1
|
Hernández-Reyes Y, Fonseca-Rodríguez C, Freire R, Smits VAJ. DDX37 and DDX50 Maintain Genome Stability by Preventing Transcription-dependent R-loop Formation. J Mol Biol 2025; 437:169061. [PMID: 40043837 DOI: 10.1016/j.jmb.2025.169061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/19/2025] [Accepted: 02/26/2025] [Indexed: 03/16/2025]
Abstract
R-loops consist of an RNA-DNA hybrid and a displaced single-stranded DNA strand that play a central role in several biological processes. However, as the presence of aberrant R-loops forms a significant threat to genome stability, R-loop formation and resolution is strictly controlled by RNAse H and helicases. In a screening for RNA helicases, previously described as RNA-DNA hybrid interactors, that control genome integrity, we identified for the first time DDX37 and DDX50. Depletion of DDX37 and DDX50 promotes DNA damage, as demonstrated by H2AX phosphorylation and increased comet tail length. In addition, knock down of these RNA helicases decreases the DNA replication track length and leads to RPA focus formation, results that are indicative of replication stress. Downregulation of DDX37 and DDX50 triggers an increase in RNA-DNA hybrids, that can be reverted by the overexpression of RNase H1. Interestingly, inhibition of transcription prevented the increased RNA-DNA hybrid formation and DNA damage upon DDX37 or DDX50 depletion. Together these results demonstrate that DDX37 and DDX50 are important for resolving RNA-DNA hybrids appearing during transcription and thereby preventing DNA damage by replication stress.
Collapse
Affiliation(s)
- Yeray Hernández-Reyes
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Investigación Sanitaria de Canarias (IISC), Santa Cruz de Tenerife, Spain; Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain; Escuela de Doctorado y Estudio de Postgrado, Universidad de la Laguna, Santa Cruz de Tenerife, Spain
| | - Cintia Fonseca-Rodríguez
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Investigación Sanitaria de Canarias (IISC), Santa Cruz de Tenerife, Spain; Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain; Escuela de Doctorado y Estudio de Postgrado, Universidad de la Laguna, Santa Cruz de Tenerife, Spain
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Investigación Sanitaria de Canarias (IISC), Santa Cruz de Tenerife, Spain; Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain; Universidad Fernando Pessoa Canarias, Santa María de Guía, Las Palmas, Spain
| | - Veronique A J Smits
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Investigación Sanitaria de Canarias (IISC), Santa Cruz de Tenerife, Spain; Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain; Universidad Fernando Pessoa Canarias, Santa María de Guía, Las Palmas, Spain.
| |
Collapse
|
2
|
Goldstein SI, Fan AC, Wang Z, Naineni SK, Cencic R, Garcia-Gutierrez SB, Patel K, Huang S, Brown LE, Emili A, Porco JA. Discovery of RNA-Protein Molecular Clamps Using Proteome-Wide Stability Assays. J Proteome Res 2025; 24:2026-2039. [PMID: 40077831 DOI: 10.1021/acs.jproteome.4c01129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Uncompetitive inhibition is an effective strategy for suppressing dysregulated enzymes and their substrates, but discovery of suitable ligands depends on often-unavailable structural knowledge and serendipity. Hence, despite surging interest in mass spectrometry-based target identification, proteomic studies of substrate-dependent target engagement remain sparse. Herein, we describe a strategy for the discovery of substrate-dependent ligand binding. Using proteome integral solubility alteration (PISA) assays, we show that simple biochemical additives can enable detection of RNA-protein-small molecule complexes in native cell lysates. We apply our approach to rocaglates, molecules that specifically clamp RNA to eukaryotic translation initiation factor 4A (eIF4A), DEAD-box helicase 3X (DDX3X), and potentially other members of the DEAD-box (DDX) helicase family. To identify unexpected interactions, we used a target class-specific thermal window and compared ATP analog and RNA base dependencies for key rocaglate-DDX interactions. We report novel DDX targets of high-profile rocaglates-including the clinical candidate Zotatifin-and validate our findings using limited proteolysis-mass spectrometry and fluorescence polarization (FP) experiments. We also provide structural insight into divergent DDX3X affinities between synthetic rocaglates. Taken together, our study provides a model for screening uncompetitive inhibitors using a chemical proteomics approach and uncovers actionable DDX clamping targets, clearing a path toward characterization of novel molecular clamps and associated RNA helicases.
