1
|
Cheng Z, Sun Y, Shen Y, Wu X, Pan L, Wu H, Bai Y, Zhao C, Ma J, Huang W. A single mutation at position 214 of influenza B hemagglutinin enhances cross-neutralization. Emerg Microbes Infect 2025; 14:2467770. [PMID: 39960410 PMCID: PMC11849025 DOI: 10.1080/22221751.2025.2467770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/22/2025]
Abstract
High variability of influenza B virus (IBV) hemagglutinin (HA) impairs the cross- neutralization ability of vaccines, leading to reduce efficacy. We identified significant differences in cross-neutralization between IBV strains B/Wyoming/06/2014 and B/Brisbane/60/2008, which differ in only three amino acid residues. The 214 T point mutation was found to dramatically enhance cross-neutralization (>10-fold). Antibody-based reverse validation also revealed that this mutation significantly increased the neutralization capacity (500-62,500-fold). Furthermore, monitoring revealed that the mutation rate at this site has reached its highest level in nearly 20 years, with a prevalence exceeding 80% in sequences submitted from certain regions. Our findings provide new evidence for the selection of vaccine strains with improved cross- neutralization effects, which will aid the development of broad-spectrum vaccines by modifying minimal antigenic epitopes.
Collapse
Affiliation(s)
- Ziqi Cheng
- National Engineering Laboratory for AIDS Vaccines, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
- Division of HIV/AIDS and Sexually transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, People’s Republic of China
| | - Yeqing Sun
- National Engineering Laboratory for AIDS Vaccines, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
- Division of HIV/AIDS and Sexually transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, People’s Republic of China
| | - Yanru Shen
- Division of HIV/AIDS and Sexually transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, People’s Republic of China
| | - Xi Wu
- Division of HIV/AIDS and Sexually transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, People’s Republic of China
| | - Ling Pan
- Division of HIV/AIDS and Sexually transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, People’s Republic of China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People’s Republic of China
| | - Hao Wu
- Division of HIV/AIDS and Sexually transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, People’s Republic of China
| | - Yunbo Bai
- Division of HIV/AIDS and Sexually transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, People’s Republic of China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People’s Republic of China
| | - Chenyan Zhao
- Division of HIV/AIDS and Sexually transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, People’s Republic of China
| | - Junfeng Ma
- National Engineering Laboratory for AIDS Vaccines, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
| | - Weijin Huang
- Division of HIV/AIDS and Sexually transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, People’s Republic of China
- Graduate School of Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Zhao T, Liu X, Huang X, Wang L, Lei Y, Luo C, Liu J, Fang S, Zou X, Yan H, Sun C, Shu Y. Development and evaluation of mosaic VLPs vaccine for enhanced broad-Spectrum immunity against influenza B virus lineages in mice. Vaccine 2025; 51:126882. [PMID: 39970593 DOI: 10.1016/j.vaccine.2025.126882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/03/2025] [Accepted: 02/10/2025] [Indexed: 02/21/2025]
Abstract
Influenza B virus (IBV) causes annual respiratory outbreaks, posing significant public health challenges. Traditional vaccines are limited in their effectiveness by antigenic drift and strain mismatches. This study introduces innovative mosaic virus-like particle (VLP) vaccines designed to present a broader range of epitopes, aiming for broad-spectrum immunity against both B/Victoria (BV) and B/Yamagata (BY) IBV lineages in mice. Two mosaic hemagglutinin (HAM) proteins were incorporated into VLPs, mimicking the morphology and size of the virus. Notably, the BV component of our mosaic VLPs demonstrated significant cross-reactivity against the BY strain, surpassing a commercial quadrivalent inactivated influenza vaccine (QIV) in generating broad immune responses. Immunogenicity and efficacy assessments in mice revealed that the mosaic VLPs induced Th1/Th2 cytokine responses and provided effective protection against homologous IBV challenge, notably reducing lung damage. This study highlights the potential of mosaic VLPs in universal influenza B vaccine development and emphasizes the importance of T cell immunity in influenza vaccine design.
