1
|
Pamidimukkala JV, Parthasarathy BR, Senapati S. Decoding potential host protein targets against Flaviviridae using protein-protein interaction network. Int J Biol Macromol 2025:143217. [PMID: 40250655 DOI: 10.1016/j.ijbiomac.2025.143217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/07/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
Flaviviridae family comprises some of the most vulnerable viruses known for causing widespread outbreaks, high mortality rates, and severe long-term health complications in humans. Viruses like Dengue (DENV), Zika (ZIKV) and Hepatitis C (HCV) are endemic across the globe, especially in tropical and subtropical regions, infecting multiple tissues and leading to significant health crises. Investigating virus-host interactions across tissues can reveal tissue-specific drug targets and aid antiviral drug repurposing. In this study, we employed a multi-step computational approach to construct a comprehensive virus-human interactome by integrating virus-host protein-protein interactions (PPIs) with tissue-specific gene expression profiles to study key protein targets associated with Flaviviridae infections. Mapping drug-target predictions revealed druggable proteins - CCNA2 in peripheral blood mononuclear cells (PBMC) and EIF2S2, CDK7 and CARS in the liver, with Tamoxifen, Sirolimus, Entrectinib and L-cysteine as potential repurposable drugs, respectively. Further protein-ligand docking and molecular dynamics (MD) simulations were conducted to assess the stability of the complexes. These findings highlight common druggable human targets exploited by DENV, ZIKV and HCV, providing a foundation for broad-spectrum antiviral therapies. By focusing on shared host pathways and targets in viral replication, we propose promising drug candidates, supporting the development of unified therapeutic strategies against Flaviviridae viruses.
Collapse
Affiliation(s)
- Jaya Vasavi Pamidimukkala
- Department of Biotechnology and BJM School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Bharath Raj Parthasarathy
- Department of Biotechnology and BJM School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sanjib Senapati
- Department of Biotechnology and BJM School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
2
|
Hajjo R, Abusara OH, Sabbah DA, Bardaweel SK. Advancing the understanding and management of Mpox: insights into epidemiology, disease pathways, prevention, and therapeutic strategies. BMC Infect Dis 2025; 25:529. [PMID: 40234789 PMCID: PMC12001656 DOI: 10.1186/s12879-025-10899-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 04/02/2025] [Indexed: 04/17/2025] Open
Abstract
Mpox, previously known as monkeypox, is a zoonotic viral disease caused by the Mpox virus (MPXV), a member of the Orthopoxvirus genus. This disease is of significant concern due to its zoonotic transmission, which can be challenging to control, its ability to spread easily from person to person, the potential for severe symptoms or even fatality, and its history of frequent global outbreaks. Despite the growing threat, there is still limited research on the pathophysiology of the disease and available disease-modifying treatments. To address this gap, the latest developments in Mpox epidemiology, viral variant detection, and advanced diagnostic tools for accurate MPXV detection have been reviewed. Ongoing preventive measures, including vaccination strategies, have also been examined. Additionally, the genomic and proteomic characteristics of MPXV have been explored, and network and pathway enrichment analyses have been performed to identify potential therapeutic targets. The findings presented in this manuscript suggest the potential for novel disease-modifying treatments. Moreover, emerging technologies, such as artificial intelligence and "big data," are playing a crucial role in advancing disease management and enhancing prevention strategies. This review emphasizes the evolving understanding of Mpox and MPXV variants and underscores the importance of continued research and public health initiatives to combat the disease and prevent future global outbreaks.
Collapse
Affiliation(s)
- Rima Hajjo
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan.
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Board Member, Jordan CDC, Amman, Jordan.
| | - Osama H Abusara
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan
| | - Dima A Sabbah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan
| | - Sanaa K Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
3
|
Kushner DB, Breitbart M, Debbink KM, Ferran MC, Johnson DM, Newcomb LL, O'Donnell LA. Development of learning objectives to support undergraduate virology curriculum guidelines. JOURNAL OF MICROBIOLOGY & BIOLOGY EDUCATION 2024; 25:e0010024. [PMID: 39431826 PMCID: PMC11636377 DOI: 10.1128/jmbe.00100-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/27/2024] [Indexed: 10/22/2024]
Abstract
It has become increasingly important for microbiology educators to help students learn critical concepts of the discipline. This is particularly true in virology, where current challenges include increasing rates of vaccine hesitancy, misinformation about the COVID-19 pandemic, and controversy surrounding research on pathogens with pandemic potential. Having students learn virology can attract more people to the field and increase the number of people who can engage in meaningful discourse about issues relating to the discipline. However, the limited number of virologists who teach undergraduates, combined with the fact that many institutions lack stand-alone virology courses, results in virology often being taught as a limited number of lectures within an undergraduate microbiology course (if it is covered at all), which may or may not be taught by an individual trained as a virologist. To provide a framework to teach virology to undergraduate students, a team of virology educators, with support from the American Society for Virology (ASV), developed curriculum guidelines for use in a stand-alone undergraduate virology course or a virology section within another course (D. B. Kushner et al., J Virol 96:e01305-22, 2022, https://doi.org/10.1128/jvi.01305-22). These guidelines are available at the ASV website (https://asv.org/curriculum-guidelines/). To assist educators in implementing these guidelines, we created examples of measurable learning objectives. This perspective provides details about the virology curriculum guidelines and learning objectives and accompanies the perspective by Boury et al. in this issue of the Journal of Microbiology & Biology Education (25:e00126-24, 2024, https://doi.org/10.1128/jmbe.00126-24) about the recent revision of the microbiology curriculum guidelines overseen by the American Society for Microbiology.
