1
|
Gbedande K, Ibitokou SA, Endrino MJD, Yap GS, Brown MG, Stephens R. Heightened innate immune state induced by viral vector leads to enhanced response to challenge and prolongs malaria vaccine protection. iScience 2024; 27:111468. [PMID: 39758993 PMCID: PMC11697717 DOI: 10.1016/j.isci.2024.111468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/01/2024] [Accepted: 11/21/2024] [Indexed: 01/07/2025] Open
Abstract
Cytomegalovirus is a promising vaccine vector; however, mechanisms promoting CD4 T cell responses to challenge, by CMV as a vector, are unknown. The ability of MCMV to prolong immunity generated by short-lived malaria vaccine was tested. MCMV provided non-specific protection to challenge with Plasmodium and increased interleukin-12 (IL-12) and CD8α+ dendritic cell (DC) numbers through prolonged MCMV-dependent interferon gamma (IFN-γ) production. This late innate response to MCMV increased IL-12 upon challenge and increased the polyclonal CD4 effector T cell response to Plasmodium, protecting in an IL-12-dependent manner. Although Plasmodium-vaccine-induced protection decayed by d200, MCMV restored protection through IFN-γ. Mechanistically, protection depended on MCMV-induced-IFN-γ increasing CD8α+ DCs and IL-12p40. MCMV expressing a Plasmodium epitope increased parasite-specific CD4 effector and effector memory T cells persisting after malaria vaccination, both phenotypes reported to protect. Overall, enhanced innate cell status, a mechanism of heterologous protection by MCMV, led to a stronger T cell response to challenge.
Collapse
Affiliation(s)
- Komi Gbedande
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0435, USA
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Cancer Center, 205 S. Orange Avenue, Newark, NJ 07103, USA
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Cancer Center, 205 S. Orange Avenue, Newark, NJ 07103, USA
| | - Samad A. Ibitokou
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0435, USA
| | - Mark Joseph D. Endrino
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Cancer Center, 205 S. Orange Avenue, Newark, NJ 07103, USA
| | - George S. Yap
- Center for Immunity and Inflammation, and Department of Medicine, Rutgers New Jersey Medical School, Cancer Center, 205 S. Orange Avenue, Newark, NJ 07103, USA
| | - Michael G. Brown
- Department of Medicine, Division of Nephrology, and the Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
| | - Robin Stephens
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0435, USA
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Cancer Center, 205 S. Orange Avenue, Newark, NJ 07103, USA
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Cancer Center, 205 S. Orange Avenue, Newark, NJ 07103, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
2
|
Jankovic M, Knezevic T, Tomic A, Milicevic O, Jovanovic T, Djunic I, Mihaljevic B, Knezevic A, Todorovic-Balint M. Human Cytomegalovirus Oncoprotection across Diverse Populations, Tumor Histologies, and Age Groups: The Relevance for Prospective Vaccinal Therapy. Int J Mol Sci 2024; 25:3741. [PMID: 38612552 PMCID: PMC11012084 DOI: 10.3390/ijms25073741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
The oncogenicity of the human cytomegalovirus (CMV) is currently being widely debated. Most recently, mounting clinical evidence suggests an anti-cancer effect via CMV-induced T cell-mediated tumor destruction. However, the data were mostly obtained from single-center studies and in vitro experiments. Broad geographic coverage is required to offer a global perspective. Our study examined the correlation between country-specific CMV seroprevalence (across 73 countries) and the age-standardized incidence rate (of 34 invasive tumors). The populations studied were stratified according to decadal age periods as the immunologic effects of CMV seropositivity may depend upon age at initial infection. The International Agency for Research on Cancer of the World Health Organization (IARC WHO) database was used. The multivariate linear regression analysis revealed a worldwide inverse correlation between CMV seroprevalence and the incidences of 62.8% tumors. Notably, this inverse link persists for all cancers combined (Spearman's ρ = -0.732, p < 0.001; β = -0.482, p < 0.001, adjusted R2 = 0.737). An antithetical and significant correlation was also observed in particular age groups for the vast majority of tumors. Our results corroborate the conclusions of previous studies and indicate that this oncopreventive phenomenon holds true on a global scale. It applies to a wide spectrum of cancer histologies, additionally supporting the idea of a common underlying mechanism-CMV-stimulated T cell tumor targeting. Although these results further advance the notion of CMV-based therapies, in-depth investigation of host-virus interactions is still warranted.
Collapse
Affiliation(s)
- Marko Jankovic
- Department of Virology, Institute of Microbiology and Immunology, 1 Dr Subotica Street, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, 8 Dr Subotica Street, 11000 Belgrade, Serbia; (T.K.); (A.T.); (O.M.); (I.D.); (B.M.); (M.T.-B.)
| | - Tara Knezevic
- Faculty of Medicine, University of Belgrade, 8 Dr Subotica Street, 11000 Belgrade, Serbia; (T.K.); (A.T.); (O.M.); (I.D.); (B.M.); (M.T.-B.)
| | - Ana Tomic
- Faculty of Medicine, University of Belgrade, 8 Dr Subotica Street, 11000 Belgrade, Serbia; (T.K.); (A.T.); (O.M.); (I.D.); (B.M.); (M.T.-B.)
| | - Ognjen Milicevic
- Faculty of Medicine, University of Belgrade, 8 Dr Subotica Street, 11000 Belgrade, Serbia; (T.K.); (A.T.); (O.M.); (I.D.); (B.M.); (M.T.-B.)
