1
|
Pimentel PAB, Costa MP, de Oliveira IMS, Oliveira AR, Paes PRO, Pereira AW, de Oliveira CSF, Horta RDS. Chemoresistance Cytological Score for Canine Transmissible Venereal Tumour: A Proposed System of Predicting Vincristine Resistance. Vet Comp Oncol 2025. [PMID: 40159428 DOI: 10.1111/vco.13054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 02/10/2025] [Accepted: 03/12/2025] [Indexed: 04/02/2025]
Abstract
Canine transmissible venereal tumour (CTVT) is a common diagnosis in many low-income countries, and managing its chemoresistant cases can be challenging within the conventional vincristine sulfate chemotherapy protocol. Also, predictive markers of chemoresistance for this tumour remain unidentified. This study aimed to evaluate CTVT cytological characteristics to develop a predictive cytological scoring system for vincristine sulfate resistance. For this purpose, 40 cases were retrospectively analysed based on their clinical aspects and response to vincristine chemotherapy. First, cytological preparations underwent a double-blind assessment to evaluate a modified cytomorphological classification. This classification, an adaptation of a previously published system, categorised tumours based on cell shape (plasmacytic versus lymphocytic), but no association with chemoresistance was found (p = 0.083). Subsequently, a novel cytology scoring system was developed and tested to identify cases potentially associated with chemoresistance. This system was based on three criteria: anisokaryosis, mitotic count, and the presence of binucleated cells. Malignancy criteria, evaluated in 5 hotspots, were inversely associated with chemoresistance (p = 0.001), predicted by low anisokaryosis, a mitotic count of ≤ 6 in a 2.37 mm2 area, and no binucleated cells. This study introduces a novel cytology scoring system for CTVTs, designed to serve as a predictive tool for vincristine treatment response. This system has the potential to aid practitioners in clinical decision-making. However, further studies are required to validate its reliability and applicability.
Collapse
Affiliation(s)
- Pedro Antônio Bronhara Pimentel
- Department of Veterinary Medicine and Surgery, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mariana Pádua Costa
- Department of Veterinary Medicine and Surgery, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Ayisa Rodrigues Oliveira
- Department of Veterinary Medicine and Surgery, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Paulo Ricardo Oliveira Paes
- Department of Veterinary Medicine and Surgery, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ayla Watanabe Pereira
- Department of Veterinary Medicine and Surgery, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Rodrigo Dos Santos Horta
- Department of Veterinary Medicine and Surgery, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
2
|
Wu S, Luo T, Lei X, Yang X. Emerging role of competing endogenous RNA in lung cancer drug resistance. J Chemother 2024; 36:546-565. [PMID: 38124356 DOI: 10.1080/1120009x.2023.2294582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
Lung cancer remains one of the most common malignant cancers worldwide, and its survival rate is extremely low. Chemotherapy, the mainstay of lung cancer treatment, is not as effective as it could be due to the development of cellular resistance. The molecular mechanisms of drug resistance in lung cancer remain to be elucidated. Accumulating evidence suggests that ceRNAs are involved in various carcinogenesis and development. CeRNA is a transcript that regulates each other through competition with miRNA. However, the relationship between ceRNAs and chemoresistance in lung cancer remains unclear. In this narrative review, we provided a summary of treatment approaches that focus on ceRNA networks to overcome drug resistance.
Collapse
Affiliation(s)
- Shijie Wu
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, People's Republic of China
| | - Ting Luo
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, People's Republic of China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, People's Republic of China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, People's Republic of China
| |
Collapse
|
3
|
Blaxill JE, Bennett PF. Evaluation of clinical response and prognostic factors in canine multicentric lymphoma treated with first rescue therapy. Vet Comp Oncol 2024; 22:265-277. [PMID: 38646859 DOI: 10.1111/vco.12974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 04/23/2024]
Abstract
Despite an initial strong response in most dogs with multicentric lymphoma treated with chemotherapy, relapse remains common. There is no clearly superior first rescue protocol described either for resistant or relapsed canine multicentric lymphoma. The objectives of this study were to assess clinical response and outcomes for canine multicentric lymphoma treated with first rescue protocols. The secondary objective was to assess prognostic variables for dogs undergoing these protocols. This was a bi-institutional retrospective cohort study. Two hundred and sixty-five dogs were treated with first rescue chemotherapy, including anthracycline-based combination chemotherapy (CHOP-like, n = 50), nitrosourea alkylating agent-rich chemotherapy (n = 45), anthracycline-based or related compound chemotherapy (n = 34), or nitrosourea single-agent chemotherapy (n = 136). The overall median progression free survival time of first rescue protocol was 56.0 days (0-455 days). Important prognostic factors identified for first rescue protocol included the attainment of a complete response to the first rescue chemotherapy (p < .001), the use of a CHOP-like first rescue protocol (p = .009), duration of first remission (HR 0.997, p = .028), and if prednisolone was included in the first rescue protocol (HR 0.41, p = .003). Adverse events (AE) were common, with 81.1% of dogs experiencing at least one AE during first rescue chemotherapy. This study highlights the need for improved first rescue therapies to provide durable remission in canine resistant or relapsed lymphoma.
Collapse
Affiliation(s)
- John E Blaxill
- Small Animal Specialist Hospital, North Ryde, New South Wales, Australia
| | - Peter F Bennett
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Victoria, Australia
| |
Collapse
|
4
|
Hayes A, Hughes K, Hare C, Peschard L, Lara AS, Schiavo L, Dobson J. T-cell lymphoma involving the rectum of a dog. J Comp Pathol 2023; 207:87-90. [PMID: 37995445 DOI: 10.1016/j.jcpa.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/12/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023]
Abstract
A mediastinal mass was diagnosed in a 7-year-4-month-old neutered female mixed breed dog following a 3-week history of lethargy, hyporexia and pyrexia. Bi-cavitary imaging, needle aspirate cytology and flow cytometry confirmed WHO clinical stage IVb, intermediate to large T-cell lymphoma involving the mediastinum, liver and spleen. The dog initially responded to a multidrug chemotherapy protocol but clinical deterioration occurred 3 months later. The dog presented with anorexia, vomiting and diarrhoea, associated with marked faecal tenesmus and haematochezia, initially believed by the primary care practitioner to be related to chemotherapy toxicity. However, rectal examination revealed multiple sessile and pedunculated masses. Further diagnostic imaging, cytology and flow cytometry confirmed progressive disease, including T-cell lymphoma of the rectum. Histology and immunohistochemistry confirmed an infiltrate of intermediate-sized CD3-positive neoplastic cells that expanded the rectal mucosa. Rectal lymphoma is uncommon in dogs and previous cases have been B cell in origin. In this report we describe the clinical presentation and macro- and microscopic findings of a case of canine T-cell lymphoma involving the rectum.
