1
|
Yamamoto LS, Trentini MM, Rodriguez D, Silveira PHS, Januzzi AD, Carvalho ACDO, Leite LCDC, Kanno AI. Exploring BCG to deliver avidin fusion antigens from Schistosoma mansoni. Mem Inst Oswaldo Cruz 2025; 120:e240167. [PMID: 40053008 PMCID: PMC11884745 DOI: 10.1590/0074-02760240167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/23/2024] [Indexed: 03/10/2025] Open
Abstract
BACKGROUND Bacillus Calmette-Guérin (BCG) is one of the most successful vaccines in the world and evidence suggests it can be used as a bacterial vector to deliver heterologous antigens. OBJECTIVES We evaluated whether BCG could be biotinylated and used as a carrier of Schistosoma mansoni antigen tetraspanin-2 (TSP-2) fused with rhizavidin, an avidin analog. METHODS BCG was grown and biotinylated. The recombinant protein Rzv:TSP-2 was produced and purified from Escherichia coli. The biotinylation and antigen coupling was analysed by flow cytometry, enzyme-linked immunosorbent assay (ELISA) and Western blot. Vaccine immunogenicity was tested in immunised mice by the assessment of lung and splenic T cells. FINDINGS BCG can be biotinylated, which in turn, can be coupled with Rzv:TSP-2. After a series of optimisations which involved molarity of the biotin, ratio of BCG:reagent and the concentration of Rzv:TSP-2 used, almost 50% of the bacteria were biotinylated and 35% coupled with antigen. Although a clear adjuvant effect of BCG was observed, evaluation of immune response in immunised mice demonstrated an overall low immunogenicity of the BCG-Rzv:TSP-2. MAIN CONCLUSION These results demonstrated the use of BCG as a carrier of avidin-tagged antigens. Further optimisations are needed in order to strengthen the stability of tagged proteins in order to produce antigen-specific immune responses.
Collapse
Affiliation(s)
- Lais Sayuri Yamamoto
- Instituto Butantan, Laboratório de Desenvolvimento de Vacinas, São Paulo, SP, Brasil
- Universidade de São Paulo, Programa de Pós-Graduação Interunidades em Biotecnologia, São Paulo, SP, Brasil
| | | | - Dunia Rodriguez
- Instituto Butantan, Laboratório de Desenvolvimento de Vacinas, São Paulo, SP, Brasil
| | - Paulo Henrique Santana Silveira
- Instituto Butantan, Laboratório de Desenvolvimento de Vacinas, São Paulo, SP, Brasil
- Universidade de São Paulo, Programa de Pós-Graduação Interunidades em Biotecnologia, São Paulo, SP, Brasil
| | - Arthur Daniel Januzzi
- Instituto Butantan, Laboratório de Desenvolvimento de Vacinas, São Paulo, SP, Brasil
- Universidade de São Paulo, Programa de Pós-Graduação Interunidades em Biotecnologia, São Paulo, SP, Brasil
| | - Ana Carolina de Oliveira Carvalho
- Instituto Butantan, Laboratório de Desenvolvimento de Vacinas, São Paulo, SP, Brasil
- Universidade de São Paulo, Programa de Pós-Graduação Interunidades em Biotecnologia, São Paulo, SP, Brasil
| | | | - Alex Issamu Kanno
- Instituto Butantan, Laboratório de Desenvolvimento de Vacinas, São Paulo, SP, Brasil
| |
Collapse
|
2
|
Arce-Fonseca M, Mata-Espinosa D, Aranda-Fraustro A, Rosales-Encina JL, Flores-Valdez MA, Rodríguez-Morales O. Mycobacterium bovis BCG as immunostimulating agent prevents the severe form of chronic experimental Chagas disease. Front Immunol 2024; 15:1380049. [PMID: 38576607 PMCID: PMC10991741 DOI: 10.3389/fimmu.2024.1380049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/28/2024] [Indexed: 04/06/2024] Open
Abstract
Introduction There is currently no vaccine against Chagas disease (ChD), and the medications available confer multiple side effects. Mycobacterium bovis Bacillus Calmette-Guérin (BCG) produces balanced Th1, Th2, and Th17 modulatory immune responses and has improved efficacy in controlling chronic infections through nonspecific immunity. We aimed to improve the response to infection by inducing a stronger immune response and greater protection against the parasite by trained immunity. Methods BALB/c mice were immunized with BCG subcutaneously, and 60 days later, they were infected with Trypanosoma cruzi intraperitoneally. An evaluation of the progression of the disease from the acute to the chronic stage, analyzing various aspects such as parasitemia, survival, clinical status, and humoral and cellular immune response, as well as the appearance of visceral megas and the histopathological description of target organs, was performed. Results Vaccination reduced parasitemia by 70%, and 100% survival was achieved in the acute stage; although the presentation of clinical signs was reduced, there was no increase in the antibody titer or in the differential production of the isotypes. Conclusion Serum cytokine production indicated a proinflammatory response in infected animals, while in those who received BCG, the response was balanced by inducing Th1/Th2-type cytokines, with a better prognosis of the disease in the chronic stage.