- Institute of Medical Statistics and Informatics, 15 Dr Subotica Street, 11000 Belgrade, Serbia
| | - Tanja Jovanovic
- Institute for Biocides and Medical Ecology, 16 Trebevicka Street, 11000 Belgrade, Serbia;
| | - Irena Djunic
- Faculty of Medicine, University of Belgrade, 8 Dr Subotica Street, 11000 Belgrade, Serbia; (T.K.); (A.T.); (O.M.); (I.D.); (B.M.); (M.T.-B.)
- Clinic of Hematology, University Clinical Centre of Serbia, 2 Dr Koste Todorovica Street, 11000 Belgrade, Serbia
| | - Biljana Mihaljevic
- Faculty of Medicine, University of Belgrade, 8 Dr Subotica Street, 11000 Belgrade, Serbia; (T.K.); (A.T.); (O.M.); (I.D.); (B.M.); (M.T.-B.)
- Clinic of Hematology, University Clinical Centre of Serbia, 2 Dr Koste Todorovica Street, 11000 Belgrade, Serbia
| | - Aleksandra Knezevic
- Department of Virology, Institute of Microbiology and Immunology, 1 Dr Subotica Street, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, 8 Dr Subotica Street, 11000 Belgrade, Serbia; (T.K.); (A.T.); (O.M.); (I.D.); (B.M.); (M.T.-B.)
| | - Milena Todorovic-Balint
- Faculty of Medicine, University of Belgrade, 8 Dr Subotica Street, 11000 Belgrade, Serbia; (T.K.); (A.T.); (O.M.); (I.D.); (B.M.); (M.T.-B.)
- Clinic of Hematology, University Clinical Centre of Serbia, 2 Dr Koste Todorovica Street, 11000 Belgrade, Serbia
| |
Collapse
|
3
|
Zeng J, Jaijyan DK, Yang S, Pei S, Tang Q, Zhu H. Exploring the Potential of Cytomegalovirus-Based Vectors: A Review. Viruses 2023; 15:2043. [PMID: 37896820 PMCID: PMC10612100 DOI: 10.3390/v15102043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
Viral vectors have emerged as powerful tools for delivering and expressing foreign genes, playing a pivotal role in gene therapy. Among these vectors, cytomegalovirus (CMV) stands out as a promising viral vector due to its distinctive attributes including large packaging capacity, ability to achieve superinfection, broad host range, capacity to induce CD8+ T cell responses, lack of integration into the host genome, and other qualities that make it an appealing vector candidate. Engineered attenuated CMV strains such as Towne and AD169 that have a ~15 kb genomic DNA deletion caused by virus passage guarantee human safety. CMV's large genome enables the efficient incorporation of substantial foreign genes as demonstrated by CMV vector-based therapies for SIV, tuberculosis, cancer, malaria, aging, COVID-19, and more. CMV is capable of reinfecting hosts regardless of prior infection or immunity, making it highly suitable for multiple vector administrations. In addition to its broad cellular tropism and sustained high-level gene expression, CMV triggers robust, virus-specific CD8+ T cell responses, offering a significant advantage as a vaccine vector. To date, successful development and testing of murine CMV (MCMV) and rhesus CMV (RhCMV) vectors in animal models have demonstrated the efficacy of CMV-based vectors. These investigations have explored the potential of CMV vectors for vaccines against HIV, cancer, tuberculosis, malaria, and other infectious pathogens, as well as for other gene therapy applications. Moreover, the generation of single-cycle replication CMV vectors, produced by deleting essential genes, ensures robust safety in an immunocompromised population. The results of these studies emphasize CMV's effectiveness as a gene delivery vehicle and shed light on the future applications of a CMV vector. While challenges such as production complexities and storage limitations need to be addressed, ongoing efforts to bridge the gap between animal models and human translation continue to fuel the optimism surrounding CMV-based vectors. This review will outline the properties of CMV vectors and discuss their future applications as well as possible limitations.
Collapse
Affiliation(s)
- Janine Zeng
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA; (J.Z.); (D.K.J.); (S.P.)
| | - Dabbu Kumar Jaijyan
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA; (J.Z.); (D.K.J.); (S.P.)
| | - Shaomin Yang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518060, China;
| | - Shaokai Pei
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA; (J.Z.); (D.K.J.); (S.P.)