Collapse
Affiliation(s)
- Alison Hayes
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK.
| | - Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Cassia Hare
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Lorraine Peschard
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Armando S Lara
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Luca Schiavo
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Jane Dobson
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| |
Collapse
|
5
|
Dittrich K, Yıldız-Altay Ü, Qutab F, Kwong DA, Rao Z, Nievez-Lozano SA, Gardner HL, Richmond JM, London CA. Baseline tumor gene expression signatures correlate with chemoimmunotherapy treatment responsiveness in canine B cell lymphoma. PLoS One 2023; 18:e0290428. [PMID: 37624862 PMCID: PMC10456153 DOI: 10.1371/journal.pone.0290428] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Pet dogs develop spontaneous diffuse large B cell lymphoma (DLBCL), and veterinary clinical trials have been employed to treat canine DLBCL and to inform clinical trials for their human companions. A challenge that remains is selection of treatment to improve outcomes. The dogs in this study were part of a larger clinical trial evaluating the use of combinations of doxorubicin chemotherapy, anti-CD20 monoclonal antibody, and one of three small molecule inhibitors: KPT-9274, TAK-981, or RV1001. We hypothesized that significant differential expression of genes (DEGs) in the tumors at baseline could help predict which dogs would respond better to each treatment based on the molecular pathways targeted by each drug. To this end, we evaluated gene expression in lymph node aspirates from 18 trial dogs using the NanoString nCounter Canine Immuno-oncology (IO) Panel. We defined good responders as those who relapsed after 90 days, and poor responders as those who relapsed prior to 90 days. We analyzed all dogs at baseline and compared poor responders to good responders, and found increased CCND3 correlated with poor prognosis and increased CD36 correlated with good prognosis, as is observed in humans. There was minimal DEG overlap between treatment arms, prompting separate analyses for each treatment cohort. Increased CREBBP and CDKN1A for KPT-9274, increased TLR3 for TAK-981, and increased PI3Kδ, AKT3, and PTEN, and decreased NRAS for RV1001 were associated with better prognoses. Trends for selected candidate biomarker genes were confirmed via qPCR. Our findings emphasize the heterogeneity in DLBCL, similarities and differences between canine and human DLBCL, and ultimately identify biomarkers that may help guide the choice of chemoimmunotherapy treatment in dogs.
Collapse
Affiliation(s)
- Katherine Dittrich
- Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, United States of America
| | | | - Fatima Qutab
- UMass Chan Medical School, Worcester, MA, United States of America
| | - Danny A. Kwong
- UMass Chan Medical School, Worcester, MA, United States of America
| | - Zechuan Rao
- UMass Chan Medical School, Worcester, MA, United States of America
| | | | - Heather L. Gardner
- Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, United States of America
| | | | - Cheryl A. London
- Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, United States of America
| |
Collapse
|
6
|
Packeiser EM, Engels L, Nolte I, Goericke-Pesch S, Murua Escobar H. MDR1 Inhibition Reverses Doxorubicin-Resistance in Six Doxorubicin-Resistant Canine Prostate and Bladder Cancer Cell Lines. Int J Mol Sci 2023; 24:ijms24098136. [PMID: 37175843 PMCID: PMC10179448 DOI: 10.3390/ijms24098136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Acquired chemoresistance during chemotherapy, often accompanied by cross- and multi-resistance, limits therapeutic outcomes and leads to recurrence. In order to create in vitro model systems to understand acquired doxorubicin-resistance, we generated doxorubicin-resistant sublines of canine prostate adenocarcinoma and urothelial cell carcinoma cell lines. Chemoresistance to doxorubicin, cross-resistance to carboplatin, and the reversibility of the acquired resistance by the specific MDR1-inhibitor tariquidar were quantified in metabolic assays. Resistance mechanisms were characterized by expression of the efflux transporters MDR1 and RALBP1, as well as the molecular target of doxorubicin, TOP2A, with qPCR and Western blotting. Six out of nine cell lines established stable resistance to 2 µM doxorubicin. Drug efflux via massive MDR1 overexpression was identified as common, driving resistance mechanism in all sublines. MDR1 inhibition with tariquidar extensively reduced or reversed the acquired, and also partly the parental resistance. Three cell lines developed additional, non-MDR1-dependent resistance. RALBP1 was upregulated in one resistant subline at the protein level, while TOP2A expression was not altered. Combination therapies aiming to inhibit MDR1 activity can now be screened for synergistic effects using our resistant sublines. Nevertheless, detailed resistance mechanisms and maintained molecular target expression in the resistant sublines are still to be examined.
Collapse
Affiliation(s)
- Eva-Maria Packeiser
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
- Unit for Reproductive Medicine-Clinic for Small Animals, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Leoni Engels
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Ingo Nolte
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Sandra Goericke-Pesch
- Unit for Reproductive Medicine-Clinic for Small Animals, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Hugo Murua Escobar
- Department of Medicine, Clinic III, Hematology, Oncology and Palliative Medicine, University Medical Center Rostock, 18057 Rostock, Germany
| |
Collapse
|
7
|
Doka RM, Suter SE, Mastromauro ML, Bennett AL, Hess PR. Doxorubicin for treatment of histiocytic sarcoma in dogs: 31 cases (2003-2017). J Am Vet Med Assoc 2022; 260:1827-1833. [PMID: 36054007 DOI: 10.2460/javma.21.11.0498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate the efficacy of doxorubicin for treatment of histiocytic sarcoma (HS) in dogs, whether administered as the sole treatment or as an adjunct to surgery or radiation therapy. ANIMALS 31 client-owned dogs with localized or disseminated HS examined between 2003 and 2017. PROCEDURES Medical records were reviewed retrospectively, and data were collected. The Kaplan-Meier method was used to estimate time-to-progression from the date of first doxorubicin administration and survival time from initial diagnosis. Factors that could be associated with poorer outcomes with doxorubicin treatment were analyzed with log-rank tests. RESULTS The objective response rate (ORR) was 26%. When stratified by disease status, dogs with localized and disseminated forms experienced 43% and 21% ORRs, respectively. Median time to progression after initiating doxorubicin treatment (n = 30 dogs) was 42 days. Median survival time from initial diagnosis to death (n = 29 dogs) was 169 days. Complete responses were obtained in only 2 dogs that had localized disease and received multimodality therapy. CLINICAL RELEVANCE Benefits of doxorubicin administration in canine HS are modest, with a limited ORR and delay in tumor progression, and are comparable to effects attained with other single-agent regimens.
Collapse
|
8
|
Dékay V, Karai E, Füredi A, Szebényi K, Szakács G, Vajdovich P. P-Glycoprotein Activity at Diagnosis Does Not Predict Therapy Outcome and Survival in Canine B-Cell Lymphoma. Cancers (Basel) 2022; 14:cancers14163919. [PMID: 36010910 PMCID: PMC9405845 DOI: 10.3390/cancers14163919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Clinical experience in human and canine clinics shows that following initial response to treatment, drug-resistant cancer cells frequently evolve and eventually, most tumors become resistant to all available therapies. The most straightforward cause of therapy resistance is linked to cellular alterations that prevent drugs from acting on their target. Drug efflux mediated by the ABC transporter P-glycoprotein (P-gp) contributes to unfavorable treatment outcome in several human malignancies. Here, we characterize a large cohort of canine B-cell lymphoma patients followed for over 7 years. We show that the intrinsic P-gp activity of tumor cells characterized at the time of diagnosis is not predictive for therapy outcome. Our results highlight the complexity of clinical drug resistance mechanisms and suggests that the relevance of P-gp in acquired resistance should be further investigated by the continuous monitoring of tumor cells during treatment. Abstract Various mechanisms are known to be involved in the development of multidrug resistance during cancer treatment. P-glycoprotein (P-gp) decreases the intracellular concentrations of cytotoxic drugs by an energy-dependent efflux mechanism. The aim of this study was to investigate the predictive value of P-gp function based on the evaluation of P-gp activity in tumor cells obtained from canine B-cell lymphoma patients at diagnosis. P-gp function of 79 immunophenotyped canine lymphoma samples was determined by flow cytometry using the Calcein assay. Dogs were treated with either the CHOP or the L-CHOP protocol, a subset of relapsed patients received L-asparaginase and lomustine rescue treatments. Among the 79 dogs, the median overall survival time was 417 days, and the median relapse-free period was 301 days. 47 percent of the samples showed high P-gp activity, which was significantly higher in Stage IV cancer patients compared to Stage II + III and V. Whereas staging was associated with major differences in survival times, we found that the intrinsic P-gp activity of tumor cells measured at diagnosis is not predictive for therapy outcome. Further studies are needed to identify the intrinsic and acquired resistant mechanisms that shape therapy response and survival in B-cell canine lymphoma patients.
