1
|
Zhu L, Cai Q, Li G, Zou X. Bromodomain containing 4 inhibition combats gastric precancerous lesions via modulating macrophage polarization. Tissue Cell 2024; 91:102580. [PMID: 39396437 DOI: 10.1016/j.tice.2024.102580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/22/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
OBJECTIVE Gastric precancerous lesions (GPL), characterized by intestinal metaplasia and dysplasia, marks a pivotal juncture in the transformation from gastritis to gastric cancer. Research on GPL could offer fresh perspectives on preventing cancer occurrence. METHODS This study employed 1-methyl-3-nitro-1-nitrosoguanidine (MNNG) to establish GPL rat models and knocked BRD4 down in vivo to assess its impact on the lesions and macrophage morphology. Following that, the impacts of BRD4 knockdown on the malignant phenotypes of human gastric epithelial GES-1 cells were determined. Moreover, conditioned medium from macrophage was gathered and used for GES-1 cell culture. The involvement of macrophage polarization in the BRD4 regulatory mechanism in GES-1 cells was assessed. RESULTS This study elucidated that MNNG induced an increase level of BRD4 in the rat models. BRD4 knockdown reduced lesions based on pathological sections and immunohistochemistry to detect proliferative antigens. Western blotting and immunofluorescence showed that BRD4 knockdown suppressed epithelial-mesenchymal transition and macrophage M2 polarization. In in vitro experiments, BRD4 knockdown inhibited the malignant phenotype of GES-1 cells and the differentiation of THP-1 cells into M2 macrophages, respectively. The conditioned medium from M2 macrophages with BRD4 knockdown was co-incubated with GES-1 cells, which attenuated the malignant phenotypes compared with the medium from M2 macrophages. CONCLUSION Through in vivo and in vitro experiments, BRD4 upregulation was found to already occur during GPL, affecting macrophage polarization and epithelial cell cancerization. This finding provides an experimental basis for strategies targeting BRD4 inhibition at this critical stage.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Qingxin Cai
- Department of Pharmacy, The First Specialized Hospital of Harbin, Harbin, Heilongjiang 150001, China
| | - Gang Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Xiaoming Zou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
2
|
De S, Sahu R, Palei S, Narayan Nanda L. Synthesis, SAR, and application of JQ1 analogs as PROTACs for cancer therapy. Bioorg Med Chem 2024; 112:117875. [PMID: 39178586 DOI: 10.1016/j.bmc.2024.117875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
JQ1 is a wonder therapeutic molecule that selectively inhibits the BRD4 signaling pathway and is thus widely used in the anticancer drug discovery program. Due to its unique selective BRD4 binding property, its applications are further extended in the design and synthesis of bi-functional PROTAC molecules. This BRD4 targeting PROTAC molecule selectively degrades the protein by proteolysis. There are several modifications of JQ1 known to date and extensively explored for their applications in PROTAC technology by several research groups in academia as well as industry for targeting oncogenic genes. In this review, we have covered the discovery and synthesis of the JQ1 molecule. The SAR of the JQ1 analogs will help researchers develop potent JQ1 compounds with improved inhibitory properties against malignant cells. Furthermore, we explored the potential application of JQ1 analogs in PROTAC technology. The brief history of the bromodomain family of proteins, as well as the obstacles connected with PROTAC technology, can help comprehend the context of the current research, which has the potential to improve the drug development process. Overall, this review comprehensively appraises JQ1 molecules and their prior implementation in PROTAC technology and cancer therapy.
Collapse
Affiliation(s)
- Soumik De
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, An OCC of Homi Bhabha National Institute (HBNI), Khurda, Odisha 752050, India
| | - Raghaba Sahu
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Shubhendu Palei
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Laxmi Narayan Nanda
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Harvard Medical School, Cambridge 02142, United States; P.G. Department of Chemistry, Government Autonomous College, Utkal University, Angul 759143, Odisha, India.
