1
|
Yang F, Zhu R, Zheng A, An R, Lu W, Liang Y. Effective protection of biological tissues from severe blunt force injury by engineered nanoscale liquid flow. Sci Rep 2024; 14:28947. [PMID: 39578545 PMCID: PMC11584685 DOI: 10.1038/s41598-024-80490-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024] Open
Abstract
Blunt force trauma (BFT), the injury of the body by forceful impacts such as falls, motor vehicle crashes and collisions, causes damage to bio-organs that can lead to life-threatening situations. To address the unmet need of bioprotection materials for BFT, we developed a novel, liquid nanofoam (LN)-based system. The LN system employs a unique mechanism of energy absorption, i.e. the external force-aided, nanoscale liquid flow. Under mechanical loading, the LN system effectively protected human cells from force-induced deformation and cell death. In addition to effective mitigation of the upregulation of stress and inflammatory genes, LN prevented blunt-force-induced damage of multiple vital organs including liver, kidney, heart, and lungs. To our knowledge, this is the first material of its kind that is biocompatible and capable of effectively protecting biotissues from BFT on molecular, cellular and tissue levels.
Collapse
Affiliation(s)
- Fuming Yang
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Runqi Zhu
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Anqi Zheng
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Runsheng An
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Weiyi Lu
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, 48824, USA.
| | - Yun Liang
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
2
|
Han EY, Kim YJ. Establishment of a novel cell line for producing replication-competent adenovirus-free adenoviruses. BMC Biotechnol 2024; 24:67. [PMID: 39334326 PMCID: PMC11429178 DOI: 10.1186/s12896-024-00894-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Adenoviruses are commonly utilized as viral vectors for gene therapy, genetic vaccines, and recombinant protein expression. To generate replication-defective adenoviruses, E1-complementing cell lines such as HEK293A are utilized; however, limitations remain. Repeated passage of E1-deleted virus in HEK293A cells increases the occurrence of replication-competent adenoviruses (RCAs). In the present study, we developed a novel cell line originating from human primary cells. L132 cells were transduced two times with E1-encoded retrovirus and three times with E1A-encoded retrovirus. Finally, we selected the most productive L132 cell line for generation of RCA-free adenovirus, GT541. GT541 can serve as an alternative cell line to HEK293A and other adenovirus-producing cells.
Collapse
Affiliation(s)
- Eun Yeong Han
- GENEUINTECH Co., Ltd., Inje University, 197 Injero, Gimhae, Gyeongnam, 50834, Republic of Korea
| | - Yeon-Jeong Kim
- Laboratory of Microbiology and Immunology, College of Pharmacy, Inje University, 197 Injero, Gimhae, Gyeongnam, 50834, Republic of Korea.
- Inje Institute of Pharmaceutical Science and Research, Inje University, 197 Injero, Gimhae, Gyeongnam, 50834, Republic of Korea.
- Smart Marine Therapeutic Center, Inje University, 197 Injero, Gimhae, Gyeongnam, 50834, Republic of Korea.
| |
Collapse
|
3
|
Park A, Lee JY. Adenoviral Vector System: A Comprehensive Overview of Constructions, Therapeutic Applications and Host Responses. J Microbiol 2024; 62:491-509. [PMID: 39037484 DOI: 10.1007/s12275-024-00159-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 07/23/2024]
Abstract
Adenoviral vectors are crucial for gene therapy and vaccine development, offering a platform for gene delivery into host cells. Since the discovery of adenoviruses, first-generation vectors with limited capacity have evolved to third-generation vectors flacking viral coding sequences, balancing safety and gene-carrying capacity. The applications of adenoviral vectors for gene therapy and anti-viral treatments have expanded through the use of in vitro ligation and homologous recombination, along with gene editing advancements such as CRISPR-Cas9. Current research aims to maintain the efficacy and safety of adenoviral vectors by addressing challenges such as pre-existing immunity against adenoviral vectors and developing new adenoviral vectors from rare adenovirus types and non-human species. In summary, adenoviral vectors have great potential in gene therapy and vaccine development. Through continuous research and technological advancements, these vectors are expected to lead to the development of safer and more effective treatments.
Collapse
Affiliation(s)
- Anyeseu Park
- The Laboratory of Viromics and Evolution, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea
| | - Jeong Yoon Lee
- The Laboratory of Viromics and Evolution, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea.
| |
Collapse
|
4
|
Fischer J, Fedotova A, Bühler C, Darriba L, Schreiner S, Ruzsics Z. Expanding the Scope of Adenoviral Vectors by Utilizing Novel Tools for Recombination and Vector Rescue. Viruses 2024; 16:658. [PMID: 38793540 PMCID: PMC11125593 DOI: 10.3390/v16050658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
Recombinant adenoviruses are widely used in clinical and laboratory applications. Despite the wide variety of available sero- and genotypes, only a fraction is utilized in vivo. As adenoviruses are a large group of viruses, displaying many different tropisms, immune epitopes, and replication characteristics, the merits of translating these natural benefits into vector applications are apparent. This translation, however, proves difficult, since while research has investigated the application of these viruses, there are no universally applicable rules in vector design for non-classical adenovirus types. In this paper, we describe a generalized workflow that allows vectorization, rescue, and cloning of all adenoviral species to enable the rapid development of new vector variants. We show this using human and simian adenoviruses, further modifying a selection of them to investigate their gene transfer potential and build potential vector candidates for future applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Zsolt Ruzsics
- Institute of Virology, University Medical Center Freiburg, Medical Faculty, University of Freiburg, 79104 Freiburg, Germany; (J.F.); (A.F.); (S.S.)
| |
Collapse
|
5
|
Demirden SF, Kimiz-Gebologlu I, Oncel SS. Animal Cell Lines as Expression Platforms in Viral Vaccine Production: A Post Covid-19 Perspective. ACS OMEGA 2024; 9:16904-16926. [PMID: 38645343 PMCID: PMC11025085 DOI: 10.1021/acsomega.3c10484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/23/2024]
Abstract
Vaccines are considered the most effective tools for preventing diseases. In this sense, with the Covid-19 pandemic, the effects of which continue all over the world, humanity has once again remembered the importance of the vaccine. Also, with the various epidemic outbreaks that occurred previously, the development processes of effective vaccines against these viral pathogens have accelerated. By these efforts, many different new vaccine platforms have been approved for commercial use and have been introduced to the commercial landscape. In addition, innovations have been made in the production processes carried out with conventionally produced vaccine types to create a rapid response to prevent potential epidemics or pandemics. In this situation, various cell lines are being positioned at the center of the production processes of these new generation viral vaccines as expression platforms. Therefore, since the main goal is to produce a fast, safe, and effective vaccine to prevent the disease, in addition to existing expression systems, different cell lines that have not been used in vaccine production until now have been included in commercial production for the first time. In this review, first current viral vaccine types in clinical use today are described. Then, the reason for using cell lines, which are the expression platforms used in the production of these viral vaccines, and the general production processes of cell culture-based viral vaccines are mentioned. Also, selection parameters for animal cell lines as expression platforms in vaccine production are explained by considering bioprocess efficiency and current regulations. Finally, all different cell lines used in cell culture-based viral vaccine production and their properties are summarized, with an emphasis on the current and future status of cell cultures in industrial viral vaccine production.
Collapse
Affiliation(s)
| | | | - Suphi S. Oncel
- Ege University, Bioengineering Department, Izmir, 35100, Turkiye
| |
Collapse
|
6
|
Scarsella L, Ehrke-Schulz E, Paulussen M, Thal SC, Ehrhardt A, Aydin M. Advances of Recombinant Adenoviral Vectors in Preclinical and Clinical Applications. Viruses 2024; 16:377. [PMID: 38543743 PMCID: PMC10974029 DOI: 10.3390/v16030377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 05/23/2024] Open
Abstract
Adenoviruses (Ad) have the potential to induce severe infections in vulnerable patient groups. Therefore, understanding Ad biology and antiviral processes is important to comprehend the signaling cascades during an infection and to initiate appropriate diagnostic and therapeutic interventions. In addition, Ad vector-based vaccines have revealed significant potential in generating robust immune protection and recombinant Ad vectors facilitate efficient gene transfer to treat genetic diseases and are used as oncolytic viruses to treat cancer. Continuous improvements in gene delivery capacity, coupled with advancements in production methods, have enabled widespread application in cancer therapy, vaccine development, and gene therapy on a large scale. This review provides a comprehensive overview of the virus biology, and several aspects of recombinant Ad vectors, as well as the development of Ad vector, are discussed. Moreover, we focus on those Ads that were used in preclinical and clinical applications including regenerative medicine, vaccine development, genome engineering, treatment of genetic diseases, and virotherapy in tumor treatment.
Collapse
Affiliation(s)
- Luca Scarsella
- Department of Anesthesiology, Center for Clinical and Translational Research, Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany;
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany; (E.E.-S.); (A.E.)
- Laboratory of Experimental Pediatric Pneumology and Allergology, Center for Biomedical Education and Science (ZBAF), Department of Human Medicine, Faculty of Medicine, Witten/Herdecke University, 58453 Witten, Germany
| | - Eric Ehrke-Schulz
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany; (E.E.-S.); (A.E.)
| | - Michael Paulussen
- Chair of Pediatrics, University Children’s Hospital, Vestische Kinder- und Jugendklinik Datteln, Witten/Herdecke University, 45711 Datteln, Germany;
| | - Serge C. Thal
- Department of Anesthesiology, Center for Clinical and Translational Research, Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany;
| | - Anja Ehrhardt
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany; (E.E.-S.); (A.E.)
| | - Malik Aydin
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany; (E.E.-S.); (A.E.)
- Laboratory of Experimental Pediatric Pneumology and Allergology, Center for Biomedical Education and Science (ZBAF), Department of Human Medicine, Faculty of Medicine, Witten/Herdecke University, 58453 Witten, Germany
- Chair of Pediatrics, University Children’s Hospital, Vestische Kinder- und Jugendklinik Datteln, Witten/Herdecke University, 45711 Datteln, Germany;
- Institute for Medical Laboratory Diagnostics, Center for Clinical and Translational Research, Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany
| |
Collapse
|
7
|
Manfrini N, Notarbartolo S, Grifantini R, Pesce E. SARS-CoV-2: A Glance at the Innate Immune Response Elicited by Infection and Vaccination. Antibodies (Basel) 2024; 13:13. [PMID: 38390874 PMCID: PMC10885122 DOI: 10.3390/antib13010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/13/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
The COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has led to almost seven million deaths worldwide. SARS-CoV-2 causes infection through respiratory transmission and can occur either without any symptoms or with clinical manifestations which can be mild, severe or, in some cases, even fatal. Innate immunity provides the initial defense against the virus by sensing pathogen-associated molecular patterns and triggering signaling pathways that activate the antiviral and inflammatory responses, which limit viral replication and help the identification and removal of infected cells. However, temporally dysregulated and excessive activation of the innate immune response is deleterious for the host and associates with severe COVID-19. In addition to its defensive role, innate immunity is pivotal in priming the adaptive immune response and polarizing its effector function. This capacity is relevant in the context of both SARS-CoV-2 natural infection and COVID-19 vaccination. Here, we provide an overview of the current knowledge of the innate immune responses to SARS-CoV-2 infection and vaccination.