Collapse
Affiliation(s)
- Valéria Dékay
- Department of Clinical Pathology and Oncology, University of Veterinary Medicine Budapest, István Utca 2, H-1078 Budapest, Hungary
- Correspondence: (V.D.); (P.V.)
| | - Edina Karai
- Department of Clinical Pathology and Oncology, University of Veterinary Medicine Budapest, István Utca 2, H-1078 Budapest, Hungary
| | - András Füredi
- Institute of Enzymology, Research Center of Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary or
- Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8A, A-1090 Vienna, Austria
| | - Kornélia Szebényi
- Institute of Enzymology, Research Center of Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary or
- Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8A, A-1090 Vienna, Austria
| | - Gergely Szakács
- Institute of Enzymology, Research Center of Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary or
- Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8A, A-1090 Vienna, Austria
| | - Péter Vajdovich
- Department of Clinical Pathology and Oncology, University of Veterinary Medicine Budapest, István Utca 2, H-1078 Budapest, Hungary
- Correspondence: (V.D.); (P.V.)
| |
Collapse
|
9
|
Doxorubicin-Loaded Lipid Nanoparticles Coated with Calcium Phosphate as a Potential Tool in Human and Canine Osteosarcoma Therapy. Pharmaceutics 2022; 14:pharmaceutics14071362. [PMID: 35890258 PMCID: PMC9322757 DOI: 10.3390/pharmaceutics14071362] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/04/2022] Open
Abstract
Osteosarcoma (OSA) is the most frequently diagnosed primary malignant bone tumor in humans and dogs. In both species, standard chemotherapy can be limited by multidrug resistance of neoplastic cells, which prevents intracellular accumulation of cytotoxic drugs, resulting in chemotherapy failure. In this study, a lipophilic ester of doxorubicin (C12DOXO) was loaded into nanoparticles (NPs) using the “cold microemulsion dilution” method. The resulting NPs were then coated with calcium phosphate (CaP) in two different ways to have calcium or phosphate ions externally exposed on the surface. These systems were characterized by determining mean diameter, zeta potential, and drug entrapment efficiency; afterward, they were tested on human and canine OSA cells to study the role that the coating might play in increasing both drug uptake into tumor cells and cytotoxicity. Mean diameter of the developed NPs was in the 200–300 nm range, zeta potential depended on the coating type, and C12DOXO entrapment efficiency was in the 60–75% range. Results of studies on human and canine OSA cells were very similar and showed an increase in drug uptake and cytotoxicity for CaP-coated NPs, especially when calcium ions were externally exposed. Therefore, applications in both human and veterinary medicine can be planned in the near future.
Collapse
|
10
|
Emran TB, Shahriar A, Mahmud AR, Rahman T, Abir MH, Siddiquee MFR, Ahmed H, Rahman N, Nainu F, Wahyudin E, Mitra S, Dhama K, Habiballah MM, Haque S, Islam A, Hassan MM. Multidrug Resistance in Cancer: Understanding Molecular Mechanisms, Immunoprevention and Therapeutic Approaches. Front Oncol 2022; 12:891652. [PMID: 35814435 PMCID: PMC9262248 DOI: 10.3389/fonc.2022.891652] [Citation(s) in RCA: 233] [Impact Index Per Article: 77.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/10/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide. Several treatments are available for cancer treatment, but many treatment methods are ineffective against multidrug-resistant cancer. Multidrug resistance (MDR) represents a major obstacle to effective therapeutic interventions against cancer. This review describes the known MDR mechanisms in cancer cells and discusses ongoing laboratory approaches and novel therapeutic strategies that aim to inhibit, circumvent, or reverse MDR development in various cancer types. In this review, we discuss both intrinsic and acquired drug resistance, in addition to highlighting hypoxia- and autophagy-mediated drug resistance mechanisms. Several factors, including individual genetic differences, such as mutations, altered epigenetics, enhanced drug efflux, cell death inhibition, and various other molecular and cellular mechanisms, are responsible for the development of resistance against anticancer agents. Drug resistance can also depend on cellular autophagic and hypoxic status. The expression of drug-resistant genes and the regulatory mechanisms that determine drug resistance are also discussed. Methods to circumvent MDR, including immunoprevention, the use of microparticles and nanomedicine might result in better strategies for fighting cancer.
Collapse
Affiliation(s)
- Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Asif Shahriar
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, United States
| | - Aar Rafi Mahmud
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Tanjilur Rahman
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Mehedy Hasan Abir
- Faculty of Food Science and Technology, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | | | - Hossain Ahmed
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh
| | - Nova Rahman
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Dhaka, Bangladesh
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Elly Wahyudin
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Mahmoud M. Habiballah
- Medical Laboratory Technology Department, Jazan University, Jazan, Saudi Arabia
- SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Bursa Uludağ University Faculty of Medicine, Bursa, Turkey
| | | | - Mohammad Mahmudul Hassan
- Queensland Alliance for One Health Sciences, School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| |
Collapse
|
11
|
Henklewska M, Pawlak A, Li RF, Yi J, Zbyryt I, Obmińska-Mrukowicz B. Benzyl Isothiocyanate, a Vegetable-Derived Compound, Induces Apoptosis via ROS Accumulation and DNA Damage in Canine Lymphoma and Leukemia Cells. Int J Mol Sci 2021; 22:ijms222111772. [PMID: 34769202 PMCID: PMC8583731 DOI: 10.3390/ijms222111772] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Treatment of neoplastic diseases in companion animals is one of the most important problems of modern veterinary medicine. Given the growing interest in substances of natural origin as potential anti-cancer drugs, our goal was to examine the effectiveness of benzyl isothiocyanate (BITC), a compound found in cruciferous vegetables, against canine lymphoma and leukemia. These are the one of the most common canine cancer types, and chemotherapy is the only treatment option. The study involved established cell lines originating from various hematopoietic malignancies: CLBL-1, GL-1, CLB70 and CNK-89, immortalized noncancerous cell lines: MDCK and NIH-3T3 and canine peripheral blood mononuclear cells (PBMCs). The cytotoxic activity of BITC, apoptosis induction, caspase activity and ROS generation were evaluated by flow cytometry. H2AX phosphorylation was assessed by western blot. The study showed that the compound was especially active against B lymphocyte-derived malignant cells. Their death resulted from caspase-dependent apoptosis. BITC induced ROS accumulation, and glutathione precursor N-acetyl-l-cysteine reversed the effect of the compound, thus proving the role of oxidative stress in BITC activity. In addition, exposure to the compound induced DNA damage in the tested cells. This is the first study that provides information on the activity of BITC in canine hematopoietic malignancies and suggests that the compound may be particularly useful in B-cell neoplasms treatment.