Collapse
Affiliation(s)
- Tianyi Zhao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, PR China
| | - Xuejie Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, PR China
| | - Xiaoping Huang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, PR China
| | - Liangliang Wang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, PR China
| | - Yuxuan Lei
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, PR China
| | - Chuming Luo
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, PR China
| | - Jing Liu
- Center for Disease Control and Prevention of Southern Military Theatre, 510610 Guangzhou, PR China
| | - Shisong Fang
- Microorganism Testing Institute, Shenzhen Center for Disease Control and Prevention, Shenzhen 518107, PR China
| | - Xuan Zou
- Microorganism Testing Institute, Shenzhen Center for Disease Control and Prevention, Shenzhen 518107, PR China
| | - Huacheng Yan
- Center for Disease Control and Prevention of Southern Military Theatre, 510610 Guangzhou, PR China.
| | - Caijun Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, PR China.
| | - Yuelong Shu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, PR China; Key Laboratory of Pathogen Infection Prevention and Control (MOE), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, PR China.
| |
Collapse
|
3
|
Zhang M, Yang C, Wu X, Wang Y, Wang L, Cui Q, Tong J, An Y, Cai M, Cheng S, Jiang Q, Wang Y, Zhao C, Wang Y, Huang W. Antigenic analysis of the influenza B virus hemagglutinin protein. Virol Sin 2025; 40:80-91. [PMID: 39233140 PMCID: PMC11963022 DOI: 10.1016/j.virs.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024] Open
Abstract
Influenza B viruses (IBVs) primarily infect humans and are a common cause of respiratory infections in humans. Here, to systematically analyze the antigenicity of the IBVs Hemagglutinin (HA) protein, 31 B/Victoria and 19 B/Yamagata representative circulating strains were selected from Global Initiative of Sharing All Influenza Data (GISAID), and pseudotyped viruses were constructed with the vesicular stomatitis virus system. Guinea pigs were immunized with three doses of vaccines (one dose of DNA vaccines following two doses of pseudotyped virus vaccines) of the seven IBV vaccine strains, and neutralizing antibodies against the pseudotyped viruses were tested. By comparing differences between various vaccine strains, we constructed several pseudotyped viruses that contained various mutations based on vaccine strain BV-21. The vaccine strains showed good neutralization levels against the epidemic virus strains of the same year, with neutralization titers ranging from 370 to 840, while the level of neutralization against viruses prevalent in previous years decreased 1-10-fold. Each of the high-frequency epidemic strains of B/Victoria and B/Yamagata not only induced high neutralizing titers, but also had broadly neutralizing effects against virus strains of different years, with neutralizing titers ranging from 1000 to 7200. R141G, D197 N, and R203K were identified as affecting the antigenicity of IBV. These mutation sites provide valuable references for the selection and design of a universal IBV vaccine strain in the future.
Collapse
MESH Headings
- Animals
- Influenza B virus/immunology
- Influenza B virus/genetics
- Guinea Pigs
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Neutralization Tests
- Antigens, Viral/immunology
- Antigens, Viral/genetics
- Humans
- Influenza, Human/prevention & control
- Influenza, Human/immunology
- Influenza, Human/virology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/virology
- Orthomyxoviridae Infections/immunology
- Mutation
- Vaccines, DNA/immunology
- Vaccines, DNA/genetics
Collapse
Affiliation(s)
- Mengyi Zhang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, 102629, China; National Institutes for Food and Drug Control, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Chaoying Yang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, 102629, China; National Vaccine & Serum Institute, Beijing, 101111, China
| | - Xi Wu
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, 102629, China
| | - Yifei Wang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, 102629, China
| | - Lijie Wang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, 102629, China
| | - Qianqian Cui
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, 102629, China
| | - Jincheng Tong
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, 102629, China
| | - Yimeng An
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, 102629, China
| | - Meina Cai
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, 102629, China
| | - Shishi Cheng
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, 102629, China
| | - Qi Jiang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, 102629, China
| | - Yulin Wang
- National Vaccine & Serum Institute, Beijing, 101111, China.
| | - Chenyan Zhao
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, 102629, China.
| | - Youchun Wang
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650031, China.