Collapse
Affiliation(s)
- Nicola Manfrini
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", 20122 Milan, Italy
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Samuele Notarbartolo
- Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Renata Grifantini
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", 20122 Milan, Italy
- CheckmAb Srl, 20122 Milan, Italy
| | - Elisa Pesce
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| |
Collapse
|
8
|
Leikas AJ, Ylä-Herttuala S, Hartikainen JEK. Adenoviral Gene Therapy Vectors in Clinical Use-Basic Aspects with a Special Reference to Replication-Competent Adenovirus Formation and Its Impact on Clinical Safety. Int J Mol Sci 2023; 24:16519. [PMID: 38003709 PMCID: PMC10671366 DOI: 10.3390/ijms242216519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Adenoviral vectors are commonly used in clinical gene therapy. Apart from oncolytic adenoviruses, vector replication is highly undesired as it may pose a safety risk for the treated patient. Thus, careful monitoring for the formation of replication-competent adenoviruses (RCA) during vector manufacturing is required. To render adenoviruses replication deficient, their genomic E1 region is deleted. However, it has been known for a long time that during their propagation, some viruses will regain their replication capability by recombination in production cells, most commonly HEK293. Recently developed RCA assays have revealed that many clinical batches contain more RCA than previously assumed and allowed by regulatory authorities. The clinical significance of the higher RCA content has yet to be thoroughly evaluated. In this review, we summarize the biology of adenovirus vectors, their manufacturing methods, and the origins of RCA formed during HEK293-based vector production. Lastly, we share our experience using minimally RCA-positive serotype 5 adenoviral vectors based on observations from our clinical cardiovascular gene therapy studies.
Collapse
Affiliation(s)
- Aleksi J. Leikas
- Heart Center, Kuopio University Hospital, 70200 Kuopio, Finland; (S.Y.-H.); (J.E.K.H.)
- Gene Therapy Unit, Kuopio University Hospital, 70200 Kuopio, Finland
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Seppo Ylä-Herttuala
- Heart Center, Kuopio University Hospital, 70200 Kuopio, Finland; (S.Y.-H.); (J.E.K.H.)
- Gene Therapy Unit, Kuopio University Hospital, 70200 Kuopio, Finland
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Juha E. K. Hartikainen
- Heart Center, Kuopio University Hospital, 70200 Kuopio, Finland; (S.Y.-H.); (J.E.K.H.)
- Gene Therapy Unit, Kuopio University Hospital, 70200 Kuopio, Finland
- School of Medicine, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| |
Collapse
|
9
|
Elahi SM, Jiang J, Nazemi-Moghaddam N, Gilbert R. A Method to Generate and Rescue Recombinant Adenovirus Devoid of Replication-Competent Particles in Animal-Origin-Free Culture Medium. Viruses 2023; 15:2152. [PMID: 38005830 PMCID: PMC10674172 DOI: 10.3390/v15112152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Adenoviruses are promising vectors for vaccine production and gene therapy. Despite all the efforts in removing animal-derived components such as fetal bovine serum (FBS) during the production of adenovirus vector (AdV), FBS is still frequently employed in the early stages of production. Conventionally, first-generation AdVs (E1 deleted) are generated in different variants of adherent HEK293 cells, and plaque purification (if needed) is performed in adherent cell lines in the presence of FBS. In this study, we generated an AdV stock in SF-BMAdR (A549 cells adapted to suspension culture in serum-free medium). We also developed a limiting dilution method using the same cell line to replace the plaque purification assay. By combining these two technologies, we were able to completely remove the need for FBS from the process of generating and producing AdVs. In addition, we demonstrated that the purified AdV stock is free of any replication-competent adenovirus (RCA). Furthermore, we demonstrated that our limiting dilution method could effectively rescue an AdV from a stock that is highly contaminated with RCA.
Collapse
Affiliation(s)
- Seyyed Mehdy Elahi
- Department of Production Platforms & Analytics, National Research Council Canada, Building Montreal, 6100 Avenue Royalmount, Montreal, QC H4P 2R2, Canada; (J.J.); (N.N.-M.); (R.G.)
| | - Jennifer Jiang
- Department of Production Platforms & Analytics, National Research Council Canada, Building Montreal, 6100 Avenue Royalmount, Montreal, QC H4P 2R2, Canada; (J.J.); (N.N.-M.); (R.G.)
| | - Nazila Nazemi-Moghaddam
- Department of Production Platforms & Analytics, National Research Council Canada, Building Montreal, 6100 Avenue Royalmount, Montreal, QC H4P 2R2, Canada; (J.J.); (N.N.-M.); (R.G.)
| | - Rénald Gilbert
- Department of Production Platforms & Analytics, National Research Council Canada, Building Montreal, 6100 Avenue Royalmount, Montreal, QC H4P 2R2, Canada; (J.J.); (N.N.-M.); (R.G.)
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
| |
Collapse
|
10
|
Wahid M, Jawed A, Mandal RK, Areeshi MY, El-Shall NA, Mohapatra RK, Tuli HS, Dhama K, Pellicano R, Fagoonee S, Haque S. Role of available COVID-19 vaccines in reducing deaths and perspective for next generation vaccines and therapies to counter emerging viral variants: an update. Minerva Med 2023; 114:683-697. [PMID: 37293890 DOI: 10.23736/s0026-4806.23.08509-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The COVID-19 disease wreaked havoc all over the world causing more than 6 million deaths out of over 519 million confirmed cases. It not only disturbed the human race health-wise but also caused huge economic losses and social disturbances. The utmost urgency to counter pandemic was to develop effective vaccines as well as treatments that could reduce the incidences of infection, hospitalization and deaths. The most known vaccines that could help in managing these parameters are Oxford-AstraZeneca (AZD1222), Pfizer-BioNTech (BNT162b2), Moderna (mRNA-1273) and Johnson & Johnson (Ad26.COV2.S). The effectiveness of AZD1222 vaccine in reducing deaths is 88% in the age group 40-59 years, touching 100% in the age group 16-44 years & 65-84 years. BNT162b2 vaccine also did well in reducing deaths due to COVID-19 (95% in the age group 40-49 years and 100% in the age group 16-44 years. Similarly, mRNA-1273 vaccine showed potential in reducing COVID-19 deaths with effectiveness ranging from 80.3 to 100% depending upon age group of the vaccinated individuals. Ad26.COV2.S vaccine was also 100% effective in reducing COVID-19 deaths. The SARS-CoV-2 emerging variants have emphasized the need of booster vaccine doses to enhance protective immunity in vaccinated individuals. Additionally, therapeutic effectiveness of Molnupiravir, Paxlovid and Evusheld are also providing resistance against the spread of COVID-19 disease as well as may be effective against emerging variants. This review highlights the progress in developing COVID-19 vaccines, their protective efficacies, advances being made to design more efficacious vaccines, and presents an overview on advancements in developing potent drugs and monoclonal antibodies for countering COVID-19 and emerging variants of SARS-CoV-2 including the most recently emerged and highly mutated Omicron variant.
Collapse
Affiliation(s)
- Mohd Wahid
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, University of Jazan, Jazan, Saudi Arabia
| | - Arshad Jawed
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, University of Jazan, Jazan, Saudi Arabia
| | - Raju K Mandal
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, University of Jazan, Jazan, Saudi Arabia
| | - Mohammed Y Areeshi
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, University of Jazan, Jazan, Saudi Arabia
| | - Nahed A El-Shall
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina, Egypt
| | - Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, India
| | - Hardeep S Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Rinaldo Pellicano
- Unit of Gastroenterology, Molinette Hospital, Città della Salute e della Scienza, Turin, Italy -
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging (CNR), Molecular Biotechnology Center, Turin, Italy
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, University of Jazan, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Center of Medical and Bio-Allied Health Sciences Research, University of Ajman, Ajman, United Arab Emirates
| |
Collapse
|
11
|
Fu Q, Polanco A, Lee YS, Yoon S. Critical challenges and advances in recombinant adeno-associated virus (rAAV) biomanufacturing. Biotechnol Bioeng 2023; 120:2601-2621. [PMID: 37126355 DOI: 10.1002/bit.28412] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/27/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023]
Abstract
Gene therapy is a promising therapeutic approach for genetic and acquired diseases nowadays. Among DNA delivery vectors, recombinant adeno-associated virus (rAAV) is one of the most effective and safest vectors used in commercial drugs and clinical trials. However, the current yield of rAAV biomanufacturing lags behind the necessary dosages for clinical and commercial use, which embodies a concentrated reflection of low productivity of rAAV from host cells, difficult scalability of the rAAV-producing bioprocess, and high levels of impurities materialized during production. Those issues directly impact the price of gene therapy medicine in the market, limiting most patients' access to gene therapy. In this context, the current practices and several critical challenges associated with rAAV gene therapy bioprocesses are reviewed, followed by a discussion of recent advances in rAAV-mediated gene therapy and other therapeutic biological fields that could improve biomanufacturing if these advances are integrated effectively into the current systems. This review aims to provide the current state-of-the-art technology and perspectives to enhance the productivity of rAAV while reducing impurities during production of rAAV.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Biomedical Engineering and Biotechnology, The University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Ashli Polanco
- Department of Chemical Engineering, The University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Yong Suk Lee
- Department of Pharmaceutical Sciences, The University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Seongkyu Yoon
- Department of Chemical Engineering, The University of Massachusetts Lowell, Lowell, Massachusetts, USA
| |
Collapse
|
12
|
Clever S, Volz A. Mouse models in COVID-19 research: analyzing the adaptive immune response. Med Microbiol Immunol 2023; 212:165-183. [PMID: 35661253 PMCID: PMC9166226 DOI: 10.1007/s00430-022-00735-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/15/2022] [Indexed: 11/29/2022]
Abstract
The emergence of SARS-CoV-2, the severe acute respiratory syndrome coronavirus type 2 causing the COVID-19 pandemic, resulted in a major necessity for scientific countermeasures. Investigations revealing the exact mechanisms of the SARS-CoV-2 pathogenesis provide the basis for the development of therapeutic measures and protective vaccines against COVID-19. Animal models are inevitable for infection and pre-clinical vaccination studies as well as therapeutic testing. A well-suited animal model, mimicking the pathology seen in human COVID-19 patients, is an important basis for these investigations. Several animal models were already used during SARS-CoV-2 studies with different clinical outcomes after SARS-CoV-2 infection. Here, we give an overview of different animal models used in SARS-CoV-2 infection studies with a focus on the mouse model. Mice provide a well-established animal model for laboratory use and several different mouse models have been generated and are being used in SARS-CoV-2 studies. Furthermore, the analysis of SARS-CoV-2-specific T cells during infection and in vaccination studies in mice is highlighted.
Collapse
Affiliation(s)
- Sabrina Clever
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Asisa Volz
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
13
|
Velayuthan LP, Moretto L, Tågerud S, Ušaj M, Månsson A. Virus-free transfection, transient expression, and purification of human cardiac myosin in mammalian muscle cells for biochemical and biophysical assays. Sci Rep 2023; 13:4101. [PMID: 36907906 PMCID: PMC10008826 DOI: 10.1038/s41598-023-30576-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/27/2023] [Indexed: 03/13/2023] Open
Abstract
Myosin expression and purification is important for mechanistic insights into normal function and mutation induced changes. The latter is particularly important for striated muscle myosin II where mutations cause several debilitating diseases. However, the heavy chain of this myosin is challenging to express and the standard protocol, using C2C12 cells, relies on viral infection. This is time and work intensive and associated with infrastructural demands and biological hazards, limiting widespread use and hampering fast generation of a wide range of mutations. We here develop a virus-free method to overcome these challenges. We use this system to transfect C2C12 cells with the motor domain of the human cardiac myosin heavy chain. After optimizing cell transfection, cultivation and harvesting conditions, we functionally characterized the expressed protein, co-purified with murine essential and regulatory light chains. The gliding velocity (1.5-1.7 µm/s; 25 °C) in the in vitro motility assay as well as maximum actin activated catalytic activity (kcat; 8-9 s-1) and actin concentration for half maximal activity (KATPase; 70-80 µM) were similar to those found previously using virus based infection. The results should allow new types of studies, e.g., screening of a wide range of mutations to be selected for further characterization.