Collapse
Affiliation(s)
- Stanley I Goldstein
- BU Target Discovery & Proteomics Laboratory (BU-TDPL), Boston University, Boston, Massachusetts 02215, United States
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Department of Pharmacology, Physiology, and Biophysics, Boston University, Boston, Massachusetts 02215, United States
| | - Alice C Fan
- BU Target Discovery & Proteomics Laboratory (BU-TDPL), Boston University, Boston, Massachusetts 02215, United States
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Zihao Wang
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Sai K Naineni
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Regina Cencic
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Steve B Garcia-Gutierrez
- BU Target Discovery & Proteomics Laboratory (BU-TDPL), Boston University, Boston, Massachusetts 02215, United States
| | - Kesha Patel
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Sidong Huang
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Lauren E Brown
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Andrew Emili
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon 97201, United States
| | - John A Porco
- BU Target Discovery & Proteomics Laboratory (BU-TDPL), Boston University, Boston, Massachusetts 02215, United States
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
3
|
Winnard PT, Vesuna F, Raman V. DExD-box RNA helicases in human viral infections: Pro- and anti-viral functions. Antiviral Res 2025; 235:106098. [PMID: 39889906 DOI: 10.1016/j.antiviral.2025.106098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/03/2025]
Abstract
Viruses have co-evolved with their hosts, intertwining their life cycles. As a result, components and pathways from a host cell's processes are appropriated for virus infection. This review examines the host DExD-box RNA helicases known to influence virus infection during human infections. We have identified 42 species of viruses (28 genera and 21 families) whose life cycles are modulated by at least one, but often multiple, DExD-box RNA helicases. Of these, 37 species require one or multiple DExD-box RNA helicases for efficient infections, i.e., in these cases the DExD-box RNA helicases are pro-viral. However, similar evolutionary processes have also led to cellular responses that combat viral infections. In humans, these responses comprise intrinsic and innate immune responses initiated and regulated by some of the same DExD-box RNA helicases that act as pro-viral helicases. Currently, anti-viral DExD-box RNA helicase responses to viral infections are noted in 23 viral species. Notably, most studied viruses are linked to severe, life-threatening diseases, leading many researchers to focus on DExD-box RNA helicases as potential therapeutic targets. Thus, we present examples of host-directed therapies targeting anti-viral DExD-box RNA helicases. Overall, our findings indicate that various DExD-box RNA helicases serve as either pro- and/or anti-viral agents across a wide range of viruses. Continued investigation into the pro-viral activities of these helicases will help identify specific protein motifs that can be targeted by drugs to manage or eliminate the severe diseases caused by these viruses. Comparative studies on anti-viral DExD-box RNA helicase responses may also offer insights for developing therapies that enhance immune responses triggered by these helicases.
Collapse
Affiliation(s)
- Paul T Winnard
- Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Farhad Vesuna
- Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Venu Raman
- Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Pathology, University Medical Center Utrecht Cancer Center, 3508, GA, Utrecht, the Netherlands; Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
4
|
Miao W, Porter DF, Siprashvili Z, Ferguson ID, Ducoli L, Nguyen DT, Ko LA, Lopez-Pajares V, Srinivasan S, Hong AW, Yang YY, Cao Z, Meyers RM, Meyers JM, Tao S, Wang Y, Khavari PA. DDX50 cooperates with STAU1 to effect stabilization of pro-differentiation RNAs. Cell Rep 2025; 44:115174. [PMID: 39764852 PMCID: PMC11875220 DOI: 10.1016/j.celrep.2024.115174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/23/2024] [Accepted: 12/17/2024] [Indexed: 02/01/2025] Open
Abstract
Glucose binding can alter protein oligomerization to enable differentiation. Here, we demonstrate that glucose binding is a general capacity of DExD/H-box RNA helicases, including DDX50, which was found to be essential for the differentiation of diverse cell types. Glucose binding to conserved DDX50 ATP binding sequences altered protein conformation and dissociated DDX50 dimers. DDX50 monomers bound STAU1 to redirect STAU1 from an RNA-decay-promoting complex with UPF1 to a DDX50-STAU1 ribonuclear complex. DDX50 and STAU1 bound and stabilized a common set of essential pro-differentiation RNAs, including JUN, OVOL1, CEBPB, PRDM1, and TINCR, whose structures they also modified. These findings uncover a DDX50-mediated mechanism of reprograming STAU1 from its canonical role in Staufen-mediated mRNA decay to an opposite role stabilizing pro-differentiation RNAs and establish an activity for glucose in controlling RNA structure and stability.