| | - Weijin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, 102629, China; National Institutes for Food and Drug Control, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
4
|
Alizadeh S, Edalat F, Letafati A, Pirbonyeh N, Tabibzadeh A, Mousavizadeh L, Moattari A, Karbalaie Niya MH. Genetic characterization of influenza B virus and oseltamivir resistance in pediatric patients with acute respiratory infections: a cross-sectional study. Virus Genes 2025; 61:54-63. [PMID: 39499431 DOI: 10.1007/s11262-024-02119-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/10/2024] [Indexed: 11/07/2024]
Abstract
Influenza virus neuraminidase inhibitors (NAIs) drug usage can result in NAI resistance, especially in children and individuals with weakened immune systems. The aim of the present study was to identify NAI-resistant variants of IBV and to introduce probable novel mutations, phylogenetic study, and its epitope mapping based on NA gene in patients from Shiraz, Iran. A cross-sectional study was conducted between 2017 and 2018 on symptomatic children. A real-time PCR was run for IBV screening. Then, making use of direct sequencing, amplified 1401 bases of NA gene and phylogenetic tree reconstructed. Epitopes were predicted using ABCpred server. From among a total of 235 specimens, 9.7% were identified with IBV infection. Of them, sequence of NA gene for 17 isolates were analyzed. Phylogenetic analysis showed that 15 isolates belonged to Yamagata clade 3 Wisconsin/01-like subclade and 2 were related to Victoria clade 1 Brisbane/60-like subclade (Vic-1A-2). NA gene sequence analysis showed a total of 52 substitutions in which 27 were for BVic and 37 were for BYam isolates and 19 were novel substitutions. Only one substitution (S198N) was found in NA active site and T49M, I120V, N198S, N219K, S295R, D320K N340D, E358K, D384G, and D463N were found as probable resistance variants to NAIs. Epitope mapping showed some major differences in our isolates NA gene. Present study was one of the rare comprehensive studies conducted in Shiraz/Iran on IBV resistant associated variants to NAIs. We reported 11.7% mutation in NA active site and some probable NAIs resistant mutations. Epitope mapping confirmed major changes in NA gene which needs broader studies to confirm.
Collapse
Affiliation(s)
- Sheida Alizadeh
- Department of Virology and Bacteriology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fahime Edalat
- Autophagy Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Arash Letafati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Pirbonyeh
- Department of Virology and Bacteriology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Microbiology Department, Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Tabibzadeh
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Islamic Azad University, Arak Branch, Arak, Iran
| | - Leila Mousavizadeh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Afagh Moattari
- Department of Virology and Bacteriology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | |
Collapse
|
5
|
Han J, Yang C, Xiao Y, Li J, Jin N, Li Y. Influenza B virus: Target and acting mechanism of antiviral drugs. Microb Pathog 2024; 197:107051. [PMID: 39442816 DOI: 10.1016/j.micpath.2024.107051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/30/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
The influenza B virus is one of the causes of seasonal influenza, which has a long history of existence in various populations. Adolescents, children, pregnant women, the elderly, as well as patients with major diseases such as high blood pressure, diabetes, and cancer, and those with low immunity are more susceptible to infection by the influenza virus. During the influenza seasons, the influenza B virus can cause significant harm and economic burden. At present, neuraminidase inhibitors, hemagglutinin inhibitors and RNA polymerase inhibitors are the main antiviral drugs that are used in the clinical treatment of influenza B. Due to the repeated use of antiviral drugs in recent years, the emergence of resistant strains of the influenza virus exacerbated. By combining anti-viral drugs with different mechanisms of action or using a combination of traditional Chinese medicine and chemical drugs, the problem of reduced drug sensitivity can be improved. This article introduces the drug targets of the influenza B virus and the mechanism of virus resistance. It also emphasizes the clinically used antiviral drugs and their mechanisms of action, thereby providing a reference basis for the development of new anti-influenza drugs.
Collapse
Affiliation(s)
- Jicheng Han
- Key Laboratory of Jilin Province for Traditional Chinese Medicine Prevention and Treatment of Infectious Diseases, College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, PR China
| | - Chunhui Yang
- Key Laboratory of Jilin Province for Traditional Chinese Medicine Prevention and Treatment of Infectious Diseases, College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, PR China
| | - Yan Xiao
- Key Laboratory of Jilin Province for Traditional Chinese Medicine Prevention and Treatment of Infectious Diseases, College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, PR China.