| |
Collapse
|
3
|
Wei Q, Gan C, Sun M, Xie Y, Liu H, Xue T, Deng C, Mo C, Ye T. BRD4: an effective target for organ fibrosis. Biomark Res 2024; 12:92. [PMID: 39215370 PMCID: PMC11365212 DOI: 10.1186/s40364-024-00641-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Fibrosis is an excessive wound-healing response induced by repeated or chronic external stimuli to tissues, significantly impacting quality of life and primarily contributing to organ failure. Organ fibrosis is reported to cause 45% of all-cause mortality worldwide. Despite extensive efforts to develop new antifibrotic drugs, drug discovery has not kept pace with the clinical demand. Currently, only pirfenidone and nintedanib are approved by the FDA to treat pulmonary fibrotic illness, whereas there are currently no available antifibrotic drugs for hepatic, cardiac or renal fibrosis. The development of fibrosis is closely related to epigenetic alterations. The field of epigenetics primarily studies biological processes, including chromatin modifications, epigenetic readers, DNA transcription and RNA translation. The bromodomain and extra-terminal structural domain (BET) family, a class of epigenetic readers, specifically recognizes acetylated histone lysine residues and promotes the formation of transcriptional complexes. Bromodomain-containing protein 4 (BRD4) is one of the most well-researched proteins in the BET family. BRD4 is implicated in the expression of genes related to inflammation and pro-fibrosis during fibrosis. Inhibition of BRD4 has shown promising anti-fibrotic effects in preclinical studies; however, no BRD4 inhibitor has been approved for clinical use. This review introduces the structure and function of BET proteins, the research progress on BRD4 in organ fibrosis, and the inhibitors of BRD4 utilized in fibrosis. We emphasize the feasibility of targeting BRD4 as an anti-fibrotic strategy and discuss the therapeutic potential and challenges associated with BRD4 inhibitors in treating fibrotic diseases.
Collapse
Affiliation(s)
- Qun Wei
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Cailing Gan
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Sun
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuting Xie
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongyao Liu
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Taixiong Xue
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Conghui Deng
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Tinghong Ye
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Ningxia Medical University, Yin Chuan, 640100, China.
| |
Collapse
|
4
|
Lara-Ureña N, Gómez-Marín E, Pozuelo-Sánchez I, Reyes JC, García-Domínguez M. SARS-CoV-2 E protein interacts with BRD2 and BRD4 SEED domains and alters transcription in a different way than BET inhibition. Cell Mol Life Sci 2024; 81:313. [PMID: 39066826 PMCID: PMC11335234 DOI: 10.1007/s00018-024-05343-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/31/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Abstract
Bromodomain and extra-terminal (BET) proteins are relevant chromatin adaptors involved in the transcriptional control of thousands of genes. Two tandem N-terminal bromodomains are essential for chromatin attachment through acetyl-histone recognition. Recently, the BET proteins members BRD2 and BRD4 were found to interact with the SARS-CoV-2 envelope (E) protein, raising the question of whether the interaction constitutes a virus hijacking mechanism for transcription alteration in the host cell. To shed light on this question, we have compared the transcriptome of cells overexpressing E with that of cells treated with the BET inhibitor JQ1. Notably, E overexpression leads to a strong upregulation of natural immunity- and interferon response-related genes. However, BET inhibition results in the downregulation of most of these genes, indicating that these two conditions, far from causing a significant overlap of the altered transcriptomes, course with quite different outputs. Concerning the interaction of E protein with BET members, and differing from previous reports indicating that it occurs through BET bromodomains, we find that it relies on SEED and SEED-like domains, BET regions rich in Ser, Asp, and Glu residues. By taking advantage of this specific interaction, we have been able to direct selective degradation of E protein through a PROTAC system involving a dTAG-SEED fusion, highlighting the possible therapeutic use of this peptide for targeted degradation of a viral essential protein.
