1
|
Xiao W, Li Z, Chen C, Shi Y, Fang P, Xiao S, Fang L. Revisiting the roles of trypsin in the productive infection of porcine deltacoronavirus in porcine-derived cells. Virology 2025; 604:110453. [PMID: 39961260 DOI: 10.1016/j.virol.2025.110453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/25/2025] [Accepted: 02/12/2025] [Indexed: 05/09/2025]
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging enteric coronavirus with the potential for interspecies transmission. Trypsin has been shown to play a positive role in the isolation and multiplication of PDCoV in vitro, however, the functions of trypsin during PDCoV replication cycle remain controversial. In this study, we revisited the roles of trypsin for PDCoV infection by utilizing two kinds of PDCoV, PDCoVT+ and PDCoVT-, which were prepared in the presence or absence of trypsin, respectively. We found that PDCoVT+ was able to continuously proliferate in the medium containing trypsin, achieving a higher titer as the infection progress in LLC-PK1 and other tested porcine-derived cells. However, its replication was only transiently improved at 12 hours post-infection, and lower viral titers were observed under trypsin-free culture conditions. Furthermore, the trypsin-mediated enhancement of viral replication could be inhibited by trypsin inhibitor SBTI, suggesting that the second-round viral reproduction of PDCoVT+ might be impeded without trypsin. We further investigated the replication dynamics of PDCoVT- in LLC-PK1 cells in the presence or absence of trypsin. The results indicated that PDCoVT- generated lower viral titers under trypsin-free culture conditions, while the addition of trypsin reverted the infectivity of PDCoVT-. Additionally, we demonstrated that trypsin cleaved the PDCoV spike protein, activating viral attachment and internalization. Moreover, trypsin promoted viral replication and release, accelerating PDCoV maturation and facilitating second-round infection. Taken together, this study systematically revaluated and emphasized an essential role of trypsin in PDCoV infection, providing mechanistic insights into the productive infection of PDCoV in porcine-derived cells.
Collapse
Affiliation(s)
- Wenwen Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Zhuang Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Chaoqun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Yuting Shi
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Puxian Fang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Shaobo Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Liurong Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| |
Collapse
|
2
|
Jin X, Wu X, Li Z, Hu Y, Xia L, Zu S, Zhang G, Hu H. Integrin αVβ3 mediates porcine deltacoronavirus infection and inflammatory response through activation of the FAK-PI3K-AKT-nf-κB signalling pathway. Virulence 2024; 15:2407847. [PMID: 39368071 PMCID: PMC11457627 DOI: 10.1080/21505594.2024.2407847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 09/02/2024] [Accepted: 09/18/2024] [Indexed: 10/07/2024] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging porcine enteropathogenic coronavirus that causes acute watery diarrhoea in piglets, resulting in significant economic losses to the global swine industry. However, the underlying mechanism of PDCoV infection is not well defined, which seriously hinders the development of effective drugs and vaccines. Integrins (ITG) are heterodimeric transmembrane glycoproteins that play important roles in the life cycle of many viruses. In the current study, the viral entry pathways of PDCoV were explored and the role of ITGαVβ3 was investigated during PDCoV infection. Our results showed that the lysosomal acidification inhibitor bafilomycin-A1 (Baf-A1) significantly reduced PDCoV infection, while exogenous protease facilitated PDCoV infection and even allowed PDCoV entry to bypass the endosomal pathway, suggesting PDCoV entry into cells via the endocytic pathway and the exogenous protease-mediated pathway simultaneously. Furthermore, ITGαVβ3 was identified to be involved in PDCoV infection, especially during viral entry stages. PDCoV infection triggers the activation of the focal adhesion kinase (FAK)-phosphatidylinositol 3-kinase (PI3K)-serine/threonine-specific protein kinase (AKT) signalling pathway, and this activation is ITGαVβ3-dependent, suggesting that the activation of the FAK-PI3K-AKT signalling pathway during PDCoV infection is mediated by ITGαVβ3. Our results further demonstrated that PDCoV infection induced the expression of inflammatory cytokines, which was mediated by activation of the ITGαVβ3-FAK-PI3K-AKT-nuclear transcription factor-κB (NF-κB) signalling pathway. Overall, the results revealed that ITGαVβ3 is an essential host factor for PDCoV infection and can serve as a supplementary receptor to facilitate PDCoV infection, which can help us to explore the molecular mechanism of PDCoV infection.