| | - Jingjing Li
- Key Laboratory of Jilin Province for Traditional Chinese Medicine Prevention and Treatment of Infectious Diseases, College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, PR China
| | - Ningyi Jin
- Key Laboratory of Jilin Province for Traditional Chinese Medicine Prevention and Treatment of Infectious Diseases, College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, PR China
| | - Yiquan Li
- Key Laboratory of Jilin Province for Traditional Chinese Medicine Prevention and Treatment of Infectious Diseases, College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, PR China.
| |
Collapse
|
6
|
Pekarek MJ, Weaver EA. Influenza B Virus Vaccine Innovation through Computational Design. Pathogens 2024; 13:755. [PMID: 39338946 PMCID: PMC11434669 DOI: 10.3390/pathogens13090755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
As respiratory pathogens, influenza B viruses (IBVs) cause a significant socioeconomic burden each year. Vaccine and antiviral development for influenza viruses has historically viewed IBVs as a secondary concern to influenza A viruses (IAVs) due to their lack of animal reservoirs compared to IAVs. However, prior to the global spread of SARS-CoV-2, the seasonal epidemics caused by IBVs were becoming less predictable and inducing more severe disease, especially in high-risk populations. Globally, researchers have begun to recognize the need for improved prevention strategies for IBVs as a primary concern. This review discusses what is known about IBV evolutionary patterns and the effect of the spread of SARS-CoV-2 on these patterns. We also analyze recent advancements in the development of novel vaccines tested against IBVs, highlighting the promise of computational vaccine design strategies when used to target both IBVs and IAVs and explain why these novel strategies can be employed to improve the effectiveness of IBV vaccines.
Collapse
Affiliation(s)
| | - Eric A. Weaver
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| |
Collapse
|
7
|
Nham E, Noh JY, Park O, Choi WS, Song JY, Cheong HJ, Kim WJ. COVID-19 Vaccination Strategies in the Endemic Period: Lessons from Influenza. Vaccines (Basel) 2024; 12:514. [PMID: 38793765 PMCID: PMC11125835 DOI: 10.3390/vaccines12050514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a highly contagious zoonotic respiratory disease with many similarities to influenza. Effective vaccines are available for both; however, rapid viral evolution and waning immunity make them virtually impossible to eradicate with vaccines. Thus, the practical goal of vaccination is to reduce the incidence of serious illnesses and death. Three years after the introduction of COVID-19 vaccines, the optimal vaccination strategy in the endemic period remains elusive, and health authorities worldwide have begun to adopt various approaches. Herein, we propose a COVID-19 vaccination strategy based on the data available until early 2024 and discuss aspects that require further clarification for better decision making. Drawing from comparisons between COVID-19 and influenza vaccination strategies, our proposed COVID-19 vaccination strategy prioritizes high-risk groups, emphasizes seasonal administration aligned with influenza vaccination campaigns, and advocates the co-administration with influenza vaccines to increase coverage.
Collapse
Affiliation(s)
- Eliel Nham
- Division of Infectious Diseases, Department of Medicine, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (E.N.); (J.Y.N.); (O.P.); (W.S.C.); (J.Y.S.); (H.J.C.)
- Vaccine Innovation Center, Korea University, Seoul 02841, Republic of Korea
| | - Ji Yun Noh
- Division of Infectious Diseases, Department of Medicine, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (E.N.); (J.Y.N.); (O.P.); (W.S.C.); (J.Y.S.); (H.J.C.)
- Vaccine Innovation Center, Korea University, Seoul 02841, Republic of Korea
| | - Ok Park
- Division of Infectious Diseases, Department of Medicine, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (E.N.); (J.Y.N.); (O.P.); (W.S.C.); (J.Y.S.); (H.J.C.)
- Vaccine Innovation Center, Korea University, Seoul 02841, Republic of Korea
| | - Won Suk Choi
- Division of Infectious Diseases, Department of Medicine, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (E.N.); (J.Y.N.); (O.P.); (W.S.C.); (J.Y.S.); (H.J.C.)
- Vaccine Innovation Center, Korea University, Seoul 02841, Republic of Korea
| | - Joon Young Song
- Division of Infectious Diseases, Department of Medicine, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (E.N.); (J.Y.N.); (O.P.); (W.S.C.); (J.Y.S.); (H.J.C.)
- Vaccine Innovation Center, Korea University, Seoul 02841, Republic of Korea
| | - Hee Jin Cheong
- Division of Infectious Diseases, Department of Medicine, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (E.N.); (J.Y.N.); (O.P.); (W.S.C.); (J.Y.S.); (H.J.C.)
