1
|
Garazade N, Can-Güven E, Güven F, Yazici Guvenc S, Varank G. Application of machine learning algorithms for the prediction of metformin removal with hydroxyl radical-based photochemical oxidation and optimization of process parameters. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137552. [PMID: 39954435 DOI: 10.1016/j.jhazmat.2025.137552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/11/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
This study investigated the effectiveness of hydroxyl radical-based photochemical oxidation processes on metformin (METF) removal, and the experimental data were modeled by machine learning (ML) algorithms. Hydrogen peroxide (HP), sodium percarbonate (PC), and peracetic acid (PAA) were used as hydroxyl radicals sources. Modeling was conducted using ML algorithms with the integration of additional experiments. Under optimum conditions (UV/PC: pH 5, PC 6 mM, UV/HP: pH 3, HP 6 mM, UV/PAA: pH 9, PAA 6 mM), the METF removal efficiency was 74.1 %, 40.7 %, and 47.9 % with UV/PC, UV/HP, and UV/PAA, respectively. The scavenging experiments revealed that hydroxyl and singlet oxygen radicals were dominant in UV/PC and hydroxyl radicals were predominant in UV/HP and UV/PAA. Nitrate negatively affected UV/HP, UV/PC, and UV/PAA, whereas chlorine had a positive impact. The EE/O were 0.682, 1.75, and 1.41 kWh/L for UV/PC, UV/HP, and UV/PAA, respectively. The experimental results were successfully modeled by ML models with high R2 values and low MAE and RMSE values. XGBoost models effectively represent data with generalization by avoiding overfitting. Using ML algorithms to model hydroxyl radical-based photochemical oxidation processes is considered an effective and practical method for future research.
Collapse
Affiliation(s)
- Narmin Garazade
- Yildiz Technical University, Faculty of Civil Engineering, Department of Environmental Engineering, Istanbul, 34220, Türkiye
| | - Emine Can-Güven
- Yildiz Technical University, Faculty of Civil Engineering, Department of Environmental Engineering, Istanbul, 34220, Türkiye.
| | - Fatih Güven
- Hacettepe University, Başkent OSB Vocational School of Technical Sciences, Department of Machinery and Metal Technologies, Ankara, Türkiye
| | - Senem Yazici Guvenc
- Yildiz Technical University, Faculty of Civil Engineering, Department of Environmental Engineering, Istanbul, 34220, Türkiye
| | - Gamze Varank
- Yildiz Technical University, Faculty of Civil Engineering, Department of Environmental Engineering, Istanbul, 34220, Türkiye
| |
Collapse
|
2
|
Pelicano CM, Żółtowska S, Antonietti M. A Mind Map to Address the Next Generation of Artificial Photosynthesis Experiments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501385. [PMID: 40177981 DOI: 10.1002/smll.202501385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/25/2025] [Indexed: 04/05/2025]
Abstract
Artificial photosynthesis (APS) is using light for uphill chemical reactions that converts light energy into chemical energy. It follows the example of natural photosynthesis, but offers a broader choice of materials and components, which can enhance its performance it terms of application conditions, stability, efficiency, and uphill reactions to be carried out. This work presents here first the status of the field, just to focus afterward on the current problems seen at the forefront of the field, as well as discussing some general misunderstandings, which are often repeated in the primary literature. Finally, this perspective article is daring to define some grand challenges, which have to be tackled for the translation of APS into society.
