1
|
Zhuang L, Zhao Y, Shen J, Sun L, Hao P, Yang J, Zhang Y, Shen Q. Advances in porcine epidemic diarrhea virus research: genome, epidemiology, vaccines, and detection methods. DISCOVER NANO 2025; 20:48. [PMID: 40029472 DOI: 10.1186/s11671-025-04220-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 02/20/2025] [Indexed: 03/05/2025]
Abstract
Porcine epidemic diarrhea (PED) is a highly contagious intestinal disease caused by the porcine epidemic diarrhea virus (PEDV). The economic impact of PEDV on the global pig industry has been significant, resulting in considerable losses. This paper presents a review of the latest research progress on PEDV genome, molecular epidemiology, vaccine development, and molecular detection methods. It was determined that the genetic diversity of the PEDV spike (S) gene was closely associated with the epidemiological trend of PEDV. The prevalence of S gene variants of different genotypes exhibited variability across regions and pig populations. Epidemiological analyses have demonstrated that PEDV can be transmitted via multiple routes, including direct contact, airborne aerosol, and water source contamination. With regard to vaccine research, the available vaccines can be classified into several categories, including live-attenuated vaccines, inactivated vaccines, subunit vaccines, bacterial vector vaccines, viral vector vaccines, mRNA vaccines, etc. Each of these has distinctive characteristics in terms of immunogenicity, protection efficiency, and safety. Molecular detection methods, including PCR-based methods, isothermal amplification techniques, immunological assays, and biosensors, play an important role in the diagnosis and monitoring of PEDV. Furthermore, this paper examines the current developments in PEDV research and identifies the key areas of future investigation. The objective of this paper is to establish a theoretical foundation for the prevention and control strategies of PED, and to provide a point of reference for further research on the genomics, epidemiology, vaccine development and detection methods of PEDV.
Collapse
Affiliation(s)
- Linlin Zhuang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China
| | - Ying Zhao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China
| | - Jingyi Shen
- School of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, 210038, People's Republic of China
| | - Li Sun
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Pan Hao
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Jianbo Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China.
| | - Qiuping Shen
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China.
| |
Collapse
|
2
|
Fragoso-Saavedra M, Liu Q. Towards developing multistrain PEDV vaccines: Integrating basic concepts and SARS-CoV-2 pan-sarbecovirus strategies. Virology 2025; 604:110412. [PMID: 39854914 DOI: 10.1016/j.virol.2025.110412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a major pathogen impacting the global pig industry, with outbreaks causing significant financial losses. The genetic variability of PEDV has posed challenges for vaccine development since its identification in the 1970s, a problem that intensified with its global emergence in the 2010s. Since current vaccines provide limited cross-protection against PEDV strains, and the development of multistrain PEDV vaccines remains an underexplored area of research, there is an urgent need for improved vaccine solutions. The rapid development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines and ongoing pan-sarbecovirus vaccine research, have demonstrated the potential of next-generation vaccine platforms and novel antigen design strategies. These advancements offer valuable insights for the development of multistrain PEDV vaccines. This review summarizes key aspects of PEDV virology and explores multistrain vaccine development considering SARS-CoV-2 vaccine innovations, proposing a framework for developing next-generation PEDV vaccine solutions.
Collapse
Affiliation(s)
- Mario Fragoso-Saavedra
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Qiang Liu
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Vaccinology and Immunotherapeutics, School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
3
|
Zhong K, Chen X, Zhang J, Jiang X, Zhang J, Huang M, Bi S, Ju C, Luo Y. Recent Advances in Oral Vaccines for Animals. Vet Sci 2024; 11:353. [PMID: 39195807 PMCID: PMC11360704 DOI: 10.3390/vetsci11080353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
Compared to traditional injected vaccines, oral vaccines offer significant advantages for the immunization of livestock and wildlife due to their ease of use, high compliance, improved safety, and potential to stimulate mucosal immune responses and induce systemic immunity against pathogens. This review provides an overview of the delivery methods for oral vaccines, and the factors that influence their immunogenicity. We also highlight the global progress and achievements in the development and use of oral vaccines for animals, shedding light on potential future applications in this field.