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA; (J.Z.); (D.K.J.); (S.P.)
| |
Collapse
|
4
|
Gbedande K, Ibitokou SA, Ong ML, Degli-Esposti MA, Brown MG, Stephens R. Boosting Live Malaria Vaccine with Cytomegalovirus Vector Can Prolong Immunity through Innate and Adaptive Mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539025. [PMID: 37205446 PMCID: PMC10187235 DOI: 10.1101/2023.05.02.539025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Vaccines to persistent parasite infections have been challenging, and current iterations lack long-term protection. Cytomegalovirus (CMV) chronic vaccine vectors drive protection against SIV, tuberculosis and liver-stage malaria correlated with antigen-specific CD8 T cells with a Tem phenotype. This phenotype is likely driven by a combination of antigen-specific and innate adjuvanting effects of the vector, though these mechanisms are less well understood. Sterilizing immunity from live Plasmodium chabaudi vaccination lasts less than 200 days. While P. chabaudi-specific antibody levels remain stable after vaccination, the decay of parasite-specific T cells correlates with loss of challenge protection. Therefore, we enlisted murine CMV as a booster strategy to prolong T cell responses against malaria. To study induced T cell responses, we included P. chabaudi MSP-1 epitope B5 (MCMV-B5). We found that MCMV vector alone significantly protected against a challenge P. chabaudi infection 40-60 days later, and that MCMV-B5 was able to make B5-specific Teff, in addition to previously-reported Tem, that survive to the challenge timepoint. Used as a booster, MCMV-B5 prolonged protection from heterologous infection beyond day 200, and increased B5 TCR Tg T cell numbers, including both a highly-differentiated Tem phenotype and Teff, both previously reported to protect. B5 epitope expression was responsible for maintenance of Th1 and Tfh B5 T cells. In addition, the MCMV vector had adjuvant properties, contributing non-specifically through prolonged stimulation of IFN-γ. In vivo neutralization of IFN-γ, but not IL-12 and IL-18, late in the course of MCMV, led to loss of the adjuvant effect. Mechanistically, sustained IFN-γ from MCMV increased CD8α+ dendritic cell numbers, and led to increased IL-12 production upon Plasmodium challenge. In addition, neutralization of IFN-γ before challenge reduced the polyclonal Teff response to challenge. Our findings suggest that, as protective epitopes are defined, an MCMV vectored booster can prolong protection through the innate effects of IFN-γ.
Collapse
Affiliation(s)
- Komi Gbedande
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0435
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Cancer Center, 205 S. Orange Avenue, Newark, NJ 07103
| | - Samad A Ibitokou
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0435
| | - Monique L Ong
- Centre for Experimental Immunology, Lions Eye Institute; Nedlands, Western Australia, Australia
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University; Clayton, Victoria, Australia
| | - Mariapia A Degli-Esposti
- Centre for Experimental Immunology, Lions Eye Institute; Nedlands, Western Australia, Australia
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University; Clayton, Victoria, Australia
| | - Michael G Brown
- Department of Medicine, Division of Nephrology, and the Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA
| | - Robin Stephens
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0435
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Cancer Center, 205 S. Orange Avenue, Newark, NJ 07103
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
| |
Collapse
|
5
|
Rashid S, Ardeljan A, Frankel LR, Cardeiro M, Kim E, Nagel BM, Takabe K, Rashid O. Human Cytomegalovirus (CMV) Infection Associated With Decreased Risk of Bronchogenic Carcinoma: Understanding How a Previous CMV Infection Leads to an Enhanced Immune Response Against Malignancy. Cureus 2023; 15:e37265. [PMID: 37162767 PMCID: PMC10164441 DOI: 10.7759/cureus.37265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/07/2023] [Indexed: 05/11/2023] Open
Abstract
INTRODUCTION Cytomegalovirus (CMV) causes a long-lasting, asymptomatic infection that reportedly has both advantageous and deleterious effects on tumor progression. The purpose of this study was to evaluate the correlation between CMV infection and the incidence of bronchogenic carcinoma. METHODS The study was conducted using a Health Insurance Portability and Accountability Act (HIPAA) compliant national database to identify patients both with and without histories of CMV infection using International Classification of Diseases (ICD-10 and ICD-9) codes. Access to the database was granted by Holy Cross Health, Fort Lauderdale for the purpose of academic research with standard statistical methods used to analyze the data. 14,319 patients were included in both the control and CMV-exposed groups and matched by age range and Charlson Comorbidity Index (CCI) scores. RESULTS The incidence of bronchogenic carcinoma was 1.69% (243/14,319 patients) in the CMV group and 6.08% (871/14,319 patients) in the control group. The difference was statistically significant by a p-value of less than 2.6x10-16 with an odds ratio of 0.26 (95% CI: 0.24-0.30). The two groups were also matched for treatment. Further evaluation of the CMV-specific treatment effects on outcomes was limited due to the insufficient number of treated patients in the control group. CONCLUSION This study found a statistically significant correlation between a prior CMV infection and a reduced incidence of bronchogenic carcinoma. This study demonstrates the need for further investigation into how the tumor microenvironment and host immune system are altered by the presence of a latent CMV infection.
