1
|
Munlela B, João ED, Strydom A, Bauhofer AFL, Chissaque A, Chilaúle JJ, Maurício IL, Donato CM, O’Neill HG, de Deus N. Whole-Genome Characterization of Rotavirus G9P[6] and G9P[4] Strains That Emerged after Rotavirus Vaccine Introduction in Mozambique. Viruses 2024; 16:1140. [PMID: 39066302 PMCID: PMC11281483 DOI: 10.3390/v16071140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Mozambique introduced the Rotarix® vaccine into the National Immunization Program in September 2015. Following vaccine introduction, rotavirus A (RVA) genotypes, G9P[4] and G9P[6], were detected for the first time since rotavirus surveillance programs were implemented in the country. To understand the emergence of these strains, the whole genomes of 47 ELISA RVA positive strains detected between 2015 and 2018 were characterized using an Illumina MiSeq-based sequencing pipeline. Of the 29 G9 strains characterized, 14 exhibited a typical Wa-like genome constellation and 15 a DS-1-like genome constellation. Mostly, the G9P[4] and G9P[6] strains clustered consistently for most of the genome segments, except the G- and P-genotypes. For the G9 genotype, the strains formed three different conserved clades, separated by the P type (P[4], P[6] and P[8]), suggesting different origins for this genotype. Analysis of the VP6-encoding gene revealed that seven G9P[6] strains clustered close to antelope and bovine strains. A rare E6 NSP4 genotype was detected for strain RVA/Human-wt/MOZ/HCN1595/2017/G9P[4] and a genetically distinct lineage IV or OP354-like P[8] was identified for RVA/Human-wt/MOZ/HGJM0644/2015/G9P[8] strain. These results highlight the need for genomic surveillance of RVA strains detected in Mozambique and the importance of following a One Health approach to identify and characterize potential zoonotic strains causing acute gastroenteritis in Mozambican children.
Collapse
Affiliation(s)
- Benilde Munlela
- Instituto Nacional de Saúde (INS), Parcela 3943, Vila de Marracuene, Maputo 0205-02, Mozambique; (E.D.J.); (A.F.L.B.); (A.C.); (J.J.C.); (N.d.D.)
- Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - Eva D. João
- Instituto Nacional de Saúde (INS), Parcela 3943, Vila de Marracuene, Maputo 0205-02, Mozambique; (E.D.J.); (A.F.L.B.); (A.C.); (J.J.C.); (N.d.D.)
| | - Amy Strydom
- Department of Microbiology and Biochemistry, University of the Free State, 205 Nelson Mandela Avenue, Bloemfontein 9301, South Africa; (A.S.); (H.G.O.)
| | - Adilson Fernando Loforte Bauhofer
- Instituto Nacional de Saúde (INS), Parcela 3943, Vila de Marracuene, Maputo 0205-02, Mozambique; (E.D.J.); (A.F.L.B.); (A.C.); (J.J.C.); (N.d.D.)
- Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - Assucênio Chissaque
- Instituto Nacional de Saúde (INS), Parcela 3943, Vila de Marracuene, Maputo 0205-02, Mozambique; (E.D.J.); (A.F.L.B.); (A.C.); (J.J.C.); (N.d.D.)
- Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - Jorfélia J. Chilaúle
- Instituto Nacional de Saúde (INS), Parcela 3943, Vila de Marracuene, Maputo 0205-02, Mozambique; (E.D.J.); (A.F.L.B.); (A.C.); (J.J.C.); (N.d.D.)
| | - Isabel L. Maurício
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal;
| | - Celeste M. Donato
- The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, VIC 3000, Australia;
| | - Hester G. O’Neill
- Department of Microbiology and Biochemistry, University of the Free State, 205 Nelson Mandela Avenue, Bloemfontein 9301, South Africa; (A.S.); (H.G.O.)
| | - Nilsa de Deus
- Instituto Nacional de Saúde (INS), Parcela 3943, Vila de Marracuene, Maputo 0205-02, Mozambique; (E.D.J.); (A.F.L.B.); (A.C.); (J.J.C.); (N.d.D.)