Collapse
Affiliation(s)
- Lok Priya Velayuthan
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 391 82, Kalmar, Sweden
| | - Luisa Moretto
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 391 82, Kalmar, Sweden
| | - Sven Tågerud
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 391 82, Kalmar, Sweden
| | - Marko Ušaj
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 391 82, Kalmar, Sweden.
| | - Alf Månsson
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 391 82, Kalmar, Sweden.
| |
Collapse
|
14
|
Armas F, Chandra F, Lee WL, Gu X, Chen H, Xiao A, Leifels M, Wuertz S, Alm EJ, Thompson J. Contextualizing Wastewater-Based surveillance in the COVID-19 vaccination era. ENVIRONMENT INTERNATIONAL 2023; 171:107718. [PMID: 36584425 PMCID: PMC9783150 DOI: 10.1016/j.envint.2022.107718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
SARS-CoV-2 wastewater-based surveillance (WBS) offers a tool for cost-effective oversight of a population's infections. In the past two years, WBS has proven to be crucial for managing the pandemic across different geographical regions. However, the changing context of the pandemic due to high levels of COVID-19 vaccination warrants a closer examination of its implication towards SARS-CoV-2 WBS. Two main questions were raised: 1) Does vaccination cause shedding of viral signatures without infection? 2) Does vaccination affect the relationship between wastewater and clinical data? To answer, we review historical reports of shedding from viral vaccines in use prior to the COVID-19 pandemic including for polio, rotavirus, influenza and measles infection and provide a perspective on the implications of different COVID-19 vaccination strategies with regard to the potential shedding of viral signatures into the sewershed. Additionally, we reviewed studies that looked into the relationship between wastewater and clinical data and how vaccination campaigns could have affected the relationship. Finally, analyzing wastewater and clinical data from the Netherlands, we observed changes in the relationship concomitant with increasing vaccination coverage and switches in dominant variants of concern. First, that no vaccine-derived shedding is expected from the current commercial pipeline of COVID-19 vaccines that may confound interpretation of WBS data. Secondly, that breakthrough infections from vaccinated individuals contribute significantly to wastewater signals and must be interpreted in light of the changing dynamics of shedding from new variants of concern.
Collapse
Affiliation(s)
- Federica Armas
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Franciscus Chandra
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Wei Lin Lee
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Xiaoqiong Gu
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Hongjie Chen
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Amy Xiao
- Department of Biological Engineering, Massachusetts Institute of Technology, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology
| | - Mats Leifels
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
| | - Eric J Alm
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore; Department of Biological Engineering, Massachusetts Institute of Technology, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Janelle Thompson
- Campus for Research Excellence and Technological Enterprise (CREATE), Singapore; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore; Asian School of the Environment, Nanyang Technological University, Singapore.
| |
Collapse
|
15
|
Wang WC, Sayedahmed EE, Mittal SK. Significance of Preexisting Vector Immunity and Activation of Innate Responses for Adenoviral Vector-Based Therapy. Viruses 2022; 14:v14122727. [PMID: 36560730 PMCID: PMC9787786 DOI: 10.3390/v14122727] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
An adenoviral (AdV)-based vector system is a promising platform for vaccine development and gene therapy applications. Administration of an AdV vector elicits robust innate immunity, leading to the development of humoral and cellular immune responses against the vector and the transgene antigen, if applicable. The use of high doses (1011-1013 virus particles) of an AdV vector, especially for gene therapy applications, could lead to vector toxicity due to excessive levels of innate immune responses, vector interactions with blood factors, or high levels of vector transduction in the liver and spleen. Additionally, the high prevalence of AdV infections in humans or the first inoculation with the AdV vector result in the development of vector-specific immune responses, popularly known as preexisting vector immunity. It significantly reduces the vector efficiency following the use of an AdV vector that is prone to preexisting vector immunity. Several approaches have been developed to overcome this problem. The utilization of rare human AdV types or nonhuman AdVs is the primary strategy to evade preexisting vector immunity. The use of heterologous viral vectors, capsid modification, and vector encapsulation are alternative methods to evade vector immunity. The vectors can be optimized for clinical applications with comprehensive knowledge of AdV vector immunity, toxicity, and circumvention strategies.
Collapse
|
16
|
Sonugür FG, Babahan C, Abdi Abgarmi S, Akbulut H. Incubation Temperature and Period During Denarase Treatment and Microfiltration Affect the Yield of Recombinant Adenoviral Vectors During Downstream Processing. Mol Biotechnol 2022:10.1007/s12033-022-00616-8. [PMID: 36451062 PMCID: PMC9713150 DOI: 10.1007/s12033-022-00616-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
Abstract
Adenoviral vectors (AV) are commonly used as vaccine and gene therapy vehicles because of their ease of construction, ability to grow to high titers in the large-scale production process, and safety for human applications. However, the efficiency rate of downstream processes for adenoviral vectors still varies greatly. In the current study, we aimed to investigate the effect of the downstream treatment protocol and microfiltration of the harvested upstream material on viral vector yield. We compared the performance of the repeated freeze-thaw (RFT) and the Tween-20 detergent lysis (DLT) methods. In addition, the effects of the cell lysis method, incubation temperature, and time on viral yield were investigated. The samples were incubated at either room temperature or 37 °C for 1-, 2-, and 4-h periods. Samples were filtered with PES and SFCA membrane. Virus yield and infectivity were assayed by qPCR and immuno-titration. In conclusion, our results suggest that 2-h incubation gives the best results when incubated at 37 °C for denarase activity when Tween-20 is used for virus recovery. If the room temperature is preferred, 4-h incubation could be preferred. A phase 1 clinical trial (NCT05526183, January 21, 2022) was started with the recombinant adenovirus used in the study.
Collapse
Affiliation(s)
- Fatma Gizem Sonugür
- Department of Tumor Biology, Cancer Research Institute, Ankara University, Ankara, Turkey
| | - Cansu Babahan
- Department of Tumor Biology, Cancer Research Institute, Ankara University, Ankara, Turkey
| | - Samira Abdi Abgarmi
- Department of Tumor Biology, Cancer Research Institute, Ankara University, Ankara, Turkey
| | - Hakan Akbulut
- Department of Tumor Biology, Cancer Research Institute, Ankara University, Ankara, Turkey ,Department of Medical Oncology, School of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
17
|
Lee Z, Lu M, Irfanullah E, Soukup M, Hu WS. Construction of an rAAV Producer Cell Line through Synthetic Biology. ACS Synth Biol 2022; 11:3285-3295. [PMID: 36219557 PMCID: PMC9595119 DOI: 10.1021/acssynbio.2c00207] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Indexed: 01/24/2023]
Abstract
Recombinant adeno-associated viruses (rAAV) are important gene delivery vehicles for gene therapy applications. Their production relies on plasmid transfection or virus infection of producer cells, which pose a challenge in process scale-up. Here, we describe a template for a transfection-free, helper virus-free rAAV producer cell line using a synthetic biology approach. Three modules were integrated into HEK293 cells including an rAAV genome and multiple inducible promoters controlling the expression of AAV Rep, Cap, and helper coding sequences. The synthetic cell line generated infectious rAAV vectors upon induction. Independent control over replication and packaging activities allowed for manipulation of the fraction of capsid particles containing viral genomes, affirming the feasibility of tuning gene expression profiles in a synthetic cell line for enhancing the quality of the viral vector produced. The synthetic biology approach for rAAV production presented in this study can be exploited for scalable biomanufacturing.
Collapse
Affiliation(s)
| | | | - Eesha Irfanullah
- Department of Chemical Engineering
and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Morgan Soukup
- Department of Chemical Engineering
and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Wei-Shou Hu
- Department of Chemical Engineering
and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
18
|
Nie J, Sun Y, Ren H, Huang L, Feng K, Li Y, Bai Z. Optimization of an adenovirus-vectored zoster vaccine production process with chemically defined medium and a perfusion system. Biotechnol Lett 2022; 44:1347-1358. [PMID: 36183022 PMCID: PMC9526465 DOI: 10.1007/s10529-022-03302-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/11/2022] [Indexed: 11/02/2022]
Abstract
OBJECTIVES Cells grown in chemically defined medium are sensitive to shear force, potentially resulting in decreased cell growth. We optimized the perfusion process for HEK293 cell-based recombinant adenovirus-vectored zoster vaccine (Ad-HER) production with chemically defined medium. METHODS We first studied the pseudo-continuous strategies in shake flasks as a mimic of the bioreactor equipped with perfusion systems. Using design of experiment (DoE) in shake flasks, we obtained the regression models between Ad-HER titer/virus input-output ratio and three production process parameters: time of infection (TOI), multiplicity of infection (MOI), and virus production pH (pH). We then confirmed the effect of Pluronic F68 (PF-68) at 3.0 g/L on HEK293 cell growth and Ad-HER production in shake flasks and a 2 L benchtop bioreactor. RESULTS The optimized process was scale-up to a 2 L benchtop bioreactor with the PATFP perfusion system, which yielded cell density of 7.4 × 106 cells/mL and Ad-HER titer of 9.8 × 109 IFU/mL at 2 dpi, comparable to the bioreactor with a ATF2 system. CONCLUSION This optimization strategy could be used to develop a robust process with stable cell culture performance and adenovirus titer. Increasing PF-68 concentration in chemically defined medium could protect cells from shear stress generated by perfusion system.
Collapse
Affiliation(s)
- Jianqi Nie
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China
| | - Yang Sun
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China
| | - He Ren
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China
| | - Lingling Huang
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China
| | - Kai Feng
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China
| | - Ye Li
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China.
| | - Zhonghu Bai
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China.
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
19
|
Tsilingiris D, Vallianou NG, Karampela I, Muscogiuri G, Dalamaga M. Use of adenovirus type-5 vector vaccines in COVID-19: potential implications for metabolic health? Minerva Endocrinol (Torino) 2022; 47:264-269. [PMID: 35621112 DOI: 10.23736/s2724-6507.22.03797-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Dimitrios Tsilingiris
- First Department of Propedeutic Internal Medicine, School of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, Athens, Greece -
| | - Natalia G Vallianou
- First Department of Internal Medicine, Evangelismos General Hospital, Athens, Greece
| | - Irene Karampela
- Second Department of Critical Care, Medical School, Attikon General University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Giovanna Muscogiuri
- Unit of Endocrinology, Department of Clinical Medicine and Surgery, School of Medicine, University of Naples Federico II, Naples, Italy.,Unit of Endocrinology, Department of Clinical Medicine and Surgery, School of Medicine, Centro Italiano per la Cura e il Benessere del Patiente con Obesità (CIBO), University of Naples Federico II, Naples, Italy
| | - Maria Dalamaga
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
20
|
Folegatti PM, Jenkin D, Morris S, Gilbert S, Kim D, Robertson JS, Smith ER, Martin E, Gurwith M, Chen RT. Vaccines based on the replication-deficient simian adenoviral vector ChAdOx1: Standardized template with key considerations for a risk/benefit assessment. Vaccine 2022; 40:5248-5262. [PMID: 35715352 PMCID: PMC9194875 DOI: 10.1016/j.vaccine.2022.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/10/2022] [Accepted: 06/02/2022] [Indexed: 02/07/2023]
Abstract
Replication-deficient adenoviral vectors have been under investigation as a platform technology for vaccine development for several years and have recently been successfully deployed as an effective COVID-19 counter measure. A replication-deficient adenoviral vector based on the simian adenovirus type Y25 and named ChAdOx1 has been evaluated in several clinical trials since 2012. The Brighton Collaboration Benefit-Risk Assessment of VAccines by TechnolOgy (BRAVATO) was formed to evaluate the safety and other key features of new platform technology vaccines. This manuscript reviews key features of the ChAdOx1-vectored vaccines. The simian adenovirus Y25 was chosen as a strategy to circumvent pre-existing immunity to common human adenovirus serotypes which could impair immune responses induced by adenoviral vectored vaccines. Deletion of the E1 gene renders the ChAdOx1 vector replication incompetent and further genetic engineering of the E3 and E4 genes allows for increased insertional capability and optimizes vaccine manufacturing processes. ChAdOx1 vectored vaccines can be manufactured in E1 complementing cell lines at scale and are thermostable. The first ChAdOx1 vectored vaccines approved for human use, against SARS-CoV-2, received emergency use authorization in the UK on 30th December 2020, and is now approved in more than 180 countries. Safety data were compiled from phase I-III clinical trials of ChAdOx1 vectored vaccines expressing different antigens (influenza, tuberculosis, malaria, meningococcal B, prostate cancer, MERS-CoV, Chikungunya, Zika and SARS-CoV-2), conducted by the University of Oxford, as well as post marketing surveillance data for the COVID-19 Oxford-AstraZeneca vaccine. Overall, ChAdOx1 vectored vaccines have been well tolerated. Very rarely, thrombosis with thrombocytopenia syndrome (TTS), capillary leak syndrome (CLS), immune thrombocytopenia (ITP), and Guillain-Barre syndrome (GBS) have been reported following mass administration of the COVID-19 Oxford-AstraZeneca vaccine. The benefits of this COVID-19 vaccination have outweighed the risks of serious adverse events in most settings, especially with mitigation of risks when possible. Extensive immunogenicity clinical evaluation of ChAdOx1 vectored vaccines reveal strong, durable humoral and cellular immune responses to date; studies to refine the COVID-19 protection (e.g., via homologous/heterologous booster, fractional dose) are also underway. New prophylactic and therapeutic vaccines based on the ChAdOx1 vector are currently undergoing pre-clinical and clinical assessment, including vaccines against viral hemorrhagic fevers, Nipah virus, HIV, Hepatitis B, amongst others.
