1
|
Bonanni P, Heo JY, Honda H, Lee PI, Mouliom A, Leong HN, Del Pilar Martin Matos M, Dawson R. Optimal Timing of Vaccination: A Narrative Review of Integrating Strategies for COVID-19, Influenza, and Respiratory Syncytial Virus. Infect Dis Ther 2025:10.1007/s40121-025-01135-0. [PMID: 40205144 DOI: 10.1007/s40121-025-01135-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/11/2025] [Indexed: 04/11/2025] Open
Abstract
Lower respiratory tract infections caused by SARS-CoV-2, influenza, and respiratory syncytial virus (RSV) cause a significant disease burden globally, despite the availability of effective vaccines. Certain populations, such as older adults (≥ 60 years) and individuals of all ages with particular comorbidities, are at increased risk for severe outcomes, including hospitalization and death. National administration schedules for available vaccines against respiratory viruses are not unified, and not all current guidelines are clear and directive, concerning the optimal timing of vaccination. Herein, we formulate an evidence-based position regarding the optimal timing of COVID-19, influenza, and RSV vaccination for older adults and individuals with chronic comorbidities, based on a synthesis of the literature and current guidelines. Vaccination impact and timing were found to be influenced by vaccinee risk factors, including age and comorbidities, and waning vaccine effectiveness and seasonal pathogen burden. Because COVID-19, influenza, and RSV display unique seasonal patterns within and between regions, local epidemiological surveillance of each virus is crucial for determining optimal vaccination timing and guidelines. To maximize the benefits of these respiratory virus vaccines, the timing of peak vaccine effectiveness and period of greatest risk for severe outcomes should be aligned. Thus, COVID-19, influenza, and other recommended vaccines given ahead of the start of the respiratory virus season (or other regionally appropriate time) and co-administered at a single, routine visit represent the optimal approach to protecting at-risk populations. More data will be required to establish the clinical benefit of additional RSV vaccine doses and whether these may be integrated within a seasonal schedule. Coordinated policy decisions that align with strain selection for new and annually reformulated vaccines would enable the timely raising of public health awareness, ultimately leading to enhanced vaccine uptake. Implementation strategies will require engagement of healthcare providers and strong, evidence-based public health recommendations for integrated vaccine schedules.
Collapse
Affiliation(s)
- Paolo Bonanni
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Jung Yeon Heo
- Ajou University School of Medicine, Suwon, South Korea
| | - Hitoshi Honda
- Fujita Health University School of Medicine, Toyoake, Japan
| | - Ping-Ing Lee
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | | - Rachel Dawson
- Moderna, Inc., 325 Binney Street, Cambridge, MA, 02142, USA
| |
Collapse
|
2
|
Ashrafian F, Salehi-Vaziri M, Mostafavi E, Maghsoudi SH, Dahmardeh S, Bavand A, Moradi L, Tajmehrabi Namini P, Zali M, Tahmasebi Z, Sadat Larijani M, Ramezani A. Long-term assessment of anti-SARS-CoV-2 antibody levels post-pandemic: Tracking the dynamics after two, three, and four COVID-19 vaccine doses. J Infect Public Health 2025; 18:102676. [PMID: 39879911 DOI: 10.1016/j.jiph.2025.102676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Given the limited available data about to the number of vaccine doses administered over an extended time in Iran, the immune status of vaccinated individuals and any potential disparities in this regard among those who received different numbers of vaccine doses remain unknown. Therefore, this study aimed to assess humoral immunity of individuals who received different doses of the COVID-19 vaccines in Iran. METHODS This study was conducted from February, 2022 to December 2023 including 605 vaccinated subjects. The durability of anti-spike, anti-nucleocapsid (NCP), neutralizing antibody, and interferon-γ (IFN-γ) was evaluated at least 6 months after the last vaccination, as well as 60 and 120 days after it, in individuals who received two or three doses of the COVID-19 vaccine. Furthermore, the evaluation of humoral and cellular response was performed before the fourth dose (second booster) as well as 21 and 60 days thereafter. RESULTS The 3-dose group showed significantly higher levels of anti-spike, neutralizing antibodies, and IFN-γ compared to the 2-dose group. Both the 2-dose and 3-dose groups experienced a slight decrease in the dynamic of SARS-CoV-2 Abs, though the associated levels remained within a positive range. After receiving the fourth dose of PastoCovac, most participants had significantly high levels of anti-spike, neutralizing antibodies, and IFN-γ, regardless of the type of three-dose regimen they had previously received. The average antibody titer decreased after 60 days from the fourth dose, but remained relatively stable during the follow-up period. CONCLUSION This study found that the level of anti-SARS-CoV-2 antibodies and IFN-γ, as well as their durability, were still within a positive range in 2-dose and 3-dose vaccinated groups over the long-term follow-up. Furthermore, PastoCovac vaccine enhanced humoral and cellular immune responses and could be recommended as a booster dose for individuals previously vaccinated with any previously administered COVID-19 vaccine.