Collapse
Affiliation(s)
- Weili Miao
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Douglas F Porter
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Zurab Siprashvili
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ian D Ferguson
- Program in Cancer Biology, Stanford University, Stanford, CA, USA
| | - Luca Ducoli
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Duy T Nguyen
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lisa A Ko
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Vanessa Lopez-Pajares
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Suhas Srinivasan
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Audrey W Hong
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yen-Yu Yang
- Department of Chemistry, University of California, Riverside, Riverside, CA, USA
| | - Zhongwen Cao
- Department of Chemistry, University of California, Riverside, Riverside, CA, USA
| | - Robin M Meyers
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jordan M Meyers
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Shiying Tao
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, Riverside, CA, USA
| | - Paul A Khavari
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA; Program in Cancer Biology, Stanford University, Stanford, CA, USA; Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA.
| |
Collapse
|
5
|
Lin Y, Zhu Y, Jing L, Lei X, Xie Z. Regulation of viral replication by host restriction factors. Front Immunol 2025; 16:1484119. [PMID: 39917304 PMCID: PMC11798991 DOI: 10.3389/fimmu.2025.1484119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/06/2025] [Indexed: 02/09/2025] Open
Abstract
Viral infectious diseases, caused by numerous viruses including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A virus (IAV), enterovirus (EV), human immunodeficiency virus (HIV), hepatitis B virus (HBV), and human papillomavirus (HPV), pose a continuous threat to global health. As obligate parasites, viruses rely on host cells to replicate, and host cells have developed numerous defense mechanisms to counteract viral infection. Host restriction factors (HRFs) are critical components of the early antiviral response. These cellular proteins inhibit viral replication and spread by impeding essential steps in the viral life cycle, such as viral entry, genome transcription and replication, protein translation, viral particle assembly, and release. This review summarizes the current understanding of how host restriction factors inhibit viral replication, with a primary focus on their diverse antiviral mechanisms against a range of viruses, including SARS-CoV-2, influenza A virus, enteroviruses, human immunodeficiency virus, hepatitis B virus, and human papillomavirus. In addition, we highlight the crucial role of these factors in shaping the host-virus interactions and discuss their potential as targets for antiviral drug development.
Collapse
Affiliation(s)
- Ying Lin
- National Health Commission (NHC) Key Laboratory of System Biology of Pathogens and Christophe Merieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Yun Zhu
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Ling Jing
- National Health Commission (NHC) Key Laboratory of System Biology of Pathogens and Christophe Merieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaobo Lei
- National Health Commission (NHC) Key Laboratory of System Biology of Pathogens and Christophe Merieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
| | - Zhengde Xie
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Parthun M, Long ME, Hemann EA. Established and Emerging Roles of DEAD/H-Box Helicases in Regulating Infection and Immunity. Immunol Rev 2025; 329:e13426. [PMID: 39620586 PMCID: PMC11741935 DOI: 10.1111/imr.13426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 01/19/2025]
Abstract
The sensing of nucleic acids by DEAD/H-box helicases, specifically retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5), plays a critical role in inducing antiviral immunity following infection. However, this DEAD/H-box helicase family includes many additional proteins whose immune functions have not been investigated. While numerous DEAD/H-box helicases contribute to antiviral immunity, they employ diverse mechanisms beyond the direct sensing of nucleic acids. Some members have also been identified to play proviral (promoting virus replication/propagation) roles during infections, regulate other non-viral infections, and contribute to the regulation of autoimmunity and cancer. This review synthesizes the known and emerging functions of the broader DEAD/H-box helicase family in immune regulation and highlights ongoing efforts to target these proteins therapeutically.