Collapse
Affiliation(s)
| | | | | | | | - Denny Kim
- Brighton Collaboration, a program of the Task Force for Global Health, Decatur, GA, USA
| | - James S. Robertson
- Brighton Collaboration, a program of the Task Force for Global Health, Decatur, GA, USA
| | - Emily R. Smith
- Brighton Collaboration, a program of the Task Force for Global Health, Decatur, GA, USA,Corresponding author
| | - Emalee Martin
- Brighton Collaboration, a program of the Task Force for Global Health, Decatur, GA, USA
| | - Marc Gurwith
- Brighton Collaboration, a program of the Task Force for Global Health, Decatur, GA, USA
| | - Robert T. Chen
- Brighton Collaboration, a program of the Task Force for Global Health, Decatur, GA, USA
| | | |
Collapse
|
21
|
Baldassarri S, Benati D, D’Alessio F, Patrizi C, Cattin E, Gentile M, Raggioli A, Recchia A. Engineered Sleeping Beauty Transposon as Efficient System to Optimize Chimp Adenoviral Production. Int J Mol Sci 2022; 23:ijms23147538. [PMID: 35886882 PMCID: PMC9316264 DOI: 10.3390/ijms23147538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/01/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Sleeping Beauty (SB) is the first DNA transposon employed for efficient transposition in vertebrate cells, opening new applications for genetic engineering and gene therapies. A transposon-based gene delivery system holds the favourable features of non-viral vectors and an attractive safety profile. Here, we employed SB to engineer HEK293 cells for optimizing the production of a chimpanzee Adenovector (chAd) belonging to the Human Mastadenovirus C species. To date, chAd vectors are employed in several clinical settings for infectious diseases, last but not least COVID-19. A robust, efficient and quick viral vector production could advance the clinical application of chAd vectors. To this aim, we firstly swapped the hAd5 E1 with chAd-C E1 gene by using the CRISPR/Cas9 system. We demonstrated that in the absence of human Ad5 E1, chimp Ad-C E1 gene did not support HEK293 survival. To improve chAd-C vector production, we engineered HEK293 cells to stably express the chAd-C precursor terminal protein (ch.pTP), which plays a crucial role in chimpanzee Adenoviral DNA replication. The results indicate that exogenous ch.pTP expression significantly ameliorate the packaging and amplification of recombinant chAd-C vectors thus, the engineered HEK293ch.pTP cells could represent a superior packaging cell line for the production of these vectors.
Collapse
Affiliation(s)
- Samantha Baldassarri
- Centre for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (S.B.); (D.B.); (C.P.); (E.C.)
| | - Daniela Benati
- Centre for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (S.B.); (D.B.); (C.P.); (E.C.)
| | - Federica D’Alessio
- ReiThera S.r.l., 00128 Rome, Italy; (F.D.); (M.G.); (A.R.)
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80138 Naples, Italy
| | - Clarissa Patrizi
- Centre for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (S.B.); (D.B.); (C.P.); (E.C.)
| | - Eleonora Cattin
- Centre for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (S.B.); (D.B.); (C.P.); (E.C.)
| | | | | | - Alessandra Recchia
- Centre for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (S.B.); (D.B.); (C.P.); (E.C.)
- Correspondence:
| |
Collapse
|
22
|
Preparation and identification of a single domain antibody specific for adenovirus vectors and its application to the immunoaffinity purification of adenoviruses. AMB Express 2022; 12:80. [PMID: 35723787 PMCID: PMC9207862 DOI: 10.1186/s13568-022-01422-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/11/2022] [Indexed: 11/10/2022] Open
Abstract
Adenovirus belongs to the family of Adenoviridae. As a vaccine carrier, it has high safety and stimulates the body to produce cellular immunity and humoral immunity. This study prepared an adenoviral vector-specific single-domain antibody for use in adenovirus identification and purification. We successfully constructed a single domain antibody phage display library with a capacity of 1.8 × 109 by immunizing and cloning the VHH gene from Bactrian camel. After the second round of biopanning, clones specific for adenovirus were screened using phage ELISA. Twenty-two positive clones were obtained, and two clones with the highest binding affinity from ELISA were selected and named sdAb 5 and sdAb 31 for further application. The recombinant single-domain antibody was solublely expressed in E. coli and specifically bound to adenoviruses rAd26, ChAd63 and HAd5 in ELISA and live cell immunofluorescence assays. We established an effective method for immunoaffinity purification of adenovirus by immobilizing the single domain antibody to Sepharose beads, and it may be used to selectively capture adenoviruses from cell culture medium. The preparation of the adenovirus-specific single-domain antibody lays a foundation for the one-step immunoaffinity purification and identification of adenoviruses.
Collapse
|
23
|
Shoushtari M, Roohvand F, Salehi-Vaziri M, Arashkia A, Bakhshi H, Azadmanesh K. Adenovirus vector-based vaccines as forefront approaches in fighting the battle against flaviviruses. Hum Vaccin Immunother 2022; 18:2079323. [PMID: 35714271 PMCID: PMC9481145 DOI: 10.1080/21645515.2022.2079323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Flaviviruses are arthropod-borne viruses (arboviruses) that have been recently considered among the significant public health problems in defined geographical regions. In this line, there have been vaccines approved for some flaviviruses including dengue virus (DENV), Japanese encephalitis virus (JEV), yellow fever virus (YFV), and tick-borne encephalitis virus (TBEV), although the efficiency of such vaccines thought to be questionable. Surprisingly, there are no effective vaccine for many other hazardous flaviviruses, including West Nile and Zika viruses. Furthermore, in spite of approved vaccines for some flaviviruses, for example DENV, alternative prophylactic vaccines seem to be still needed for the protection of a broader population, and it originates from the unsatisfying safety, and the efficacy of vaccines that have been introduced. Thus, adenovirus vector-based vaccine candidates are suggested to be effective, safe, and reliable. Interestingly, recent widespread use of adenovirus vector-based vaccines for the COVID-19 pandemic have highlighted the importance and feasibility of their widespread application. In this review, the applicability of adenovirus vector-based vaccines, as promising approaches to harness the diseases caused by Flaviviruses, is discussed.
Collapse
Affiliation(s)
| | - Farzin Roohvand
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Mostafa Salehi-Vaziri
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory), Pasteur Institute of Iran, Tehran, Iran
| | - Arash Arashkia
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Hasan Bakhshi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Kayhan Azadmanesh
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
24
|
Das S, Kar SS, Samanta S, Banerjee J, Giri B, Dash SK. Immunogenic and reactogenic efficacy of Covaxin and Covishield: a comparative review. Immunol Res 2022; 70:289-315. [PMID: 35192185 PMCID: PMC8861611 DOI: 10.1007/s12026-022-09265-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2 is an RNA virus that was identified for the first time in December 2019 in Wuhan, China. The World Health Organization (WHO) labeled the novel coronavirus (COVID-19) outbreak a worldwide pandemic on March 11, 2020, due to its widespread infectivity pattern. Because of the catastrophic COVID-19 outbreak, the development of safe and efficient vaccinations has become a key priority in every health sector throughout the globe. On the 13th of January 2021, the vaccination campaign against SARS-CoV-2 was launched in India and started the administration of two types of vaccines known as Covaxin and Covishield. Covishield is an adenovirus vector-based vaccine, and Covaxin was developed by a traditional method of vaccine formulation, which is composed of adjuvanted inactivated viral particles. Each vaccine's utility or efficiency is determined by its formulation, adjuvants, and mode of action. The efficacy of the vaccination depends on numeral properties like generation antibodies, memory cells, and cell-mediated immunity. According to the third-phase experiment, Covishield showed effectiveness of nearly 90%, whereas Covaxin has an effectiveness of about 80%. Both vaccination formulations in India have so far demonstrated satisfactory efficacy against numerous mutant variants of SARS-CoV-2. The efficacy of Covishield may be diminished if the structure of spike (S) protein changes dramatically in the future. In this situation, Covaxin might be still effective for such variants owing to its ability to produce multiple antibodies against various epitopes. This study reviews the comparative immunogenic and therapeutic efficacy of Covaxin and Covishield and also discussed the probable vaccination challenges in upcoming days.
Collapse
Affiliation(s)
- Swarnali Das
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Suvrendu Sankar Kar
- Department of Medicine, R.G.Kar Medical College, Kolkata, 700004, West Bengal, India
| | - Sovan Samanta
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Jhimli Banerjee
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Biplab Giri
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Sandeep Kumar Dash
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India.
| |
Collapse
|
25
|
Phillips S, Ramos PV, Veeraraghavan P, Young SM. VikAD, a Vika site-specific recombinase-based system for efficient and scalable helper-dependent adenovirus production. Mol Ther Methods Clin Dev 2022; 24:117-126. [PMID: 35024378 PMCID: PMC8718833 DOI: 10.1016/j.omtm.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/04/2021] [Indexed: 11/09/2022]
Abstract
Recombinant viral vectors have become integral tools for basic in vivo research applications. Helper-dependent adenoviral (HdAd) vectors have a large packaging capacity of ∼36 kb of DNA that mediate long-term transgene expression in vitro and in vivo. The large carrying capacity of HdAd enables basic research or clinical applications requiring the delivery of large genes or multiple transgenes, which cannot be packaged into other widely used viral vectors. Currently, common HdAd production systems use an Ad helper virus (HV) with a packaging signal (Ψ) that is flanked by either loxP or FRT sites, which is excised in producer cells expressing Cre or Flp recombinases to prevent HV packaging. However, these production systems prevent the use of HdAd vectors for genetic strategies that rely on Cre or Flp recombination for cell-type-specific expression. To overcome these limitations, we developed the VikAD production system, which is based on producer cells expressing the Vika recombinase and an HV that contains a Ψ flanked by vox sites. The availability of this production system will greatly expand the utility and flexibility of HdAd vectors for use in research applications to monitor and manipulate cellular activity with increased specificity.