Collapse
Affiliation(s)
- David B. Kushner
- Department of Biology, Dickinson College, Carlisle, Pennsylvania, USA
| | - Mya Breitbart
- College of Marine Science, University of South Florida, Saint Petersburg, Florida, USA
| | - Kari M. Debbink
- Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Maureen C. Ferran
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA
| | - Dylan M. Johnson
- Department of Biotechnology & Bioengineering, Sandia National Laboratories, Livermore, California, USA
| | - Laura L. Newcomb
- Department of Biology, California State University - San Bernadino, San Bernadino, California, USA
| | | |
Collapse
|
4
|
Georgiou EA, Paraskevas K, Koutra C, Persoons L, Schols D, De Jonghe S, Kostakis IK. Exploring 4,7-Disubstituted Pyrimido[4,5- d]pyrimidines as Antiviral and Anticancer Agents. Molecules 2024; 29:5549. [PMID: 39683709 DOI: 10.3390/molecules29235549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Thirteen new 4,7-disubstituted pyrimido[4,5-d]pyrimidines were synthesized via a straightforward methodology starting from thiourea. The anti-proliferative activity of these compounds was evaluated across a diverse panel of eight cancer cell lines, with derivatives 7d and 7h showing efficacy against several hematological cancer types. Furthermore, all compounds were assessed for their antiviral potency against a panel of viruses. Compounds featuring a cyclopropylamino group and an aminoindane moiety exhibited remarkable efficacy against human coronavirus 229E (HCoV-229E). These findings highlight the pyrimidino[4,5-d]pyrimidine scaffold as an interesting framework for the design of novel antiviral agents against HCoVs, with compounds 7a, 7b, and 7f emerging as strong candidates for further investigation.
Collapse
Affiliation(s)
- Eleftheria A Georgiou
- Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Konstantinos Paraskevas
- Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Christina Koutra
- Department of Pharmacy, Division of Pharmacognosy and Natural Products Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Leentje Persoons
- Molecular Genetics and Therapeutics in Virology and Oncology Research Group, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49, P.O. Box 1043, 3000 Leuven, Belgium
| | - Dominique Schols
- Molecular Structural and Translational Virology Research Group, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49, P.O. Box 1043, 3000 Leuven, Belgium
| | - Steven De Jonghe
- Molecular Structural and Translational Virology Research Group, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49, P.O. Box 1043, 3000 Leuven, Belgium
| | - Ioannis K Kostakis
- Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| |
Collapse
|
5
|
Castañeda Cataña MA, Dodes Traian MM, Rivas Marquina AP, Marquez AB, Arrúa EC, Carlucci MJ, Damonte EB, Pérez OE, Sepúlveda CS. Design and characterization of BSA-mycophenolic acid nanocomplexes: Antiviral activity exploration. Int J Biol Macromol 2024; 265:131023. [PMID: 38513897 DOI: 10.1016/j.ijbiomac.2024.131023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/01/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
The interactions between bovine serum albumin (BSA) and mycophenolic acid (MPA) were investigated in silico through molecular docking and in vitro, using fluorescence spectroscopy. Dynamic light scattering and scanning electron microscopy were used to figure out the structure of MPA-Complex (MPA-C). The binding affinity between MPA and BSA was determined, yielding a Kd value of (12.0 ± 0.7) μM, and establishing a distance of 17 Å between the BSA and MPA molecules. The presence of MPA prompted protein aggregation, leading to the formation of MPA-C. The cytotoxicity of MPA-C and its ability to fight Junín virus (JUNV) were tested in A549 and Vero cell lines. It was found that treating infected cells with MPA-C decreased the JUNV yield and was more effective than free MPA in both cell line models for prolonged time treatments. Our results represent the first report of the antiviral activity of this type of BSA-MPA complex against JUNV, as assessed in cell culture model systems. MPA-C shows promise as a candidate for drug formulation against human pathogenic arenaviruses.