Collapse
Affiliation(s)
- Selena Rashid
- Department of Surgery, Michael and Dianne Bienes Comprehensive Cancer Center, Holy Cross Health, Fort Lauderdale, USA
- Department of Allopathic Medicine, Nova Southeastern University, Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, USA
| | - Amalia Ardeljan
- Department of Surgery, Michael and Dianne Bienes Comprehensive Cancer Center, Holy Cross Health, Fort Lauderdale, USA
| | - Lexi R Frankel
- Department of Surgery, Michael and Dianne Bienes Comprehensive Cancer Center, Holy Cross Health, Fort Lauderdale, USA
- Department of Allopathic Medicine, Nova Southeastern University, Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, USA
| | - Matthew Cardeiro
- Department of Surgery, Michael and Dianne Bienes Comprehensive Cancer Center, Holy Cross Health, Fort Lauderdale, USA
- Department of Allopathic Medicine, Nova Southeastern University, Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, USA
| | - Enoch Kim
- Department of Surgery, Michael and Dianne Bienes Comprehensive Cancer Center, Holy Cross Health, Fort Lauderdale, USA
- Department of Allopathic Medicine, Nova Southeastern University, Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, USA
| | - Brittany M Nagel
- Department of Surgery, Michael and Dianne Bienes Comprehensive Cancer Center, Holy Cross Health, Fort Lauderdale, USA
- Department of Allopathic Medicine, Nova Southeastern University, Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, USA
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, USA
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, USA
| | - Omar Rashid
- Department of Surgery, Michael and Dianne Bienes Comprehensive Cancer Center, Holy Cross Health, Fort Lauderdale, USA
- Department of Allopathic Medicine, Nova Southeastern University, Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, USA
- Department of Medicine, University of Miami, Leonard Miami School of Medicine, Miami, USA
- Department of Surgical Oncology, Massachusetts General Hospital, Boston, USA
- Department of Surgical Oncology, Broward Health, Fort Lauderdale, USA
- Department of Complex General Surgical Oncology and General Surgery, Topline MD Alliance, Fort Lauderdale, USA
- Department of Surgical Oncology, Memorial Healthcare, Pembroke Pines, USA
- Department of Surgical Oncology, Delray Medical Center, Delray, USA
| |
Collapse
|
6
|
Li YS, Ren HC, Cao JH. Correlation of SARS‑CoV‑2 to cancer: Carcinogenic or anticancer? (Review). Int J Oncol 2022; 60:42. [PMID: 35234272 PMCID: PMC8923649 DOI: 10.3892/ijo.2022.5332] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 12/15/2021] [Indexed: 11/05/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly infectious and pathogenic. Among patients with severe SARS-CoV-2-caused by corona virus disease 2019 (COVID-19), those complicated with malignant tumor are vulnerable to COVID-19 due to compromised immune function caused by tumor depletion, malnutrition and anti-tumor treatment. Cancer is closely related to the risk of severe illness and mortality in patients with COVID-19. SARS-CoV-2 could promote tumor progression and stimulate metabolism switching in tumor cells to initiate tumor metabolic modes with higher productivity efficiency, such as glycolysis, for facilitating the massive replication of SARS-CoV-2. However, it has been shown that infection with SARS-CoV-2 leads to a delay in tumor progression of patients with natural killer cell (NK cell) lymphoma and Hodgkin's lymphoma, while SARS-CoV-2 elicited anti-tumor immune response may exert a potential oncolytic role in lymphoma patients. The present review briefly summarized potential carcinogenicity and oncolytic characteristics of SARS-CoV-2 as well as strategies to protect patients with cancer during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Ying-Shuang Li
- Intravenous Drug Administration Center, Department of Pharmacy, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| | - Hua-Cheng Ren
- Intravenous Drug Administration Center, Department of Pharmacy, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| | - Jian-Hua Cao
- Intravenous Drug Administration Center, Department of Pharmacy, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| |
Collapse
|
7
|
García-Bustos V, Salavert M, Blanes R, Cabañero D, Blanes M. Current management of CMV infection in cancer patients (solid tumors). Epidemiology and therapeutic strategies. REVISTA ESPANOLA DE QUIMIOTERAPIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE QUIMIOTERAPIA 2022; 35 Suppl 3:74-79. [PMID: 36285863 PMCID: PMC9717468 DOI: 10.37201/req/s03.16.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Little evidence is available regarding the incidence of CMV disease in patients with solid cancers. Latest data show that approximately 50 % of these patients with CMV PCR positivity developed clinically relevant CMV-viremia, and would require specific therapy. In the clinical arena, CMV reactivation is an important differential diagnosis in the infectological work up of these patients, but guidelines of management on this subject are not yet available. CMV reactivation should be considered during differential diagnosis for patients with a severe decline in lymphocyte counts when receiving chemoradiotherapy or immunochemotherapy with lymphocyte-depleting or blocking agents. Monitoring of CMV reactivation followed by the implementation of preemptive strategies or the establishment of early antiviral treatment improves the prognosis and reduces the morbidity and mortality of these patients.