Collapse
Affiliation(s)
- Michael Parthun
- Department of Microbial Infection and ImmunityThe Ohio State University College of MedicineColumbusOhioUSA
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOhioUSA
| | - Matthew E. Long
- Department of Microbial Infection and ImmunityThe Ohio State University College of MedicineColumbusOhioUSA
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOhioUSA
- Dorothy M. Davis Heart and Lung Research InstituteThe Ohio State University College of MedicineColumbusOhioUSA
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep MedicineThe Ohio State University College of MedicineColumbusOhioUSA
| | - Emily A. Hemann
- Department of Microbial Infection and ImmunityThe Ohio State University College of MedicineColumbusOhioUSA
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOhioUSA
- Dorothy M. Davis Heart and Lung Research InstituteThe Ohio State University College of MedicineColumbusOhioUSA
| |
Collapse
|
7
|
Goldstein SI, Fan AC, Wang Z, Naineni SK, Cencic R, Garcia-Gutierrez SB, Patel K, Huang S, Brown LE, Emili A, Porco JA. Discovery of RNA-Protein Molecular Clamps Using Proteome-Wide Stability Assays. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590252. [PMID: 38659867 PMCID: PMC11042367 DOI: 10.1101/2024.04.19.590252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Uncompetitive inhibition is an effective strategy for suppressing dysregulated enzymes and their substrates, but discovery of suitable ligands depends on often-unavailable structural knowledge and serendipity. Hence, despite surging interest in mass spectrometry-based target identification, proteomic studies of substrate-dependent target engagement remain sparse. Herein, we describe a strategy for the discovery of substrate-dependent ligand binding. Using proteome integral solubility alteration (PISA) assays, we show that simple biochemical additives can enable detection of RNA-protein-small molecule complexes in native cell lysates. We apply our approach to rocaglates, molecules that specifically clamp RNA to eukaryotic translation initiation factor 4A (eIF4A), DEAD-box helicase 3X (DDX3X), and potentially other members of the DEAD-box (DDX) helicase family. To identify unexpected interactions, we used a target class-specific thermal window and compared ATP analog and RNA base dependencies for key rocaglate-DDX interactions. We report and validate novel DDX targets of high-profile rocaglates - including the clinical candidate Zotatifin - using limited proteolysis-mass spectrometry and fluorescence polarization (FP) experiments. We also provide structural insight into divergent DDX3X affinities between synthetic rocaglates. Taken together, our study provides a model for screening uncompetitive inhibitors using a chemical proteomics approach and uncovers actionable DDX clamping targets, clearing a path towards characterization of novel molecular clamps and associated RNA helicases.
Collapse
Affiliation(s)
- Stanley I. Goldstein
- BU Target Discovery & Proteomics Laboratory (BU-TDPL), Boston University, Boston, MA, USA
- Department of Chemistry, Boston University, Boston, MA, USA
- Department of Pharmacology, Physiology, and Biophysics, Boston University, Boston, MA, USA
| | - Alice C. Fan
- BU Target Discovery & Proteomics Laboratory (BU-TDPL), Boston University, Boston, MA, USA
- Department of Chemistry, Boston University, Boston, MA, USA
| | - Zihao Wang
- Department of Chemistry, Boston University, Boston, MA, USA
| | - Sai K. Naineni
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Regina Cencic
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | | | - Kesha Patel
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Sidong Huang
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | | | - Andrew Emili
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - John A. Porco
- BU Target Discovery & Proteomics Laboratory (BU-TDPL), Boston University, Boston, MA, USA
- Department of Chemistry, Boston University, Boston, MA, USA
| |
Collapse
|
8
|
Le NPK, Singh PP, Sabir AJ, Trus I, Karniychuk U. Endogenous ZAP is associated with altered Zika virus infection phenotype. Virol J 2024; 21:285. [PMID: 39522048 PMCID: PMC11549788 DOI: 10.1186/s12985-024-02557-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
The zinc finger antiviral protein 1 (ZAP) has broad antiviral activity. ZAP is an interferon (IFN)-stimulated gene, which itself may enhance type I IFN antiviral response. In a previous study, Zika virus was identified as ZAP-resistant and not sensitive to ZAP antiviral activity. Here, we found that ZAP was associated with the inhibition of Zika virus in Vero cells, in the absence of a robust type I IFN system because Vero cells are deficient for IFN-alpha and -beta. Also, quantitative RNA-seq data indicated that endogenous ZAP is associated with altered global gene expression both in the steady state and during Zika virus infection. Further studies are warranted to elucidate this IFN-alpha and -beta independent anti-Zika virus activity and involvement of ZAP.