Collapse
Affiliation(s)
- Minerva Arce-Fonseca
- Laboratory of Molecular Immunology and Proteomics, Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Dulce Mata-Espinosa
- Laboratory of Experimental Pathology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Alberto Aranda-Fraustro
- Department of Pathology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - José Luis Rosales-Encina
- Laboratory of Molecular Biology, Department of Infectomics and Molecular Pathogenesis, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Mario Alberto Flores-Valdez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A. C., Guadalajara, Mexico
| | - Olivia Rodríguez-Morales
- Laboratory of Molecular Immunology and Proteomics, Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| |
Collapse
|
3
|
Pérez-Baños A, Gleisner MA, Flores I, Pereda C, Navarrete M, Araya JP, Navarro G, Quezada-Monrás C, Tittarelli A, Salazar-Onfray F. Whole tumour cell-based vaccines: tuning the instruments to orchestrate an optimal antitumour immune response. Br J Cancer 2023; 129:572-585. [PMID: 37355722 PMCID: PMC10421921 DOI: 10.1038/s41416-023-02327-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/31/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023] Open
Abstract
Immunotherapy, particularly those based on immune checkpoint inhibitors (ICIs), has become a useful approach for many neoplastic diseases. Despite the improvements of ICIs in supporting tumour regression and prolonging survival, many patients do not respond or develop resistance to treatment. Thus, therapies that enhance antitumour immunity, such as anticancer vaccines, constitute a feasible and promising therapeutic strategy. Whole tumour cell (WTC) vaccines have been extensively tested in clinical studies as intact or genetically modified cells or tumour lysates, injected directly or loaded on DCs with distinct adjuvants. The essential requirements of WTC vaccines include the optimal delivery of a broad battery of tumour-associated antigens, the presence of tumour cell-derived molecular danger signals, and adequate adjuvants. These factors trigger an early and robust local innate inflammatory response that orchestrates an antigen-specific and proinflammatory adaptive antitumour response capable of controlling tumour growth by several mechanisms. In this review, the strengths and weaknesses of our own and others' experiences in studying WTC vaccines are revised to discuss the essential elements required to increase anticancer vaccine effectiveness.
Collapse
Affiliation(s)
- Amarilis Pérez-Baños
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - María Alejandra Gleisner
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Iván Flores
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Cristián Pereda
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Mariela Navarrete
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Juan Pablo Araya
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Giovanna Navarro
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5110566, Chile
| | - Claudia Quezada-Monrás
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5110566, Chile
| | - Andrés Tittarelli
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana (UTEM), Santiago, Chile.
| | - Flavio Salazar-Onfray
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile.
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute and Section for Infectious Diseases, Karolinska University Hospital, 17176, Stockholm, Sweden.
| |
Collapse
|
4
|
Le I, Dhandayuthapani S, Chacon J, Eiring AM, Gadad SS. Harnessing the Immune System with Cancer Vaccines: From Prevention to Therapeutics. Vaccines (Basel) 2022; 10:816. [PMID: 35632572 PMCID: PMC9146235 DOI: 10.3390/vaccines10050816] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/18/2022] Open
Abstract
Prophylactic vaccination against infectious diseases is one of the most successful public health measures of our lifetime. More recently, therapeutic vaccination against established diseases such as cancer has proven to be more challenging. In the host, cancer cells evade immunologic regulation by multiple means, including altering the antigens expressed on their cell surface or recruiting inflammatory cells that repress immune surveillance. Nevertheless, recent clinical data suggest that two classes of antigens show efficacy for the development of anticancer vaccines: tumor-associated antigens and neoantigens. In addition, many different vaccines derived from antigens based on cellular, peptide/protein, and genomic components are in development to establish their efficacy in cancer therapy. Some vaccines have shown promising results, which may lead to favorable outcomes when combined with standard therapeutic approaches. This review provides an overview of the innate and adaptive immune systems, their interactions with cancer cells, and the development of various different vaccines for use in anticancer therapeutics.
