS, Akhmadishina LV, Lukashev AN, Gerasimov ES, Yurchenko V. Genomic analysis of Leishmania turanica strains from different regions of Central Asia. PLoS Negl Trop Dis 2023; 17:e0011145. [PMID: 36877735 PMCID: PMC10019736 DOI: 10.1371/journal.pntd.0011145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/16/2023] [Accepted: 02/06/2023] [Indexed: 03/07/2023] Open
Abstract
The evolution in Leishmania is governed by the opposite forces of clonality and sexual reproduction, with vicariance being an important factor. As such, Leishmania spp. populations may be monospecific or mixed. Leishmania turanica in Central Asia is a good model to compare these two types. In most areas, populations of L. turanica are mixed with L. gerbilli and L. major. Notably, co-infection with L. turanica in great gerbils helps L. major to withstand a break in the transmission cycle. Conversely, the populations of L. turanica in Mongolia are monospecific and geographically isolated. In this work, we compare genomes of several well-characterized strains of L. turanica originated from monospecific and mixed populations in Central Asia in order to shed light on genetic factors, which may drive evolution of these parasites in different settings. Our results illustrate that evolutionary differences between mixed and monospecific populations of L. turanica are not dramatic. On the level of large-scale genomic rearrangements, we confirmed that different genomic loci and different types of rearrangements may differentiate strains originated from mixed and monospecific populations, with genome translocations being the most prominent example. Our data suggests that L. turanica has a significantly higher level of chromosomal copy number variation between the strains compared to its sister species L. major with only one supernumerary chromosome. This suggests that L. turanica (in contrast to L. major) is in the active phase of evolutionary adaptation.
Collapse
Affiliation(s)
| | - Daniil S. Chistyakov
- Martsinovsky Institute of Medical Parasitology, Sechenov University, Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | | | | | | | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
14
|
Multiple Regulations of Parasitic Protozoan Viruses: A Double-Edged Sword for Protozoa. mBio 2023; 14:e0264222. [PMID: 36633419 PMCID: PMC9973342 DOI: 10.1128/mbio.02642-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Parasite infections affect human and animal health significantly and contribute to a major burden on the global economy. Parasitic protozoan viruses (PPVs) affect the protozoan parasites' morphology, phenotypes, pathogenicity, and growth rates. This discovery provides an opportunity to develop a novel preventive and therapeutic strategy for parasitic protozoan diseases (PPDs). Currently, there is greater awareness regarding PPVs; however, knowledge of viruses and their associations with host diseases remains limited. Parasite-host interactions become more complex owing to PPVs; however, few studies have investigated underlying viral regulatory mechanisms in parasites. In this study, we reviewed relevant studies to identify studies that investigated PPV development and life cycles, the triangular association between viruses, parasites, and hosts, and the effects of viruses on protozoan pathogenicity. This study highlights that viruses can alter parasite biology, and viral infection of parasites may exacerbate the adverse effects of virus-containing parasites on hosts or reduce parasite virulence. PPVs should be considered in the prevention of parasitic epidemics and outbreaks, although their effects on the host and the complexity of the triangular association between PPVs, protozoans, and hosts remain unclear. IMPORTANCE PPVs-based regulation of parasitic protozoa can provide a theoretical basis and direction for PPD prevention and control, although PPVs and PPV regulatory mechanisms remain unclear. In this review, we investigated the differences between PPVs and the unique properties of each virus regarding virus discovery, structures, and life cycles, focused on the Trichomonas vaginalis virus, Giardia lamblia virus, Leishmania RNA virus, and the Cryptosporidium parvum virus 1. The triangular association between PPVs, parasitic protozoa, and hosts reveals the "double-edged sword" property of PPVs, which maintains a balance between parasitic protozoa and hosts in both positive and negative respects. These studies discuss the complexity of parasitic protozoa and their co-existence with hosts and suggest novel pathways for using PPVs as tools to gain a deeper understanding of protozoal infection and treatment.
Collapse
|
15
|
Abstract
In this work we reviewed historical and recent data on Leishmania spp. infection combining data collected in Turkmenistan, Uzbekistan, Kazakhstan, Kyrgyzstan, Iran, China and Mongolia. We specifically focused on a complex of co-existing species (Leishmania major, Leishmania turanica and Leishmania gerbilli) sharing the same animal reservoirs and vectors. In addition, we analysed the presence of dsRNA viruses in these species and discussed future research directions to identify species-specific traits, which may determine susceptibility of different Leishmania spp. to viral infection.
Collapse
|
16
|
Procházková M, Füzik T, Grybchuk D, Yurchenko V, Plevka P. Virion structure of Leishmania RNA virus 1. Virology 2022; 577:149-154. [PMID: 36371873 DOI: 10.1016/j.virol.2022.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
Abstract
The presence of Leishmania RNA virus 1 (LRV1) enables Leishmania protozoan parasites to cause more severe disease than the virus-free strains. The structure of LRV1 virus-like particles has been determined previously, however, the structure of the LRV1 virion has not been characterized. Here we used cryo-electron microscopy and single-particle reconstruction to determine the structures of the LRV1 virion and empty particle isolated from Leishmania guyanensis to resolutions of 4.0 Å and 3.6 Å, respectively. The capsid of LRV1 is built from sixty dimers of capsid proteins organized with icosahedral symmetry. RNA genomes of totiviruses are replicated inside the virions by RNA polymerases expressed as C-terminal extensions of a sub-population of capsid proteins. Most of the virions probably contain one or two copies of the RNA polymerase, however, the location of the polymerase domains in LRV1 capsid could not be identified, indicating that it varies among particles. Importance. Every year over 200 000 people contract leishmaniasis and more than five hundred people die of the disease. The mucocutaneous form of leishmaniasis produces lesions that can destroy the mucous membranes of the nose, mouth, and throat. Leishmania parasites carrying Leishmania RNA virus 1 (LRV1) are predisposed to cause aggravated symptoms in the mucocutaneous form of leishmaniasis. Here, we present the structure of the LRV1 virion determined using cryo-electron microscopy.