Collapse
Affiliation(s)
- Xiaohui Jin
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, P. R. China
| | - Xingyi Wu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, P. R. China
| | - Zehui Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
- Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, P. R. China
| | - Yixin Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
- Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, P. R. China
| | - Lu Xia
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, P. R. China
| | - Shaopo Zu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, P. R. China
| | - Gaiping Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
- Longhu Laboratory of Henan Province, Zhengzhou, P. R. China
| | - Hui Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
| |
Collapse
|
3
|
Xiao W, Chen C, Xia S, Li Z, Ding T, Zhou J, Fang L, Fang P, Xiao S. Cell-surface d-glucuronyl C5-epimerase binds to porcine deltacoronavirus spike protein facilitating viral entry. J Virol 2024; 98:e0088024. [PMID: 39078176 PMCID: PMC11334431 DOI: 10.1128/jvi.00880-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging swine enteric coronavirus with zoonotic potential. The coronavirus spike (S) glycoprotein, especially the S1 subunit, mediates viral entry by binding to cellular receptors. However, the functional receptor of PDCoV remains poorly understood. In this study, we used the soluble PDCoV S1 protein as bait to capture the S1-binding cellular transmembrane proteins in combined immunoprecipitation and mass spectrometry analyses. A single guide RNA screen identified d-glucuronyl C5-epimerase (GLCE), a heparan sulfate-modifying enzyme, as a proviral host factor for PDCoV infection. GLCE knockout significantly inhibited the attachment and internalization stages of PDCoV infection. We also demonstrated the interaction between GLCE and PDCoV S with coimmunoprecipitation in both an overexpression system and PDCoV-infected cells. GLCE could be localized to the cell membrane, and an anti-GLCE antibody suppressed PDCoV infection. Although GLCE expression alone did not render nonpermissive cells susceptible to PDCoV infection, GLCE promoted the binding of PDCoV S to porcine amino peptidase N (pAPN), acting synergistically with pAPN to enhance PDCoV infection. In conclusion, our results demonstrate that GLCE is a novel cell-surface factor facilitating PDCoV entry and provide new insights into PDCoV infection. IMPORTANCE The identification of viral receptors is of great significance, potentially extending our understanding of viral infection and pathogenesis. Porcine deltacoronavirus (PDCoV) is an emerging enteropathogenic coronavirus with the potential for cross-species transmission. However, the receptors or coreceptors of PDCoV are still poorly understood. The present study confirms that d-glucuronyl C5-epimerase (GLCE) is a positive regulator of PDCoV infection, promoting viral attachment and internalization. The anti-GLCE antibody suppressed PDCoV infection. Mechanically, GLCE interacts with PDCoV S and promotes the binding of PDCoV S to porcine amino peptidase N (pAPN), acting synergistically with pAPN to enhance PDCoV infection. This work identifies GLCE as a novel cell-surface factor facilitating PDCoV entry and paves the way for further insights into the mechanisms of PDCoV infection.
Collapse
Affiliation(s)
- Wenwen Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Chaoqun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Sijin Xia
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhuang Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Tong Ding
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Junwei Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liurong Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Puxian Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Shaobo Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
4
|
Du W, Debski-Antoniak O, Drabek D, van Haperen R, van Dortmondt M, van der Lee J, Drulyte I, van Kuppeveld FJM, Grosveld F, Hurdiss DL, Bosch BJ. Neutralizing antibodies reveal cryptic vulnerabilities and interdomain crosstalk in the porcine deltacoronavirus spike protein. Nat Commun 2024; 15:5330. [PMID: 38909062 PMCID: PMC11193727 DOI: 10.1038/s41467-024-49693-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/11/2024] [Indexed: 06/24/2024] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging enteric pathogen that has recently been detected in humans. Despite this zoonotic concern, the antigenic structure of PDCoV remains unknown. The virus relies on its spike (S) protein for cell entry, making it a prime target for neutralizing antibodies. Here, we generate and characterize a set of neutralizing antibodies targeting the S protein, shedding light on PDCoV S interdomain crosstalk and its vulnerable sites. Among the four identified antibodies, one targets the S1A domain, causing local and long-range conformational changes, resulting in partial exposure of the S1B domain. The other antibodies bind the S1B domain, disrupting binding to aminopeptidase N (APN), the entry receptor for PDCoV. Notably, the epitopes of these S1B-targeting antibodies are concealed in the prefusion S trimer conformation, highlighting the necessity for conformational changes for effective antibody binding. The binding footprint of one S1B binder entirely overlaps with APN-interacting residues and thus targets a highly conserved epitope. These findings provide structural insights into the humoral immune response against the PDCoV S protein, potentially guiding vaccine and therapeutic development for this zoonotic pathogen.