Collapse
Affiliation(s)
- Víctor García-Bustos
- Servicio de Medicina Interna. Hospital Universitario y Politécnico La Fe, Valencia. Spain
| | - Miguel Salavert
- Unidad de Enfermedades Infecciosas. Hospital Universitario y Politécnico La Fe, Valencia. Spain,Correspondence: Dr. Miguel Salavert Lletí. Unidad de Enfermedades Infecciosas. Hospital Universitario y Politécnico La Fe, Valencia. Av. Fernando Abril Martorell, nº 106. Valencia 46016. E-mail:
| | - Rosa Blanes
- Unidad de Enfermedades Infecciosas. Hospital Universitario y Politécnico La Fe, Valencia. Spain
| | - Dafne Cabañero
- Servicio de Medicina Interna. Hospital Universitario y Politécnico La Fe, Valencia. Spain
| | - Marino Blanes
- Unidad de Enfermedades Infecciosas. Hospital Universitario y Politécnico La Fe, Valencia. Spain
| |
Collapse
|
8
|
Jiang J, Mei J, Yi S, Feng C, Ma Y, Liu Y, Liu Y, Chen C. Tumor associated macrophage and microbe: The potential targets of tumor vaccine delivery. Adv Drug Deliv Rev 2022; 180:114046. [PMID: 34767863 DOI: 10.1016/j.addr.2021.114046] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 02/08/2023]
Abstract
The occurrence and development of tumors depend on the tumor microenvironment (TME), which is made of various immune cells, activated fibroblasts, basement membrane, capillaries, and extracellular matrix. Tumor associated macrophages (TAMs) and microbes are important components in TME. Tumor cells can recruit and educate TAMs and microbes, and the hijacked TAMs and microbes can promote the progression of tumor reciprocally. Tumor vaccine delivery remodeling TME by targeting TAM and microbes can not only enhance the specificity and immunogenicity of antigens, but also contribute to the regulation of TME. Tumor vaccine design benefits from nanotechnology which is a suitable platform for antigen and adjuvant delivery to catalyze new candidate vaccines applying to clinical therapy at unparalleled speed. In view of the characteristics and mechanisms of TME development, vaccine delivery targeting and breaking the malignant interactions among tumor cells, TAMs, and microbes may serve as a novel strategy for tumor therapy.
Collapse
|
9
|
El Baba R, Herbein G. Immune Landscape of CMV Infection in Cancer Patients: From "Canonical" Diseases Toward Virus-Elicited Oncomodulation. Front Immunol 2021; 12:730765. [PMID: 34566995 PMCID: PMC8456041 DOI: 10.3389/fimmu.2021.730765] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Human Cytomegalovirus (HCMV) is an immensely pervasive herpesvirus, persistently infecting high percentages of the world population. Despite the apparent robust host immune responses, HCMV is capable of replicating, evading host defenses, and establishing latency throughout life by developing multiple immune-modulatory strategies. HCMV has coexisted with humans mounting various mechanisms to evade immune cells and effectively win the HCMV-immune system battle mainly through maintaining its viral genome, impairing HLA Class I and II molecule expression, evading from natural killer (NK) cell-mediated cytotoxicity, interfering with cellular signaling, inhibiting apoptosis, escaping complement attack, and stimulating immunosuppressive cytokines (immune tolerance). HCMV expresses several gene products that modulate the host immune response and promote modifications in non-coding RNA and regulatory proteins. These changes are linked to several complications, such as immunosenescence and malignant phenotypes leading to immunosuppressive tumor microenvironment (TME) and oncomodulation. Hence, tumor survival is promoted by affecting cellular proliferation and survival, invasion, immune evasion, immunosuppression, and giving rise to angiogenic factors. Viewing HCMV-induced evasion mechanisms will play a principal role in developing novel adapted therapeutic approaches against HCMV, especially since immunotherapy has revolutionized cancer therapeutic strategies. Since tumors acquire immune evasion strategies, anti-tumor immunity could be prominently triggered by multimodal strategies to induce, on one side, immunogenic tumor apoptosis and to actively oppose the immune suppressive microenvironment, on the other side.
Collapse
Affiliation(s)
- Ranim El Baba
- Department Pathogens & Inflammation-EPILAB EA4266, University of Franche-Comté UBFC, Besançon, France
| | - Georges Herbein
- Department Pathogens & Inflammation-EPILAB EA4266, University of Franche-Comté UBFC, Besançon, France
- Department of Virology, Centre hospitalier régional universitaire de Besançon (CHRU) Besançon, Besancon, France
| |
Collapse
|
10
|
Scarpini S, Morigi F, Betti L, Dondi A, Biagi C, Lanari M. Development of a Vaccine against Human Cytomegalovirus: Advances, Barriers, and Implications for the Clinical Practice. Vaccines (Basel) 2021; 9:551. [PMID: 34070277 PMCID: PMC8225126 DOI: 10.3390/vaccines9060551] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/13/2022] Open
Abstract
Human cytomegalovirus (hCMV) is one of the most common causes of congenital infection in the post-rubella era, representing a major public health concern. Although most cases are asymptomatic in the neonatal period, congenital CMV (cCMV) disease can result in permanent impairment of cognitive development and represents the leading cause of non-genetic sensorineural hearing loss. Moreover, even if hCMV mostly causes asymptomatic or pauci-symptomatic infections in immunocompetent hosts, it may lead to severe and life-threatening disease in immunocompromised patients. Since immunity reduces the severity of disease, in the last years, the development of an effective and safe hCMV vaccine has been of great interest to pharmacologic researchers. Both hCMV live vaccines-e.g., live-attenuated, chimeric, viral-based-and non-living ones-subunit, RNA-based, virus-like particles, plasmid-based DNA-have been investigated. Encouraging data are emerging from clinical trials, but a hCMV vaccine has not been licensed yet. Major difficulties in the development of a satisfactory vaccine include hCMV's capacity to evade the immune response, unclear immune correlates for protection, low number of available animal models, and insufficient general awareness. Moreover, there is a need to determine which may be the best target populations for vaccine administration. The aim of the present paper is to examine the status of hCMV vaccines undergoing clinical trials and understand barriers limiting their development.