Collapse
Affiliation(s)
- Fatemeh Ashrafian
- Clinical Research Department, Pasteur Institute of Iran, No 69, Pasteur Ave., Tehran, Iran.
| | - Mostafa Salehi-Vaziri
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory), Pasteur Institute of Iran, Tehran, Iran.
| | - Ehsan Mostafavi
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran.
| | - Saiedeh Haji Maghsoudi
- Modeling in Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran; Department of Biostatistics and Epidemiology, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran.
| | - Sarah Dahmardeh
- Vaccination Department, Pasteur Institute of Iran, Tehran, Iran.
| | - Anahita Bavand
- Clinical Research Department, Pasteur Institute of Iran, No 69, Pasteur Ave., Tehran, Iran.
| | - Ladan Moradi
- Clinical Research Department, Pasteur Institute of Iran, No 69, Pasteur Ave., Tehran, Iran.
| | | | - Mahsan Zali
- Clinical Research Department, Pasteur Institute of Iran, No 69, Pasteur Ave., Tehran, Iran.
| | - Zahra Tahmasebi
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran.
| | - Mona Sadat Larijani
- Clinical Research Department, Pasteur Institute of Iran, No 69, Pasteur Ave., Tehran, Iran.
| | - Amitis Ramezani
- Clinical Research Department, Pasteur Institute of Iran, No 69, Pasteur Ave., Tehran, Iran.
| |
Collapse
|
3
|
Zali M, Sadat Larijani M, Bavand A, Moradi L, Ashrafian F, Ramezani A. Circulatory microRNAs as potential biomarkers for different aspects of COVID-19. Arch Virol 2024; 170:8. [PMID: 39666114 DOI: 10.1007/s00705-024-06184-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/03/2024] [Indexed: 12/13/2024]
Abstract
The coronavirus disease of 2019 (COVID-19), caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can alter the expression levels of host microRNAs (miRNAs). Increasing evidence suggests that circulating miRNAs can potentially play an important role in the diagnosis and prognosis of respiratory infectious diseases, especially COVID-19, and might serve as sensitive indicators of disease before the emergence of clinical symptoms. Here, we review the potential of circulatory microRNAs as novel biomarkers for different aspects of COVID-19. Recent studies have suggested that they can be useful not only for COVID-19 prognosis but also for prediction of disease severity and mortality among intensive care unit (ICU) and ward patients. Moreover, extracellular vesicle (EV) miRNAs can be associated with antibody titer after COVID-19 vaccination. This review provides an overview of miRNA-based biomarkers.
Collapse
Affiliation(s)
- Mahsan Zali
- Clinical Research Department, Pasteur Institute of Iran, No: 69, Pasteur Ave, Tehran, 1316943551, Iran
| | - Mona Sadat Larijani
- Clinical Research Department, Pasteur Institute of Iran, No: 69, Pasteur Ave, Tehran, 1316943551, Iran
| | - Anahita Bavand
- Clinical Research Department, Pasteur Institute of Iran, No: 69, Pasteur Ave, Tehran, 1316943551, Iran
| | - Ladan Moradi
- Clinical Research Department, Pasteur Institute of Iran, No: 69, Pasteur Ave, Tehran, 1316943551, Iran
| | - Fatemeh Ashrafian
- Clinical Research Department, Pasteur Institute of Iran, No: 69, Pasteur Ave, Tehran, 1316943551, Iran.
| | - Amitis Ramezani
- Clinical Research Department, Pasteur Institute of Iran, No: 69, Pasteur Ave, Tehran, 1316943551, Iran.