Collapse
Affiliation(s)
- Nguyen Phuong Khanh Le
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, OH, Columbus, USA
| | - Prince Pal Singh
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, OH, Columbus, USA
- School of Public Health, University of Saskatchewan, Saskatoon, Canada
| | - Ahmad Jawad Sabir
- Department of Microbiology and Immunology, College of Medicine, University of Illinois, Chicago, USA, IL
| | - Ivan Trus
- International Institute of Molecular and Cell Biology, Dioscuri Centre for RNA-Protein Interactions in Human Health and Disease, Warsaw, Poland
| | - Uladzimir Karniychuk
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, OH, Columbus, USA.
| |
Collapse
|
9
|
Yang JL, Sun X, Shi JX, Cui QX, Cao XY, Wang KT, An MX, Wu SJ, Yang YL, Sun HZ, Zhao WD. Calmodulin Triggers Activity-Dependent rRNA Biogenesis via Interaction with DDX21. J Neurosci 2024; 44:e1841232024. [PMID: 39060175 PMCID: PMC11358605 DOI: 10.1523/jneurosci.1841-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Protein synthesis in response to neuronal activity, known as activity-dependent translation, is critical for synaptic plasticity and memory formation. However, the signaling cascades that couple neuronal activity to the translational events remain elusive. In this study, we identified the role of calmodulin (CaM), a conserved Ca2+-binding protein, in ribosomal RNA (rRNA) biogenesis in neurons. We found the CaM-regulated rRNA synthesis is Ca2+-dependent and necessary for nascent protein synthesis and axon growth in hippocampal neurons. Mechanistically, CaM interacts with nucleolar DEAD (Asp-Glu-Ala-Asp) box RNA helicase (DDX21) in a Ca2+-dependent manner to regulate nascent rRNA transcription within nucleoli. We further found CaM alters the conformation of DDX21 to liberate the DDX21-sequestered RPA194, the catalytic subunit of RNA polymerase I, to facilitate transcription of ribosomal DNA. Using high-throughput screening, we identified the small molecules batefenterol and indacaterol that attenuate the CaM-DDX21 interaction and suppress nascent rRNA synthesis and axon growth in hippocampal neurons. These results unveiled the previously unrecognized role of CaM as a messenger to link the activity-induced Ca2+ influx to the nucleolar events essential for protein synthesis. We thus identified the ability of CaM to transmit information to the nucleoli of neurons in response to stimulation.