Collapse
Affiliation(s)
- Marta Henklewska
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland; (A.P.); (B.O.-M.)
- Correspondence:
| | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland; (A.P.); (B.O.-M.)
| | - Rong-Fang Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (R.-F.L.); (J.Y.)
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (R.-F.L.); (J.Y.)
| | - Iwona Zbyryt
- Department of Epizootiology and Clinic of Birds and Exotic Animals, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland;
| | - Bożena Obmińska-Mrukowicz
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland; (A.P.); (B.O.-M.)
| |
Collapse
|
12
|
Hlavaty J, Ertl R, Mekuria TA, Rütgen B, Tsujimoto H, Walter I, Wolfesberger B. Effect of prednisolone pre-treatment on cat lymphoma cell sensitivity towards chemotherapeutic drugs. Res Vet Sci 2021; 138:178-187. [PMID: 34157499 DOI: 10.1016/j.rvsc.2021.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
Corticosteroid administration prior to the application of chemotherapy in small animal lymphoma patients is a concern, as it is discussed to negatively influence the therapeutic outcome due to corticosteroid-induced drug resistance. Using feline lymphoma cell lines FT-1 and MS4 we have shown, that prednisolone pre-treatment alters the susceptibility of these cells towards doxorubicin or vincristine treatment in vitro. The observed effect was negative as for the killing potential and it was cell line and drug (doxorubicin or vincristine) dependent. Furthermore, increase in mRNA expression of selected proteins with multidrug resistance potential (MDR1, BCRP, LRP, MT) was observed after prednisolone pre-treatment. Administration of chemical inhibitors of these proteins did not lead to reversal in sensitivity of tested cell lines to doxorubicin or vincristine.
Collapse
Affiliation(s)
- Juraj Hlavaty
- Institute of Pathology, Working Group Histology, University of Veterinary Medicine, Vienna, Austria.
| | - Reinhard Ertl
- VetCORE Facility for Research, University of Veterinary Medicine, Vienna, Austria
| | - Tewodros Abere Mekuria
- Institute of Pathology, Working Group Histology, University of Veterinary Medicine, Vienna, Austria
| | - Barbara Rütgen
- Central Laboratory, Institute of Immunology, University of Veterinary Medicine, Vienna, Austria
| | - Hajime Tsujimoto
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Ingrid Walter
- Institute of Pathology, Working Group Histology, University of Veterinary Medicine, Vienna, Austria; VetCORE Facility for Research, University of Veterinary Medicine, Vienna, Austria
| | - Birgitt Wolfesberger
- Clinic for Companion Animal Medicine, Unit for Internal Medicine, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
13
|
Enhanced Cytotoxic Effect of Doxorubicin Conjugated to Glutathione-Stabilized Gold Nanoparticles in Canine Osteosarcoma-In Vitro Studies. Molecules 2021; 26:molecules26123487. [PMID: 34201296 PMCID: PMC8227216 DOI: 10.3390/molecules26123487] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 12/19/2022] Open
Abstract
Osteosarcoma (OSA) is the most common malignant bone neoplasia in humans and dogs. In dogs, treatment consists of surgery in combination with chemotherapy (mostly carboplatin and/or doxorubicin (Dox)). Chemotherapy is often rendered ineffective by multidrug resistance. Previous studies have revealed that Dox conjugated with 4 nm glutathione-stabilized gold nanoparticles (Au-GSH-Dox) enhanced the anti-tumor activity and cytotoxicity of Dox in Dox-resistant feline fibrosarcoma cell lines exhibiting high P-glycoprotein (P-gp) activity. The present study investigated the influence of Au-GSH-Dox on the canine OSA cell line D17 and its relationship with P-gp activity. A human Dox-sensitive OSA cell line, U2OS, served as the negative control. Au-GSH-Dox, compared to free Dox, presented a greater cytotoxic effect on D17 (IC50 values for Au-GSH-Dox and Dox were 7.9 μg/mL and 15.2 μg/mL, respectively) but not on the U2OS cell line. All concentrations of Au-GSH (ranging from 10 to 1000 μg/mL) were non-toxic in both cell lines. Inhibition of the D17 cell line with 100 μM verapamil resulted in an increase in free Dox but not in intracellular Au-GSH-Dox. The results indicate that Au-GSH-Dox may act as an effective drug in canine OSA by bypassing P-gp.
Collapse
|
14
|
Hsu CH, Tomiyasu H, Liao CH, Lin CS. Genome-wide DNA methylation and RNA-seq analyses identify genes and pathways associated with doxorubicin resistance in a canine diffuse large B-cell lymphoma cell line. PLoS One 2021; 16:e0250013. [PMID: 33961622 PMCID: PMC8104391 DOI: 10.1371/journal.pone.0250013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/29/2021] [Indexed: 12/15/2022] Open
Abstract
Doxorubicin resistance is a major challenge in the successful treatment of canine diffuse large B-cell lymphoma (cDLBCL). In the present study, MethylCap-seq and RNA-seq were performed to characterize the genome-wide DNA methylation and differential gene expression patterns respectively in CLBL-1 8.0, a doxorubicin-resistant cDLBCL cell line, and in CLBL-1 as control, to investigate the underlying mechanisms of doxorubicin resistance in cDLBCL. A total of 20289 hypermethylated differentially methylated regions (DMRs) were detected. Among these, 1339 hypermethylated DMRs were in promoter regions, of which 24 genes showed an inverse correlation between methylation and gene expression. These 24 genes were involved in cell migration, according to gene ontology (GO) analysis. Also, 12855 hypermethylated DMRs were in gene-body regions. Among these, 353 genes showed a positive correlation between methylation and gene expression. Functional analysis of these 353 genes highlighted that TGF-β and lysosome-mediated signal pathways are significantly associated with the drug resistance of CLBL-1. The tumorigenic role of TGF-β signaling pathway in CLBL-1 8.0 was further validated by treating the cells with a TGF-β inhibitor(s) to show the increased chemo-sensitivity and intracellular doxorubicin accumulation, as well as decreased p-glycoprotein expression. In summary, the present study performed an integrative analysis of DNA methylation and gene expression in CLBL-1 8.0 and CLBL-1. The candidate genes and pathways identified in this study hold potential promise for overcoming doxorubicin resistance in cDLBCL.