Collapse
Affiliation(s)
- Ilene Le
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (I.L.); (S.D.); (J.C.)
| | - Subramanian Dhandayuthapani
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (I.L.); (S.D.); (J.C.)
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Jessica Chacon
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (I.L.); (S.D.); (J.C.)
| | - Anna M. Eiring
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (I.L.); (S.D.); (J.C.)
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Shrikanth S. Gadad
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (I.L.); (S.D.); (J.C.)
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Mays Cancer Center, UT Health San Antonio MD Anderson Cancer Center, San Antonio, TX 78229, USA
| |
Collapse
|
5
|
Feng F, Wen Z, Chen J, Yuan Y, Wang C, Sun C. Strategies to Develop a Mucosa-Targeting Vaccine against Emerging Infectious Diseases. Viruses 2022; 14:v14030520. [PMID: 35336927 PMCID: PMC8952777 DOI: 10.3390/v14030520] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
Numerous pathogenic microbes, including viruses, bacteria, and fungi, usually infect the host through the mucosal surfaces of the respiratory tract, gastrointestinal tract, and reproductive tract. The mucosa is well known to provide the first line of host defense against pathogen entry by physical, chemical, biological, and immunological barriers, and therefore, mucosa-targeting vaccination is emerging as a promising strategy for conferring superior protection. However, there are still many challenges to be solved to develop an effective mucosal vaccine, such as poor adhesion to the mucosal surface, insufficient uptake to break through the mucus, and the difficulty in avoiding strong degradation through the gastrointestinal tract. Recently, increasing efforts to overcome these issues have been made, and we herein summarize the latest findings on these strategies to develop mucosa-targeting vaccines, including a novel needle-free mucosa-targeting route, the development of mucosa-targeting vectors, the administration of mucosal adjuvants, encapsulating vaccines into nanoparticle formulations, and antigen design to conjugate with mucosa-targeting ligands. Our work will highlight the importance of further developing mucosal vaccine technology to combat the frequent outbreaks of infectious diseases.
Collapse
Affiliation(s)
- Fengling Feng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (F.F.); (Z.W.); (J.C.); (Y.Y.); (C.W.)
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Ziyu Wen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (F.F.); (Z.W.); (J.C.); (Y.Y.); (C.W.)
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Jiaoshan Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (F.F.); (Z.W.); (J.C.); (Y.Y.); (C.W.)
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Yue Yuan
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (F.F.); (Z.W.); (J.C.); (Y.Y.); (C.W.)
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Congcong Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (F.F.); (Z.W.); (J.C.); (Y.Y.); (C.W.)
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Caijun Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (F.F.); (Z.W.); (J.C.); (Y.Y.); (C.W.)
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
- Correspondence:
| |
Collapse
|
6
|
Liu L, Shi W, Xiao X, Wu X, Hu H, Yuan S, Liu K, Liu Z. BCG immunotherapy inhibits cancer progression by promoting the M1 macrophage differentiation of THP‑1 cells via the Rb/E2F1 pathway in cervical carcinoma. Oncol Rep 2021; 46:245. [PMID: 34581419 PMCID: PMC8493057 DOI: 10.3892/or.2021.8196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 07/19/2021] [Indexed: 01/01/2023] Open
Abstract
Bacillus Calmette-Guérin (BCG) immunotherapy increases macrophage polarization toward M1-type macrophages. In the present study, to identify the M1/M2 marker genes in the carcinogenesis and progression of cervical cancer, the microarray datasets GSE9750 and GSE7803 were downloaded from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and the University of California Santa Cruz (UCSC) Xena browser. Survival analysis revealed that M1 markers (IL-12) were involved in anti-tumour progression, and M2 markers (IL-10) were involved in the carcinogenesis and invasion of cervical cancer. The expression of M1 markers (IL-12, inducible nitric oxide synthase and CD80) and M2 markers (IL-10 and arginase) was examined to determine whether BCG affects the polarization of macrophages and to elucidate the underlying mechanisms. The results revealed that BCG promoted macrophage polarization towards the M1 phenotype and enhanced the transition of M2 to M1 macrophages. The results also revealed that polarized M1 macrophages induced by BCG decreased the protein expression of phosphorylated (p-)retinoblastoma (Rb)/E2F transcription factor 1 (E2F1), inhibited the proliferation and promoted the apoptosis of HeLa cells. On the whole, these results demonstrated that BCG promoted the anti-tumour progression of M1 macrophages and inhibited the pro-tumour activation of M2 macrophages via the Rb/E2F1 signalling pathway in HeLa cells. This suggests the possibility of a direct translation of this combination strategy to clinical practice for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Limin Liu