- Vaccine Innovation Center, Korea University, Seoul 02841, Republic of Korea
| | - Woo Joo Kim
- Division of Infectious Diseases, Department of Medicine, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (E.N.); (J.Y.N.); (O.P.); (W.S.C.); (J.Y.S.); (H.J.C.)
- Vaccine Innovation Center, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
8
|
Chen D, Zhang T, Chen S, Ru X, Shao Q, Ye Q, Cheng D. The effect of nonpharmaceutical interventions on influenza virus transmission. Front Public Health 2024; 12:1336077. [PMID: 38389947 PMCID: PMC10881707 DOI: 10.3389/fpubh.2024.1336077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Background The use of nonpharmaceutical interventions (NPIs) during severe acute respiratory syndrome 2019 (COVID-19) outbreaks may influence the spread of influenza viruses. This study aimed to evaluate the impact of NPIs against SARS-CoV-2 on the epidemiological features of the influenza season in China. Methods We conducted a retrospective observational study analyzing influenza monitoring data obtained from the China National Influenza Center between 2011 and 2023. We compared the changes in influenza-positive patients in the pre-COVID-19 epidemic, during the COVID-19 epidemic, and post-COVID-19 epidemic phases to evaluate the effect of NPIs on influenza virus transmission. Results NPIs targeting COVID-19 significantly suppressed influenza activity in China from 2019 to 2022. In the seventh week after the implementation of the NPIs, the number of influenza-positive patients decreased by 97.46% in southern regions of China and 90.31% in northern regions of China. However, the lifting of these policies in December 2022 led to an unprecedented surge in influenza-positive cases in autumn and winter from 2022 to 2023. The percentage of positive influenza cases increased by 206.41% (p < 0.001), with high positivity rates reported in both the northern and southern regions of China. Conclusion Our findings suggest that NPIs against SARS-CoV-2 are effective at controlling influenza epidemics but may compromise individuals' immunity to the virus.
Collapse
Affiliation(s)
- Danlei Chen
- School of Medical Technology and Informatlon Engineering, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Laboratory Medicine, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Ting Zhang
- School of Medical Technology and Informatlon Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Simiao Chen
- Department of Laboratory Medicine, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Xuanwen Ru
- Department of Laboratory Medicine, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Qingyi Shao
- School of Medical Technology and Informatlon Engineering, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Laboratory Medicine, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Qing Ye
- Department of Laboratory Medicine, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Dongqing Cheng
- School of Medical Technology and Informatlon Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
9
|
Wong PF, Isakova-Sivak I, Stepanova E, Krutikova E, Bazhenova E, Rekstin A, Rudenko L. Development of Cross-Reactive Live Attenuated Influenza Vaccine Candidates against Both Lineages of Influenza B Virus. Vaccines (Basel) 2024; 12:95. [PMID: 38250908 PMCID: PMC10821225 DOI: 10.3390/vaccines12010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/30/2023] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Influenza viruses continue to cause a significant social and economic burden globally. Vaccination is recognized as the most effective measure to control influenza. Live attenuated influenza vaccines (LAIVs) are an effective means of preventing influenza, especially among children. A reverse genetics (RG) system is required to rapidly update the antigenic composition of vaccines, as well as to design LAIVs with a broader spectrum of protection. Such a system has been developed for the Russian LAIVs only for type A strains, but not for influenza B viruses (IBV). METHODS All genes of the B/USSR/60/69 master donor virus (B60) were cloned into RG plasmids, and the engineered B60, as well as a panel of IBV LAIV reassortants were rescued from plasmid DNAs encoding all viral genes. The engineered viruses were evaluated in vitro and in a mouse model. RESULTS The B60 RG system was successfully developed, which made it possible to rescue LAIV reassortants with the desired antigenic composition, including hybrid strains with hemagglutinin and neuraminidase genes belonging to the viruses from different IBV lineages. The LAIV candidate carrying the HA of the B/Victoria-lineage virus and NA from the B/Yamagata-lineage virus demonstrated optimal characteristics in terms of safety, immunogenicity and cross-protection, prompting its further assessment as a broadly protective component of trivalent LAIV. CONCLUSIONS The new RG system for B60 MDV allowed the rapid generation of type B LAIV reassortants with desired genome compositions. The generation of hybrid LAIV reassortants with HA and NA genes belonging to the opposite IBV lineages is a promising approach for the development of IBV vaccines with broad cross-protection.