Collapse
Affiliation(s)
- Jia-Lin Yang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Xue Sun
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Jun-Xiu Shi
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Qing-Xu Cui
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Xin-Yu Cao
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Kai-Tuo Wang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Ming-Xin An
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Si-Jin Wu
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Yong-Liang Yang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Hong-Zan Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Wei-Dong Zhao
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| |
Collapse
|
10
|
Lu Y, Zhao Y, Gao C, Suresh S, Men J, Sawyers A, Smith GL. HDAC5 enhances IRF3 activation and is targeted for degradation by protein C6 from orthopoxviruses including Monkeypox virus and Variola virus. Cell Rep 2024; 43:113788. [PMID: 38461415 PMCID: PMC11650635 DOI: 10.1016/j.celrep.2024.113788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/18/2023] [Accepted: 01/26/2024] [Indexed: 03/12/2024] Open
Abstract
Histone deacetylases (HDACs) regulate gene expression and innate immunity. Previously, we showed that HDAC5 is degraded during Vaccinia virus (VACV) infection and is a restriction factor for VACV and herpes simplex virus type 1. Here, we report that HDAC5 promotes interferon regulatory factor 3 (IRF3) activation downstream of Toll-IL-1 receptor (TIR) domain-containing adaptor molecule-1 or Sendai virus-mediated stimulation without requiring HDAC activity. Loss of HDAC5-mediated IRF3 activation is restored by re-introduction of HDAC5 but not HDAC1 or HDAC4. The antiviral activity of HDAC5 is antagonized by VACV protein C6 and orthologs from the orthopoxviruses cowpox, rabbitpox, camelpox, monkeypox, and variola. Infection by many of these viruses induces proteasomal degradation of HDAC5, and expression of C6 alone can induce HDAC5 degradation. Mechanistically, C6 binds to the dimerization domain of HDAC5 and prevents homodimerization and heterodimerization with HDAC4. Overall, this study describes HDAC5 as a positive regulator of IRF3 activation and provides mechanistic insight into how the poxviral protein C6 binds to HDAC5 to antagonize its function.
Collapse
Affiliation(s)
- Yongxu Lu
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK; Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK; Chinese Academy of Medical Sciences-Oxford Institute, University of Oxford, Oxford, UK.
| | - Yiqi Zhao
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK; Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK; Chinese Academy of Medical Sciences-Oxford Institute, University of Oxford, Oxford, UK
| | - Chen Gao
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Shreehari Suresh
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Jinghao Men
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Amelia Sawyers
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK; Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK; The Pirbright Institute, Surrey, UK; Chinese Academy of Medical Sciences-Oxford Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
11
|
Sabir AJ, Le NPK, Singh PP, Karniychuk U. Endogenous ZAP affects Zika virus RNA interactome. RNA Biol 2024; 21:1-10. [PMID: 39183472 PMCID: PMC11352719 DOI: 10.1080/15476286.2024.2388911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/15/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024] Open
Abstract
One of the most recent advances in the analysis of viral RNA-cellular protein interactions is the Comprehensive Identification of RNA-binding Proteins by Mass Spectrometry (ChIRP-MS). Here, we used ChIRP-MS in mock-infected and Zika-infected wild-type cells and cells knockout for the zinc finger CCCH-type antiviral protein 1 (ZAP). We characterized 'ZAP-independent' and 'ZAP-dependent' cellular protein interactomes associated with flavivirus RNA and found that ZAP affects cellular proteins associated with Zika virus RNA. The ZAP-dependent interactome identified with ChIRP-MS provides potential ZAP co-factors for antiviral activity against Zika virus and possibly other viruses. Identifying the full spectrum of ZAP co-factors and mechanisms of how they act will be critical to understanding the ZAP antiviral system and may contribute to the development of antivirals.
Collapse
Affiliation(s)
- Ahmad Jawad Sabir
- Department of Microbiology and Immunology, College of Medicine, University of Illinois, Chicago, IL, USA
| | - Nguyen Phuong Khanh Le
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Prince Pal Singh
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
- School of Public Health, University of Saskatchewan, Saskatoon, Canada
| | - Uladzimir Karniychuk
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
12
|
Blaj LA, Cucu AI, Tamba BI, Turliuc MD. The Role of the NF-kB Pathway in Intracranial Aneurysms. Brain Sci 2023; 13:1660. [PMID: 38137108 PMCID: PMC10871091 DOI: 10.3390/brainsci13121660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
The pathophysiology of intracranial aneurysms (IA) has been proven to be closely linked to hemodynamic stress and inflammatory pathways, most notably the NF-kB pathway. Therefore, it is a potential target for therapeutic intervention. In the present review, we investigated alterations in the vascular smooth muscle cells (VSMCs), extracellular matrix, and endothelial cells by the mediators implicated in the NF-kB pathway that lead to the formation, growth, and rupture of IAs. We also present an overview of the NF-kB pathway, focusing on stimuli and transcriptional targets specific to IAs, as well as a summary of the current strategies for inhibiting NF-kB activation in IAs. Our report adds to previously reported data and future research directions for treating IAs using compounds that can suppress inflammation in the vascular wall.