Collapse
Affiliation(s)
- Michaela Procházková
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Tibor Füzik
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Danyil Grybchuk
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava, 710 00, Czech Republic
| | - Pavel Plevka
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic.
| |
Collapse
|
17
|
Kopelyanskiy D, Desponds C, Prevel F, Rossi M, Migliorini R, Snäkä T, Eren RO, Claudinot S, Lye LF, Pasparakis M, Beverley SM, Fasel N. Leishmania guyanensis suppressed inducible nitric oxide synthase provoked by its viral endosymbiont. Front Cell Infect Microbiol 2022; 12:944819. [PMID: 36034693 PMCID: PMC9416488 DOI: 10.3389/fcimb.2022.944819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Inducible nitric oxide synthase (iNOS) is essential to the production of nitric oxide (NO), an efficient effector molecule against intracellular human pathogens such as Leishmania protozoan parasites. Some strains of Leishmania are known to bear a viral endosymbiont termed Leishmania RNA virus 1 (LRV1). Recognition of LRV1 by the innate immune sensor Toll-like receptor-3 (TLR3) leads to conditions worsening the disease severity in mice. This process is governed by type I interferon (type I IFNs) arising downstream of TLR3 stimulation and favoring the formation of secondary metastatic lesions. The formation of these lesions is mediated by the inflammatory cytokine IL-17A and occurs in the absence, or low level of, protective cytokine IFN-γ. Here, we described that the presence of LRV1 led to the initial expression of iNOS and low production of NO that failed to control infection. We subsequently showed that LRV1-triggered type I IFN was essential but insufficient to induce robust iNOS induction, which requires strong activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Leishmania guyanensis carrying LRV1 (LgyLRV1+) parasites mitigated strong iNOS production by limiting NF-kB activation via the induction of tumor necrosis factor-alpha-induced protein 3 (TNFAIP3), also known as A20. Moreover, our data suggested that production of LRV1-induced iNOS could be correlated with parasite dissemination and metastasis via elevated secretion of IL-17A in the draining lymph nodes. Our findings support an additional strategy by which LRV1-bearing Leishmania guyanensis evaded killing by nitric oxide and suggest that low levels of LRV1-induced NO might contribute to parasite metastasis.
Collapse
Affiliation(s)
| | - Chantal Desponds
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Florence Prevel
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Matteo Rossi
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Romain Migliorini
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Tiia Snäkä
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Remzi Onur Eren
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | | | - Lon-Fye Lye
- Department of Molecular Microbiology, School of Medicine, Washington University, St. Louis, MO, United States
| | - Manolis Pasparakis
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Stephen M. Beverley
- Department of Molecular Microbiology, School of Medicine, Washington University, St. Louis, MO, United States
| | - Nicolas Fasel
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
18
|
Abstract
Leishmaniaviruses (LRVs) have been demonstrated to enhance progression of leishmaniasis, a vector-transmitted disease with a wide range of clinical manifestations that is caused by flagellates of the genus Leishmania. Here, we used two previously proposed strategies of the LRV ablation to shed light on the relationships of two Leishmania spp. with their respective viral species (L. guyanensis, LRV1 and L. major, LRV2) and demonstrated considerable difference between two studied systems. LRV1 could be easily eliminated by the expression of exogenous capsids regardless of their origin (the same or distantly related LRV1 strains, or even LRV2), while LRV2 was only partially depleted in the case of the native capsid overexpression. The striking differences were also observed in the effects of complete viral elimination with 2'C-methyladenosine (2-CMA) on the transcriptional profiles of these two Leishmania spp. While virtually no differentially expressed genes were detected after the LRV1 removal from L. guyanensis, the response of L. major after ablation of LRV2 involved 87 genes, the analysis of which suggested a considerable stress experienced even after several passages following the treatment. This effect on L. major was also reflected in a significant decrease of the proliferation rate, not documented in L. guyanensis and naturally virus-free strain of L. major. Our findings suggest that integration of L. major with LRV2 is deeper compared with that of L. guyanensis with LRV1. We presume this determines different effects of the viral presence on the Leishmania spp. infections. IMPORTANCELeishmania spp. represent human pathogens that cause leishmaniasis, a widespread parasitic disease with mild to fatal clinical manifestations. Some strains of leishmaniae bear leishmaniaviruses (LRVs), and this has been shown to aggravate disease course. We investigated the relationships of two distally related Leishmania spp. with their respective LRVs using different strategies of virus removal. Our results suggest the South American L. guyanensis easily loses its virus with no important consequences for the parasite in the laboratory culture. Conversely, the Old-World L. major is refractory to virus removal and experiences a prominent stress if this removal is nonetheless completed. The drastically different levels of integration between the studied Leishmania spp. and their viruses suggest distinct effects of the viral presence on infections in these species of parasites.
Collapse
|
19
|
Ruml T. The Present and Future of Virology in the Czech Republic-A New Phoenix Made of Ashes? Viruses 2022; 14:v14061303. [PMID: 35746773 PMCID: PMC9231214 DOI: 10.3390/v14061303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 12/10/2022] Open
Affiliation(s)
- Tomas Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| |
Collapse
|