Collapse
Affiliation(s)
| | - Irina Isakova-Sivak
- Department of Virology, Institute of Experimental Medicine, 197022 St. Petersburg, Russia; (P.-F.W.); (E.S.); (E.K.); (E.B.); (A.R.); (L.R.)
| | | | | | | | | | | |
Collapse
|
10
|
Rikhi N, Sei CJ, Rao M, Schuman RF, Kroscher KA, Matyas GR, Muema K, Lange C, Assiaw-Dufu A, Hussin E, Jobe O, Alving CR, Fischer GW. Unconjugated Multi-Epitope Peptides Adjuvanted with ALFQ Induce Durable and Broadly Reactive Antibodies to Human and Avian Influenza Viruses. Vaccines (Basel) 2023; 11:1468. [PMID: 37766144 PMCID: PMC10537791 DOI: 10.3390/vaccines11091468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
An unconjugated composite peptide vaccine targeting multiple conserved influenza epitopes from hemagglutinin, neuraminidase, and matrix protein and formulated with a safe and highly potent adjuvant, Army Liposome formulation (ALFQ), generated broad and durable immune responses in outbred mice. The antibodies recognized specific epitopes in influenza peptides and several human, avian, and swine influenza viruses. Comparable antibody responses to influenza viruses were observed with intramuscular and intradermal routes of vaccine administration. The peptide vaccine induced cross-reactive antibodies that recognized influenza virus subtypes A/H1N1, A/H3N2, A/H5N1, B/Victoria, and B/Yamagata. In addition, immune sera neutralized seasonal and pandemic influenza strains (Group 1 and Group 2). This composite multi-epitope peptide vaccine, formulated with ALFQ and administered via intramuscular and intradermal routes, provides a high-performance supra-seasonal vaccine that would be cost-effective and easily scalable, thus moving us closer to a viable strategy for a universal influenza vaccine and pandemic preparedness.
Collapse
Affiliation(s)
- Nimisha Rikhi
- Longhorn Vaccines and Diagnostics, Gaithersburg, MD 20878, USA; (N.R.); (K.A.K.); (K.M.); (A.A.-D.); (G.W.F.)
| | - Clara J. Sei
- Longhorn Vaccines and Diagnostics, Gaithersburg, MD 20878, USA; (N.R.); (K.A.K.); (K.M.); (A.A.-D.); (G.W.F.)
| | - Mangala Rao
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (M.R.); (G.R.M.); (C.L.); (E.H.); (O.J.); (C.R.A.)
| | | | - Kellie A. Kroscher
- Longhorn Vaccines and Diagnostics, Gaithersburg, MD 20878, USA; (N.R.); (K.A.K.); (K.M.); (A.A.-D.); (G.W.F.)
| | - Gary R. Matyas
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (M.R.); (G.R.M.); (C.L.); (E.H.); (O.J.); (C.R.A.)
| | - Kevin Muema
- Longhorn Vaccines and Diagnostics, Gaithersburg, MD 20878, USA; (N.R.); (K.A.K.); (K.M.); (A.A.-D.); (G.W.F.)
| | - Camille Lange
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (M.R.); (G.R.M.); (C.L.); (E.H.); (O.J.); (C.R.A.)
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Aba Assiaw-Dufu
- Longhorn Vaccines and Diagnostics, Gaithersburg, MD 20878, USA; (N.R.); (K.A.K.); (K.M.); (A.A.-D.); (G.W.F.)
| | - Elizabeth Hussin
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (M.R.); (G.R.M.); (C.L.); (E.H.); (O.J.); (C.R.A.)
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Ousman Jobe
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (M.R.); (G.R.M.); (C.L.); (E.H.); (O.J.); (C.R.A.)