Collapse
Affiliation(s)
- Stacia Phillips
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, PBDB 5322, 169 Newton Road, Iowa City, IA 52242, USA
| | - Paula Valino Ramos
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, PBDB 5322, 169 Newton Road, Iowa City, IA 52242, USA
| | - Priyadharishini Veeraraghavan
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, PBDB 5322, 169 Newton Road, Iowa City, IA 52242, USA
| | - Samuel M. Young
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, PBDB 5322, 169 Newton Road, Iowa City, IA 52242, USA
- Department of Otolaryngology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| |
Collapse
|
26
|
A Single Amino Acid Switch in the Adenoviral DNA Binding Protein Abrogates Replication Center Formation and Productive Viral Infection. mBio 2022; 13:e0014422. [PMID: 35254132 PMCID: PMC9040859 DOI: 10.1128/mbio.00144-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Adenoviruses are very efficient high-capacity vaccine vectors and are common gene delivery systems. Despite their extensive use in preclinical models and clinical trials over the past decades, adenoviral vectors still require optimization. To achieve that, more thorough characterizations of adenoviral genes and gene products, as well as pathogen-host interactions, are indispensable. The adenoviral DNA binding protein (DBP) is a key regulatory protein involved in various cellular and viral processes. Here, we show that single amino acid exchange mutations in human adenovirus C5 (HAdV-C5) DBP strongly influence adenoviral replication by altering interaction with the cellular ubiquitination machinery. Specifically, phenotypic analyses of DBP mutants demonstrate that single amino acid substitutions can regulate interactions with the cellular USP7 deubiquitinase, impede viral DNA synthesis, and completely abolish viral late protein expression and progeny production. Importantly, cells infected with the DBP mutant UBM5 consistently lack DBP-positive replication centers (RCs), which are usually formed during the transition from the early to the late phase of infection. Our findings demonstrate that DBP regulates a key step at the onset of the late phase of infection and that this activity is unambiguously linked to the formation and integrity of viral RCs. These data provide the experimental basis for future work that targets DBP and its interference with the formation of viral RCs during productive infection. Consequently, this work will have immediate impact on DNA virus and adenovirus research in general and, potentially, also on safety optimization of existing and development of novel adenoviral vectors and anti-adenoviral compounds.
Collapse
|
27
|
Biegert GWG, Rosewell Shaw A, Suzuki M. Current development in adenoviral vectors for cancer immunotherapy. Mol Ther Oncolytics 2021; 23:571-581. [PMID: 34938857 DOI: 10.1016/j.omto.2021.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Adenoviruses are well characterized and thus easily modified to generate oncolytic vectors that directly lyse tumor cells and can be "armed" with transgenes to promote lysis, antigen presentation, and immunostimulation. Oncolytic adenoviruses (OAds) are safe, versatile, and potent immunostimulants in patients. Since transgene expression is restricted to the tumor, adenoviral transgenes overcome the toxicities and short half-life of systemically administered cytokines, immune checkpoint blockade molecules, and bispecific T cell engagers. While OAds expressing immunostimulatory molecules ("armed" OAds) have demonstrated anti-tumor potential in preclinical solid tumor models, the efficacy has not translated into significant clinical outcomes as a monotherapy. However, OAds synergize with established standards of care and novel immunotherapeutic agents, providing a multifaceted means to address complexities associated with solid tumors. Critically, armed OAds revitalize endogenous and adoptively transferred immune cells while simultaneously enhancing their anti-tumor function. To properly evaluate these novel vectors and reduce the gap in the cycle between bench-to-bedside and back, improving model systems must be a priority. The future of OAds will involve a multidimensional approach that provides immunostimulatory molecules, immune checkpoint blockade, and/or immune engagers in concert with endogenous and exogenous immune cells to initiate durable and comprehensive anti-tumor responses.
Collapse
Affiliation(s)
- Greyson Willis Grossman Biegert
- Department of Medicine, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA.,Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
| | - Amanda Rosewell Shaw
- Department of Medicine, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA.,Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
| | - Masataka Suzuki
- Department of Medicine, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA.,Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
28
|
Steinle H, Weber J, Stoppelkamp S, Große-Berkenbusch K, Golombek S, Weber M, Canak-Ipek T, Trenz SM, Schlensak C, Avci-Adali M. Delivery of synthetic mRNAs for tissue regeneration. Adv Drug Deliv Rev 2021; 179:114007. [PMID: 34710530 DOI: 10.1016/j.addr.2021.114007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/03/2021] [Accepted: 10/12/2021] [Indexed: 02/06/2023]
Abstract
In recent years, nucleic acid-based therapeutics have gained increasing importance as novel treatment options for disease prevention and treatment. Synthetic messenger RNAs (mRNAs) are promising nucleic acid-based drugs to transiently express desired proteins that are missing or defective. Recently, synthetic mRNA-based vaccines encoding viral proteins have been approved for emergency use against COVID-19. Various types of vehicles, such as lipid nanoparticles (LNPs) and liposomes, are being investigated to enable the efficient uptake of mRNA molecules into desired cells. In addition, the introduction of novel chemical modifications into mRNAs increased the stability, enabled the modulation of nucleic acid-based drugs, and increased the efficiency of mRNA-based therapeutic approaches. In this review, novel and innovative strategies for the delivery of synthetic mRNA-based therapeutics for tissue regeneration are discussed. Moreover, with this review, we aim to highlight the versatility of synthetic mRNA molecules for various applications in the field of regenerative medicine and also discuss translational challenges and required improvements for mRNA-based drugs.
Collapse
Affiliation(s)
- Heidrun Steinle
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Josefin Weber
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Sandra Stoppelkamp
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Katharina Große-Berkenbusch
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Sonia Golombek
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Marbod Weber
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Tuba Canak-Ipek
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Sarah-Maria Trenz
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Christian Schlensak
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Meltem Avci-Adali
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany.
| |
Collapse
|
29
|
Elkashif A, Alhashimi M, Sayedahmed EE, Sambhara S, Mittal SK. Adenoviral vector-based platforms for developing effective vaccines to combat respiratory viral infections. Clin Transl Immunology 2021; 10:e1345. [PMID: 34667600 PMCID: PMC8510854 DOI: 10.1002/cti2.1345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
Since the development of the first vaccine against smallpox over two centuries ago, vaccination strategies have been at the forefront of significantly impacting the incidences of infectious diseases globally. However, the increase in the human population, deforestation and climate change, and the rise in worldwide travel have favored the emergence of new viruses with the potential to cause pandemics. The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is a cruel reminder of the impact of novel pathogens and the suboptimal capabilities of conventional vaccines. Therefore, there is an urgent need to develop new vaccine strategies that allow the production of billions of doses in a short duration and are broadly protective against emerging and re-emerging infectious diseases. Extensive knowledge of the molecular biology and immunology of adenoviruses (Ad) has favored Ad vectors as platforms for vaccine design. The Ad-based vaccine platform represents an attractive strategy as it induces robust humoral and cell-mediated immune responses and can meet the global demand in a pandemic situation. This review describes the status of Ad vector-based vaccines in preclinical and clinical studies for current and emerging respiratory viruses, particularly coronaviruses, influenza viruses and respiratory syncytial viruses.
Collapse
Affiliation(s)
- Ahmed Elkashif
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| | - Marwa Alhashimi
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| | - Ekramy E Sayedahmed
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| | | | - Suresh K Mittal
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| |
Collapse
|
30
|
Wang Z, Zhang X. Adenovirus vector-attributed hepatotoxicity blocks clinical application in gene therapy. Cytotherapy 2021; 23:1045-1052. [PMID: 34548241 DOI: 10.1016/j.jcyt.2021.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023]
Abstract
Adenoviruses (Ads), common self-limiting pathogens in humans and animals, usually cause conjunctivitis, mild upper respiratory tract infection or gastroenteritis in humans and hepatotoxicity syndrome in chickens and dogs, posing great threats to public health and livestock husbandry. Artificially modified Ads, which wipe out virulence-determining genes, are the most frequently used viral vectors in gene therapy, and some Ad vector (AdV)-related medicines and vaccines have been licensed and applied. Inherent liver tropism enables AdVs to specifically deliver drugs/genes to the liver; however, AdVs are closely associated with acute hepatotoxicity in immunocompromised individuals, and the side effects of AdVs, which stimulate a strong inflammatory reaction in the liver and cause acute hepatotoxicity, have largely limited clinical application. Therefore, this review systematically elucidates the intimate relationship between AdVs and hepatotoxicity in terms of virus and host and precisely illustrates the accumulated understanding in this field over the past decades. This review demonstrates the liver tropism of AdVs and molecular mechanism of AdV-induced hepatotoxicity and looks at the studies on AdV-mediated animal hepatotoxicity, which will undoubtedly deepen the understanding of AdV-caused liver injury and be of benefit in the further safe development of AdVs.
Collapse
Affiliation(s)
- Zeng Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.
| | - Xiaozhan Zhang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| |
Collapse
|
31
|
Verdecia M, Kokai-Kun JF, Kibbey M, Acharya S, Venema J, Atouf F. COVID-19 vaccine platforms: Delivering on a promise? Hum Vaccin Immunother 2021; 17:2873-2893. [PMID: 34033528 PMCID: PMC8381795 DOI: 10.1080/21645515.2021.1911204] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
The emergence of the novel SARS-CoV-2 and COVID-19 has brought into sharp focus the need for a vaccine to prevent this disease. Vaccines have saved millions of lives since their introduction to the public over 200 years ago. The potential for vaccination reached new heights in the mid-20th century with the development of technologies that expanded the ability to create novel vaccines. Since then, there has been continued technological advancement in vaccine development. The resulting platforms provide the promise for solutions for many infectious diseases, including those that have been with us for decades as well as those just now emerging. Each vaccine platform represents a different technology with a unique set of advantages and challenges, especially when considering manufacturing. Therefore, it is essential to understand each platform as a separate product and process with its specific quality considerations. This review outlines the relevant platforms for developing a vaccine for SARS-CoV-2 and discusses the advantages and disadvantages of each.
Collapse
Affiliation(s)
- Mark Verdecia
- United States Pharmacopeial Convention, Rockville, MD, USA
| | | | - Maura Kibbey
- United States Pharmacopeial Convention, Rockville, MD, USA
| | - Sarita Acharya
- United States Pharmacopeial Convention, Rockville, MD, USA
| | - Jaap Venema
- United States Pharmacopeial Convention, Rockville, MD, USA
| | - Fouad Atouf
- United States Pharmacopeial Convention, Rockville, MD, USA
| |
Collapse
|
32
|
Developing-country vaccine manufacturers' technical capabilities can make a difference in global immunization. Vaccine 2021; 39:5153-5161. [PMID: 34362602 PMCID: PMC8330991 DOI: 10.1016/j.vaccine.2021.07.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/31/2021] [Accepted: 07/16/2021] [Indexed: 12/28/2022]
Abstract
Members of the Developing Countries Vaccine Manufacturers’ Network (DCVMN) have been actively engaged in the development of COVID-19 vaccine candidates. According to the WHO COVID-19 vaccine landscape updated on 29 December 2020, 18 member manufacturers had vaccines in preclinical or clinical trials, including three members with candidates in Phase III trials. Once successful candidates have been identified there will be a need for large scale vaccine manufacturing and supply, in which DCVMN member manufacturers can play a key role. In an internal survey in 2019, DCVMN members reported the capability to supply over 3.5 billion vaccine doses annually, and the provision of over 50 distinct vaccines to 170 countries. To describe the capabilities of DCVMN member manufacturers more precisely, a 121-question survey was circulated to 41 Network members. The survey assessed the manufacturers’ capabilities in utilizing various technology platforms, cell cultures and filling technologies, in addition to their capacities for manufacturing drug products. The survey also evaluated manufacturers’ preparedness to dedicate existing capacities to COVID-19 vaccine production. Results revealed that sampled manufacturers have strong capabilities for manufacturing vaccines based on recombinant technologies, particularly with mammalian cells, and microbial and yeast expression systems. Capabilities in utilizing cell cultures were distributed across multiple cell types, however manufacturing capacities with Vero and CHO cells were prominent. Formulating and filling findings illustrated further large-scale capabilities of Network members. Sampled manufacturers reported that over 50% of their capacity for vaccine manufacturing could be dedicated to COVID-19 vaccine production.