Collapse
Affiliation(s)
- Sara Scarpini
- Specialty School of Pediatrics, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (S.S.); (F.M.); (L.B.)
| | - Francesca Morigi
- Specialty School of Pediatrics, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (S.S.); (F.M.); (L.B.)
| | - Ludovica Betti
- Specialty School of Pediatrics, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (S.S.); (F.M.); (L.B.)
| | - Arianna Dondi
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (C.B.); (M.L.)
| | - Carlotta Biagi
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (C.B.); (M.L.)
| | - Marcello Lanari
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (C.B.); (M.L.)
| |
Collapse
|
11
|
Huang H, Rückborn M, Le-Trilling VTK, Zhu D, Yang S, Zhou W, Yang X, Feng X, Lu Y, Lu M, Dittmer U, Yang D, Trilling M, Liu J. Prophylactic and therapeutic HBV vaccination by an HBs-expressing cytomegalovirus vector lacking an interferon antagonist in mice. Eur J Immunol 2020; 51:393-407. [PMID: 33029793 DOI: 10.1002/eji.202048780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/14/2020] [Accepted: 10/05/2020] [Indexed: 01/12/2023]
Abstract
Cytomegalovirus (CMV)-based vaccines show promising effects against chronic infections in nonhuman primates. Therefore, we examined the potential of hepatitis B virus (HBV) vaccines based on mouse CMV (MCMV) vectors expressing the small HBsAg. Immunological consequences of vaccine virus attenuation were addressed by either replacing the dispensable gene m157 ("MCMV-HBsȍ) or the gene M27 ("ΔM27-HBs"), the latter encodes a potent IFN antagonist targeting the transcription factor STAT2. M27 was chosen, since human CMV encodes an analogous gene product, which also induced proteasomal STAT2 degradation by exploiting Cullin RING ubiquitin ligases. Vaccinated mice were challenged with HBV through hydrodynamic injection. MCMV-HBs and ΔM27-HBs vaccination achieved accelerated HBV clearance in serum and liver as well as robust HBV-specific CD8+ T-cell responses. When we explored the therapeutic potential of MCMV-based vaccines, especially the combination of ΔM27-HBs prime and DNA boost vaccination resulted in increased intrahepatic HBs-specific CD8+ T-cell responses and HBV clearance in persistently infected mice. Our results demonstrated that vaccines based on a replication competent MCMV attenuated through the deletion of an IFN antagonist targeting STAT2 elicit robust anti-HBV immune responses and mediate HBV clearance in mice in prophylactic and therapeutic immunization regimes.
Collapse
Affiliation(s)
- Hongming Huang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meike Rückborn
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Dan Zhu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shangqing Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenqing Zhou
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuecheng Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuemei Feng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yinping Lu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengji Lu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mirko Trilling
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Schleiss MR, Diamond DJ. Exciting Times for Cytomegalovirus (CMV) Vaccine Development: Navigating the Pathways toward the Goal of Protecting Infants against Congenital CMV Infection. Vaccines (Basel) 2020; 8:E526. [PMID: 32937764 PMCID: PMC7563117 DOI: 10.3390/vaccines8030526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
The congenital transmission of cytomegalovirus (cCMV) is the most common infectious cause of disability in children in the developed world, and probably globally [...].
Collapse
Affiliation(s)
- Mark R. Schleiss
- Department of Pediatrics, Medical School Campus, University of Minnesota, Minneapolis, MN 55455, USA
| | - Don J. Diamond
- Department of Hematology/HCT, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
13
|
Han J, Khatwani N, Searles TG, Turk MJ, Angeles CV. Memory CD8 + T cell responses to cancer. Semin Immunol 2020; 49:101435. [PMID: 33272898 PMCID: PMC7738415 DOI: 10.1016/j.smim.2020.101435] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022]
Abstract
Long-lived memory CD8+ T cells play important roles in tumor immunity. Studies over the past two decades have identified four subsets of memory CD8+ T cells - central, effector, stem-like, and tissue resident memory - that either circulate through blood, lymphoid and peripheral organs, or reside in tissues where cancers develop. In this article, we will review studies from both pre-clinical mouse models and human patients to summarize the phenotype, distribution and unique features of each memory subset, and highlight specific roles of each subset in anti-tumor immunity. Moreover, we will discuss how stem-cell like and resident memory CD8+ T cell subsets relate to exhausted tumor-infiltrating lymphocytes (TIL) populations. These studies reveal how memory CD8+ T cell subsets together orchestrate durable immunity to cancer.