| |
Collapse
|
4
|
Zhao XJ, Li M, Zhang S, Li K, Wei WQ, Chen JJ, Xu Q, Lv CL, Liu T, Wang GL, Fang LQ. Epidemiological and immunological characteristics of middle-aged and elderly people in housing estates after Omicron BA.5 wave in Jinan, China. Heliyon 2024; 10:e38382. [PMID: 39398026 PMCID: PMC11467590 DOI: 10.1016/j.heliyon.2024.e38382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
A great number of COVID-19 patients was caused by Omicron BA.5 subvariant between December 2022 and January 2023 after the end of the zero-COVID-19 policy in China. In this study, we clarified the epidemiological and immunological characteristics of 457 enrolled middle-aged and elderly population in two housing estates after Omicron BA.5 wave. A total of 89.9 % (411/457) individuals have suffered Omicron BA.5 infection, among which 78.1 % (321/411) were symptomatic. The elderly patients were more likely to show fatigue and had longer symptomatic period than that of middle-aged patients post Omicron BA.5 infection. Omicron XBB and BA.2.86 subvariants extensively escaped the immunity elicited by Omicron BA.5 infection. The level of neutralizing antibody was mostly affected by vaccination doses rather than underlying disease status in these participants. It is very important to strengthen the epidemiological investigation and immune resistance assessment among elderly population for control of emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Xin-Jing Zhao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
- Department of Epidemiology and Biotatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Min Li
- Licheng Center for Disease Control and Prevention, Jinan, China
| | - Sheng Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Ke Li
- Licheng Center for Disease Control and Prevention, Jinan, China
| | - Wang-Qian Wei
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
- Department of Epidemiology and Biotatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Jin-Jin Chen
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Qiang Xu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Chen-Long Lv
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Ti Liu
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Guo-Lin Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Li-Qun Fang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
- Department of Epidemiology and Biotatistics, School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Sadat Larijani M, Eybpoosh S, Doroud D, Bavand A, Moradi L, Ashrafian F, Tajmehrabi Namini P, Zali M, Ramezani A. Assessment of COVID-19 Vaccine Impact on Women's Menstrual Health within an 18-Month Follow-Up. Obstet Gynecol Int 2024; 2024:7344506. [PMID: 39364209 PMCID: PMC11449560 DOI: 10.1155/2024/7344506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 08/27/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
Considering menstruation as a crucial factor in females' health and fertility, any factor that could change its cycle is important. This study was conducted from April 2021 to October 2022 on females who got 3 doses of vaccines against SARS-CoV-2 through different platforms. The participants were requested to provide the trained experts with any changes regarding menstrual cycles after each dose of the vaccine up to 6 months after the booster shots. The disturbances related to the vaccines were identified by the adverse events committee to find possible associations with the applied vaccines. Of 308 women who participated until the end of the study, 22 (7.1%) complained about at least one abnormality in their menstrual patterns. The most common disturbance was metrorrhagia as 10 (48%) incidences followed by menorrhagia as 6 events (24.2%). Notably, the identified complaints were persistent in 59% of the patients. In addition, 14 studied cases developed COVID-19 infection after menstrual disorders. In these cases, COVID-19 could also play a role in the persistence of postvaccine menstrual disturbances. COVID-19 vaccination could affect menstrual cycle in women with no remarkable previous medical history. More longitudinal studies are required regarding this issue.
Collapse
Affiliation(s)
| | - Sana Eybpoosh
- Department of Epidemiology and BiostatisticsResearch Centre for Emerging and Reemerging Infectious DiseasesPasteur Institute of Iran, Tehran, Iran
| | - Delaram Doroud
- Quality Control DepartmentProduction and Research ComplexPasteur Institute of Iran, Tehran, Iran
| | - Anahita Bavand
- Clinical Research DepartmentPasteur Institute of Iran, Tehran, Iran
| | - Ladan Moradi
- Clinical Research DepartmentPasteur Institute of Iran, Tehran, Iran
| | | | | | - Mahsan Zali
- Clinical Research DepartmentPasteur Institute of Iran, Tehran, Iran
| | - Amitis Ramezani
- Clinical Research DepartmentPasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
6
|
Wietschel KA, Fechtner K, Antileo E, Abdurrahman G, Drechsler CA, Makuvise MK, Rose R, Voß M, Krumbholz A, Michalik S, Weiss S, Ulm L, Franikowski P, Fickenscher H, Bröker BM, Raafat D, Holtfreter S. Non-cross-reactive epitopes dominate the humoral immune response to COVID-19 vaccination - kinetics of plasma antibodies, plasmablasts and memory B cells. Front Immunol 2024; 15:1382911. [PMID: 38807606 PMCID: PMC11130424 DOI: 10.3389/fimmu.2024.1382911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/15/2024] [Indexed: 05/30/2024] Open
Abstract
Introduction COVID-19 vaccines are highly effective in inducing protective immunity. While the serum antibody response to COVID-19 vaccination has been studied in depth, our knowledge of the underlying plasmablast and memory B cell (Bmem) responses is still incomplete. Here, we determined the antibody and B cell response to COVID-19 vaccination in a naïve population and contrasted it with the response to a single influenza vaccination in a primed cohort. In addition, we analyzed the antibody and B cell responses against the four endemic human coronaviruses (HCoVs). Methods Measurement of specific plasma IgG antibodies was combined with functional analyses of antibody-secreting plasmablasts and Bmems. SARS-CoV-2- and HCoV-specific IgG antibodies were quantified with an in-house bead-based multiplexed immunoassay. Results The antibody and B cell responses to COVID-19 vaccination reflected the kinetics of a prime-boost immunization, characterized by a slow and moderate primary response and a faster and stronger secondary response. In contrast, the influenza vaccinees possessed robust immune memory for the vaccine antigens prior to vaccination, and the recall vaccination moderately boosted antibody production and Bmem responses. Antibody levels and Bmem responses waned several months after the 2nd COVID-19 vaccination, but were restored upon the 3rd vaccination. The COVID-19 vaccine-induced antibodies mainly targeted novel, non-cross-reactive S1 epitopes of the viral spike protein, while cross-reactive S2 epitopes were less immunogenic. Booster vaccination not only strongly enhanced neutralizing antibodies against an original SARS-CoV-2 strain, but also induced neutralizing antibodies against the Omicron BA.2 variant. We observed a 100% plasma antibody prevalence against the S1 subunits of HCoVs, which was not affected by vaccination. Discussion Overall, by complementing classical serology with a functional evaluation of plasmablasts and memory B cells we provide new insights into the specificity of COVID-19 vaccine-induced antibody and B cell responses.