Collapse
Affiliation(s)
- Chia-Hsin Hsu
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Hirotaka Tomiyasu
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Chi-Hsun Liao
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Si Lin
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
15
|
Levi M, Muscatello LV, Brunetti B, Benazzi C, Parenti F, Gobbo F, Avallone G, Bacci B, Zambon E, Valenti P, Sarli G. High Intrinsic Expression of P-glycoprotein and Breast Cancer Resistance Protein in Canine Mammary Carcinomas Regardless of Immunophenotype and Outcome. Animals (Basel) 2021; 11:ani11030658. [PMID: 33801360 PMCID: PMC8001331 DOI: 10.3390/ani11030658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/14/2021] [Accepted: 02/22/2021] [Indexed: 11/16/2022] Open
Abstract
P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are major actors in multidrug resistance (MDR) phenomenon in both human and canine mammary carcinomas (CMCs). The aim of this study was to investigate an association between the intrinsic expression of P-gp and BCRP compared to the immunophenotypes and outcome in CMCs. Fifty CMCs were evaluated at immunohistochemistry (IHC) for P-gp, BCRP, Estrogen receptor alpha (ER), Progesterone receptors (PR), Human Epidermal Growth Factor Receptor type 2 (HER2), basal cytokeratins 5/6 (CK5/6), Epidermal Growth Factor Receptor 1 (EGFR), and Ki67 proliferation index. P-gp and BCRP positive cases were, respectively, 52% and 74.5%, with a significantly higher expression of BCRP than P-gp. Five immunophenotypes were defined in 37 out of 50 CMCs: 9 (24.3%) Luminal A, 5 (13.5%) Luminal B, 9 (24.3%) HER2 overexpressing, 9 (24.3%) Triple-negative basal-like, and 5 (13.5%) Triple-negative non-basal-like. In all CMCs at least one marker was expressed. Follow-up data were available for 25 animals. The average cancer-specific survival was 739 ± 444 days. A number of CMCs bear a high expression of P-gp and BCRP but no significant association was found between their expression and the immunophenotypes, Ki67 index, the histological grade, and tumor-related death.
Collapse
Affiliation(s)
- Michela Levi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (M.L.); (L.V.M.); (B.B.); (C.B.); (F.P.); (F.G.); (G.A.); (B.B.)
| | - Luisa Vera Muscatello
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (M.L.); (L.V.M.); (B.B.); (C.B.); (F.P.); (F.G.); (G.A.); (B.B.)
| | - Barbara Brunetti
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (M.L.); (L.V.M.); (B.B.); (C.B.); (F.P.); (F.G.); (G.A.); (B.B.)
| | - Cinzia Benazzi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (M.L.); (L.V.M.); (B.B.); (C.B.); (F.P.); (F.G.); (G.A.); (B.B.)
| | - Federico Parenti
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (M.L.); (L.V.M.); (B.B.); (C.B.); (F.P.); (F.G.); (G.A.); (B.B.)
| | - Francesca Gobbo
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (M.L.); (L.V.M.); (B.B.); (C.B.); (F.P.); (F.G.); (G.A.); (B.B.)
| | - Giancarlo Avallone
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (M.L.); (L.V.M.); (B.B.); (C.B.); (F.P.); (F.G.); (G.A.); (B.B.)
| | - Barbara Bacci
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (M.L.); (L.V.M.); (B.B.); (C.B.); (F.P.); (F.G.); (G.A.); (B.B.)
| | - Elisa Zambon
- Ospedale Veterinario, I Portoni Rossi, Zola Predosa, 40069 Bologna, Italy;
| | - Paola Valenti
- Clinica Veterinaria Malpensa, Samarate, 21017 Varese, Italy;
| | - Giuseppe Sarli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (M.L.); (L.V.M.); (B.B.); (C.B.); (F.P.); (F.G.); (G.A.); (B.B.)
- Correspondence: ; Tel.: +39-051-20-9-795
| |
Collapse
|
16
|
Manoel VC, De Carvalho PLT, Govoni VM, Da Silva TC, Queiroga FL, Cogliati B. Immunoexpression and Prognostic Significance of Multidrug Resistance Markers in Feline Mammary Carcinomas. J Comp Pathol 2021; 183:13-25. [PMID: 33714427 DOI: 10.1016/j.jcpa.2020.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/17/2020] [Accepted: 12/24/2020] [Indexed: 10/22/2022]
Abstract
Feline mammary carcinomas (FMCs) are commonly characterized by high clinical aggressiveness and poor prognosis. FMCs share many features with the corresponding human disease, allowing the comparative investigation of tumour biology and therapeutic strategies, including multidrug resistance (MDR) mechanisms. Although transporting/binding proteins, including permeability glycoprotein (P-gp), lung resistance protein (LRP) and metallothionein (MT), are frequently associated with tumour aggressiveness and unresponsiveness to chemotherapy in human breast cancer, they have not been analysed in FMCs. We investigated the immunoexpression of P-gp, LRP and MT in FMCs and their correlation with clinicopathological parameters and overall survival (OS) time in 46 FMCs, with a median follow-up period of 289 days. These markers were co-expressed in 85% of tumours. P-gp was expressed in 93.4% of FMCs and was positively associated with tumour grade (P = 0.049). While unequivocally observed in all FMCs, LRP immunoexpression did not correlate with any clinicopathological parameters or OS. Expression of MT was significant in triple-negative basal- and normal-like molecular subtypes of FMCs (P = 0.023). The concurrent expression of MDR proteins indicates the potential existence of chemotherapy resistance-related mechanisms in FMCs. The positive association between P-gp and MT immunoexpression and aggressive phenotypes could open new therapeutic and translational strategies for FMCs.
Collapse
Affiliation(s)
- Verônica Correia Manoel
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Pedro Luis Teles De Carvalho
- Center for Research and Technology of Agro-Environment and Biological Sciences, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Verônica Mollica Govoni
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Tereza Cristina Da Silva
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Felisbina Luisa Queiroga
- Center for Research and Technology of Agro-Environment and Biological Sciences, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
17
|
Levi M, Salaroli R, Parenti F, De Maria R, Zannoni A, Bernardini C, Gola C, Brocco A, Marangio A, Benazzi C, Muscatello LV, Brunetti B, Forni M, Sarli G. Doxorubicin treatment modulates chemoresistance and affects the cell cycle in two canine mammary tumour cell lines. BMC Vet Res 2021; 17:30. [PMID: 33461558 PMCID: PMC7814552 DOI: 10.1186/s12917-020-02709-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Doxorubicin (DOX) is widely used in both human and veterinary oncology although the onset of multidrug resistance (MDR) in neoplastic cells often leads to chemotherapy failure. Better understanding of the cellular mechanisms that circumvent chemotherapy efficacy is paramount. The aim of this study was to investigate the response of two canine mammary tumour cell lines, CIPp from a primary tumour and CIPm, from its lymph node metastasis, to exposure to EC50(20h) DOX at 12, 24 and 48 h of treatment. We assessed the uptake and subcellular distribution of DOX, the expression and function of P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP), two important MDR mediators. To better understand this phenomenon the effects of DOX on the cell cycle and Ki67 cell proliferation index and the expression of p53 and telomerase reverse transcriptase (TERT) were also evaluated by immunocytochemistry (ICC). RESULTS Both cell lines were able to uptake DOX within the nucleus at 3 h treatment while at 48 h DOX was absent from the intracellular compartment (assessed by fluorescence microscope) in all the surviving cells. CIPm, originated from the metastatic tumour, were more efficient in extruding P-gp substrates. By ICC and qRT-PCR an overall increase in both P-gp and BCRP were observed at 48 h of EC50(20h) DOX treatment in both cell lines and were associated with a striking increase in the percentage of p53 and TERT expressing cells by ICC. The cell proliferation fraction was decreased at 48 h in both cell lines and cell cycle analysis showed a DOX-induced arrest in the S phase for CIPp, while CIPm had an increase in cellular death without arrest. Both cells lines were therefore composed by a fraction of cells sensible to DOX that underwent apoptosis/necrosis. CONCLUSIONS DOX administration results in interlinked modifications in the cellular population including a substantial effect on the cell cycle, in particular arrest in the S phase for CIPp and the selection of a subpopulation of neoplastic cells bearing MDR phenotype characterized by P-gp and BCRP expression, TERT activation, p53 accumulation and decrease in the proliferating fraction. Important information is given for understanding the dynamic and mechanisms of the onset of drug resistance in a neoplastic cell population.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- Animals
- Cell Cycle/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Dogs
- Doxorubicin/pharmacology
- Drug Resistance, Neoplasm/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Mammary Neoplasms, Animal
- Multidrug Resistance-Associated Proteins/genetics
- Multidrug Resistance-Associated Proteins/metabolism
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
Collapse
Affiliation(s)
- Michela Levi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Roberta Salaroli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Federico Parenti
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Raffaella De Maria
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Augusta Zannoni
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Chiara Bernardini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Cecilia Gola
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Antonio Brocco
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Asia Marangio
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Cinzia Benazzi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Luisa Vera Muscatello
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Barbara Brunetti
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Monica Forni
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Giuseppe Sarli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy.