Collapse
Affiliation(s)
- Kaining Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China; (K.Z.); (X.C.); (J.Z.); (X.J.); (J.Z.); (M.H.)
| | - Xinting Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China; (K.Z.); (X.C.); (J.Z.); (X.J.); (J.Z.); (M.H.)
| | - Junhao Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China; (K.Z.); (X.C.); (J.Z.); (X.J.); (J.Z.); (M.H.)
| | - Xiaoyu Jiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China; (K.Z.); (X.C.); (J.Z.); (X.J.); (J.Z.); (M.H.)
| | - Junhui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China; (K.Z.); (X.C.); (J.Z.); (X.J.); (J.Z.); (M.H.)
| | - Minyi Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China; (K.Z.); (X.C.); (J.Z.); (X.J.); (J.Z.); (M.H.)
| | - Shuilian Bi
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China;
| | - Chunmei Ju
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China; (K.Z.); (X.C.); (J.Z.); (X.J.); (J.Z.); (M.H.)
- Key Laboratory of Animal Vaccine Development of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510640, China
| | - Yongwen Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China; (K.Z.); (X.C.); (J.Z.); (X.J.); (J.Z.); (M.H.)
- Key Laboratory of Animal Vaccine Development of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510640, China
| |
Collapse
|
4
|
Yang D, Wang X, Yang X, Qi S, Zhao F, Guo D, Li C, Zhu Q, Xing X, Cao Y, Sun D. Construction and immune effect evaluation of the S protein heptad repeat-based nanoparticle vaccine against porcine epidemic diarrhea virus. Virology 2024; 596:110113. [PMID: 38801794 DOI: 10.1016/j.virol.2024.110113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
Porcine epidemic diarrhea virus (PEDV), a highly virulent enteropathogenic coronavirus, is a significant threat to the pig industry. High frequency mutations in the PEDV genome have limited the effectiveness of current vaccines in providing immune protection. Developing efficient vaccines that can quickly adapt to mutant strains is a challenging but crucial task. In this study, we chose the pivotal protein heptad repeat (HR) responsible for coronavirus entry into host cells, as the vaccine antigen. HR-Fer nanoparticles prepared using ferritin were evaluated them as PEDV vaccine candidates. Nanoparticle vaccines elicited stronger neutralizing antibody responses in mice compared to monomer vaccines. Additionally, HR protein delivered via nanoparticles increased antigen uptake by antigen-presenting cells in vitro by 2.75-fold. The collective results suggest that HR can be used as antigens for vaccines, and the HR vaccine based on ferritin nanoparticles significantly enhances immunogenicity.
Collapse
Affiliation(s)
- Dan Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Xinglin Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Xu Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Shanshan Qi
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Feiyu Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Donghua Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Chunqiu Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Qinghe Zhu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Xiaoxu Xing
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Yang Cao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China.
| | - Dongbo Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China.
| |
Collapse
|
5
|
Li F, Zhao H, Sui L, Yin F, Liu X, Guo G, Li J, Jiang Y, Cui W, Shan Z, Zhou H, Wang L, Qiao X, Tang L, Wang X, Li Y. Assessing immunogenicity of CRISPR-NCas9 engineered strain against porcine epidemic diarrhea virus. Appl Microbiol Biotechnol 2024; 108:248. [PMID: 38430229 PMCID: PMC10908614 DOI: 10.1007/s00253-023-12989-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 03/03/2024]
Abstract
Porcine epidemic diarrhea (PED) caused by porcine epidemic diarrhea virus (PEDV), is an acute and highly infectious disease, resulting in substantial economic losses in the pig industry. Given that PEDV primarily infects the mucosal surfaces of the intestinal tract, it is crucial to improve the mucosal immunity to prevent viral invasion. Lactic acid bacteria (LAB) oral vaccines offer unique advantages and potential applications in combatting mucosal infectious diseases, making them an ideal approach for controlling PED outbreaks. However, traditional LAB oral vaccines use plasmids for exogenous protein expression and antibiotic genes as selection markers. Antibiotic genes can be diffused through transposition, transfer, or homologous recombination, resulting in the generation of drug-resistant strains. To overcome these issues, genome-editing technology has been developed to achieve gene expression in LAB genomes. In this study, we used the CRISPR-NCas9 system to integrate the PEDV S1 gene into the genome of alanine racemase-deficient Lactobacillus paracasei △Alr HLJ-27 (L. paracasei △Alr HLJ-27) at the thymidylate synthase (thyA) site, generating a strain, S1/△Alr HLJ-27. We conducted immunization assays in mice and piglets to evaluate the level of immune response and evaluated its protective effect against PEDV through challenge tests in piglets. Oral administration of the strain S1/△Alr HLJ-27 in mice and piglets elicited mucosal, humoral, and cellular immune responses. The strain also exhibited a certain level of resistance against PEDV infection in piglets. These results demonstrate the potential of S1/△Alr HLJ-27 as an oral vaccine candidate for PEDV control. KEY POINTS: • A strain S1/△Alr HLJ-27 was constructed as the candidate for an oral vaccine. • Immunogenicity response and challenge test was carried out to analyze the ability of the strain. • The strain S1/△Alr HLJ-27 could provide protection for piglets to a certain extent.