Collapse
Affiliation(s)
- Kilian A. Wietschel
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Kevin Fechtner
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Elmer Antileo
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Goran Abdurrahman
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Chiara A. Drechsler
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | | | - Ruben Rose
- Institute for Infection Medicine, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Mathias Voß
- Institute for Infection Medicine, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Andi Krumbholz
- Institute for Infection Medicine, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
- Labor Dr. Krause und Kollegen MVZ GmbH, Kiel, Germany
| | - Stephan Michalik
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Lena Ulm
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Philipp Franikowski
- Institute for Educational Quality Improvement, Humboldt University of Berlin, Berlin, Germany
| | - Helmut Fickenscher
- Institute for Infection Medicine, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Barbara M. Bröker
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Dina Raafat
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Silva Holtfreter
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
7
|
Zhao XJ, Liu XL, Liang YM, Zhang S, Liu T, Li LB, Jiang WG, Chen JJ, Xu Q, Lv CL, Jiang BG, Kou ZQ, Wang GL, Fang LQ. Epidemiological characteristics and antibody kinetics of elderly population with booster vaccination following both Omicron BA.5 and XBB waves in China. J Med Virol 2024; 96:e29640. [PMID: 38699969 DOI: 10.1002/jmv.29640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/31/2024] [Accepted: 04/19/2024] [Indexed: 05/05/2024]
Abstract
After the termination of zero-COVID-19 policy, the populace in China has experienced both Omicron BA.5 and XBB waves. Considering the poor antibody responses and severe outcomes observed among the elderly following infection, we conducted a longitudinal investigation to examine the epidemiological characteristics and antibody kinetics among 107 boosted elderly participants following the Omicron BA.5 and XBB waves. We observed that 96 participants (89.7%) were infected with Omicron BA.5, while 59 (55.1%) participants were infected with Omicron XBB. Notably, 52 participants (48.6%) experienced dual infections of both Omicron BA.5 and XBB. The proportion of symptomatic cases appeared to decrease following the XBB wave (18.6%) compared to that after the BA.5 wave (59.3%). Omicron BA.5 breakthrough infection induced lower neutralizing antibody titers against XBB.1.5, BA.2.86, and JN.1, while reinfection with Omicron XBB broadened the antibody responses against all measured Omicron subvariants and may alleviate the wild type-vaccination induced immune imprinting. Boosted vaccination type and comorbidities were the significant factors associated with antibody responses. Updated vaccines based on emerging severe acute respiratory syndrome coronavirus 2 variants are needed to control the Coronavirus Disease 2019 pandemic in the elderly.