Collapse
Affiliation(s)
- Jichang Han
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, United States
| | - Nikhil Khatwani
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, United States
| | - Tyler G Searles
- Norris Cotton Cancer Center, The Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, United States
| | - Mary Jo Turk
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, United States; Norris Cotton Cancer Center, The Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, United States
| | - Christina V Angeles
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI 48109, United States; The University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
14
|
Wilski NA, Stotesbury C, Del Casale C, Montoya B, Wong E, Sigal LJ, Snyder CM. STING Sensing of Murine Cytomegalovirus Alters the Tumor Microenvironment to Promote Antitumor Immunity. THE JOURNAL OF IMMUNOLOGY 2020; 204:2961-2972. [PMID: 32284333 DOI: 10.4049/jimmunol.1901136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/18/2020] [Indexed: 01/04/2023]
Abstract
CMV has been proposed to play a role in cancer progression and invasiveness. However, CMV has been increasingly studied as a cancer vaccine vector, and multiple groups, including ours, have reported that the virus can drive antitumor immunity in certain models. Our previous work revealed that intratumoral injections of wild-type murine CMV (MCMV) into B16-F0 melanomas caused tumor growth delay in part by using a viral chemokine to recruit macrophages that were subsequently infected. We now show that MCMV acts as a STING agonist in the tumor. MCMV infection of tumors in STING-deficient mice resulted in normal recruitment of macrophages to the tumor, but poor recruitment of CD8+ T cells, reduced production of inflammatory cytokines and chemokines, and no delay in tumor growth. In vitro, expression of type I IFN was dependent on both STING and the type I IFNR. Moreover, type I IFN alone was sufficient to induce cytokine and chemokine production by macrophages and B16 tumor cells, suggesting that the major role for STING activation was to produce type I IFN. Critically, viral infection of wild-type macrophages alone was sufficient to restore tumor growth delay in STING-deficient animals. Overall, these data show that MCMV infection and sensing in tumor-associated macrophages through STING signaling is sufficient to promote antitumor immune responses in the B16-F0 melanoma model.
Collapse
Affiliation(s)
- Nicole A Wilski
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Colby Stotesbury
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Christina Del Casale
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Brian Montoya
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Eric Wong
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Luis J Sigal
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Christopher M Snyder
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
15
|
Herbein G, Nehme Z. Tumor Control by Cytomegalovirus: A Door Open for Oncolytic Virotherapy? MOLECULAR THERAPY-ONCOLYTICS 2020; 17:1-8. [PMID: 32300639 PMCID: PMC7150429 DOI: 10.1016/j.omto.2020.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Belonging to the herpesviridae family, human cytomegalovirus (HCMV) is a well-known ubiquitous pathogen that establishes a lifelong infection in humans. Recently, a beneficial tumor-cytoreductive role of CMV infection has been defined in human and animal models. Described as a potential anti-tumoral activity, HCMV modulates the tumor microenvironment mainly by inducing cell death through apoptosis and prompting a robust stimulatory effect on the immune cells infiltrating the tumor tissue. However, major current limitations embrace transient protective effect and a viral dissemination potential in immunosuppressed hosts. The latter could be counteracted through direct viral intratumoral delivery, use of non-human strains, or even defective CMV vectors to ascertain transformed cells-selective tropism. This potential oncolytic activity could be complemented by tackling further platforms, namely combination with immune checkpoint inhibitors or epigenetic therapy, as well as the use of second-generation chimeric oncovirus, for instance HCMV/HSV-1 oncolytic virus. Overall, preliminary data support the use of CMV in viral oncolytic therapy as a viable option, establishing thus a potential new modality, where further assessment through extensive basic research armed by molecular biotechnology is compulsory.