- Departamento de Ciências Biológicas, Universidade Eduardo Mondlane, Julius Nyerere Avenue, Maputo 3453, Mozambique
| |
Collapse
|
2
|
Peña-Gil N, Randazzo W, Carmona-Vicente N, Santiso-Bellón C, Cárcamo-Cálvo R, Navarro-Lleó N, Monedero V, Yebra MJ, Buesa J, Gozalbo-Rovira R, Rodríguez-Díaz J. Culture of Human Rotaviruses in Relevant Models Shows Differences in Culture-Adapted and Nonculture-Adapted Strains. Int J Mol Sci 2023; 24:17362. [PMID: 38139191 PMCID: PMC10743750 DOI: 10.3390/ijms242417362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Rotavirus (RV) is the leading cause of acute gastroenteritis (AGE) in children under 5 years old worldwide, and several studies have demonstrated that histo-blood group antigens (HBGAs) play a role in its infection process. In the present study, human stool filtrates from patients diagnosed with RV diarrhea (genotyped as P[8]) were used to infect differentiated Caco-2 cells (dCaco-2) to determine whether such viral strains of clinical origin had the ability to replicate in cell cultures displaying HBGAs. The cell culture-adapted human RV Wa model strain (P[8] genotype) was used as a control. A time-course analysis of infection was conducted in dCaco-2 at 1, 24, 48, 72, and 96 h. The replication of two selected clinical isolates and Wa was further assayed in MA104, undifferentiated Caco-2 (uCaco-2), HT29, and HT29-M6 cells, as well as in monolayers of differentiated human intestinal enteroids (HIEs). The results showed that the culture-adapted Wa strain replicated more efficiently in MA104 cells than other utilized cell types. In contrast, clinical virus isolates replicated more efficiently in dCaco-2 cells and HIEs. Furthermore, through surface plasmon resonance analysis of the interaction between the RV spike protein (VP8*) and its glycan receptor (the H antigen), the V7 RV clinical isolate showed 45 times better affinity compared to VP8* from the Wa strain. These findings support the hypothesis that the differences in virus tropism between clinical virus isolates and RV Wa could be a consequence of the different HBGA contents on the surface of the cell lines employed. dCaco-2, HT29, and HT29M6 cells and HIEs display HBGAs on their surfaces, whereas MA104 and uCaco-2 cells do not. These results indicate the relevance of using non-cell culture-adapted human RV to investigate the replication of rotavirus in relevant infection models.
Collapse
Affiliation(s)
- Nazaret Peña-Gil
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; (N.P.-G.); (N.C.-V.); (C.S.-B.); (R.C.-C.); (N.N.-L.); (J.B.)
- Instituto de Investigación INCLIVA, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Walter Randazzo
- Department of Preservation and Food Safety Technologies, IATA-CSIC, Av. Agustín Escardino 7, 46980 Paterna, Spain;
| | - Noelia Carmona-Vicente
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; (N.P.-G.); (N.C.-V.); (C.S.-B.); (R.C.-C.); (N.N.-L.); (J.B.)
| | - Cristina Santiso-Bellón
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; (N.P.-G.); (N.C.-V.); (C.S.-B.); (R.C.-C.); (N.N.-L.); (J.B.)
- Instituto de Investigación INCLIVA, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Roberto Cárcamo-Cálvo
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; (N.P.-G.); (N.C.-V.); (C.S.-B.); (R.C.-C.); (N.N.-L.); (J.B.)
- Instituto de Investigación INCLIVA, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Noemi Navarro-Lleó
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; (N.P.-G.); (N.C.-V.); (C.S.-B.); (R.C.-C.); (N.N.-L.); (J.B.)
| | - Vicente Monedero
- Department of Biotechnology, IATA-CSIC, Av. Agustín Escardino 7, 46980 Paterna, Spain; (V.M.); (M.J.Y.)
| | - María J. Yebra
- Department of Biotechnology, IATA-CSIC, Av. Agustín Escardino 7, 46980 Paterna, Spain; (V.M.); (M.J.Y.)
| | - Javier Buesa
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; (N.P.-G.); (N.C.-V.); (C.S.-B.); (R.C.-C.); (N.N.-L.); (J.B.)
- Instituto de Investigación INCLIVA, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Roberto Gozalbo-Rovira
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; (N.P.-G.); (N.C.-V.); (C.S.-B.); (R.C.-C.); (N.N.-L.); (J.B.)
- Instituto de Investigación INCLIVA, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Jesús Rodríguez-Díaz
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; (N.P.-G.); (N.C.-V.); (C.S.-B.); (R.C.-C.); (N.N.-L.); (J.B.)