Collapse
|
33
|
Tessarollo NG, Domingues ACM, Antunes F, da Luz JCDS, Rodrigues OA, Cerqueira OLD, Strauss BE. Nonreplicating Adenoviral Vectors: Improving Tropism and Delivery of Cancer Gene Therapy. Cancers (Basel) 2021; 13:1863. [PMID: 33919679 PMCID: PMC8069790 DOI: 10.3390/cancers13081863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Recent preclinical and clinical studies have used viral vectors in gene therapy research, especially nonreplicating adenovirus encoding strategic therapeutic genes for cancer treatment. Adenoviruses were the first DNA viruses to go into therapeutic development, mainly due to well-known biological features: stability in vivo, ease of manufacture, and efficient gene delivery to dividing and nondividing cells. However, there are some limitations for gene therapy using adenoviral vectors, such as nonspecific transduction of normal cells and liver sequestration and neutralization by antibodies, especially when administered systemically. On the other hand, adenoviral vectors are amenable to strategies for the modification of their biological structures, including genetic manipulation of viral proteins, pseudotyping, and conjugation with polymers or biological membranes. Such modifications provide greater specificity to the target cell and better safety in systemic administration; thus, a reduction of antiviral host responses would favor the use of adenoviral vectors in cancer immunotherapy. In this review, we describe the structural and molecular features of nonreplicating adenoviral vectors, the current limitations to their use, and strategies to modify adenoviral tropism, highlighting the approaches that may allow for the systemic administration of gene therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bryan E. Strauss
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of São Paulo/LIM24, University of São Paulo School of Medicine, São Paulo 01246-000, Brazil; (N.G.T.); (A.C.M.D.); (F.A.); (J.C.d.S.d.L.); (O.A.R.); (O.L.D.C.)
| |
Collapse
|
34
|
Chang J. Adenovirus Vectors: Excellent Tools for Vaccine Development. Immune Netw 2021; 21:e6. [PMID: 33728099 PMCID: PMC7937504 DOI: 10.4110/in.2021.21.e6] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 12/16/2022] Open
Abstract
Adenovirus was originally used as a vector for gene therapy. In recent years, with the development of the next-generation vectors with increased safety and high immunogenicity to transgene products, its utility as a vaccine vector has continued to increase. Adenovirus-based vaccines are currently being tested not only to prevent various infectious diseases but also to be applied as cancer vaccines. In this review, I discuss the innate and adaptive aspects of the immunological characteristics of adenovirus vectors and further examine the current status of advanced adenovirus-based vaccine development. Various methods that can overcome the limitations of currently used adenoviruses as vaccine vehicles are also discussed. Through this study, I hope that vaccine development using adenovirus vectors will be expedited and more successful.
Collapse
Affiliation(s)
- Jun Chang
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| |
Collapse
|
35
|
Bouazzaoui A, Abdellatif AAH, Al-Allaf FA, Bogari NM, Al-Dehlawi S, Qari SH. Strategies for Vaccination: Conventional Vaccine Approaches Versus New-Generation Strategies in Combination with Adjuvants. Pharmaceutics 2021; 13:pharmaceutics13020140. [PMID: 33499096 PMCID: PMC7911318 DOI: 10.3390/pharmaceutics13020140] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 01/08/2023] Open
Abstract
The current COVID-19 pandemic, caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), has raised significant economic, social, and psychological concerns. The rapid spread of the virus, coupled with the absence of vaccines and antiviral treatments for SARS-CoV-2, has galvanized a major global endeavor to develop effective vaccines. Within a matter of just a few months of the initial outbreak, research teams worldwide, adopting a range of different strategies, embarked on a quest to develop effective vaccine that could be effectively used to suppress this virulent pathogen. In this review, we describe conventional approaches to vaccine development, including strategies employing proteins, peptides, and attenuated or inactivated pathogens in combination with adjuvants (including genetic adjuvants). We also present details of the novel strategies that were adopted by different research groups to successfully transfer recombinantly expressed antigens while using viral vectors (adenoviral and retroviral) and non-viral delivery systems, and how recently developed methods have been applied in order to produce vaccines that are based on mRNA, self-amplifying RNA (saRNA), and trans-amplifying RNA (taRNA). Moreover, we discuss the methods that are being used to enhance mRNA stability and protein production, the advantages and disadvantages of different methods, and the challenges that are encountered during the development of effective vaccines.
Collapse
Affiliation(s)
- Abdellatif Bouazzaoui
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia; (F.A.A.-A.); (N.M.B.)
- Science and Technology Unit, Umm Al Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia
- Correspondence: or
| | - Ahmed A. H. Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Faisal A. Al-Allaf
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia; (F.A.A.-A.); (N.M.B.)
- Science and Technology Unit, Umm Al Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia
- Department of Laboratory and Blood Bank, Molecular Diagnostics Unit, King Abdullah Medical City, Makkah 21955, Saudi Arabia
| | - Neda M. Bogari
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia; (F.A.A.-A.); (N.M.B.)
| | | | - Sameer H. Qari
- Biology Department, Aljumum University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| |
Collapse
|
36
|
McMillan CL, Young PR, Watterson D, Chappell KJ. The Next Generation of Influenza Vaccines: Towards a Universal Solution. Vaccines (Basel) 2021; 9:vaccines9010026. [PMID: 33430278 PMCID: PMC7825669 DOI: 10.3390/vaccines9010026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 01/19/2023] Open
Abstract
Influenza viruses remain a constant burden in humans, causing millions of infections and hundreds of thousands of deaths each year. Current influenza virus vaccine modalities primarily induce antibodies directed towards the highly variable head domain of the hemagglutinin protein on the virus surface. Such antibodies are often strain-specific, meaning limited cross-protection against divergent influenza viruses is induced, resulting in poor vaccine efficacy. To attempt to counteract this, yearly influenza vaccination with updated formulations containing antigens from more recently circulating viruses is required. This is an expensive and time-consuming exercise, and the constant arms race between host immunity and virus evolution presents an ongoing challenge for effective vaccine development. Furthermore, there exists the constant pandemic threat of highly pathogenic avian influenza viruses with high fatality rates (~30–50%) or the emergence of new, pathogenic reassortants. Current vaccines would likely offer little to no protection from such viruses in the event of an epidemic or pandemic. This highlights the urgent need for improved influenza virus vaccines capable of providing long-lasting, robust protection from both seasonal influenza virus infections as well as potential pandemic threats. In this narrative review, we examine the next generation of influenza virus vaccines for human use and the steps being taken to achieve universal protection.
Collapse
Affiliation(s)
- Christopher L.D. McMillan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (P.R.Y.); (D.W.)
- Correspondence: (C.L.D.M.); (K.J.C.)
| | - Paul R. Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (P.R.Y.); (D.W.)
- The Australian Institute for Biotechnology and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- The Australian Infectious Disease Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (P.R.Y.); (D.W.)
- The Australian Infectious Disease Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Keith J. Chappell
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (P.R.Y.); (D.W.)
- The Australian Institute for Biotechnology and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- The Australian Infectious Disease Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
- Correspondence: (C.L.D.M.); (K.J.C.)
| |
Collapse
|
37
|
Ho YY, Lu HK, Lim ZFS, Lim HW, Ho YS, Ng SK. Applications and analysis of hydrolysates in animal cell culture. BIORESOUR BIOPROCESS 2021; 8:93. [PMID: 34603939 PMCID: PMC8476327 DOI: 10.1186/s40643-021-00443-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/07/2021] [Indexed: 12/19/2022] Open
Abstract
Animal cells are used in the manufacturing of complex biotherapeutic products since the 1980s. From its initial uses in biological research to its current importance in the biopharmaceutical industry, many types of culture media were developed: from serum-based media to serum-free to protein-free chemically defined media. The cultivation of animal cells economically has become the ultimate goal in the field of biomanufacturing. Serum serves as a source of amino acids, lipids, proteins and most importantly growth factors and hormones, which are essential for many cell types. However, the use of serum is unfavorable due to its high price tag, increased lot-to-lot variations and potential risk of microbial contamination. Efforts are progressively being made to replace serum with recombinant proteins such as growth factors, cytokines and hormones, as well as supplementation with lipids, vitamins, trace elements and hydrolysates. While hydrolysates are more complex, they provide a diverse source of nutrients to animal cells, with potential beneficial effects beyond the nutritional value. In this review, we discuss the use of hydrolysates in animal cell culture and briefly cover the composition of hydrolysates, mode of action and potential contaminants with some perspectives on its potential role in animal cell culture media formulations in the future.
Collapse
Affiliation(s)
- Yin Ying Ho
- grid.185448.40000 0004 0637 0221Bioprocessing Technology Institute, Agency for Science, Technology, and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668 Singapore
| | - Hao Kim Lu
- grid.185448.40000 0004 0637 0221Bioprocessing Technology Institute, Agency for Science, Technology, and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668 Singapore
| | - Zhi Feng Sherman Lim
- grid.185448.40000 0004 0637 0221Bioprocessing Technology Institute, Agency for Science, Technology, and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668 Singapore
| | - Hao Wei Lim
- grid.185448.40000 0004 0637 0221Bioprocessing Technology Institute, Agency for Science, Technology, and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668 Singapore
| | - Ying Swan Ho
- grid.185448.40000 0004 0637 0221Bioprocessing Technology Institute, Agency for Science, Technology, and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668 Singapore
| | - Say Kong Ng
- grid.185448.40000 0004 0637 0221Bioprocessing Technology Institute, Agency for Science, Technology, and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668 Singapore
| |
Collapse
|
38
|
Cunliffe TG, Bates EA, Parker AL. Hitting the Target but Missing the Point: Recent Progress towards Adenovirus-Based Precision Virotherapies. Cancers (Basel) 2020; 12:E3327. [PMID: 33187160 PMCID: PMC7696810 DOI: 10.3390/cancers12113327] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/31/2020] [Accepted: 11/09/2020] [Indexed: 12/23/2022] Open
Abstract
More people are surviving longer with cancer. Whilst this can be partially attributed to advances in early detection of cancers, there is little doubt that the improvement in survival statistics is also due to the expansion in the spectrum of treatments available for efficacious treatment. Transformative amongst those are immunotherapies, which have proven effective agents for treating immunogenic forms of cancer, although immunologically "cold" tumour types remain refractive. Oncolytic viruses, such as those based on adenovirus, have great potential as anti-cancer agents and have seen a resurgence of interest in recent years. Amongst their many advantages is their ability to induce immunogenic cell death (ICD) of infected tumour cells, thus providing the alluring potential to synergise with immunotherapies by turning immunologically "cold" tumours "hot". Additionally, enhanced immune mediated cell killing can be promoted through the local overexpression of immunological transgenes, encoded from within the engineered viral genome. To achieve this full potential requires the development of refined, tumour selective "precision virotherapies" that are extensively engineered to prevent off-target up take via native routes of infection and targeted to infect and replicate uniquely within malignantly transformed cells. Here, we review the latest advances towards this holy grail within the adenoviral field.