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Carl R. Alving
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (M.R.); (G.R.M.); (C.L.); (E.H.); (O.J.); (C.R.A.)
| | - Gerald W. Fischer
- Longhorn Vaccines and Diagnostics, Gaithersburg, MD 20878, USA; (N.R.); (K.A.K.); (K.M.); (A.A.-D.); (G.W.F.)
| |
Collapse
|
11
|
Wei L, Wang X, Zhou H. Interaction among inflammasome, PANoptosise, and innate immune cells in infection of influenza virus: Updated review. Immun Inflamm Dis 2023; 11:e997. [PMID: 37773712 PMCID: PMC10521376 DOI: 10.1002/iid3.997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Influenza virus (IV) is a leading cause of respiratory tract infections, eliciting responses from key innate immune cells such as Macrophages (MQs), Neutrophils, and Dendritic Cells (DCs). These cells employ diverse mechanisms to combat IV, with Inflammasomes playing a pivotal role in viral infection control. Cellular death mechanisms, including Pyroptosis, Apoptosis, and Necroptosis (collectively called PANoptosis), significantly contribute to the innate immune response. METHODS In this updated review, we delve into the intricate relationship between PANoptosis and Inflammasomes within innate immune cells (MQs, Neutrophils, and DCs) during IV infections. We explore the strategies employed by IV to evade these immune defenses and the consequences of unchecked PANoptosis and inflammasome activation, including the potential development of severe complications such as cytokine storms and tissue damage. RESULTS Our analysis underscores the interplay between PANoptosis and Inflammasomes as a critical aspect of the innate immune response against IV. We provide insights into IV's various mechanisms to subvert these immune pathways and highlight the importance of understanding these interactions to develop effective antiviral medications. CONCLUSION A comprehensive understanding of the dynamic interactions between PANoptosis, Inflammasomes, and IV is essential for advancing our knowledge of innate immune responses to viral infections. This knowledge will be invaluable in developing targeted antiviral therapies to combat IV and mitigate potential complications, including cytokine storms and tissue damage.
Collapse
Affiliation(s)
- Li Wei
- Intensive Care Unit, Huzhou Third Municipal hospitalThe Affiliated hospital of Huzhou UniversityHuzhouChina
| | - Xufang Wang
- Intensive Care Unit, Huzhou Third Municipal hospitalThe Affiliated hospital of Huzhou UniversityHuzhouChina
| | - Huifei Zhou
- Intensive Care Unit, Huzhou Third Municipal hospitalThe Affiliated hospital of Huzhou UniversityHuzhouChina
| |
Collapse
|
12
|
Xiao Y, Zhang J, Zhu X, Zhao W, Li Y, Jin N, Lu H, Han J. Fu-Zheng-Xuan-Fei formula promotes macrophage polarization and Th17/Treg cell homeostasis against the influenza B virus (Victoria strain) infection. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116485. [PMID: 37044232 DOI: 10.1016/j.jep.2023.116485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/31/2023] [Accepted: 04/09/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fu-Zheng-Xuan-Fei formula (FF) is a prescription that has been clinically used through the basic theory of traditional Chinese medicine (TCM) for treating viral pneumonia. Although FF possesses a prominent clinical therapeutic effect, seldom pharmacological studies have been reported on its anti-influenza B virus (IBV) activity. AIM OF THE STUDY Influenza is an acute infectious respiratory disease caused by the influenza virus, which has high annual morbidity and mortality worldwide. With a global decline in the COVID-19 control, the infection rate of influenza virus is gradually increasing. Therefore, it is of great importance to develop novel drugs for the effective treatment of influenza virus. Apart from conventional antiviral drugs, TCM has been widely used in the clinical treatment of influenza in China. Therefore, studying the antiviral mechanism of TCM can facilitate the scientific development of TCM. MATERIALS AND METHODS Madin-Darby canine kidney cells (MDCK) and BALB/c mice were infected with IBV, and FF was added to evaluate the anti-IBV effects of FF both in vitro and in vivo by Western blotting, immunofluorescence, flow cytometry, and pathological assessment. RESULTS It was found that FF exhibited anti-viral activity against IBV infection both in vivo and in vitro, while inducing macrophage activation and promoting M1 macrophage polarization. In addition, FF effectively regulated the signal transducer and activator of transcription (STAT) signaling pathway-mediated Th17/Treg balance to improve the lung tissue damage caused by IBV infection-induced inflammation. The findings provided the scientific basis for the antiviral mechanism of FF against IBV infection. CONCLUSIONS This study shows that FF is a potentially effective antiviral drug against IBV infection.