Collapse
Affiliation(s)
- Mayra A Castañeda Cataña
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). UBA-CONICET, 1428 Buenos Aires, Argentina
| | - Martín M Dodes Traian
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). UBA-CONICET, 1428 Buenos Aires, Argentina
| | - Andrea P Rivas Marquina
- Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy-CIDMEJu (CONICET-Universidad Nacional de Jujuy), Centro de Desarrollo Tecnológico General Savio, 4612 Palpalá, Jujuy, Argentina
| | - Agostina B Marquez
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). UBA-CONICET, 1428 Buenos Aires, Argentina
| | - Eva C Arrúa
- Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy-CIDMEJu (CONICET-Universidad Nacional de Jujuy), Centro de Desarrollo Tecnológico General Savio, 4612 Palpalá, Jujuy, Argentina
| | - María J Carlucci
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). UBA-CONICET, 1428 Buenos Aires, Argentina
| | - Elsa B Damonte
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), 1428 Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). UBA-CONICET, 1428 Buenos Aires, Argentina
| | - Oscar E Pérez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), 1428 Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). UBA-CONICET, 1428 Buenos Aires, Argentina
| | - Claudia S Sepúlveda
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), 1428 Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). UBA-CONICET, 1428 Buenos Aires, Argentina.
| |
Collapse
|
6
|
Sabbah DA, Hajjo R, Bardaweel SK, Zhong HA. Targeting the PI3K/AKT signaling pathway in anticancer research: a recent update on inhibitor design and clinical trials (2020-2023). Expert Opin Ther Pat 2024; 34:141-158. [PMID: 38557273 DOI: 10.1080/13543776.2024.2338100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION Recent years have witnessed great achievements in drug design and development targeting the phosphatidylinositol 3-kinase/protein kinase-B (PI3K/AKT) signaling pathway, a pathway central to cell growth and proliferation. The nearest neighbor protein-protein interaction networks for PI3K and AKT show the interplays between these target proteins which can be harnessed for drug discovery. In this review, we discuss the drug design and clinical development of inhibitors of PI3K/AKT in the past three years. We review in detail the structures, selectivity, efficacy, and combination therapy of 35 inhibitors targeting these proteins, classified based on the target proteins. Approaches to overcoming drug resistance and to minimizing toxicities are discussed. Future research directions for developing combinational therapy and PROTACs of PI3K and AKT inhibitors are also discussed. AREA COVERED This review covers clinical trial reports and patent literature on inhibitors of PI3K and AKT published between 2020 and 2023. EXPERT OPINION To address drug resistance and drug toxicity of inhibitors of PI3K and AKT, it is highly desirable to design and develop subtype-selective PI3K inhibitors or subtype-selective AKT1 inhibitors to minimize toxicity or to develop allosteric drugs that can form covalent bonds. The development of PROTACs of PI3Kα or AKT helps to reduce off-target toxicities.
Collapse
Affiliation(s)
- Dima A Sabbah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Rima Hajjo
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- National Center for Epidemics and Communicable Disease Control (JCDC), Amman, Jordan
| | - Sanaa K Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman, Jordan
| | - Haizhen A Zhong
- DSC 309, Department of Chemistry, The University of Nebraska at Omaha, Omaha, NE, USA
| |
Collapse
|
7
|
Khurshid R, Schulz JM, Hu J, Snowden TS, Reynolds RC, Schürer SC. Targeted degrader technologies as prospective SARS-CoV-2 therapies. Drug Discov Today 2024; 29:103847. [PMID: 38029836 PMCID: PMC10836335 DOI: 10.1016/j.drudis.2023.103847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/10/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
COVID-19 remains a severe public health threat despite the WHO declaring an end to the public health emergency in May 2023. Continual development of SARS-CoV-2 variants with resistance to vaccine-induced or natural immunity necessitates constant vigilance as well as new vaccines and therapeutics. Targeted protein degradation (TPD) remains relatively untapped in antiviral drug discovery and holds the promise of attenuating viral resistance development. From a unique structural design perspective, this review covers antiviral degrader merits and challenges by highlighting key coronavirus protein targets and their co-crystal structures, specifically illustrating how TPD strategies can refine existing SARS-CoV-2 3CL protease inhibitors to potentially produce superior protease-degrading agents.
Collapse
Affiliation(s)
- Rabia Khurshid
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Joseph M Schulz
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Jiaming Hu
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Timothy S Snowden
- The University of Alabama, Department of Chemistry and Biochemistry and Center for Convergent Bioscience and Medicine, 250 Hackberry Lane, Tuscaloosa, AL 35487-0336, USA
| | - Robert C Reynolds
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| | - Stephan C Schürer
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Institute for Data Science & Computing, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|