Collapse
Affiliation(s)
| | | | - Alan L. Parker
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; (T.G.C.); (E.A.B.)
| |
Collapse
|
39
|
Leiva-Carrasco MJ, Jiménez-Chávez S, Harvey DJ, Parra NC, Tavares KC, Camacho F, González A, Sánchez O, Montesino R, Toledo JR. In vivo modification of the goat mammary gland glycosylation pathway. N Biotechnol 2020; 61:11-21. [PMID: 33157282 DOI: 10.1016/j.nbt.2020.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/25/2020] [Accepted: 11/01/2020] [Indexed: 12/22/2022]
Abstract
Complex recombinant glycoproteins produced as potential biopharmaceuticals in goat's milk have an aberrant pattern of N-glycosylation due to the lack of multi-antennary structures. Overexpression of glycosyltransferases may increase oligosaccharide branching of the desired glycoproteins. Here, human erythropoietin fused to human IgG Fc (EPO-Fc) was co-expressed with N-acetyl-glucosaminyltransferase-IVa (GnT-IVa) by adenoviral transduction in goat mammary gland to evaluate the in vivo modification of N-glycosylation pattern in this tissue. Adenoviral vectors, containing the EPO-Fc and GnT-IVa sequences were assembled for in vitro and in vivo expression in mammalian cell culture or in goat mammary gland. Protein detection was assessed by gel electrophoresis and western blot, and N-glycans were identified by HPLC and mass spectrometry. GnT-IVa overexpression and its colocalization with EPO-Fc in the Golgi apparatus of SiHa cells were demonstrated. N-glycan analysis of in vitro and in vivo expression of EPO-Fc modified by GnT-IVa (EPO-Fc/GnT-IVa) showed an increase in high molecular weight structures, which corresponded to tri- and tetra-antennary N-glycans in SiHa cells and mostly tri-antennary N-glycans in goat's milk from transformed mammary tissue. The results confirmed that successful modification of the goat mammary gland secretion pathway could be achieved by co-expressing glycoenzymes together with the glycoprotein of interest. This is the first report of modification of the N-glycosylation pattern in the goat mammary gland in vivo, and constitutes a step forward for improving the use of the mammary gland as a bioreactor for the production of complex recombinant proteins.
Collapse
Affiliation(s)
- María J Leiva-Carrasco
- Biotechnology and Biopharmaceuticals Laboratory, Pathophysiology Department, School of Biological Sciences, University of Concepcion, Victor Lamas 1290, P.O. Box 160C, Concepcion, Chile; Biotechnology and Biomedicine Center SpA, Granada 168, Villumanque, Concepcion, Chile
| | - Silvana Jiménez-Chávez
- Biotechnology and Biopharmaceuticals Laboratory, Pathophysiology Department, School of Biological Sciences, University of Concepcion, Victor Lamas 1290, P.O. Box 160C, Concepcion, Chile; Biotechnology and Biomedicine Center SpA, Granada 168, Villumanque, Concepcion, Chile
| | - David J Harvey
- Oxford Glycobiology Institute, Biochemistry Department, South Parks Road, Oxford, OX1 3QU, UK
| | - Natalie C Parra
- Department of Pharmacology, School of Biological Sciences, University of Concepcion, Victor Lamas 1290, P.O. Box 160C, Concepcion, Chile
| | - Kaio C Tavares
- Molecular and Developmental Biology Laboratory, Experimental Biology Center (NUBEX), University of Fortaleza (UNIFOR), Fortaleza, CE, Brazil
| | - Frank Camacho
- Department of Pharmacology, School of Biological Sciences, University of Concepcion, Victor Lamas 1290, P.O. Box 160C, Concepcion, Chile
| | - Alain González
- Biotechnology and Biopharmaceuticals Laboratory, Pathophysiology Department, School of Biological Sciences, University of Concepcion, Victor Lamas 1290, P.O. Box 160C, Concepcion, Chile
| | - Oliberto Sánchez
- Department of Pharmacology, School of Biological Sciences, University of Concepcion, Victor Lamas 1290, P.O. Box 160C, Concepcion, Chile
| | - Raquel Montesino
- Biotechnology and Biopharmaceuticals Laboratory, Pathophysiology Department, School of Biological Sciences, University of Concepcion, Victor Lamas 1290, P.O. Box 160C, Concepcion, Chile; Biotechnology and Biomedicine Center SpA, Granada 168, Villumanque, Concepcion, Chile.
| | - Jorge R Toledo
- Biotechnology and Biopharmaceuticals Laboratory, Pathophysiology Department, School of Biological Sciences, University of Concepcion, Victor Lamas 1290, P.O. Box 160C, Concepcion, Chile; Biotechnology and Biomedicine Center SpA, Granada 168, Villumanque, Concepcion, Chile.
| |
Collapse
|
40
|
Sayedahmed EE, Elkashif A, Alhashimi M, Sambhara S, Mittal SK. Adenoviral Vector-Based Vaccine Platforms for Developing the Next Generation of Influenza Vaccines. Vaccines (Basel) 2020; 8:vaccines8040574. [PMID: 33019589 PMCID: PMC7712206 DOI: 10.3390/vaccines8040574] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/06/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022] Open
Abstract
Ever since the discovery of vaccines, many deadly diseases have been contained worldwide, ultimately culminating in the eradication of smallpox and polio, which represented significant medical achievements in human health. However, this does not account for the threat influenza poses on public health. The currently licensed seasonal influenza vaccines primarily confer excellent strain-specific protection. In addition to the seasonal influenza viruses, the emergence and spread of avian influenza pandemic viruses such as H5N1, H7N9, H7N7, and H9N2 to humans have highlighted the urgent need to adopt a new global preparedness for an influenza pandemic. It is vital to explore new strategies for the development of effective vaccines for pandemic and seasonal influenza viruses. The new vaccine approaches should provide durable and broad protection with the capability of large-scale vaccine production within a short time. The adenoviral (Ad) vector-based vaccine platform offers a robust egg-independent production system for manufacturing large numbers of influenza vaccines inexpensively in a short timeframe. In this review, we discuss the progress in the development of Ad vector-based influenza vaccines and their potential in designing a universal influenza vaccine.
Collapse
Affiliation(s)
- Ekramy E. Sayedahmed
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (E.E.S.); (A.E.); (M.A.)
| | - Ahmed Elkashif
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (E.E.S.); (A.E.); (M.A.)
| | - Marwa Alhashimi
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (E.E.S.); (A.E.); (M.A.)
| | - Suryaprakash Sambhara
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
- Correspondence: (S.S.); (S.K.M.)
| | - Suresh K. Mittal
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (E.E.S.); (A.E.); (M.A.)
- Correspondence: (S.S.); (S.K.M.)
| |
Collapse
|
41
|
Coughlan L. Factors Which Contribute to the Immunogenicity of Non-replicating Adenoviral Vectored Vaccines. Front Immunol 2020; 11:909. [PMID: 32508823 PMCID: PMC7248264 DOI: 10.3389/fimmu.2020.00909] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/20/2020] [Indexed: 01/12/2023] Open
Abstract
Adenoviral vectors are a safe and potently immunogenic vaccine delivery platform. Non-replicating Ad vectors possess several attributes which make them attractive vaccines for infectious disease, including their capacity for high titer growth, ease of manipulation, safety, and immunogenicity in clinical studies, as well as their compatibility with clinical manufacturing and thermo-stabilization procedures. In general, Ad vectors are immunogenic vaccines, which elicit robust transgene antigen-specific cellular (namely CD8+ T cells) and/or humoral immune responses. A large number of adenoviruses isolated from humans and non-human primates, which have low seroprevalence in humans, have been vectorized and tested as vaccines in animal models and humans. However, a distinct hierarchy of immunological potency has been identified between diverse Ad vectors, which unfortunately limits the potential use of many vectors which have otherwise desirable manufacturing characteristics. The precise mechanistic factors which underlie the profound disparities in immunogenicity are not clearly defined and are the subject of ongoing, detailed investigation. It has been suggested that a combination of factors contribute to the potent immunogenicity of particular Ad vectors, including the magnitude and duration of vaccine antigen expression following immunization. Furthermore, the excessive induction of Type I interferons by some Ad vectors has been suggested to impair transgene expression levels, dampening subsequent immune responses. Therefore, the induction of balanced, but not excessive stimulation of innate signaling is optimal. Entry factor binding or receptor usage of distinct Ad vectors can also affect their in vivo tropism following administration by different routes. The abundance and accessibility of innate immune cells and/or antigen-presenting cells at the site of injection contributes to early innate immune responses to Ad vaccination, affecting the outcome of the adaptive immune response. Although a significant amount of information exists regarding the tropism determinants of the common human adenovirus type-5 vector, very little is known about the receptor usage and tropism of rare species or non-human Ad vectors. Increased understanding of how different facets of the host response to Ad vectors contribute to their immunological potency will be essential for the development of optimized and customized Ad vaccine platforms for specific diseases.
Collapse
|
42
|
Gutiérrez-Huante K, Salinas-Marín R, Mora-Montes HM, Gonzalez RA, Martínez-Duncker I. Human adenovirus type 5 increases host cell fucosylation and modifies Ley antigen expression. Glycobiology 2020; 29:469-478. [PMID: 30869134 DOI: 10.1093/glycob/cwz017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 01/08/2023] Open
Abstract
Certain viral infections are known to modify the glycosylation profile of infected cells through the overexpression of specific host cell fucosyltransferases (FUTs). Infection with CMV (cytomegalovirus), HCV (hepatitis C virus), HSV-1 (herpes simplex virus type-1) and VZV (varicella-zoster virus) increase the expression of fucosylated epitopes, including antigens sLex (Siaα2-3 Galβ1-4(Fucα1-3)GlcNAcβ1-R) and Ley (Fucα1-2 Galβ1-4(Fucα1-3)GlcNAcβ1-R). The reorganization of the glycocalyx induced by viral infection may favor the spread of viral progeny, and alter diverse biological functions mediated by glycans, including recognition by the adaptive immune system. In this work, we aimed to establish whether infection with human adenovirus type 5 (HAd5), a well-known viral vector and infectious agent, causes changes in the glycosylation profile of A549 cells, used as a model of lung epithelium, a natural target of HAd5. We demonstrate for the first time that HAd5 infection causes a significant increase in the cell surface de novo fucosylation, as assessed by metabolic labeling, and that such modification is dependent on the expression of viral genes. The main type of increased fucosylation was determined to be in α1-2 linkage, as assessed by UEA-I lectin binding and supported by the overexpression of FUT1 and FUT2. Also, HAd5-infected cells showed a heterogeneous change in the expression profile of the bi-fucosylated Ley antigen, an antigen associated with enhanced cell proliferation and inhibition of apoptosis.
Collapse
Affiliation(s)
- Kathya Gutiérrez-Huante
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular; Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos. Av. Universidad 1001, Cuernavaca, México
| | - Roberta Salinas-Marín
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular; Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos. Av. Universidad 1001, Cuernavaca, México
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Col. Noria Alta, Guanajuato, México
| | - Ramón A Gonzalez
- Laboratorio de Virología Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos. Av. Universidad 1001, Cuernavaca, México
| | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular; Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos. Av. Universidad 1001, Cuernavaca, México
| |
Collapse
|
43
|
Moreira AS, Silva AC, Sousa MFQ, Hagner-McWhirterc Å, Ahlénc G, Lundgren M, Coroadinha AS, Alves PM, Peixoto C, Carrondo MJT. Establishing Suspension Cell Cultures for Improved Manufacturing of Oncolytic Adenovirus. Biotechnol J 2020; 15:e1900411. [PMID: 31950598 DOI: 10.1002/biot.201900411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/08/2019] [Indexed: 12/28/2022]
Abstract
Recent clinical trials have shown the potential of oncolytic adenoviruses as a cancer immunotherapy. A successful transition of oncolytic adenovirus to clinical applications requires efficient and good manufacturing practice compatible production and purification bioprocesses. Suspension cultures are preferable for virus production as they can reduce process costs and increase product quality and consistency. This work describes the adaptation of the A549 cell line to suspension culture in serum-reduced medium validated by oncolytic adenovirus production in stirred tank bioreactor. Cell concentrations up to 3 × 106 cells mL-1 are obtained during the production process. At harvest 1.4 × 1010 infectious particles mL-1 and 6.9 ± 1.1 × 1010 viral genome mL-1 are obtained corresponding to a viral genome: infectious particles ratio of 5.2 (± 1.9): 1 confirming the virus quality. Overall, the suspension characteristics of these A549 cells support an easily scalable, less time-consuming, and more cost-effective process for expanded success in the use of oncolytic viruses for cancer therapy.