Collapse
Affiliation(s)
- Xin-Jing Zhao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, China
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Xiao-Lin Liu
- Institute of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Yu-Min Liang
- Department of Infectious Disease Control and Prevention, Jining Center for Disease Control and Prevention, Jining, China
| | - Sheng Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, China
| | - Ti Liu
- Institute of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Li-Bo Li
- Department of Infectious Disease Control and Prevention, Jining Center for Disease Control and Prevention, Jining, China
| | - Wen-Guo Jiang
- Department of Infectious Disease Control and Prevention, Jining Center for Disease Control and Prevention, Jining, China
| | - Jin-Jin Chen
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, China
| | - Qiang Xu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, China
| | - Chen-Long Lv
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, China
| | - Bao-Gui Jiang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, China
| | - Zeng-Qiang Kou
- Institute of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Guo-Lin Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, China
| | - Li-Qun Fang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, China
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
8
|
Sadat Larijani M, Biglari A, Sorouri R, Salehi-Vaziri M, Doroud D, Azadmanesh K, Fotouhi F, Mostafavi E, Ramezani A. Lessons from COVID-19 Pandemic: A Successful Policy and Practice by Pasteur Institute of Iran. IRANIAN BIOMEDICAL JOURNAL 2024; 28:1-7. [PMID: 38224028 PMCID: PMC10994636 DOI: 10.61186/ibj.3964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/10/2023] [Indexed: 01/16/2024]
Abstract
The present study aims to provide an insight to the comprehensive efforts of Pasteur Institute of Iran (PII) regarding COVID-19 management, research, achievements, and vaccine production, though there are many challenges. The relevant literature review was investigated through national and international database and also reports from the related research departments. Six strategies were taken by PII to manage the pandemic of COVID-19. While this pandemic has been hopefully controlled, SARS-CoV-2 could still be a potential threat. Therefore, COVID-19 data management and updated studies, as well as long-term safety and efficacy of the SARS-CoV-2 vaccines are still on the agenda.
Collapse
Affiliation(s)
| | - Alireza Biglari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Rahim Sorouri
- IPI Directorate, Pasteur Institute of Iran, Tehran, Iran
| | | | - Delaram Doroud
- Quality Control Department, Production and research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Keyhan Azadmanesh
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Fotouhi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| | - Ehsan Mostafavi
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Amitis Ramezani
- Clinical Research Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
9
|
Farahmand B, Sadat Larijani M, Fotouhi F, Biglari A, Sorouri R, Bagheri Amiri F, Eslamifar A, Jalali T, Salehi-Vaziri M, Banifazl M, Dahmardeh S, Eshratkhah Mohammadnejad A, Bavand A, Tavakoli M, Verez-Bencomo V, Mostafavi E, Noori Daloii H, Ashrafian F, Saberpour M, Ramezani A. Evaluation of PastoCovac plus vaccine as a booster dose on vaccinated individuals with inactivated COVID-19 vaccine. Heliyon 2023; 9:e20555. [PMID: 37810803 PMCID: PMC10551543 DOI: 10.1016/j.heliyon.2023.e20555] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/19/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023] Open
Abstract
COVID-19 pandemic has been managed through global vaccination programs. However, the antibody waning in various types of vaccines came to notice. Hereby, PastoCovac Plus as a protein subunit vaccine was investigated in immunized health care workers by COVAXIN (BBV152). The booster vaccine was recommended at least three months post the second dose of COVAXIN. Sera collection was done before and after each injection. SARS-CoV-2 PCR test was done monthly to detect any asymptomatic and symptomatic vaccine breakthrough. 47.9 and 24.3% of the participants were seronegative for anti-N and anti-S antibodies three months after the second dose of COVAXIN, respectively. On average, fold-rises of 70, 93, 8 and mean-rises of 23.32, 892.4, 5.59 were recorded regarding neutralizing antibody, quantitative and semi-quantitative anti-Spike antibody, respectively. Anti-Spike and neutralizing antibodies seroconversion was seen 59.3% and 45.7%, respectively. The vaccine breakthrough assessment showed that all the isolated samples belonged to SARS-CoV-2 Delta variant. PastoCovac Plus boosting is strongly recommended in combination with inactivated vaccine platforms against SARS-CoV-2.
Collapse
Affiliation(s)
- Behrokh Farahmand
- Department of Influenza and Other Rrespiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| | | | - Fatemeh Fotouhi
- Department of Influenza and Other Rrespiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| | - Alireza Biglari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Rahim Sorouri
- IPI Directorate, Pasteur Institute of Iran, Tehran, Iran
| | - Fahimeh Bagheri Amiri
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Eslamifar
- Clinical Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Tahmineh Jalali
- COVID-19 National Reference Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | | | - Mohammad Banifazl
- Iranian Society for Support of Patients with Infectious Disease, Tehran, Iran
| | - Sarah Dahmardeh
- Vaccination Department, Pasteur Institute of Iran, Tehran, Iran
| | | | - Anahita Bavand
- Clinical Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Mahsa Tavakoli
- COVID-19 National Reference Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | | | - Ehsan Mostafavi
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Hassan Noori Daloii
- Health and Safety Department, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Ashrafian
- Clinical Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Masoumeh Saberpour
- Department of Influenza and Other Rrespiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| | - Amitis Ramezani
- Clinical Research Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|