| |
Collapse
|
18
|
Wu ZX, Mai Q, Yang Y, Wang JQ, Ma H, Zeng L, Chen ZS, Pan Y. Overexpression of human ATP-binding cassette transporter ABCG2 contributes to reducing the cytotoxicity of GSK1070916 in cancer cells. Biomed Pharmacother 2021; 136:111223. [PMID: 33450491 DOI: 10.1016/j.biopha.2021.111223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/26/2020] [Accepted: 12/31/2020] [Indexed: 12/15/2022] Open
Abstract
The emergence of multidrug resistance (MDR) is one of the main factors that impair therapeutic outcome in cancer therapy. Among all the factors that contribute to MDR, overexpression of ABCG2 transporter has been described as a key factor. GSK1070916 is a potent Aurora kinase inhibitor with broad anticancer effects. The robust efficacy shown in preclinical studies allowed the drug progress to clinical investigation. However, the potential mechanisms of acquired resistance to GSK1070916 remain inconclusive. Since several Aurora kinase inhibitors were reported to be transported substrates of ABCG2, we aimed to identify the potential interaction of GSK1070916 with ABCG2. Our data showed that ABCG2-overexpressing cells demonstrated high resistance-fold to GSK1070916 compared to the parental cells. In addition, combination of GSK1070916 with an ABCG2 inhibitor was able to restore its sensitivity. The multicellular tumor spheroid assay supported this finding by demonstrating attenuated growth inhibition in ABCG2-overexpressing tumor spheroids. In addition, the ABCG2 ATPase assay and computational modeling suggested that GSK1070916 could bind to ABCG2 substrate-binding site. The HPLC assay provided another direct evidence that ABCG2-overexpressing cells showed attenuated intracellular accumulation of GSK1070916, and such phenomenon was abolished by Ko143, a known ABCG2 inhibitor. Furthermore, GSK1070916 was able to hinder the efflux activity of ABCG2, indicating possible drug-drug interactions with other ABCG2 substrate drugs. In summary, we revealed that overexpression of ABCG2 can cause GSK1070916 resistance in cancer cells. The combination of an ABCG2 inhibitor with GSK1070916 may be a rational strategy to overcome the drug resistance and should be considered for clinical investigation.
Collapse
Affiliation(s)
- Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Qiuyan Mai
- Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Hansu Ma
- Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Leli Zeng
- Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Yihang Pan
- Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, PR China.
| |
Collapse
|
19
|
Aberuyi N, Rahgozar S, Pourabutaleb E, Ghaedi K. Selective dysregulation of ABC transporters in methotrexate-resistant leukemia T-cells can confer cross-resistance to cytarabine, vincristine and dexamethasone, but not doxorubicin. Curr Res Transl Med 2020; 69:103269. [PMID: 33071214 DOI: 10.1016/j.retram.2020.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/15/2020] [Accepted: 09/26/2020] [Indexed: 02/06/2023]
Abstract
Pediatric acute lymphoblastic leukemia (pALL) includes 75 % of childhood leukemias, and methotrexate (MTX) is one of the most effective chemotherapy agents prescribed for pALL treatment. The aim of this study was to establish and characterize an MTX-resistant tumor cell model in order to study the mechanism contributing to drug sensitivity loss in pALL. Parental CCRF-CEM cells were treated with a gradual increasing concentration of MTX from 5 nM to 1.28 μM. The resistant subline was then characterized according to the cellular morphology, cellular growth curves and specific mRNA expression changes associated with drug resistance in ALL. Moreover, in vitro cytotoxicity assays were used to analyze cells relative responsiveness to a set of clinically used anti-ALL chemotherapy drugs. The morphological changes observed in the new R-CCRF-CEM/MVCD subline were associated with dysregulation of the EMT-related genes, Twist1 and CDH1. Cells demonstrated downregulation of ABCC1 and the overexpression of ABCA2, ABCA3, and ABCB1 membrane transporters. However, short treatment of the sensitive and parental cell line with MTX did not affect the expression profiles of the former ABC pumps. Moreover, R-CCRF-CEM/MVCD cells demonstrated cross-resistance to cytarabine (cytosine arabinoside, ara-C), vincristine, and dexamethasone, but not doxorubicin. The induced cross-resistance to specific chemotherapy drugs may possibly be attributed to selective dysregulation of the ABC transporters and EMT-related genes. These data may pave the way for the development of new cancer therapeutic strategies.
Collapse
Affiliation(s)
- Narges Aberuyi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Iran
| | - Soheila Rahgozar
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Iran.
| | - Elnaz Pourabutaleb
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Iran
| |
Collapse
|
20
|
Chen W, Liu I, Tomiyasu H, Lee J, Cheng C, Liao AT, Liu B, Liu C, Lin C. Imatinib enhances the anti-tumour effect of doxorubicin in canine B-cell lymphoma cell line. Vet J 2019; 254:105398. [PMID: 31836165 DOI: 10.1016/j.tvjl.2019.105398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 10/03/2019] [Accepted: 10/19/2019] [Indexed: 01/24/2023]
Abstract
Canine lymphoma is one of the most common malignant tumours occurring in dogs and has a high incidence worldwide. Despite advances in cancer prevention, the treatment of neoplastic diseases still requires improvement. Some cancer cells may resist the effect of chemotherapeutic agents by up-regulating drug transporters leading to increased drug efflux, resulting in intrinsic or acquired drug resistance, which is a mechanism commonly seen in doxorubicin-resistant tumour cells. In this study, canine B-cell lymphoma cell line CLBL1-8.0, a doxorubicin-resistant B cell lymphoma cell line derived from CLBL-1 by increasing the doxorubicin concentration during culturing, exhibited high expression of P-glycoprotein (P-gp, ATP-binding cassette sub-family B member 1 [ABCB1]). These proteins are commonly involved in cancer cell resistance to doxorubicin. Imatinib, a tyrosine kinase inhibitor significantly potentiated the sensitivity of doxorubicin in P-gp-overexpressing doxorubicin-resistant cells. Moreover, a combination of these two drugs may increase the retention of doxorubicin by decreasing the efflux of doxorubicin without affecting P-gp protein overexpression. In conclusion, imatinib reversed doxorubicin resistance by decreasing drug efflux in P-gp-overexpressing doxorubicin-resistant canine lymphoma cells. These results suggest that combining doxorubicin, one of the most widely used chemotherapeutic drugs in the treatment of canine lymphoma, with imatinib might potentially overcome doxorubicin resistance in a clinical setting.