Collapse
Affiliation(s)
- Ana Sofia Moreira
- iBET, Instituto de Biologia Experimental e Tecnológica, Av. da República, Oeiras, 2780-157, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2775-412, Portugal
| | - Ana Carina Silva
- iBET, Instituto de Biologia Experimental e Tecnológica, Av. da República, Oeiras, 2780-157, Portugal
| | - Marcos F Q Sousa
- iBET, Instituto de Biologia Experimental e Tecnológica, Av. da República, Oeiras, 2780-157, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2775-412, Portugal
| | | | - Gustaf Ahlénc
- GE Healthcare Bio-Sciences AB, Björkgatan 30, 751 84, Uppsala, Sweden
| | - Mats Lundgren
- GE Healthcare Bio-Sciences AB, Björkgatan 30, 751 84, Uppsala, Sweden
| | - Ana S Coroadinha
- iBET, Instituto de Biologia Experimental e Tecnológica, Av. da República, Oeiras, 2780-157, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2775-412, Portugal
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Av. da República, Oeiras, 2780-157, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2775-412, Portugal
| | - Cristina Peixoto
- iBET, Instituto de Biologia Experimental e Tecnológica, Av. da República, Oeiras, 2780-157, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2775-412, Portugal
| | - Manuel J T Carrondo
- iBET, Instituto de Biologia Experimental e Tecnológica, Av. da República, Oeiras, 2780-157, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2775-412, Portugal
| |
Collapse
|
44
|
Gast M, Wondany F, Raabe B, Michaelis J, Sobek H, Mizaikoff B. Use of Super-Resolution Optical Microscopy To Reveal Direct Virus Binding at Hybrid Core–Shell Matrixes. Anal Chem 2020; 92:3050-3057. [DOI: 10.1021/acs.analchem.9b04328] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | | | - Bastian Raabe
- Labor Dr. Merk & Kollegen GmbH, Beim Braunland 1, 88416 Ochsenhausen, Germany
| | | | - Harald Sobek
- Labor Dr. Merk & Kollegen GmbH, Beim Braunland 1, 88416 Ochsenhausen, Germany
| | | |
Collapse
|
45
|
Optimization of Early Steps in Oncolytic Adenovirus ONCOS-401 Production in T-175 and HYPERFlasks. Int J Mol Sci 2019; 20:ijms20030621. [PMID: 30709038 PMCID: PMC6387112 DOI: 10.3390/ijms20030621] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/15/2019] [Accepted: 01/29/2019] [Indexed: 12/11/2022] Open
Abstract
Oncolytic adenoviruses can trigger lysis of tumor cells, induce an antitumor immune response, bypass classical chemotherapeutic resistance strategies of tumors, and provide opportunities for combination strategies. A major challenge is the development of scalable production methods for viral seed stocks and sufficient quantities of clinical grade viruses. Because of promising clinical signals in a compassionate use program (Advanced Therapy Access Program) which supported further development, we chose the oncolytic adenovirus ONCOS-401 as a testbed for a new approach to scale up. We found that the best viral production conditions in both T-175 flasks and HYPERFlasks included A549 cells grown to 220,000 cells/cm² (80% confluency), with ONCOS-401 infection at 30 multiplicity of infection (MOI), and an incubation period of 66 h. The Lysis A harvesting method with benzonase provided the highest viral yield from both T-175 and HYPERFlasks (10,887 ± 100 and 14,559 ± 802 infectious viral particles/cell, respectively). T-175 flasks and HYPERFlasks produced up to 2.1 × 10⁸ ± 0.2 and 1.75 × 10⁸ ± 0.08 infectious particles of ONCOS-401 per cm² of surface area, respectively. Our findings suggest a suitable stepwise process that can be applied to optimizing the initial production of other oncolytic viruses.
Collapse
|
46
|
Responsiveness to basement membrane extract as a possible trait for tumorigenicity characterization. Vaccine X 2019; 1:100004. [PMID: 31384726 PMCID: PMC6668224 DOI: 10.1016/j.jvacx.2019.100004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/29/2018] [Accepted: 12/20/2018] [Indexed: 11/20/2022] Open
Abstract
Immortalized cell lines used to produce vaccines are expected to be described in terms of their tumorigenicity. However, current in vivo tumorigenicity assays can be time-consuming and results can be equivocal, especially for weakly tumorigenic cells. Basement membrane extract (BME) derived from the Engelbreth-Holm-Swarm mouse tumor, such as Matrigel and Cultrex, consists of laminin, collagen IV, entactin, heparan sulfate, and proteoglycans, as well as biologically active peptides and growth factors. For nearly three decades, BME has been used in cancer research to enhance tumorigenicity assays (both tumor "take" as well as tumor growth are substantially improved). We assessed the feasibility of using BME to facilitate the evaluation of vaccine cell substrate tumorigenicity. Vero cells (WHO 10-87) were serially passaged and banked at every ten passages beginning with p140; for the present study, low-passage Vero cells (Vero LP, originating from cells banked at p140) and high-passage Vero cells (Vero HP, originating from cells banked at p250) were used. In addition, Vero TPX2 and Vero NM1, cell lines established from tumors formed in nude mice by Vero HP cells, as well as other cell lines relevant to vaccine production (HeLa, MDCK, 293, and ARPE-19), were assessed. Female adult athymic nude mice were injected subcutaneously with cells in the absence or presence of BME. We observed that the tumorigenicity of ARPE-19 cells as well as Vero cells below passage 258 (Vero LP and Vero HP; previously characterized as non-tumorigenic or weakly tumorigenic, respectively) was not enhanced by BME. In contrast, BME shortened the latency and decreased the tumor-producing cell dose of HeLa, 293, and MDCK cells as well as the tumorigenic Vero derivatives TPX2 and NM1. Thus, responsiveness to BME may reflect the status of the neoplastic process and possibly serve as a useful trait for better defining the tumorigenic phenotype of cells.
Collapse
|
47
|
Zhang W, Fu J, Ehrhardt A. Novel Vector Construction Based on Alternative Adenovirus Types via Homologous Recombination. Hum Gene Ther Methods 2018; 29:124-134. [PMID: 29756505 DOI: 10.1089/hgtb.2018.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Adenoviral vector (AdV) is one of the most used vectors in gene therapy clinical trials. However the therapeutic effect of AdV is limited due to preexisting immunity to the currently used human adenovirus type 5 and pre-decided vector tropism. It is highly demanded to develop novel AdVs originated from other types than adenovirus type 5. Here, we describe a method for direct cloning of adenovirus utilizing linear-linear homologous recombination, followed by rapid adenoviral genome modification via linear-circular homologous recombination. A plasmid bearing chosen adenoviral genome with the desired modification is generated in three weeks, from which a novel AdV can be reconstituted.
Collapse
Affiliation(s)
- Wenli Zhang
- 1 Chair for Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University , Witten, Germany
| | - Jun Fu
- 2 Shandong University-Helmholtz Joint Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University , Qingdao, China
| | - Anja Ehrhardt
- 1 Chair for Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University , Witten, Germany
| |
Collapse
|
48
|
Al-Zaher AA, Moreno R, Fajardo CA, Arias-Badia M, Farrera M, de Sostoa J, Rojas LA, Alemany R. Evidence of Anti-tumoral Efficacy in an Immune Competent Setting with an iRGD-Modified Hyaluronidase-Armed Oncolytic Adenovirus. MOLECULAR THERAPY-ONCOLYTICS 2018; 8:62-70. [PMID: 29888319 PMCID: PMC5991897 DOI: 10.1016/j.omto.2018.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 01/25/2018] [Indexed: 11/17/2022]
Abstract
To enhance adenovirus-mediated oncolysis, different approaches that tackle the selectivity, tumor penetration, and spreading potential of oncolytic adenoviruses have been reported. We have previously demonstrated that insertion of the internalizing Arginine-Glycine-Aspartic (iRGD) tumor-penetrating peptide at the C terminus of the fiber or transgenic expression of a secreted hyaluronidase can improve virus tumor targeting and spreading. Here we report a new oncolytic adenovirus ICOVIR17K-iRGD in which both modifications have been incorporated. In xenografted A549 tumors in nude mice, ICOVIR17K-iRGD shows higher efficacy than the non-iRGD counterpart. To gain insights into the role of the immune system in oncolysis, we have studied ICOVIR17K-iRGD in the tumor isograft mouse model CMT64.6, partially permissive to human adenovirus 5 replication, in immunodeficient or immunocompetent mice. Whereas no efficacy was observed in the immunodeficient setting due to insufficient viral replication, partial efficacy and a polymorphonuclear and CD8+ T cell infiltrate were observed in the immunocompetent mice. The results indicate that the elicitation of a virus-induced anti-tumoral immune response is responsible for the observed partial anti-tumoral effect.
Collapse
Affiliation(s)
- Ahmed Abdullah Al-Zaher
- ProCure Program, IDIBELL-Institut Català d'Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Rafael Moreno
- ProCure Program, IDIBELL-Institut Català d'Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Carlos Alberto Fajardo
- ProCure Program, IDIBELL-Institut Català d'Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Marcel Arias-Badia
- ProCure Program, IDIBELL-Institut Català d'Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Martí Farrera
- ProCure Program, IDIBELL-Institut Català d'Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jana de Sostoa
- ProCure Program, IDIBELL-Institut Català d'Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Luis Alfonso Rojas
- ProCure Program, IDIBELL-Institut Català d'Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ramon Alemany
- ProCure Program, IDIBELL-Institut Català d'Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
49
|
Wooley DP, Sharma P, Weinstein JR, Kotha Lakshmi Narayan P, Schaffer DV, Excoffon KJDA. A directed evolution approach to select for novel Adeno-associated virus capsids on an HIV-1 producer T cell line. J Virol Methods 2017; 250:47-54. [PMID: 28918073 PMCID: PMC6112236 DOI: 10.1016/j.jviromet.2017.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/09/2017] [Accepted: 09/12/2017] [Indexed: 12/30/2022]
Abstract
A directed evolution approach was used to select for Adeno-associated virus (AAV) capsids that would exhibit more tropism toward an HIV-1 producer T cell line with the long-term goal of developing improved gene transfer vectors. A library of AAV variants was used to infect H9 T cells previously infected or uninfected by HIV-1 followed by AAV amplification with wild-type adenovirus. Six rounds of biological selection were performed, including negative selection and diversification after round three. The H9 T cells were successfully infected with all three wild-type viruses (AAV, adenovirus, and HIV-1). Four AAV cap mutants best representing the small number of variants emerging after six rounds of selection were chosen for further study. These mutant capsids were used to package an AAV vector and subsequently used to infect H9 cells that were previously infected or uninfected by HIV-1. A quantitative polymerase chain reaction assay was performed to measure cell-associated AAV genomes. Two of the four cap mutants showed a significant increase in the amount of cell-associated genomes as compared to wild-type AAV2. This study shows that directed evolution can be performed successfully to select for mutants with improved tropism for a T cell line in the presence of HIV-1.
Collapse
Affiliation(s)
- Dawn P Wooley
- Neuroscience, Cell Biology, and Physiology, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA.
| | - Priyanka Sharma
- Biological Sciences, Wright State University, Dayton, OH, 45435, USA.
| | - John R Weinstein
- Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA.
| | | | - David V Schaffer
- Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA.
| | | |
Collapse
|
50
|
Sharon D, Kamen A. Advancements in the design and scalable production of viral gene transfer vectors. Biotechnol Bioeng 2017; 115:25-40. [PMID: 28941274 DOI: 10.1002/bit.26461] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 01/22/2023]
Abstract
The last 10 years have seen a rapid expansion in the use of viral gene transfer vectors, with approved therapies and late stage clinical trials underway for the treatment of genetic disorders, and multiple forms of cancer, as well as prevention of infectious diseases through vaccination. With this increased interest and widespread adoption of viral vectors by clinicians and biopharmaceutical industries, there is an imperative to engineer safer and more efficacious vectors, and develop robust, scalable and cost-effective production platforms for industrialization. This review will focus on major innovations in viral vector design and production systems for three of the most widely used viral vectors: Adenovirus, Adeno-Associated Virus, and Lentivirus.
Collapse
Affiliation(s)
- David Sharon
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Amine Kamen
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| |
Collapse
|