Collapse
Affiliation(s)
- Wenjuan Du
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Oliver Debski-Antoniak
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Dubravka Drabek
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands
- Harbour BioMed, Rotterdam, The Netherlands
| | - Rien van Haperen
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands
- Harbour BioMed, Rotterdam, The Netherlands
| | - Melissa van Dortmondt
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Joline van der Lee
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Ieva Drulyte
- Thermo Fisher Scientific, Materials and Structural Analysis, Eindhoven, The Netherlands
| | - Frank J M van Kuppeveld
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Frank Grosveld
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands
- Harbour BioMed, Rotterdam, The Netherlands
| | - Daniel L Hurdiss
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - Berend-Jan Bosch
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
5
|
Liu C, Huang W, He X, Feng Z, Chen Q. Research Advances on Swine Acute Diarrhea Syndrome Coronavirus. Animals (Basel) 2024; 14:448. [PMID: 38338091 PMCID: PMC10854734 DOI: 10.3390/ani14030448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a virulent pathogen that causes acute diarrhea in piglets. The virus was first discovered in Guangdong Province, China, in 2017 and has since emerged in Jiangxi, Fujian, and Guangxi Provinces. The outbreak exhibited a localized and sporadic pattern, with no discernable temporal continuity. The virus can infect human progenitor cells and demonstrates considerable potential for cross-species transmission, representing a potential risk for zoonotic transmission. Therefore, continuous surveillance of and comprehensive research on SADS-CoV are imperative. This review provides an overview of the temporal and evolutionary features of SADS-CoV outbreaks, focusing on the structural characteristics of the virus, which serve as the basis for discussing its potential for interspecies transmission. Additionally, the review summarizes virus-host interactions, including the effects on host cells, as well as apoptotic and autophagic behaviors, and discusses prevention and treatment modalities for this viral infection.
Collapse
Affiliation(s)
- Chuancheng Liu
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; (C.L.); (W.H.); (X.H.)
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Weili Huang
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; (C.L.); (W.H.); (X.H.)
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Xinyan He
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; (C.L.); (W.H.); (X.H.)
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Zhihua Feng
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; (C.L.); (W.H.); (X.H.)
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Qi Chen
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; (C.L.); (W.H.); (X.H.)
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
6
|
Lee D, Shin S, Jang G, Gim Y, Son HK, Kang SC, Eo Y, Chae YG, Koh PO, Lee HJ, Lee C. Genomic and Virulence Investigations of a Novel Porcine Deltacoronavirus Strain Identified in South Korea. Transbound Emerg Dis 2023; 2023:5569675. [PMID: 40303825 PMCID: PMC12016722 DOI: 10.1155/2023/5569675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 01/05/2025]
Abstract
Porcine deltacoronavirus (PDCoV) has emerged as a significant issue in multiple pork-producing countries. This study isolated a novel PDCoV strain, GNU-2105/KOR/2021, which caused a severe diarrhea outbreak with a high mortality rate among neonatal piglets in South Korea. The growth properties and sialic acid dependency of the GNU-2105 strain in cell culture were comparable to those of the 2016 domestic isolate, KNU-1607. Interestingly, phylogenetic analysis using the complete genome of GNU-2105 identified in 2021 demonstrated that this novel strain belongs to the US/South Korean/Japanese clade; however, it is more closely placed around the Chinese isolates. To investigate the potential pathogenic diversity between the previous and recent PDCoVs, we performed an experimental infection using conventional suckling piglets with KNU-1607 or GNU-2105. The KNU-1607-inoculated piglets suffered from acute, watery diarrhea; however, all piglets recovered and survived. In the KNU-1607-inoculated group, histopathological observation detected viral antigens in the jejunum and ileum. However, the virulence of the GNU-2105 virus was enhanced and presented severe clinical symptoms, including thin, transparent intestinal walls, with 100% mortality in piglets. Furthermore, viruses and severe villous atrophy were observed from the duodenum to the colon in all the piglets inoculated with GNU-2105 by quantitative RT-PCR and microscopic assessments, confirming the high enteropathogenicity of PDCoV in neonatal piglets. These findings could expand our understanding of the genetic and pathogenic variation of the PDCoV strain and highlight the necessity of vaccine development providing protection against virulent PDCoV.
