1
|
Li C, Wang X, Zhu Q, Sun D. Isolation and identification of BRV G6P[1] strain in Heilongjiang province, Northeast China. Front Vet Sci 2024; 11:1416465. [PMID: 39372897 PMCID: PMC11449731 DOI: 10.3389/fvets.2024.1416465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/25/2024] [Indexed: 10/08/2024] Open
Abstract
Bovine rotavirus (BRV) is the main cause of acute gastroenteritis in calves, resulting in significant economic losses to the cattle industry worldwide. Additionally, BRV has multiple genotypes, which could enable cross-species transmission, thereby posing a significant risk to public health. However, there is a problem of multiple genotypes coexisting in BRV, and the cross-protection effect between different genotypes of rotavirus strains is not effective enough. Therefore, mastering clinical epidemic genotypes and using epidemic genotype strains for vaccine preparation is an effective means of preventing and controlling BRV. In this study, BRV strain DQ2020 in MA104 cells was identified by transmission electron microscopy (TEM), reverse transcription polymerase chain reaction (RT-PCR), and colloidal gold immunochromatographic test strips. The whole genome of BRV strain DQ2020 was sequenced and pathogenicity in suckling mice was assessed. The results showed that after 10 passages in MA104 cells, BRV strain DQ2020 induced cytopathic effects. Wheel-shaped virus particles (diameter, ~80 nm) were observed by TEM. A target band of 382 bp was detected by RT-PCR, a positive band was detected with the colloidal gold immunochromatographic test strips, and significant green fluorescence was observed by indirect immunofluorescence (IFA). The highest median tissue culture infectious dose of strain DQ2020 after 9 passages in MA104 cells was 10-4.81 viral particles/0.1 mL. Based on phylogenetic analysis of 11 gene fragments, the genotype of BRV strain DQ2020 was G6-P[1]-I2-R2-C2-M2-A11-N2-T6-E2-H3, confirming transmission of the G6-P[1] genotype in Chinese cattle herds. Further analysis showed that the isolated strain was a reassortant of bovine (VP7, VP6, NSP3, and NSP5), human (VP4, VP1, VP2, VP3, NSP2, and NSP4), and ovine (NSP1) rotaviruses. BRV strain DQ2020 caused damage to the intestinal villi of suckling mice and diarrhea, confirming pathogenicity. In summary, this study identified a reassortant strain of bovine, human, and ovine rotavirus that is pathogenic to lactating mice, and conducted whole genome sequence analysis, providing valuable insights for the genetic evolution of the virus and the development of vaccines.
Collapse
Affiliation(s)
| | | | - Qinghe Zhu
- Heilongjiang Provincial Key Laboratory of the Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Dongbo Sun
- Heilongjiang Provincial Key Laboratory of the Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
2
|
Garcias B, Migura-Garcia L, Giler N, Martín M, Darwich L. Differences in enteric pathogens and intestinal microbiota between diarrheic weaned piglets and healthy penmates. Vet Microbiol 2024; 295:110162. [PMID: 38941767 DOI: 10.1016/j.vetmic.2024.110162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
Postweaning diarrhea (PWD) is a multifactorial disease caused by different aetiological agents, like viruses or bacteria and where the role of the microbiota remains unclear. The aim of this study was to assess differences between healthy and diarrheic weaned pigs concerning the prevalence of pathogens and changes in the intestinal microbiota. Eighteen farms with PWD were selected and 277 fecal samples were collected (152 diarrheic vs 125 healthy). Presence of Rotavirus A (RVA), B (RVB), C (RVC) and Porcine Epidemic Diarrhea Virus (PEDV), virulence factors of Escherichia coli and Clostridioides difficile were analyzed by PCR. Finally, the microbiota composition was also study by 16 S rRNA sequencing on 148 samples (102 diarrheic vs 46 healthy). RVA (53.95 % vs 36 %, p=0.04) and RVB (49.67 % vs 28.8 %, p<0.001) were more frequent in diarrheic animals. Furthermore, RVA viral load was higher in diseased animals. VT2 toxin was significantly associated with diarrhea, whereas other virulence factors were not. Presence of C. difficile and PEDV was almost negligible. Regarding microbiota changes, Fusobacteriota phylum was more frequent in diarrheic samples and Ruminococcaceae family in healthy penmates. During the first week postweaning, Enterobacteriace and Campylobacteria were enriched in animals presenting diarrhea. Furthermore, Lactobacillus was detected in those individuals with no RVA infection. In conclusion, RVA seems to play a primary role in PWD. Classic E. coli virulence factors were not associated with diarrhea, indicating the need for revising their implication in disease. Moreover, Lactobacillus was found frequently in animals negative for RVA, suggesting some protective effect.