Collapse
Affiliation(s)
- W Chen
- Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, 1 Sec 4 Roosevelt Road, Taipei, 10617, Taiwan
| | - I Liu
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, 1 Sec 4 Roosevelt Road, Taipei, 10617, Taiwan
| | - H Tomiyasu
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - J Lee
- Graduate Institute of Veterinary Clinical Science, School of Veterinary Medicine, National Taiwan University, 1 Sec 4 Roosevelt Road, Taipei, 10617, Taiwan
| | - C Cheng
- Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, 1 Sec 4 Roosevelt Road, Taipei, 10617, Taiwan
| | - A T Liao
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, 1 Sec 4 Roosevelt Road, Taipei, 10617, Taiwan
| | - B Liu
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, 1 Sec 4 Roosevelt Road, Taipei, 10617, Taiwan
| | - C Liu
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, 1 Sec 4 Roosevelt Road, Taipei, 10617, Taiwan
| | - C Lin
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, 1 Sec 4 Roosevelt Road, Taipei, 10617, Taiwan.
| |
Collapse
|
21
|
Morita A, Aoshima K, Gulay KCM, Onishi S, Shibata Y, Yasui H, Kobayashi A, Kimura T. High drug efflux pump capacity and low DNA damage response induce doxorubicin resistance in canine hemangiosarcoma cell lines. Res Vet Sci 2019; 127:1-10. [PMID: 31648115 DOI: 10.1016/j.rvsc.2019.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 09/17/2019] [Accepted: 09/22/2019] [Indexed: 01/19/2023]
Abstract
Canine hemangiosarcoma (HSA) is an aggressive malignant endothelial tumor in dogs and characterized by poor prognosis because of its high invasiveness, high metastatic potential, and poor responsiveness to anti-cancer drugs. Although doxorubicin-based chemotherapy is regularly conducted after surgical treatment, its effects on survival rates are limited. Acquisition of drug resistance is one of the causes of this problem, but the underlying mechanisms remain unclear. In the present study, we aimed to identify the drug-resistance mechanism in canine HSA by establishing doxorubicin-resistant (DR) HSA cell lines. HSA cell lines were exposed to doxorubicin at gradually increasing concentrations. When the cells were able to grow in the presence of a 16-fold higher doxorubicin concentration compared with the initial culture, they were designated DR-HSA cell lines. Characterization of these DR-HSA cell lines revealed higher drug efflux pump capacity compared with the parental cell lines. Furthermore, the DR-HSA cell lines did not show activation of the DNA damage response despite carrying high DNA damage burdens, meaning that apoptosis was not strongly induced. In conclusion, canine HSA cell lines acquired doxorubicin resistance by increasing their drug efflux pump capacity and decreasing the DNA damage response. This study provides useful findings to promote further research on the drug-resistance mechanisms in canine HSA.
Collapse
Affiliation(s)
- Atsuya Morita
- Laboratory of Comparative Pathology, Department of Clinical Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Keisuke Aoshima
- Laboratory of Comparative Pathology, Department of Clinical Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan.
| | - Kevin Christian Montecillo Gulay
- Laboratory of Comparative Pathology, Department of Clinical Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Shinichi Onishi
- Laboratory of Comparative Pathology, Department of Clinical Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Yuki Shibata
- Laboratory of Integrated Molecular Imaging, Department of Biomedical Imaging, Graduate School of Biomedical Science and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| | - Hironobu Yasui
- Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Atsushi Kobayashi
- Laboratory of Comparative Pathology, Department of Clinical Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Takashi Kimura
- Laboratory of Comparative Pathology, Department of Clinical Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| |
Collapse
|
22
|
Levi M, Peña L, Alonso-Díez A, Brunetti B, Muscatello LV, Benazzi C, Pérez-Alenza MD, Sarli G. P-Glycoprotein and Breast Cancer Resistance Protein in Canine Inflammatory and Noninflammatory Grade III Mammary Carcinomas. Vet Pathol 2019; 56:840-847. [PMID: 31526115 DOI: 10.1177/0300985819868647] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
P-glycoprotein (P-gp/ABCB1) and breast cancer resistance protein (BCRP/ABCG2) expression are frequently related to multidrug resistance (MDR) in neoplastic cells. Canine inflammatory and grade III noninflammatory mammary carcinomas (IMC and non-IMC) are aggressive tumors that could benefit from chemotherapy. This study describes the immunohistochemical detection of P-gp and BCRP in 20 IMCs and 18 non-IMCs from dogs that had not received chemotherapy. Our aim was to determine if P-gp and BCRP expression was related to the "inflammatory" phenotype, to establish a basis for future studies analyzing the response to chemotherapy in dogs with highly malignant mammary cancer. Immunolabeling was primarily membranous for P-gp with a more intense labeling in emboli, and immunolabeling was membranous and cytoplasmic for BCRP. P-gp was expressed in 17 of 20 (85%) IMCs compared to 7 of 18 (39%) non-IMCs (P = 0.006). BCRP was expressed within emboli in 15 of 19 (79%) emboli in IMC, 12 of 15 (80%) primary IMCs, and 12 of 18 (67%) non-IMCs, without statistically significant differences (P > .05). All IMCs and 67% of non-IMCs expressed at least 1 of the 2 transporters, and 63% (12/19) of IMCs and 39% (7/18) of non-IMCs expressed both P-gp and BCRP. P-gp and BCRP evaluation might help select patients for chemotherapy. P-gp, expressed in a significantly higher percentage of IMCs vs non-IMCs, might play a specific role in the chemoresistance of IMC.
Collapse
Affiliation(s)
- Michela Levi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Laura Peña
- Department of Animal Medicine, Surgery and Pathology, Complutense University of Madrid, Madrid, Spain
| | - Angela Alonso-Díez
- Department of Animal Medicine, Surgery and Pathology, Complutense University of Madrid, Madrid, Spain
| | - Barbara Brunetti
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | | | - Cinzia Benazzi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | | | - Giuseppe Sarli
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
23
|
Thamm DH, Gustafson DL. Drug dose and drug choice: Optimizing medical therapy for veterinary cancer. Vet Comp Oncol 2019; 18:143-151. [PMID: 31487110 DOI: 10.1111/vco.12537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 12/18/2022]
Abstract
Although novel agents hold great promise for the treatment of animal neoplasia, there may be room for significant improvement in the use of currently available agents. These improvements include altered dosing schemes, novel combinations, and patient-specific dosing or selection of agents. Previous studies have identified surrogates for "individualized dose intensity,", for example, patient size, development of adverse effects, and pharmacokinetic parameters, as potential indicators of treatment efficacy in canine lymphoma, and strategies for patient-specific dose escalation are discussed. Strategies for treatment selection in individual patients include conventional histopathology, protein-based target assessment (eg, flow cytometry, immunohistochemistry, and mass spectrometry), and gene-based target assessment (gene expression profiling and targeted or global sequencing strategies). Currently available data in animal cancer evaluating these strategies are reviewed, as well as ongoing studies and suggestions for future directions.