Collapse
Affiliation(s)
- Yan Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| | - Jinxin Zhang
- Academician Workstation, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Xiangyu Zhu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| | - Wenxin Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| | - Yiquan Li
- Academician Workstation, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Ningyi Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| | - Huijun Lu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| | - Jicheng Han
- Academician Workstation, Changchun University of Chinese Medicine, Changchun, 130117, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| |
Collapse
|
13
|
Wang Z, Yi J, Yu Q, Liu Y, Zhang R, Zhang D, Yang W, Xu Y, Chen Y. Performance evaluation of QuantStudio 1 plus real-time PCR instrument for clinical laboratory analysis: A proof-of-concept study. Pract Lab Med 2023; 36:e00330. [PMID: 37649547 PMCID: PMC10462677 DOI: 10.1016/j.plabm.2023.e00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/13/2023] [Accepted: 08/13/2023] [Indexed: 09/01/2023] Open
Abstract
Objective The real-time PCR system is one of the most powerful research tools available in the life sciences field. The aim of this study was to preliminarily evaluate the analytical performance of QuantStudio 1 Plus real-time PCR system (QS 1 plus) for clinical procedures. Methods The consistency of QS 1 plus with the reference system in terms of various clinical procedures was evaluated. For qualitative data, the Kappa test was used to analyze the agreement of the results. For the quantitative data, Passing-Bablok regression analysis and Bland-Altman plot analysis were used to assess the concordance between QS 1 plus and the reference instrument. Results Passing-Bablok regression showed an excellent agreement between the QS 1 plus and LC 480 systems for HBV DNA quantification (y = 0.928 + 0.970x), whereas Bland-Altman plot analysis showed very small mean deviations between the two systems. The QS 1 plus yielded perfectly consistent results with the reference instrument for methylenetetrahydrofolate reductase (MTHFR) C677T melting curve genotyping analysis, MTHFR C677T genotyping analysis, Norovirus RNA negative/positive analysis, influenza B virus (Flu B) RNA negative/positive analysis, Mycobacterium tuberculosis (MTB) DNA negative/positive analysis, Human Papillomavirus (HPV) genotyping analysis, epidermal growth factor receptor (EGFR) gene mutation analysis. Both the relative quantitative analysis and the relative quantitative analysis (standard curve) confirmed the satisfactory concordance between the QS 1 plus instrument and the ABI 7500 instrument by Passing-Bablok regression analysis (y = 0.180 + 0.817x and y = 0.012 + 1.000x, respectively) and Bland-Altman plot analysis. Conclusions Our research has proven that QS 1 plus is adaptable to most test procedures in the clinical laboratory. This may provide the basis for its further application.
Collapse
Affiliation(s)
- Ziran Wang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Yi
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Yu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yiwei Liu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Rui Zhang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Dong Zhang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Wenhang Yang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yingchun Xu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yu Chen
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Wang J, Sun Y, Liu S. Emerging antiviral therapies and drugs for the treatment of influenza. Expert Opin Emerg Drugs 2022; 27:389-403. [PMID: 36396398 DOI: 10.1080/14728214.2022.2149734] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Both vaccines and antiviral drugs represent the mainstay for preventing and treating influenza. However, approved M2 ion channel inhibitors, neuraminidase inhibitors, polymerase inhibitors, and various vaccines cannot meet therapeutic needs because of viral resistance. Thus, the discovery of new targets for the virus or host and the development of more effective inhibitors are essential to protect humans from the influenza virus. AREAS COVERED This review summarizes the latest progress in vaccines and antiviral drug research to prevent and treat influenza, providing the foothold for developing novel antiviral inhibitors. EXPERT OPINION Vaccines embody the most effective approach to preventing influenza virus infection, and recombinant protein vaccines show promising prospects in developing next-generation vaccines. Compounds targeting the viral components of RNA polymerase, hemagglutinin and nucleoprotein, and the modification of trusted neuraminidase inhibitors are future research directions for anti-influenza virus drugs. In addition, some host factors affect the replication of virus in vivo, which can be used to develop antiviral drugs.
Collapse
Affiliation(s)
- Jinshen Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou Guangdong China
| | - Yihang Sun
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou Guangdong China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou Guangdong China.,State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Nanfang Hospital, Guangzhou Guangdong China
| |
Collapse
|