Collapse
Affiliation(s)
- Biel Garcias
- Departament Sanitat i Anatomia Animals, Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès 08193, Spain.
| | - Lourdes Migura-Garcia
- IRTA-UAB Mixed Research Unit in Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Barcelona, Spain; IRTA Animal Health Programme, CReSA, WOAH Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe, Campus de la Universitat Autònoma de Barcelona, Spain
| | - Noemí Giler
- IRTA-UAB Mixed Research Unit in Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Barcelona, Spain; IRTA Animal Health Programme, CReSA, WOAH Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe, Campus de la Universitat Autònoma de Barcelona, Spain
| | - Marga Martín
- Departament Sanitat i Anatomia Animals, Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès 08193, Spain
| | - Laila Darwich
- Departament Sanitat i Anatomia Animals, Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès 08193, Spain
| |
Collapse
|
3
|
Tang X, Li S, Zhou J, Bian X, Wang J, Han N, Zhu X, Tao R, Wang W, Sun M, Li P, Zhang X, Li B. Recombinant bivalent subunit vaccine combining truncated VP4 from P[7] and P[23] induces protective immunity against prevalent porcine rotaviruses. J Virol 2024; 98:e0021224. [PMID: 38591886 PMCID: PMC11092341 DOI: 10.1128/jvi.00212-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
Porcine rotaviruses (PoRVs) cause severe economic losses in the swine industry. P[7] and P[23] are the predominant genotypes circulating on farms, but no vaccine is yet available. Here, we developed a bivalent subunit PoRV vaccine using truncated versions (VP4*) of the VP4 proteins from P[7] and P[23]. The vaccination of mice with the bivalent subunit vaccine elicited more robust neutralizing antibodies (NAbs) and cellular immune responses than its components, even at high doses. The bivalent subunit vaccine and inactivated bivalent vaccine prepared from strains PoRVs G9P[7] and G9P[23] were used to examine their protective efficacy in sows and suckling piglets after passive immunization. The immunized sows showed significantly elevated NAbs in the serum and colostrum, and the suckling piglets acquired high levels of sIgA antibodies from the colostrum. Challenging subunit-vaccinated or inactivated-vaccinated piglets with homologous virulent strains did not induce diarrhea, except in one or two piglets, which had mild diarrhea. Immunization with the bivalent subunit vaccine and inactivated vaccine also alleviated the microscopic lesions in the intestinal tissues caused by the challenge with the corresponding homologous virulent strain. However, all the piglets in the challenged group displayed mild to watery diarrhea and high levels of viral shedding, whereas the feces and intestines of the piglets in the bivalent subunit vaccine and inactivated vaccine groups had lower viral loads. In summary, our data show for the first time that a bivalent subunit vaccine combining VP4*P[7] and VP4*P[23] effectively protects piglets against the diarrhea caused by homologous virulent strains.IMPORTANCEPoRVs are the main causes of diarrhea in piglets worldwide. The multisegmented genome of PoRVs allows the reassortment of VP4 and VP7 genes from different RV species and strains. The P[7] and P[23] are the predominant genotypes circulating in pig farms, but no vaccine is available at present in China. Subunit vaccines, as nonreplicating vaccines, are an option to cope with variable genotypes. Here, we have developed a bivalent subunit candidate vaccine based on a truncated VP4 protein, which induced robust humoral and cellular immune responses and protected piglets against challenge with homologous PoRV. It also appears to be safe. These data show that the truncated VP4-protein-based subunit vaccine is a promising candidate for the prevention of PoRV diarrhea.