Collapse
Affiliation(s)
- Laurentiu Andrei Blaj
- Department of Neurosurgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.A.B.); (M.D.T.)
- “Prof. Dr. N. Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Andrei Ionut Cucu
- “Prof. Dr. N. Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
- Faculty of Medicine and Biological Sciences, University Stefan cel Mare of Suceava, 720229 Suceava, Romania
| | - Bogdan Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Department of Pharmacology, Clinical Pharmacology and Algesiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Mihaela Dana Turliuc
- Department of Neurosurgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.A.B.); (M.D.T.)
- “Prof. Dr. N. Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| |
Collapse
|
13
|
Tapescu I, Taschuk F, Pokharel SM, Zginnyk O, Ferretti M, Bailer PF, Whig K, Madden EA, Heise MT, Schultz DC, Cherry S. The RNA helicase DDX39A binds a conserved structure in chikungunya virus RNA to control infection. Mol Cell 2023; 83:4174-4189.e7. [PMID: 37949067 PMCID: PMC10722560 DOI: 10.1016/j.molcel.2023.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/25/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023]
Abstract
Alphaviruses are a large group of re-emerging arthropod-borne RNA viruses. The compact viral RNA genomes harbor diverse structures that facilitate replication. These structures can be recognized by antiviral cellular RNA-binding proteins, including DExD-box (DDX) helicases, that bind viral RNAs to control infection. The full spectrum of antiviral DDXs and the structures that are recognized remain unclear. Genetic screening identified DDX39A as antiviral against the alphavirus chikungunya virus (CHIKV) and other medically relevant alphaviruses. Upon infection, the predominantly nuclear DDX39A accumulates in the cytoplasm inhibiting alphavirus replication, independent of the canonical interferon pathway. Biochemically, DDX39A binds to CHIKV genomic RNA, interacting with the 5' conserved sequence element (5'CSE), which is essential for the antiviral activity of DDX39A. Altogether, DDX39A relocalization and binding to a conserved structural element in the alphavirus genomic RNA attenuates infection, revealing a previously unknown layer to the cellular control of infection.
Collapse
Affiliation(s)
- Iulia Tapescu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA; Biochemistry and Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Frances Taschuk
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA; Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Swechha M Pokharel
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Oleksandr Zginnyk
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Max Ferretti
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter F Bailer
- Biochemistry and Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Kanupryia Whig
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Emily A Madden
- Department of Microbiology and Immunology, UNC-Chapel Hill, Chapel Hill, NC, USA
| | - Mark T Heise
- Department of Microbiology and Immunology, UNC-Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, UNC-Chapel Hill, Chapel Hill, NC, USA
| | - David C Schultz
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Zheng B, Chen X, Ling Q, Cheng Q, Ye S. Role and therapeutic potential of DEAD-box RNA helicase family in colorectal cancer. Front Oncol 2023; 13:1278282. [PMID: 38023215 PMCID: PMC10654640 DOI: 10.3389/fonc.2023.1278282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed and the second cancer-related death worldwide, leading to more than 0.9 million deaths every year. Unfortunately, this disease is changing rapidly to a younger age, and in a more advanced stage when diagnosed. The DEAD-box RNA helicase proteins are the largest family of RNA helicases so far. They regulate almost every aspect of RNA physiological processes, including RNA transcription, editing, splicing and transport. Aberrant expression and critical roles of the DEAD-box RNA helicase proteins have been found in CRC. In this review, we first summarize the protein structure, cellular distribution, and diverse biological functions of DEAD-box RNA helicases. Then, we discuss the distinct roles of DEAD-box RNA helicase family in CRC and describe the cellular mechanism of actions based on recent studies, with an aim to provide future strategies for the treatment of CRC.