Collapse
Affiliation(s)
- Georges Herbein
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté, University of Bourgogne Franche-Comté, 25030 Besançon, France.,Department of Virology, CHRU Besancon, 25030 Besançon, France
| | - Zeina Nehme
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté, University of Bourgogne Franche-Comté, 25030 Besançon, France.,Université Libanaise 1003, Beirut, Lebanon
| |
Collapse
|
16
|
Cytomegalovirus and Epstein-Barr Virus Associations with Neurological Diseases and the Need for Vaccine Development. Vaccines (Basel) 2020; 8:vaccines8010035. [PMID: 31968673 PMCID: PMC7157723 DOI: 10.3390/vaccines8010035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/18/2022] Open
Abstract
Herpesviruses have been isolated from a wide range of hosts including humans—for which, nine species have been designated. The human herpesviruses are highly host adapted and possess the capacity for latency, allowing them to survive in the host for life, effectively hidden from the immune system. This ability of human herpesviruses to modulate the host immune response poses particular challenges for vaccine development but at the same time proves attractive for the application of human herpesvirus vaccines to certain spheres of medicine. In this review, congenital cytomegalovirus (CMV) infection and hearing loss will be described followed by a comment on the status of current vaccine development. Secondly, the association of Epstein–Barr virus (EBV) infection with multiple sclerosis (MS) and how EBV vaccination may be of benefit will then be discussed. Prevention of congenital CMV by vaccination is an attractive proposition and several vaccines have been evaluated for potential use. Particularly challenging for the development of CMV vaccines are the needs to prevent primary infection, reinfection, and reactivation at the same time as overcoming the capacity of the virus to generate highly sophisticated immunomodulatory mechanisms. Cost and the practicalities of administering potential vaccines are also significant issues, particularly for low- and middle-income countries, where the burden of disease is greatest. An effective EBV vaccine that could prevent the 200,000 new EBV-associated malignancies which occur globally each year is not currently available. There is increasing interest in developing EBV vaccines to prevent MS and, in view of the association of infectious mononucleosis with MS, reducing childhood infectious mononucleosis is a potential intervention. Currently, there is no licensed EBV vaccine and, in order to progress the development of EBV vaccines for preventing MS, a greater understanding of the association of EBV with MS is required.
Collapse
|
17
|
Vaccine Vectors Harnessing the Power of Cytomegaloviruses. Vaccines (Basel) 2019; 7:vaccines7040152. [PMID: 31627457 PMCID: PMC6963789 DOI: 10.3390/vaccines7040152] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 02/05/2023] Open
Abstract
Cytomegalovirus (CMV) species have been gaining attention as experimental vaccine vectors inducing cellular immune responses of unparalleled strength and protection. This review outline the strengths and the restrictions of CMV-based vectors, in light of the known aspects of CMV infection, pathogenicity and immunity. We discuss aspects to be considered when optimizing CMV based vaccines, including the innate immune response, the adaptive humoral immunity and the T-cell responses. We also discuss the antigenic epitopes presented by unconventional major histocompatibility complex (MHC) molecules in some CMV delivery systems and considerations about routes for delivery for the induction of systemic or mucosal immune responses. With the first clinical trials initiating, CMV-based vaccine vectors are entering a mature phase of development. This impetus needs to be maintained by scientific advances that feed the progress of this technological platform.
Collapse
|
18
|
Murine Cytomegalovirus Infection of Melanoma Lesions Delays Tumor Growth by Recruiting and Repolarizing Monocytic Phagocytes in the Tumor. J Virol 2019; 93:JVI.00533-19. [PMID: 31375579 DOI: 10.1128/jvi.00533-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/18/2019] [Indexed: 02/06/2023] Open
Abstract
Cytomegalovirus (CMV) is a ubiquitous betaherpesvirus that infects many different cell types. Human CMV (HCMV) has been found in several solid tumors, and it has been hypothesized that it may promote cellular transformation or exacerbate tumor growth. Paradoxically, in some experimental situations, murine CMV (MCMV) infection delays tumor growth. We previously showed that wild-type MCMV delayed the growth of poorly immunogenic B16 melanomas via an undefined mechanism. Here, we show that MCMV delayed the growth of these immunologically "cold" tumors by recruiting and modulating tumor-associated macrophages. Depletion of monocytic phagocytes with clodronate completely prevented MCMV from delaying tumor growth. Mechanistically, our data suggest that MCMV recruits new macrophages to the tumor via the virus-encoded chemokine MCK2, and viruses lacking this chemokine were unable to delay tumor growth. Moreover, MCMV infection of macrophages drove them toward a proinflammatory (M1)-like state. Importantly, adaptive immune responses were also necessary for MCMV to delay tumor growth as the effect was substantially blunted in Rag-deficient animals. However, viral spread was not needed and a spread-defective MCMV strain was equally effective. In most mice, the antitumor effect of MCMV was transient. Although the recruited macrophages persisted, tumor regrowth correlated with a loss of viral activity in the tumor. However, an additional round of MCMV infection further delayed tumor growth, suggesting that tumor growth delay was dependent on active viral infection. Together, our results suggest that MCMV infection delayed the growth of an immunologically cold tumor by recruiting and modulating macrophages in order to promote anti-tumor immune responses.IMPORTANCE Cytomegalovirus (CMV) is an exciting new platform for vaccines and cancer therapy. Although CMV may delay tumor growth in some settings, there is also evidence that CMV may promote cancer development and progression. Thus, defining the impact of CMV on tumors is critical. Using a mouse model of melanoma, we previously found that murine CMV (MCMV) delayed tumor growth and activated tumor-specific immunity although the mechanism was unclear. We now show that MCMV delayed tumor growth through a mechanism that required monocytic phagocytes and a viral chemokine that recruited macrophages to the tumor. Furthermore, MCMV infection altered the functional state of macrophages. Although the effects of MCMV on tumor growth were transient, we found that repeated MCMV injections sustained the antitumor effect, suggesting that active viral infection was needed. Thus, MCMV altered tumor growth by actively recruiting macrophages to the tumor, where they were modulated to promote antitumor immunity.
Collapse
|