Collapse
MESH Headings
- Animals
- Female
- Mice
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Capsid Proteins/immunology
- Capsid Proteins/genetics
- Diarrhea/prevention & control
- Diarrhea/virology
- Diarrhea/veterinary
- Diarrhea/immunology
- Genotype
- Immunity, Cellular
- Mice, Inbred BALB C
- Rotavirus/immunology
- Rotavirus Infections/prevention & control
- Rotavirus Infections/veterinary
- Rotavirus Infections/immunology
- Rotavirus Infections/virology
- Rotavirus Vaccines/immunology
- Rotavirus Vaccines/administration & dosage
- Swine
- Swine Diseases/prevention & control
- Swine Diseases/virology
- Swine Diseases/immunology
- Vaccination
- Vaccines, Subunit/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
Collapse
Affiliation(s)
- Xuechao Tang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Sufen Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
| | - Jinzhu Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Xianyu Bian
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
| | - Jianxin Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
| | - Nan Han
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
| | - Xuejiao Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Ran Tao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Wei Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Min Sun
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Peng Li
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Xuehan Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
- College of Animal Science, Yangtze University, Jingzhou, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| |
Collapse
|
4
|
Yang H, Fan X, Mao X, Yu B, He J, Yan H, Wang J. The protective role of prebiotics and probiotics on diarrhea and gut damage in the rotavirus-infected piglets. J Anim Sci Biotechnol 2024; 15:61. [PMID: 38698473 PMCID: PMC11067158 DOI: 10.1186/s40104-024-01018-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/29/2024] [Indexed: 05/05/2024] Open
Abstract
Rotavirus is one of the pathogenic causes that induce diarrhea in young animals, especially piglets, worldwide. However, nowadays, there is no specific drug available to treat the disease, and the related vaccines have no obvious efficiency in some countries. Via analyzing the pathogenesis of rotavirus, it inducing diarrhea is mainly due to disturb enteric nervous system, destroy gut mucosal integrity, induce intracellular electrolyte imbalance, and impair gut microbiota and immunity. Many studies have already proved that prebiotics and probiotics can mitigate the damage and diarrhea induced by rotavirus infection in hosts. Based on these, the current review summarizes and discusses the effects and mechanisms of prebiotics and probiotics on rotavirus-induced diarrhea in piglets. This information will highlight the basis for the swine production utilization of prebiotics and probiotics in the prevention or treatment of rotavirus infection in the future.
Collapse
Affiliation(s)
- Heng Yang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, No. 211, Gongpinghuimin Road, Wenjiang District, Chengdu, Sichuan Province, 611130, People's Republic of China
| | - Xiangqi Fan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, No. 211, Gongpinghuimin Road, Wenjiang District, Chengdu, Sichuan Province, 611130, People's Republic of China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, No. 211, Gongpinghuimin Road, Wenjiang District, Chengdu, Sichuan Province, 611130, People's Republic of China.
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, No. 211, Gongpinghuimin Road, Wenjiang District, Chengdu, Sichuan Province, 611130, People's Republic of China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, No. 211, Gongpinghuimin Road, Wenjiang District, Chengdu, Sichuan Province, 611130, People's Republic of China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, No. 211, Gongpinghuimin Road, Wenjiang District, Chengdu, Sichuan Province, 611130, People's Republic of China
| | - Jianping Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, No. 211, Gongpinghuimin Road, Wenjiang District, Chengdu, Sichuan Province, 611130, People's Republic of China
| |
Collapse
|
5
|
Latifi T, Kachooei A, Jalilvand S, Zafarian S, Roohvand F, Shoja Z. Correlates of immune protection against human rotaviruses: natural infection and vaccination. Arch Virol 2024; 169:72. [PMID: 38459213 DOI: 10.1007/s00705-024-05975-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/12/2023] [Indexed: 03/10/2024]
Abstract
Species A rotaviruses are the leading viral cause of acute gastroenteritis in children under 5 years of age worldwide. Despite progress in the characterization of the pathogenesis and immunology of rotavirus-induced gastroenteritis, correlates of protection (CoPs) in the course of either natural infection or vaccine-induced immunity are not fully understood. There are numerous factors such as serological responses (IgA and IgG), the presence of maternal antibodies (Abs) in breast milk, changes in the intestinal microbiome, and rotavirus structural and non-structural proteins that contribute to the outcome of the CoP. Indeed, while an intestinal IgA response and its surrogate, the serum IgA level, are suggested as the principal CoPs for oral rotavirus vaccines, the IgG level is more likely to be a CoP for parenteral non-replicating rotavirus vaccines. Integrating clinical and immunological data will be instrumental in improving rotavirus vaccine efficacy, especially in low- and middle-income countries, where vaccine efficacy is significantly lower than in high-income countries. Further knowledge on CoPs against rotavirus disease will be helpful for next-generation vaccine development. Herein, available data and literature on interacting components and proposed CoPs against human rotavirus disease are reviewed, and limitations and gaps in our knowledge in this area are discussed.