Collapse
Affiliation(s)
- Fengsai Li
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China
| | - Haiyuan Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Ling Sui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Fangjie Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xinzi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Guihai Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Zhifu Shan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Xinyuan Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Xiaona Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China.
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China.
| |
Collapse
|
6
|
Zhao Y, Fan B, Song X, Gao J, Guo R, Yi C, He Z, Hu H, Jiang J, Zhao L, Zhong T, Li B. PEDV-spike-protein-expressing mRNA vaccine protects piglets against PEDV challenge. mBio 2024; 15:e0295823. [PMID: 38231557 PMCID: PMC10865985 DOI: 10.1128/mbio.02958-23] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/06/2023] [Indexed: 01/18/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), a swine enteropathogenic coronavirus, causes severe diarrhea in neonatal piglets, which is associated with a high mortality rate. Thus, developing effective and safe vaccines remains a top priority for controlling PEDV infection. Here, we designed two lipid nanoparticle (LNP)-encapsulated mRNA (mRNA-LNP) vaccines encoding either the full-length PEDV spike (S) protein or a multiepitope chimeric spike (Sm) protein. We found that the S mRNA-LNP vaccine was superior to the Sm mRNA-LNP vaccine at inducing antibody and cellular immune responses in mice. Evaluation of the immunogenicity and efficacy of the S mRNA vaccine in piglets confirmed that it induced robust PEDV-specific humoral and cellular immune responses in vivo. Importantly, the S mRNA-LNP vaccine not only protected actively immunized piglets against PEDV but also equipped neonatal piglets with effective passive anti-PEDV immunity in the form of colostrum-derived antibodies after the immunization of sows. Our findings suggest that the PEDV-S mRNA-LNP vaccine is a promising candidate for combating PEDV infection.IMPORTANCEPorcine epidemic diarrhea virus (PEDV) continues to harm the global swine industry. It is important to develop a highly effective vaccine to control PEDV infection. Here, we report a PEDV spike (S) mRNA vaccine that primes a potent antibody response and antigen-specific T-cell responses in immunized piglets. Active and passive immunization can protect piglets against PED following the virus challenge. This study highlights the efficiency of the PEDV-S mRNA vaccine and represents a viable approach for developing an efficient PEDV vaccine.
Collapse
Affiliation(s)
- Yongxiang Zhao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Baochao Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Xu Song
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Jie Gao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Rongli Guo
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Cheng Yi
- Suzhou Huiliao Biomedical Technology Co. Ltd., Suzhou, China
| | - Zhaoming He
- Suzhou Huiliao Biomedical Technology Co. Ltd., Suzhou, China
| | - Hongpeng Hu
- Suzhou Huiliao Biomedical Technology Co. Ltd., Suzhou, China
| | - Jianhao Jiang
- Suzhou Huiliao Biomedical Technology Co. Ltd., Suzhou, China
| | - Lixiang Zhao
- Suzhou Huiliao Biomedical Technology Co. Ltd., Suzhou, China
- Suzhou Medical College, Soochow University, Suzhou, China
| | - Tianyi Zhong
- Suzhou Huiliao Biomedical Technology Co. Ltd., Suzhou, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| |
Collapse
|
7
|
Kong F, Jia H, Xiao Q, Fang L, Wang Q. Prevention and Control of Swine Enteric Coronaviruses in China: A Review of Vaccine Development and Application. Vaccines (Basel) 2023; 12:11. [PMID: 38276670 PMCID: PMC10820180 DOI: 10.3390/vaccines12010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Swine enteric coronaviruses (SECs) cause significant economic losses to the pig industry in China. Although many commercialized vaccines against transmissible gastroenteritis virus (TGEV) and porcine epidemic diarrhea virus (PEDV) are available, viruses are still widespread. The recent emergence of porcine deltacoronavirus (PDCoV) and swine acute diarrhea syndrome coronavirus (SADS-CoV), for which no vaccines are available, increases the disease burden. In this review, we first introduced the genomic organization and epidemiology of SECs in China. Then, we discussed the current vaccine development and application in China, aiming to provide suggestions for better prevention and control of SECs in China and other countries.