Collapse
Affiliation(s)
- Duri Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Sangjune Shin
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
- ChoongAng Vaccine Laboratories, Daejeon 34055, Republic of Korea
| | - Guehwan Jang
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yunhee Gim
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyun-Kyoung Son
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | | | - Yongjoon Eo
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
- Nawoo Veterinary Group, Yangsan 50573, Republic of Korea
| | | | - Phil-Ok Koh
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hu-Jang Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Changhee Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
7
|
Chen Y, Zhang Y, Wang X, Zhou J, Ma L, Li J, Yang L, Ouyang H, Yuan H, Pang D. Transmissible Gastroenteritis Virus: An Update Review and Perspective. Viruses 2023; 15:v15020359. [PMID: 36851573 PMCID: PMC9958687 DOI: 10.3390/v15020359] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 01/29/2023] Open
Abstract
Transmissible gastroenteritis virus (TGEV) is a member of the alphacoronavirus genus, which has caused huge threats and losses to pig husbandry with a 100% mortality in infected piglets. TGEV is observed to be recombining and evolving unstoppably in recent years, with some of these recombinant strains spreading across species, which makes the detection and prevention of TGEV more complex. This paper reviews and discusses the basic biological properties of TGEV, factors affecting virulence, viral receptors, and the latest research advances in TGEV infection-induced apoptosis and autophagy to improve understanding of the current status of TGEV and related research processes. We also highlight a possible risk of TGEV being zoonotic, which could be evidenced by the detection of CCoV-HuPn-2018 in humans.
Collapse
Affiliation(s)
- Yiwu Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Yuanzhu Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Xi Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Jian Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Lerong Ma
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Jianing Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Lin Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Hongsheng Ouyang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401120, China
| | - Hongming Yuan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Correspondence: (H.Y.); (D.P.); Tel.: +86-431-8783-6175 (D.P.)
| | - Daxin Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401120, China
- Correspondence: (H.Y.); (D.P.); Tel.: +86-431-8783-6175 (D.P.)
| |
Collapse
|
8
|
Xiao W, Huang W, Chen C, Wang X, Liao S, Xia S, Fang P, Xiao S, Fang L. Porcine deltacoronavirus uses heparan sulfate as an attachment receptor. Vet Microbiol 2023; 276:109616. [PMID: 36495740 DOI: 10.1016/j.vetmic.2022.109616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/19/2022] [Accepted: 11/26/2022] [Indexed: 11/29/2022]
Abstract
Porcine deltacoronavirus (PDCoV) is a newly emerging swine enteropathogenic coronavirus with extensive tissue tropism and cross-species transmission potential. Heparan sulfate (HS) is a complex polysaccharide ubiquitously expressed on cell surfaces and the extracellular matrix and acts as an attachment factor for many viruses. However, whether PDCoV uses HS as an attachment receptor is unclear. In this study, we found that treatment with heparin sodium or heparinase Ⅱ significantly inhibited PDCoV binding and infection among LLC-PK1 and IPI-2I cells. Attenuation of HS sulfuration by sodium chlorate also impeded PDCoV binding and infection. Moreover, we demonstrated that HS functioned independently of amino peptidase N (APN), a functional PDCoV receptor, in PDCoV infection. Molecular docking revealed that the S1 subunit of the PDCoV spike protein might be a putative region for HS binding. Taken together, these results firstly confirmed that HS is an attachment receptor for PDCoV infection, providing new insight into better understanding the mechanisms of PDCoV-host interactions.