Collapse
Affiliation(s)
- Nieves Lara-Ureña
- Department of Cell Dynamics and Signaling, Andalusian Centre for Molecular Biology and Regenerative Medicine-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Av. Américo Vespucio 24, Seville, 41092, Spain
| | - Elena Gómez-Marín
- Department of Genome Biology, Andalusian Centre for Molecular Biology and Regenerative Medicine-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Av. Américo Vespucio 24, Seville, 41092, Spain
| | | | - José C Reyes
- Department of Genome Biology, Andalusian Centre for Molecular Biology and Regenerative Medicine-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Av. Américo Vespucio 24, Seville, 41092, Spain
| | - Mario García-Domínguez
- Department of Cell Dynamics and Signaling, Andalusian Centre for Molecular Biology and Regenerative Medicine-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Av. Américo Vespucio 24, Seville, 41092, Spain.
| |
Collapse
|
5
|
Wu SY, Lai HT, Sanjib Banerjee N, Ma Z, Santana JF, Wei S, Liu X, Zhang M, Zhan J, Chen H, Posner B, Chen Y, Price DH, Chow LT, Zhou J, Chiang CM. IDR-targeting compounds suppress HPV genome replication via disruption of phospho-BRD4 association with DNA damage response factors. Mol Cell 2024; 84:202-220.e15. [PMID: 38103559 PMCID: PMC10843765 DOI: 10.1016/j.molcel.2023.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/14/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023]
Abstract
Compounds binding to the bromodomains of bromodomain and extra-terminal (BET) family proteins, particularly BRD4, are promising anticancer agents. Nevertheless, side effects and drug resistance pose significant obstacles in BET-based therapeutics development. Using high-throughput screening of a 200,000-compound library, we identified small molecules targeting a phosphorylated intrinsically disordered region (IDR) of BRD4 that inhibit phospho-BRD4 (pBRD4)-dependent human papillomavirus (HPV) genome replication in HPV-containing keratinocytes. Proteomic profiling identified two DNA damage response factors-53BP1 and BARD1-crucial for differentiation-associated HPV genome amplification. pBRD4-mediated recruitment of 53BP1 and BARD1 to the HPV origin of replication occurs in a spatiotemporal and BRD4 long (BRD4-L) and short (BRD4-S) isoform-specific manner. This recruitment is disrupted by phospho-IDR-targeting compounds with little perturbation of the global transcriptome and BRD4 chromatin landscape. The discovery of these protein-protein interaction inhibitors (PPIi) not only demonstrates the feasibility of developing PPIi against phospho-IDRs but also uncovers antiviral agents targeting an epigenetic regulator essential for virus-host interaction and cancer development.
Collapse
Affiliation(s)
- Shwu-Yuan Wu
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hsien-Tsung Lai
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - N Sanjib Banerjee
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Zonghui Ma
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| | - Juan F Santana
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Shuguang Wei
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xisheng Liu
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Meirong Zhang
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Jian Zhan
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| | - Bruce Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yadong Chen
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - David H Price
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Louise T Chow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA.
| | - Cheng-Ming Chiang
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
6
|
Moll GM, Swenson CL, Yuzbasiyan-Gurkan V. BET Inhibitor JQ1 Attenuates Feline Leukemia Virus DNA, Provirus, and Antigen Production in Domestic Cat Cell Lines. Viruses 2023; 15:1853. [PMID: 37766260 PMCID: PMC10535802 DOI: 10.3390/v15091853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Feline leukemia virus (FeLV) is a cosmopolitan gammaretrovirus that causes lifelong infections and fatal diseases, including leukemias, lymphomas, immunodeficiencies, and anemias, in domestic and wild felids. There is currently no definitive treatment for FeLV, and while existing vaccines reduce the prevalence of progressive infections, they neither provide sterilizing immunity nor prevent regressive infections that result in viral reservoirs with the potential for reactivation, transmission, and the development of associated clinical diseases. Previous studies of murine leukemia virus (MuLV) established that host cell epigenetic reader bromodomain and extra-terminal domain (BET) proteins facilitate MuLV replication by promoting proviral integration. Here, we provide evidence that this facilitatory effect of BET proteins extends to FeLV. Treatment with the archetypal BET protein bromodomain inhibitor (+)-JQ1 and FeLV challenge of two phenotypically disparate feline cell lines, 81C fibroblasts and 3201 lymphoma cells, significantly reduced FeLV proviral load, total FeLV DNA load, and p27 capsid protein expression at nonlethal concentrations. Moreover, significant decreases in FeLV proviral integration were documented in 81C and 3201 cells. These findings elucidate the importance of BET proteins for efficient FeLV replication, including proviral integration, and provide a potential target for treating FeLV infections.