- Department of Gynecology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong 518028, P.R. China
| | - Wenjuan Shi
- Department of Gynecology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong 518028, P.R. China
| | - Xiao Xiao
- Department of Obstetrics, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong 518028, P.R. China
| | - Xuemei Wu
- Department of Gynecology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong 518028, P.R. China
| | - Haiyan Hu
- Department of Gynecology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong 518028, P.R. China
| | - Shixin Yuan
- Institute of Maternal and Child Medicine, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong 518028, P.R. China
| | - Kai Liu
- Department of Gynecology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong 518028, P.R. China
| | - Zhihua Liu
- Department of Gynecology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong 518028, P.R. China
| |
Collapse
|
7
|
Mustafa AS. Adjuvants and Antigen-Delivery Systems for Subunit Vaccines against Tuberculosis. Vaccines (Basel) 2021; 9:vaccines9090972. [PMID: 34579209 PMCID: PMC8472090 DOI: 10.3390/vaccines9090972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
The only licensed vaccine against tuberculosis is BCG. However, BCG has failed to provide consistent protection against tuberculosis, especially pulmonary disease in adults. Furthermore, the use of BCG is contraindicated in immunocompromised subjects. The research towards the development of new vaccines against TB includes the use of Mycobacterium tuberculosis antigens as subunit vaccines. Such vaccines may be used either alone or in the prime-boost model in BCG-vaccinated people. However, the antigens for subunit vaccines require adjuvants and/or delivery systems to induce appropriate and protective immune responses against tuberculosis and other diseases. Articles published in this Special Issue have studied the pathogenesis of BCG in children and the use of BCG and recombinant BCG as potential vaccines against asthma. Furthermore, the use of different adjuvants and delivery systems in inducing the protective immune responses after immunization with subunit vaccines has been described.
Collapse
Affiliation(s)
- Abu Salim Mustafa
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait
| |
Collapse
|
8
|
Kim BJ, Jeong H, Seo H, Lee MH, Shin HM, Kim BJ. Recombinant Mycobacterium paragordonae Expressing SARS-CoV-2 Receptor-Binding Domain as a Vaccine Candidate Against SARS-CoV-2 Infections. Front Immunol 2021; 12:712274. [PMID: 34512635 PMCID: PMC8432291 DOI: 10.3389/fimmu.2021.712274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/04/2021] [Indexed: 01/14/2023] Open
Abstract
At present, concerns that the recent global emergence of SARS-CoV-2 variants could compromise the current vaccines have been raised, highlighting the urgent demand for new vaccines capable of eliciting T cell-mediated immune responses, as well as B cell-mediated neutralizing antibody production. In this study, we developed a novel recombinant Mycobacterium paragordonae expressing the SARS-CoV-2 receptor-binding domain (RBD) (rMpg-RBD-7) that is capable of eliciting RBD-specific immune responses in vaccinated mice. The potential use of rMpg-RBD-7 as a vaccine for SARS-CoV-2 infections was evaluated in in vivo using mouse models of two different modules, one for single-dose vaccination and the other for two-dose vaccination. In a single-dose vaccination model, we found that rMpg-RBD-7 versus a heat-killed strain could exert an enhanced cell-mediated immune (CMI) response, as well as a humoral immune response capable of neutralizing the RBD and ACE2 interaction. In a two-dose vaccination model, rMpg-RBD-7 in a two-dose vaccination could also exert a stronger CMI and humoral immune response to neutralize SARS-CoV-2 infections in pseudoviral or live virus infection systems, compared to single dose vaccinations of rMpg-RBD or two-dose RBD protein immunization. In conclusion, our data showed that rMpg-RBD-7 can lead to an enhanced CMI response and humoral immune responses in mice vaccinated with both single- or two-dose vaccination, highlighting its feasibility as a novel vaccine candidate for SARS-CoV-2. To the best of our knowledge, this study is the first in which mycobacteria is used as a delivery system for a SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- Byoung-Jun Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, South Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea
| | - Hyein Jeong
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, South Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea
- Liver Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
- Seoul National University Medical Research Center (SNUMRC), Seoul, South Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
| | - Hyejun Seo
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, South Korea
- Liver Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
- Seoul National University Medical Research Center (SNUMRC), Seoul, South Korea