Collapse
Affiliation(s)
- Wenwen Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Wen Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Chaoqun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xunlei Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shusen Liao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Sijin Xia
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|
9
|
Bahoussi AN, Wang PH, Shah PT, Bu H, Wu C, Xing L. Evolutionary plasticity of zoonotic porcine Deltacoronavirus (PDCoV): genetic characteristics and geographic distribution. BMC Vet Res 2022; 18:444. [PMID: 36550483 PMCID: PMC9772601 DOI: 10.1186/s12917-022-03554-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The emergence and rapid spread of the acute respiratory syndrome coronavirus-2 have confirmed that animal coronaviruses represent a potential zoonotic source. Porcine deltacoronavirus is a worldwide evolving enteropathogen of swine, detected first in Hong Kong, China, before its global identification. Following the recent detection of PDCoV in humans, we attempted in this report to re-examine the status of PDCoV phylogenetic classification and evolutionary characteristics. A dataset of 166 complete PDCoV genomes was analyzed using the Maximum Likelihood method in IQ-TREE with the best-fitting model GTR + F + I + G4, revealing two major genogroups (GI and GII), with further seven and two sub-genogroups, (GI a-g) and (GII a-b), respectively. PDCoV strains collected in China exhibited the broadest genetic diversity, distributed in all subgenotypes. Thirty-one potential natural recombination events were identified, 19 of which occurred between China strains, and seven involved at least one China strain as a parental sequence. Importantly, we identified a human Haiti PDCoV strain as recombinant, alarming a possible future spillover that could become a critical threat to human health. The similarity and recombination analysis showed that PDCoV spike ORF is highly variable compared to ORFs encoding other structural proteins. Prediction of linear B cell epitopes of the spike glycoprotein and the 3D structural mapping of amino acid variations of two representative strains of GI and GII showed that the receptor-binding domain (RBD) of spike glycoprotein underwent a significant antigenic drift, suggesting its contribution in the genetic diversity and the wider spread of PDCoV.
Collapse
Affiliation(s)
- Amina Nawal Bahoussi
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi province, China
| | - Pei-Hua Wang
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi province, China
| | - Pir Tariq Shah
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi province, China
| | - Hongli Bu
- Department of Laboratory Medicine, The Fourth People's Hospital of Taiyuan, 231 Xikuang St, Taiyuan, 030053, Shanxi province, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi province, China.
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, China.
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, 92 Wucheng Road, Taiyuan, 030006, China.
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China.
| | - Li Xing
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi province, China.
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, China.
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, 92 Wucheng Road, Taiyuan, 030006, China.
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
10
|
Genome-Wide CRISPR/Cas9 Screen Reveals a Role for SLC35A1 in the Adsorption of Porcine Deltacoronavirus. J Virol 2022; 96:e0162622. [PMID: 36453883 PMCID: PMC9769367 DOI: 10.1128/jvi.01626-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus, not only causes diarrhea in piglets but also possesses the potential to infect humans. To better understand host-virus genetic dependencies and find potential therapeutic targets for PDCoV, we used a porcine single-guide RNA (sgRNA) lentivirus library to screen host factors related to PDCoV infection in LLC-PK1 cells. The solute carrier family 35 member A1 (SLC35A1), a key molecule in the sialic acid (SA) synthesis pathway, was identified as a host factor required for PDCoV infection. A knockout of SLC35A1 caused decreases in the amounts of cell surface sialic acid (SA) and viral adsorption; meanwhile, trypsin promoted the use of SA in PDCoV infection. By constructing and assessing a series of recombinant PDCoV strains with the deletion or mutation of possible critical domain or amino acid residues for SA binding in the S1 N-terminal domain, we found that S T182 might be a PDCoV SA-binding site. However, the double knockout of SLC35A1 and amino peptidase N (APN) could not block PDCoV infection completely. Additionally, we found that different swine enteric coronaviruses, including transmissible gastroenteritis coronavirus, porcine epidemic diarrhea virus, and swine acute diarrhea syndrome coronavirus, are differentially dependent on SA. Overall, our study uncovered a collection of host factors that can be exploited as drug targets against PDCoV infection and deepened our understanding of the relationship between PDCoV and SA. IMPORTANCE Identifying the host factors required for replication will be helpful to uncover the pathogenesis mechanisms and develop antivirals against the emerging coronavirus porcine deltacoronavirus (PDCoV). Herein, we performed a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 knockout screen, the results of which revealed that the solute carrier family 35 member A1 (SLC35A1) is a host factor required for PDCoV infection that acts by regulating cell surface sialic acid (SA). We also identified the T182 site in the N-terminal domain of PDCoV S1 subunit as being associated with the SA-binding site and found that trypsin promotes the use of cell surface SA by PDCoV. Furthermore, different swine enteric coronaviruses use SLC35A1 differently for infection. This is the first study to screen host factors required for PDCoV replication using a genome-wide CRISPR-Cas9 functional knockout, thereby providing clues for developing antiviral drugs against PDCoV infection.