Collapse
Affiliation(s)
- Garrick M. Moll
- Comparative Medicine & Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA;
| | - Cheryl L. Swenson
- Comparative Medicine & Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA;
- Department of Pathobiology & Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Vilma Yuzbasiyan-Gurkan
- Comparative Medicine & Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA;
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
7
|
Bressin A, Jasnovidova O, Arnold M, Altendorfer E, Trajkovski F, Kratz TA, Handzlik JE, Hnisz D, Mayer A. High-sensitive nascent transcript sequencing reveals BRD4-specific control of widespread enhancer and target gene transcription. Nat Commun 2023; 14:4971. [PMID: 37591883 PMCID: PMC10435483 DOI: 10.1038/s41467-023-40633-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023] Open
Abstract
Gene transcription by RNA polymerase II (Pol II) is under control of promoters and distal regulatory elements known as enhancers. Enhancers are themselves transcribed by Pol II correlating with their activity. How enhancer transcription is regulated and coordinated with transcription at target genes has remained unclear. Here, we developed a high-sensitive native elongating transcript sequencing approach, called HiS-NET-seq, to provide an extended high-resolution view on transcription, especially at lowly transcribed regions such as enhancers. HiS-NET-seq uncovers new transcribed enhancers in human cells. A multi-omics analysis shows that genome-wide enhancer transcription depends on the BET family protein BRD4. Specifically, BRD4 co-localizes to enhancer and promoter-proximal gene regions, and is required for elongation activation at enhancers and their genes. BRD4 keeps a set of enhancers and genes in proximity through long-range contacts. From these studies BRD4 emerges as a general regulator of enhancer transcription that may link transcription at enhancers and genes.
Collapse
Affiliation(s)
- Annkatrin Bressin
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
- Department of Mathematics and Computer Science, Freie Universität Berlin, 14195, Berlin, Germany
| | - Olga Jasnovidova
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Mirjam Arnold
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, 14195, Berlin, Germany
| | - Elisabeth Altendorfer
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Filip Trajkovski
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, 14195, Berlin, Germany
| | - Thomas A Kratz
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, 14195, Berlin, Germany
| | - Joanna E Handzlik
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Denes Hnisz
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Andreas Mayer
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany.
| |
Collapse
|
8
|
Kim JH, Pandit N, Yoo M, Park TH, Choi JU, Park CH, Jung KY, Lee BI. Crystal structure of [1,2,4]triazolo[4,3-b]pyridazine derivatives as BRD4 bromodomain inhibitors and structure-activity relationship study. Sci Rep 2023; 13:10805. [PMID: 37402749 DOI: 10.1038/s41598-023-37527-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/22/2023] [Indexed: 07/06/2023] Open
Abstract
BRD4 contains two tandem bromodomains (BD1 and BD2) that recognize acetylated lysine for epigenetic reading, and these bromodomains are promising therapeutic targets for treating various diseases, including cancers. BRD4 is a well-studied target, and many chemical scaffolds for inhibitors have been developed. Research on the development of BRD4 inhibitors against various diseases is actively being conducted. Herein, we propose a series of [1,2,4]triazolo[4,3-b]pyridazine derivatives as bromodomain inhibitors with micromolar IC50 values. We characterized the binding modes by determining the crystal structures of BD1 in complex with four selected inhibitors. Compounds containing [1,2,4] triazolo[4,3-b]pyridazine derivatives offer promising starting molecules for designing potent BRD4 BD inhibitors.
Collapse
Affiliation(s)
- Jung-Hoon Kim
- Research Institute, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Gyeonggi, 10408, Republic of Korea
| | - Navin Pandit
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Miyoun Yoo
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Tae Hyun Park
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Ji U Choi
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon, 34113, Republic of Korea
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Chi Hoon Park
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon, 34113, Republic of Korea.
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea.
| | - Kwan-Young Jung
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon, 34113, Republic of Korea.
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea.
| | - Byung Il Lee
- Research Institute, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea.
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Gyeonggi, 10408, Republic of Korea.
| |
Collapse
|