Collapse
Affiliation(s)
- Fanzhi Kong
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China; (F.K.); (H.J.); (Q.X.)
| | - Huilin Jia
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China; (F.K.); (H.J.); (Q.X.)
| | - Qi Xiao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China; (F.K.); (H.J.); (Q.X.)
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Qiuhong Wang
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Li M, Zhang Y, Fang Y, Xiao S, Fang P, Fang L. Construction and immunogenicity of a trypsin-independent porcine epidemic diarrhea virus variant. Front Immunol 2023; 14:1165606. [PMID: 37033982 PMCID: PMC10080105 DOI: 10.3389/fimmu.2023.1165606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a re-emerging enteropathogenic coronavirus that causes high mortality in neonatal piglets. The addition of trypsin plays a crucial role in the propagation of PEDV, but also increases the complexity of vaccine production and increases its cost. Previous studies have suggested that the S2' site and Y976/977 of the PEDV spike (S) protein might be the determinants of PEDV trypsin independence. In this study, to achieve a recombinant trypsin-independent PEDV strain, we used trypsin-dependent genotype 2 (G2) PEDV variant AJ1102 to generate three recombinant PEDVs with mutations in S (S2' site R894G and/or Y976H). The three recombinant PEDVs were still trypsin dependent, suggesting that the S2' site R894 and Y976 of AJ1102 S are not key sites for PEDV trypsin dependence. Therefore, we used AJ1102 and the classical trypsin-independent genotype 1 (G1) PEDV strain JS2008 to generate a recombinant PEDV carrying a chimeric S protein, and successfully obtained trypsin-independent PEDV strain rAJ1102-S2'JS2008, in which the S2 (amino acids 894-1386) domain was replaced with the corresponding JS2008 sequence. Importantly, immunization with rAJ1102-S2'JS2008 induced neutralizing antibodies against both AJ1102 and JS2008. Collectively, these results suggest that rAJ1102-S2'JS2008 is a novel vaccine candidate with significant advantages, including no trypsin requirement for viral propagation to high titers and the potential provision of protection for pigs against G1 and G2 PEDV infections.
Collapse
Affiliation(s)
- Mingxiang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yiye Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yuxin Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- *Correspondence: Puxian Fang, ; Liurong Fang,
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- *Correspondence: Puxian Fang, ; Liurong Fang,
| |
Collapse
|
9
|
Rastogi S, Singh A. Gut microbiome and human health: Exploring how the probiotic genus Lactobacillus modulate immune responses. Front Pharmacol 2022; 13:1042189. [PMID: 36353491 PMCID: PMC9638459 DOI: 10.3389/fphar.2022.1042189] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/12/2022] [Indexed: 12/15/2022] Open
Abstract
The highest density of microbes resides in human gastrointestinal tract, known as “Gut microbiome”. Of note, the members of the genus Lactobacillus that belong to phyla Firmicutes are the most important probiotic bacteria of the gut microbiome. These gut-residing Lactobacillus species not only communicate with each other but also with the gut epithelial lining to balance the gut barrier integrity, mucosal barrier defence and ameliorate the host immune responses. The human body suffers from several inflammatory diseases affecting the gut, lungs, heart, bone or neural tissues. Mounting evidence supports the significant role of Lactobacillus spp. and their components (such as metabolites, peptidoglycans, and/or surface proteins) in modulatingimmune responses, primarily through exchange of immunological signals between gastrointestinal tract and distant organs. This bidirectional crosstalk which is mediated by Lactobacillus spp. promotes anti-inflammatory response, thereby supporting the improvement of symptoms pertaining to asthma, chronic obstructive pulmonary disease (COPD), neuroinflammatory diseases (such as multiple sclerosis, alzheimer’s disease, parkinson’s disease), cardiovascular diseases, inflammatory bowel disease (IBD) and chronic infections in patients. The metabolic disorders, obesity and diabetes are characterized by a low-grade inflammation. Genus Lactobacillus alleviates metabolic disorders by regulating the oxidative stress response and inflammatory pathways. Osteoporosis is also associated with bone inflammation and resorption. The Lactobacillus spp. and their metabolites act as powerful immune cell controllers and exhibit a regulatory role in bone resorption and formation, supporting bone health. Thus, this review demonstrated the mechanisms and summarized the evidence of the benefit of Lactobacillus spp. in alleviating inflammatory diseases pertaining to different organs from animal and clinical trials. The present narrative review explores in detail the complex interactions between the gut-dwelling Lactobacillus spp. and the immune components in distant organs to promote host’s health.
Collapse
|