Collapse
|
11
|
A Review of Bioactive Compounds against Porcine Enteric Coronaviruses. Viruses 2022; 14:v14102217. [PMID: 36298772 PMCID: PMC9607050 DOI: 10.3390/v14102217] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/15/2022] Open
Abstract
Pig diarrhea is a universal problem in the process of pig breeding, which seriously affects the development of the pig industry. Porcine enteric coronaviruses (PECoVs) are common pathogens causing diarrhea in pigs, currently including transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV) and swine acute diarrhea syndrome coronavirus (SADS-CoV). With the prosperity of world transportation and trade, the spread of viruses is becoming wider and faster, making it even more necessary to prevent PECoVs. In this paper, the host factors required for the efficient replication of these CoVs and the compounds that exhibit inhibitory effects on them were summarized to promote the development of drugs against PECoVs. This study will be also helpful in discovering general host factors that affect the replication of CoVs and provide references for the prevention and treatment of other CoVs.
Collapse
|
12
|
Ren Z, Yu Y, Zhang X, Wang Q, Deng J, Chen C, Shi R, Wei Z, Hu H. Exploration of PDCoV-induced apoptosis through mitochondrial dynamics imbalance and the antagonistic effect of SeNPs. Front Immunol 2022; 13:972499. [PMID: 36081520 PMCID: PMC9446457 DOI: 10.3389/fimmu.2022.972499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Porcine Deltacoronavirus (PDCoV), an enveloped positive-strand RNA virus that causes respiratory and gastrointestinal diseases, is widely spread worldwide, but there is no effective drug or vaccine against it. This study investigated the optimal Selenium Nano-Particles (SeNPs) addition concentration (2 - 10 μg/mL) and the mechanism of PDCoV effect on ST (Swine Testis) cell apoptosis, the antagonistic effect of SeNPs on PDCoV. The results indicated that 4 μg/mL SeNPs significantly decreased PDCoV replication on ST cells. SeNPs relieved PDCoV-induced mitochondrial division and antagonized PDCoV-induced apoptosis via decreasing Cyt C release and Caspase 9 and Caspase 3 activation. The above results provided an idea and experimental basis associated with anti-PDCoV drug development and clinical use.
Collapse
Affiliation(s)
- Zhihua Ren
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yueru Yu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaojie Zhang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiuxiang Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chaoxi Chen
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Riyi Shi
- Department of Basic Medical Sciences, College of Veterinary Medicine, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Zhanyong Wei
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Zhanyong Wei,
| | - Hui Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
13
|
Ogun OJ, Thaller G, Becker D. An Overview of the Importance and Value of Porcine Species in Sialic Acid Research. BIOLOGY 2022; 11:biology11060903. [PMID: 35741423 PMCID: PMC9219854 DOI: 10.3390/biology11060903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/30/2022] [Accepted: 06/10/2022] [Indexed: 11/19/2022]
Abstract
Simple Summary Humans frequently interact with pigs and porcine meat is the most consumed red meat in the world. In addition, due to the many physiological and anatomical similarities shared between pigs and humans, in contrast to most mammalian species, pigs are a suitable model organism and pig organs can be used for xenotransplantation. However, one major challenge of porcine meat consumption and xenotransplantation is the xenoreactivity between red meat Neu5Gc sialic acid and human anti-Neu5Gc antibodies, which are associated with certain diseases and disorders. Furthermore, pigs express both α2-3 and α2-6 Sia linkages that could serve as viable receptors for viral infections, reassortments, and cross-species transmission of viruses. Therefore, pigs play a significant role in sialic acid research and, in general, in human health. Abstract Humans frequently interact with pigs, whose meat is also one of the primary sources of animal protein. They are one of the main species at the center of sialic acid (Sia) research. Sias are sugars at terminals of glycoconjugates, are expressed at the cell surfaces of mammals, and are important in cellular interactions. N-glycolylneuraminic acid (Neu5Gc) and N-acetylneuraminic acid (Neu5Ac) are notable Sias in mammals. Cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH) encodes the CMAH enzyme that biosynthesizes Neu5Gc. Although humans cannot endogenously synthesize Neu5Gc due to the inactivation of this gene by a mutation, Neu5Gc can be metabolically incorporated into human tissues from red meat consumption. Interactions between Neu5Gc and human anti-Neu5Gc antibodies have been associated with certain diseases and disorders. In this review, we summarized the sialic acid metabolic pathway, its regulation and link to viral infections, as well as the importance of the pig as a model organism in Sia research, making it a possible source of Neu5Gc antigens affecting human health. Future research in solving the structures of crucial enzymes involved in Sia metabolism, as well as their regulation and interactions with other enzymes, especially CMAH, could help to understand their function and reduce the amount of Neu5Gc.