Collapse
Affiliation(s)
- Tayebeh Latifi
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Atefeh Kachooei
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Saman Zafarian
- Department of Microbial Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Zabihollah Shoja
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran.
- Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
6
|
Gilfillan D, Vilander AC, Pan M, Goh YJ, O’Flaherty S, Feng N, Fox BE, Lang C, Greenberg HB, Abdo Z, Barrangou R, Dean GA. Lactobacillus acidophilus Expressing Murine Rotavirus VP8 and Mucosal Adjuvants Induce Virus-Specific Immune Responses. Vaccines (Basel) 2023; 11:1774. [PMID: 38140179 PMCID: PMC10747613 DOI: 10.3390/vaccines11121774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Rotavirus diarrhea-associated illness remains a major cause of global death in children under five, attributable in part to discrepancies in vaccine performance between high- and low-middle-income countries. Next-generation probiotic vaccines could help bridge this efficacy gap. We developed a novel recombinant Lactobacillus acidophilus (rLA) vaccine expressing rotavirus antigens of the VP8* domain from the rotavirus EDIM VP4 capsid protein along with the adjuvants FimH and FliC. The upp-based counterselective gene-replacement system was used to chromosomally integrate FimH, VP8Pep (10 amino acid epitope), and VP8-1 (206 amino acid protein) into the L. acidophilus genome, with FliC expressed from a plasmid. VP8 antigen and adjuvant expression were confirmed by flow cytometry and Western blot. Rotavirus naïve adult BALB/cJ mice were orally immunized followed by murine rotavirus strain ECWT viral challenge. Antirotavirus serum IgG and antigen-specific antibody-secreting cell responses were detected in rLA-vaccinated mice. A day after the oral rotavirus challenge, fecal antigen shedding was significantly decreased in the rLA group. These results indicate that novel rLA constructs expressing VP8 can be successfully constructed and used to generate modest homotypic protection from rotavirus challenge in an adult murine model, indicating the potential for a probiotic next-generation vaccine construct against human rotavirus.
Collapse
Affiliation(s)
- Darby Gilfillan
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (D.G.); (A.C.V.); (B.E.F.); (C.L.); (Z.A.)
| | - Allison C. Vilander
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (D.G.); (A.C.V.); (B.E.F.); (C.L.); (Z.A.)
| | - Meichen Pan
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (M.P.); (Y.J.G.); (S.O.); (R.B.)
| | - Yong Jun Goh
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (M.P.); (Y.J.G.); (S.O.); (R.B.)
| | - Sarah O’Flaherty
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (M.P.); (Y.J.G.); (S.O.); (R.B.)
| | - Ningguo Feng
- Departments of Medicine and Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA (H.B.G.)
- VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA 94304, USA
| | - Bridget E. Fox
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (D.G.); (A.C.V.); (B.E.F.); (C.L.); (Z.A.)
| | - Callie Lang
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (D.G.); (A.C.V.); (B.E.F.); (C.L.); (Z.A.)
| | - Harry B. Greenberg
- Departments of Medicine and Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA (H.B.G.)
- VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA 94304, USA
| | - Zaid Abdo
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (D.G.); (A.C.V.); (B.E.F.); (C.L.); (Z.A.)
| | - Rodolphe Barrangou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (M.P.); (Y.J.G.); (S.O.); (R.B.)
| | - Gregg A. Dean
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (D.G.); (A.C.V.); (B.E.F.); (C.L.); (Z.A.)
| |
Collapse
|
7
|
Najam A, Ahmad S, Abid R, Ali H, Husnain M, Aziz T, Adeel SS, Muhammad N, Ghazanfar S. Immune-adjuvant effect of vitamin A and probiotics supplementation on humoral response to cell culture rabies vaccine in rabbits. 3 Biotech 2023; 13:232. [PMID: 37323857 PMCID: PMC10258788 DOI: 10.1007/s13205-023-03631-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/26/2023] [Indexed: 06/17/2023] Open
Abstract
This study was carried out to evaluate the effects of vitamin A (Vit A) and probiotic co-supplementation with rabies vaccine on humoral immune response in New Zealand white (NZW) rabbits. For this experiment, 54 rabbits were randomized into six experimental and three control groups. Mixed cultures of commercial probiotics supplements and a dose of Vit A were administered to each animal. Results were compared with the control group fed with only basal diet. Animals in different treatment groups showed significantly higher sero-conversions against rabies vaccine. There was a significant increase (p < 0.001) in the titers of rabies antibodies in all treatment groups on 14th and 35th days than control C3 group. Both commercial probiotics irrespective of brand increase the humoral immune response of rabbits against rabies vaccine. The mean titer values of all groups G1-G6 and sub-controls (C1, C2) were generally above 3.6 EU/ml on day 14th and between 3.7 and 3.9 EU/ml, showing highest sero-conversion on 35th day than mean titer of C3 control = 3.091 and 3.505 EU/ml respectively on both days. The maximum titer values were obtained with the addition of organic carrots to the daily diet. These results suggest that simple dietary interventions using probiotics and Vit A in natural form may enhance the efficacy of rabies vaccine in the host. These cost-effective strategies can be applied for getting higher yields of polyclonal antibody production in animal models, thus providing promising means of improving the final product yield and can be adopted easily by the manufacturers.
Collapse
Affiliation(s)
- Amina Najam
- Biological Production Division, National Institute of Health, Islamabad, Pakistan
- Department of Microbiology, Quaid-i-Azam University, Islamabad, 44100 Pakistan
| | - Safia Ahmad
- Department of Microbiology, Quaid-i-Azam University, Islamabad, 44100 Pakistan
| | - Rameesha Abid
- Department of Microbiology, Quaid-i-Azam University, Islamabad, 44100 Pakistan
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre, Park Road, Islamabad, 45500 Pakistan
| | - Hussain Ali
- Biological Production Division, National Institute of Health, Islamabad, Pakistan
| | - Murtaza Husnain
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, 44100 Pakistan
| | - Tariq Aziz
- Department of Zoology, Quaid-i-Azam University, Islamabad, 44100 Pakistan
| | - Syeda Shazia Adeel
- Biological Production Division, National Institute of Health, Islamabad, Pakistan
| | - Naeil Muhammad
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519 Egypt
| | - Shakira Ghazanfar
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre, Park Road, Islamabad, 45500 Pakistan
| |
Collapse
|
8
|
Desselberger U. 14th International dsRNA Virus Symposium, Banff, Alberta, Canada, 10-14 October 2022. Virus Res 2023; 324:199032. [PMID: 36584760 PMCID: PMC10242350 DOI: 10.1016/j.virusres.2022.199032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
This triennial International dsRNA Virus Symposium covered original data which have accrued during the most recent five years. In detail, the genomic diversity of these viruses continued to be explored; various structure-function studies were carried out using reverse genetics and biophysical techniques; intestinal organoids proved to be very suitable for special pathogenesis studies; and the potential of next generation rotavirus vaccines including use of rotavirus recombinants as vectored vaccine candidates was explored. 'Non-lytic release of enteric viruses in cloaked vesicles' was the topic of the keynote lecture by Nihal Altan-Bonnet, NIH, Bethesda, USA. The Jean Cohen lecturer of this meeting was Polly Roy, London School of Hygiene and Tropical Medicine, who spoke on aspects of the replication cycle of bluetongue viruses, and how some of the data are similar to details of rotavirus replication.
Collapse
Affiliation(s)
- Ulrich Desselberger
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, U.K..
| |
Collapse
|