- Instituto de Investigación INCLIVA, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| |
Collapse
|
3
|
Sears KT, Nasrin S, Baliban SM, Council DN, Pasetti MF, Tennant SM. Evaluation of Three Candidate Live-Attenuated Salmonella enterica Serovar Typhimurium Vaccines to Prevent Non-Typhoidal Salmonella Infection in an Infant Mouse Model. Vaccines (Basel) 2023; 11:1562. [PMID: 37896965 PMCID: PMC10610874 DOI: 10.3390/vaccines11101562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Nontyphoidal Salmonella enterica (NTS) is a leading cause of foodborne illness worldwide, including in the United States, where infants show the highest incidence amongst all age groups. S. enterica serovar Typhimurium is one of the most frequently isolated serovars from NTS infections. We have developed several candidate live-attenuated S. Typhimurium vaccines to prevent NTS infection. The goal of the current study was to assess three live S. Typhimurium vaccine strains (CVD 1921, CVD 1921 ∆htrA and CVD 1926, which have two, three and four gene deletions, respectively) with various levels of reactogenicity and immunogenicity in infant BALB/c mice to predict how they would perform following peroral immunization of infants. We first tested intranasal immunization of 14-day-old mice with three doses delivered at 1-week intervals and evaluated antibody responses and protection against lethal infection with wild-type S. Typhimurium. The vaccines were administered to 14-day-old mice via the peroral route at 1- or 2-week intervals and to 28-day-old mice at 2-week intervals. The three vaccine strains were immunogenic following intranasal immunization of infant mice with vaccine efficacies of 80% (CVD 1921), 63% (CVD 1921 ∆htrA) and 31% (CVD 1926). In contrast, peroral immunization of 14-day-old mice yielded much poorer protection against lethal infection and only immunization of 28-day-old mice at 2-week intervals showed similar protective capacity as intranasal administration (CVD 1921: 83%, CVD 1921 ∆htrA: 43% and CVD 1926: 58%). CVD 1921 was consistently more protective than both CVD 1921 ∆htrA and CVD 1926, regardless of the route of vaccination, immunization schedule and age of mice. Anti-LPS serum IgG responses were similar between the three strains and did not correlate with protection. Due to previously observed reactogenicity of CVD 1921, CVD 1921 ∆htrA and CVD 1926 are our preferred vaccines, but these data show that further improvements would need to be made to achieve suitable protection in young infants when using peroral immunization.
Collapse
Affiliation(s)
- Khandra T. Sears
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.T.S.); (S.M.B.); (M.F.P.)
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Shamima Nasrin
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.T.S.); (S.M.B.); (M.F.P.)
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Scott M. Baliban
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.T.S.); (S.M.B.); (M.F.P.)
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Danielle N. Council
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.T.S.); (S.M.B.); (M.F.P.)
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Marcela F. Pasetti
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.T.S.); (S.M.B.); (M.F.P.)
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sharon M. Tennant
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.T.S.); (S.M.B.); (M.F.P.)
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
4
|
Zhuo R, Freedman SB, Xie J, Charlton C, Plitt S, Croxen MA, Li V, Tarr GAM, Lee B, Ali S, Chui L, Luong J, Pang X. Molecular epidemiology of rotavirus among children in Western Canada: Dynamic changes in genotype prevalence in four consecutive seasons. J Med Virol 2023; 95:e29028. [PMID: 37573569 DOI: 10.1002/jmv.29028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/19/2023] [Accepted: 07/29/2023] [Indexed: 08/15/2023]
Abstract
Rotavirus molecular surveillance remains important in the postvaccine era to monitor the changes in transmission patterns, identify vaccine-induced antigenic changes and discover potentially pathogenic vaccine-related strains. The Canadian province of Alberta introduced rotavirus vaccination into its provincial vaccination schedule in June 2015. To evaluate the impact of this program on stool rotavirus positivity rate, strain diversity, and seasonal trends, we analyzed a prospective cohort of children with acute gastroenteritis recruited between December 2014 and August 2018. We identified dynamic changes in rotavirus positivity and genotype trends during pre- and post-rotavirus vaccine introduction periods. Genotypes G9P[8], G1P[8], G2P[4], and G12P[8] predominated consecutively each season with overall lower rotavirus incidence rates in 2016 and 2017. The demographic and clinical features of rotavirus gastroenteritis were comparable among wild-type rotaviruses; however, children with G12P[8] infections were older (p < 0.001). Continued efforts to monitor changes in the molecular epidemiology of rotavirus using whole genome sequence characterization are needed to further understand the impact of the selection pressure of vaccination on rotavirus evolution.
Collapse
Affiliation(s)
- Ran Zhuo
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, Alberta, Canada
| | - Stephen B Freedman
- Sections of Pediatric Emergency Medicine and Gastroenterology, Departments of Pediatrics and Emergency Medicine, Alberta Children's Hospital and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jianling Xie
- Sections of Pediatric Emergency Medicine and Gastroenterology, Departments of Pediatrics and Emergency Medicine, Alberta Children's Hospital and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Carmen Charlton
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Sabrina Plitt
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
- Centre for Communicable Diseases and Infection Control, Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - Mathew A Croxen
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Vincent Li
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, Alberta, Canada
| | - Gillian A M Tarr
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Bonita Lee
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Samina Ali
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Linda Chui
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, Alberta, Canada
| | - Jasper Luong
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Xiaoli Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, Alberta, Canada
| |
Collapse
|