Collapse
Affiliation(s)
- Oluwamayowa Joshua Ogun
- Institute of Animal Breeding and Husbandry, University of Kiel, Olshausenstraße 40, 24098 Kiel, Germany;
- Correspondence: (O.J.O.); (D.B.)
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry, University of Kiel, Olshausenstraße 40, 24098 Kiel, Germany;
| | - Doreen Becker
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
- Correspondence: (O.J.O.); (D.B.)
| |
Collapse
|
14
|
Yan Q, Liu X, Sun Y, Zeng W, Li Y, Zhao F, Wu K, Fan S, Zhao M, Chen J, Yi L. Swine Enteric Coronavirus: Diverse Pathogen–Host Interactions. Int J Mol Sci 2022; 23:ijms23073953. [PMID: 35409315 PMCID: PMC8999375 DOI: 10.3390/ijms23073953] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/23/2022] Open
Abstract
Swine enteric coronavirus (SeCoV) causes acute gastroenteritis and high mortality in newborn piglets. Since the last century, porcine transmissible gastroenteritis virus (TGEV) and porcine epidemic diarrhea virus (PEDV) have swept farms all over the world and caused substantial economic losses. In recent years, porcine delta coronavirus (PDCoV) and swine acute diarrhea syndrome coronavirus (SADS-CoV) have been emerging SeCoVs. Some of them even spread across species, which made the epidemic situation of SeCoV more complex and changeable. Recent studies have begun to reveal the complex SeCoV–host interaction mechanism in detail. This review summarizes the current advances in autophagy, apoptosis, and innate immunity induced by SeCoV infection. These complex interactions may be directly involved in viral replication or the alteration of some signal pathways.
Collapse
Affiliation(s)
- Quanhui Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xiaodi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yawei Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Weijun Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Feifan Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (J.C.); (L.Y.); Tel.: +86-20-8528-8017 (J.C. & L.Y.)
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (J.C.); (L.Y.); Tel.: +86-20-8528-8017 (J.C. & L.Y.)
| |
Collapse
|
15
|
Kong F, Wang Q, Kenney SP, Jung K, Vlasova AN, Saif LJ. Porcine Deltacoronaviruses: Origin, Evolution, Cross-Species Transmission and Zoonotic Potential. Pathogens 2022; 11:79. [PMID: 35056027 PMCID: PMC8778258 DOI: 10.3390/pathogens11010079] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 01/27/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging enteropathogenic coronavirus of swine that causes acute diarrhoea, vomiting, dehydration and mortality in seronegative neonatal piglets. PDCoV was first reported in Hong Kong in 2012 and its etiological features were first characterized in the United States in 2014. Currently, PDCoV is a concern due to its broad host range, including humans. Chickens, turkey poults, and gnotobiotic calves can be experimentally infected by PDCoV. Therefore, as discussed in this review, a comprehensive understanding of the origin, evolution, cross-species transmission and zoonotic potential of epidemic PDCoV strains is urgently needed.
Collapse
Affiliation(s)
- Fanzhi Kong
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China;
| | - Qiuhong Wang
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (S.P.K.); (K.J.); (A.N.V.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Scott P. Kenney
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (S.P.K.); (K.J.); (A.N.V.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Kwonil Jung
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (S.P.K.); (K.J.); (A.N.V.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Anastasia N. Vlasova
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (S.P.K.); (K.J.); (A.N.V.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Linda J. Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (S.P.K.); (K.J.); (A.N.V.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|