- Interdisciplinary Program in Cancer Biology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Mi-Hyun Lee
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, South Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea
- Liver Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
- Seoul National University Medical Research Center (SNUMRC), Seoul, South Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
| | - Hyun Mu Shin
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
- Seoul National University Medical Research Center (SNUMRC), Seoul, South Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, South Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, South Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea
- Liver Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
- Seoul National University Medical Research Center (SNUMRC), Seoul, South Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
9
|
Panaiotov S, Hodzhev Y, Tolchkov V, Tsafarova B, Mihailov A, Stefanova T. Complete Genome Sequence, Genome Stability and Phylogeny of the Vaccine Strain Mycobacterium bovis BCG SL222 Sofia. Vaccines (Basel) 2021; 9:vaccines9030237. [PMID: 33803448 PMCID: PMC8000558 DOI: 10.3390/vaccines9030237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 11/25/2022] Open
Abstract
Mycobacterium bovis bacillus Calmette–Guérin (BCG) is the only live attenuated vaccine available against tuberculosis. The first BCG vaccination was done exactly 100 years ago, in 1921. The BCG vaccine strains used worldwide represent a family of daughter sub-strains with distinct genotypic characteristics. BCG SL222 Sofia is a seed lot sub-strain descending from the Russian BCG-I (seed lot 374a) strain and has been used for vaccine production in Bulgaria since 1972. Here, we report the assembled circular genome sequence of Mycobacterium bovis BCG SL222 Sofia and phylogeny analysis with the most closely related BCG sub-strains. The full circular genome of BCG SL222 Sofia had a length of 4,370,706 bp with an average GC content of 65.60%. After 49 years of in vitro evolution in a freeze-dried condition, we identified four SNP mutations as compared to the reference BCG-I (Russia-368) sequence. BCG vaccination is of central importance for the TB elimination programs in many countries. Since 1991, almost 40 million vaccine doses of the BCG SL222 Sofia have been distributed annually through the United Nations Children’s Fund (UNICEF) and the Pan American Health Organization (PAHO) to approximately 120 countries. The availability of the complete reference genome sequence for M. bovis BCG SL222 Sofia, a WHO reference reagent for the Russian BCG-I sub-strain, will facilitate the identity assurance of the genomic stability, will contribute to more consistent manufacturing, and has an important value in standardization and differentiation of sub-strains used in vaccine production. We propose to rename the sub-strain BCG SL222 Sofia to BCG-Sofia for practical and common use.
Collapse
Affiliation(s)
- Stefan Panaiotov
- National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria; (Y.H.); (V.T.); (B.T.)
- Correspondence: ; Tel.: +359-887-720061
| | - Yordan Hodzhev
- National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria; (Y.H.); (V.T.); (B.T.)
| | - Vladimir Tolchkov
- National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria; (Y.H.); (V.T.); (B.T.)
| | - Borislava Tsafarova
- National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria; (Y.H.); (V.T.); (B.T.)
| | | | | |
Collapse
|
10
|
Immunological Characterization of Proteins Expressed by Genes Located in Mycobacterium tuberculosis-Specific Genomic Regions Encoding the ESAT6-like Proteins. Vaccines (Basel) 2021; 9:vaccines9010027. [PMID: 33430286 PMCID: PMC7825740 DOI: 10.3390/vaccines9010027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/23/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
The 6 kDa early secreted antigen target (ESAT6) is a low molecular weight and highly immunogenic protein of Mycobacterium tuberculosis with relevance in the diagnosis of tuberculosis and subunit vaccine development. The gene encoding the ESAT6 protein is located in the M. tuberculosis-specific genomic region known as the region of difference (RD)1. There are 11 M. tuberculosis-specific RDs absent in all of the vaccine strains of BCG, and three of them (RD1, RD7, and RD9) encode immunodominant proteins. Each of these RDs has genes for a pair of ESAT6-like proteins. The immunological characterizations of all the possible proteins encoded by genes in RD1, RD7 and RD9 have shown that, besides ESAT-6 like proteins, several other proteins are major antigens useful for the development of subunit vaccines to substitute or supplement BCG. Furthermore, some of these proteins may replace the purified protein derivative of M. tuberculosis in the specific diagnosis of tuberculosis by using interferon-gamma release assays and/or tuberculin-type skin tests. At least three subunit vaccine candidates containing ESAT6-like proteins as antigen components of multimeric proteins have shown efficacy in phase 1 and phase II clinical trials in humans.
Collapse
|