Collapse
Affiliation(s)
- Bichun Zheng
- Department of Anorectal Surgery, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | | | | | | | | |
Collapse
|
15
|
Weiß E, Hennig T, Graßl P, Djakovic L, Whisnant AW, Jürges CS, Koller F, Kluge M, Erhard F, Dölken L, Friedel CC. HSV-1 Infection Induces a Downstream Shift of Promoter-Proximal Pausing for Host Genes. J Virol 2023; 97:e0038123. [PMID: 37093003 PMCID: PMC10231138 DOI: 10.1128/jvi.00381-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/03/2023] [Indexed: 04/25/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) infection exerts a profound shutoff of host gene expression at multiple levels. Recently, HSV-1 infection was reported to also impact promoter-proximal RNA polymerase II (Pol II) pausing, a key step in the eukaryotic transcription cycle, with decreased and increased Pol II pausing observed for activated and repressed genes, respectively. Here, we demonstrate that HSV-1 infection induces more complex alterations in promoter-proximal pausing than previously suspected for the vast majority of cellular genes. While pausing is generally retained, it is shifted to more downstream and less well-positioned sites for most host genes. The downstream shift of Pol II pausing was established between 1.5 and 3 h of infection, remained stable until at least 6 hours postinfection, and was observed in the absence of ICP22. The shift in Pol II pausing does not result from alternative de novo transcription initiation at downstream sites or read-in transcription originating from disruption of transcription termination of upstream genes. The use of downstream secondary pause sites associated with +1 nucleosomes was previously observed upon negative elongation factor (NELF) depletion. However, downstream shifts of Pol II pausing in HSV-1 infection were much more pronounced than observed upon NELF depletion. Thus, our study reveals a novel aspect in which HSV-1 infection fundamentally reshapes host transcriptional processes, providing new insights into the regulation of promoter-proximal Pol II pausing in eukaryotic cells. IMPORTANCE This study provides a genome-wide analysis of changes in promoter-proximal polymerase II (Pol II) pausing on host genes induced by HSV-1 infection. It shows that standard measures of pausing, i.e., pausing indices, do not properly capture the complex and unsuspected alterations in Pol II pausing occurring in HSV-1 infection. Instead of a reduction of pausing with increased elongation, as suggested by pausing index analysis, HSV-1 infection leads to a shift of pausing to downstream and less well-positioned sites than in uninfected cells for the majority of host genes. Thus, HSV-1 infection fundamentally reshapes a key regulatory step at the beginning of the host transcriptional cycle on a genome-wide scale.
Collapse
Affiliation(s)
- Elena Weiß
- Institute of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Thomas Hennig
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Pilar Graßl
- Institute of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lara Djakovic
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Adam W. Whisnant
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Christopher S. Jürges
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Franziska Koller
- Institute of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael Kluge
- Institute of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Florian Erhard
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Lars Dölken
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Caroline C. Friedel
- Institute of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
16
|
Rao S, Mahmoudi T. DEAD-ly Affairs: The Roles of DEAD-Box Proteins on HIV-1 Viral RNA Metabolism. Front Cell Dev Biol 2022; 10:917599. [PMID: 35769258 PMCID: PMC9234453 DOI: 10.3389/fcell.2022.917599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
In order to ensure viral gene expression, Human Immunodeficiency virus type-1 (HIV-1) recruits numerous host proteins that promote optimal RNA metabolism of the HIV-1 viral RNAs (vRNAs), such as the proteins of the DEAD-box family. The DEAD-box family of RNA helicases regulates multiple steps of RNA metabolism and processing, including transcription, splicing, nucleocytoplasmic export, trafficking, translation and turnover, mediated by their ATP-dependent RNA unwinding ability. In this review, we provide an overview of the functions and role of all DEAD-box family protein members thus far described to influence various aspects of HIV-1 vRNA metabolism. We describe the molecular mechanisms by which HIV-1 hijacks these host proteins to promote its gene expression and we discuss the implications of these interactions during viral infection, their possible roles in the maintenance of viral latency and in inducing cell death. We also speculate on the emerging potential of pharmacological inhibitors of DEAD-box proteins as novel therapeutics to control the HIV-1 pandemic.
Collapse
Affiliation(s)
- Shringar Rao
- Department of Biochemistry, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Centre, Rotterdam, Netherlands
- Department of Pathology, Erasmus University Medical Centre, Rotterdam, Netherlands
- Department of Urology, Erasmus University Medical Centre, Rotterdam, Netherlands
| |
Collapse
|