Collapse
Affiliation(s)
- Douglas H Thamm
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado.,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, Colorado.,Developmental Therapeutics Program, University of Colorado Comprehensive Cancer Center, Fort Collins, Colorado
| | - Daniel L Gustafson
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado.,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, Colorado.,Developmental Therapeutics Program, University of Colorado Comprehensive Cancer Center, Fort Collins, Colorado
| |
Collapse
|
24
|
Marconato L, Aresu L, Stefanello D, Comazzi S, Martini V, Ferrari R, Riondato F, Rouquet N, Frayssinet P, Sabattini S. Opportunities and challenges of active immunotherapy in dogs with B-cell lymphoma: a 5-year experience in two veterinary oncology centers. J Immunother Cancer 2019; 7:146. [PMID: 31174615 PMCID: PMC6554898 DOI: 10.1186/s40425-019-0624-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/17/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Pet dogs spontaneously develop lymphoma. An anthracycline-based multidrug chemotherapy regimen represents the treatment cornerstone; however, cure is rarely achieved. We have been treating dogs with B-cell lymphoma with an autologous vaccine (APAVAC®) and CHOP-based chemotherapy since 2011. METHODS To better characterize the safety and efficacy of APAVAC®, and to find the best candidates for immunotherapy, we designed a retrospective study on all dogs treated with chemo-immunotherapy to date and compared them with those dogs treated with chemotherapy only. All dogs were completely staged and re-staged at the end of treatment. The primary endpoint was the effectiveness of chemo-immunotherapy, measured as time to progression (TTP), lymphoma-specific survival (LSS), and 1-, 2-, and 3-year survival rates. The secondary objective was safety. RESULTS Three hundred dogs were included: 148 (49.3%) received chemotherapy and 152 (50.7%) chemo-immunotherapy. Overall, the latter survived significantly longer (median LSS, 401 vs 220; P < 0.001). Among dogs with diffuse large B-cell lymphoma, the 1-, 2- and 3-year survival rates were 20, 13 and 8% for chemotherapy, and 51, 19 and 10% for chemo-immunotherapy. The benefit of chemo-immunotherapy was particularly relevant in dogs with concurrent high serum LDH, stage V, substage a disease and not previously treated with steroids (median LSS, 480 vs 85 days; P < 0.001). Among dogs with nodal marginal zone lymphoma, those having at least 3 of the aforementioned characteristics significantly benefited from chemo-immunotherapy (median LSS, 680 vs 160 days, P < 0.001). The 1-, 2- and 3-year survival rates were 30, 16 and 10% for chemotherapy, and 55, 28 and 10% for chemo-immunotherapy. Among dogs with follicular lymphoma, lack of immunotherapy administration was the only variable significantly associated with increased risk of tumor-related death. Chemo-immunotherapy was remarkably well tolerated, with no local or systemic adverse events. CONCLUSIONS Overall, the addition of immunotherapy to a traditional CHOP protocol is associated with improved outcome in dogs with B-cell lymphoma, regardless of histotype and evaluated prognostic factors. Moreover, the identikit of the best candidate for immune-therapy was delineated for the most common histotypes. The study also confirms the excellent tolerability of the vaccine.
Collapse
Affiliation(s)
- Laura Marconato
- Centro Oncologico Veterinario, Sasso Marconi, via San Lorenzo ¼, 40037 Sasso Marconi, Bologna, Italy.
| | - Luca Aresu
- Department of Veterinary Science, University of Turin, Grugliasco, Turin, Italy
| | | | - Stefano Comazzi
- Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Valeria Martini
- Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Roberta Ferrari
- Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Fulvio Riondato
- Department of Veterinary Science, University of Turin, Grugliasco, Turin, Italy
| | | | | | - Silvia Sabattini
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
25
|
Intile JL, Rassnick KM, Al-Sarraf R, Chretin JD. Evaluation of the Tolerability of Combination Chemotherapy with Mitoxantrone and Dacarbazine in Dogs with Lymphoma. J Am Anim Hosp Assoc 2019; 55:101-109. [PMID: 30653362 DOI: 10.5326/jaaha-ms-6878] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Combination chemotherapy can be an effective option for treating resistant lymphoma in dogs. This retrospective study examined the tolerability and efficacy of the combination of 5-(3,3-dimethyl-1-triazeno)-imidazole-4-carboxamide (dacarbazine) (DTIC) in a population of dogs with lymphoma resistant to a doxorubicin-containing chemotherapy protocol. Mitoxantrone was administered at 5 mg/m2 IV over 10 min followed by DTIC at 600 mg/m2 IV over 5 hr, every 3 wk. All dogs were treated with prophylactic trimethoprim-sulfadiazine and metoclopramide. The frequency of grade 4 neutropenia was 18%, and 5% of dogs were hospitalized from sepsis. Gastrointestinal toxicity was uncommon. The overall response rate was 34% (15 of 44; 95% confidence interval 20-48%) for a median duration of 97 days (range 24-636 days, 95% confidence interval 44-150 days). Fourteen of 15 dogs who received mitoxantrone and DTIC as first rescue responded to treatment. Dogs who achieved complete remission to their initial L-asparaginase, cyclophosphamide, doxorubicin, vincristine, and prednisone chemotherapy protocol were more likely to respond to mitoxantrone and DTIC (23 versus 11%, P = .035). The combination of mitoxantrone and DTIC is a safe treatment option for resistant lymphoma in dogs.
Collapse
Affiliation(s)
- Joanne L Intile
- From the Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina (J.L.I.); Veterinary Medical Center of Central New York, Syracuse, New York (K.M.R.); Animal Emergency and Referral Associates, Fairfield, New Jersey (R.A-S.); and VCA West Los Angeles Animal Hospital, Los Angeles, California (J.D.C)
| | - Kenneth M Rassnick
- From the Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina (J.L.I.); Veterinary Medical Center of Central New York, Syracuse, New York (K.M.R.); Animal Emergency and Referral Associates, Fairfield, New Jersey (R.A-S.); and VCA West Los Angeles Animal Hospital, Los Angeles, California (J.D.C)
| | - Renee Al-Sarraf
- From the Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina (J.L.I.); Veterinary Medical Center of Central New York, Syracuse, New York (K.M.R.); Animal Emergency and Referral Associates, Fairfield, New Jersey (R.A-S.); and VCA West Los Angeles Animal Hospital, Los Angeles, California (J.D.C)
| | - John D Chretin
- From the Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina (J.L.I.); Veterinary Medical Center of Central New York, Syracuse, New York (K.M.R.); Animal Emergency and Referral Associates, Fairfield, New Jersey (R.A-S.); and VCA West Los Angeles Animal Hospital, Los Angeles, California (J.D.C)
| |
Collapse
|
26
|
|
27
|
Modiano JF. Comparative Pathogenesis of Cancers in Animals and Humans. Vet Sci 2016; 3:vetsci3030024. [PMID: 29056731 PMCID: PMC5606573 DOI: 10.3390/vetsci3030024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 09/08/2016] [Indexed: 12/13/2022] Open
Affiliation(s)
- Jaime F Modiano
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN 55108, USA.
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA.
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA.
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|