Collapse
Affiliation(s)
- Christian Mark Pelicano
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, MPI Research Campus Golm, D-14424, Potsdam-Golm, Germany
| | - Sonia Żółtowska
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, MPI Research Campus Golm, D-14424, Potsdam-Golm, Germany
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, MPI Research Campus Golm, D-14424, Potsdam-Golm, Germany
| |
Collapse
|
3
|
Estrada-Flórez SE, Serna-Galvis EA, Lee J, Torres-Palma RA. Systematic study of the synergistic and kinetics effects on the removal of contaminants of emerging concern from water by ultrasound in the presence of diverse oxidants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:10478-10489. [PMID: 37632616 PMCID: PMC11996977 DOI: 10.1007/s11356-023-29189-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/01/2023] [Indexed: 08/28/2023]
Abstract
The enhancement of the ultrasound system by adding diverse oxidants to remove a model contaminant (acetaminophen, ACE) in water was investigated. Different parameters were evaluated to study their effect on both the degradation kinetics and the synergy of the combination. The variables studied were the ultrasonic frequency (575, 858, and 1135 kHz), type of oxidant (hydrogen peroxide, sodium peroxydisulfate (or persulfate, PDS), and potassium peroxymonosulfate (PMS)), ACE concentration (4, 8, and 40 µM), and oxidant concentration (0.01, 0.1, 1, and 5 mM). Particular interest was placed on synergistic effects, implying that one process (or both) is activated by the other to lead to greater efficiency. Interestingly, the parameters that led to the higher synergistic effects did not always lead to the most favorable degradation kinetics. An increase in ACE removal of 20% was obtained using the highest frequency studied (1135 kHz), PMS 0.1 mM, and the highest concentration of ACE (40 µM). The intensification of degradation was mainly due to the ability of ultrasound to activate oxidants and produce extra hydroxyl radicals (HO•) or sulfate radicals (SO4•-). Under these conditions, treatment of ACE spiked into seawater, hospital wastewater, and urine was performed. The hospital wastewater matrix inhibited ACE degradation slightly, while the urine components inhibited the pollutant degradation completely. The inhibition was mainly attributed to the competing organic matter in the effluents for the sono-generated radical species. On the contrary, the removal of ACE in seawater was significantly intensified due to "salting out" effects and the production of the strong oxidant HOCl from the reaction of chloride ions with PMS.
Collapse
Affiliation(s)
- Sandra E Estrada-Flórez
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Efraím A Serna-Galvis
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
- Grupo de Catalizadores y Adsorbentes (CATALAD), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Judy Lee
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - Ricardo A Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
4
|
Maliogka A, Koronaiou LA, Evgenidou E, Lambropoulou DA. Advanced oxidation coupled with LC-HRMS: Elucidating transformation products of linezolid, discovering in wastewaters and conducting in silico toxicity assessments. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136872. [PMID: 39721478 DOI: 10.1016/j.jhazmat.2024.136872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
Antibiotics are prevalent in wastewater treatment plants and are subsequently released into aquatic environments, threatening aquatic organisms and compromising drinking water quality. Consequently, investigating their environmental fate and developing efficient removal processes is crucial. The degradation and fate of the antibiotic drug linezolid were investigated, focusing on the formation of transformation products (TPs). Various advanced oxidation processes, such as UV/S2O82-, UV/TiO2, Fe2+/S2O82- and UV/Fe2+/S2O82-, proved effective in eliminating linezolid within minutes. Liquid chromatography coupled to high-resolution mass spectrometry was employed to elucidate the photo-generated TPs and propose tentative transformation pathways. Overall, 28 TPs were identified, with 17 elucidated for the first time herein. The fluorophenyl and morpholine rings of the linezolid molecule were the main sites of attack, leading to two primary transformation routes: defluorination and hydroxylation. The predominant route varied with the treatment applied. In silico toxicity assessment indicated alarming toxicity for two TPs but decreased toxicity for most TPs compared to linezolid, suggesting the detoxification role of the treatments. However, concerning predictions emerged for the carcinogenicity, mutagenicity and biodegradability of linezolid and its TPs. Finally, a suspect screening analysis investigated the presence of TPs in wastewaters, revealing the occurrence of three TPs at notable levels, primarily in effluents.
Collapse
Affiliation(s)
- Angeliki Maliogka
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki 57001, Greece
| | - Lelouda-Athanasia Koronaiou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki 57001, Greece
| | - Eleni Evgenidou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki 57001, Greece
| | - Dimitra A Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki 57001, Greece.
| |
Collapse
|
5
|
Wang Y, Liu Y, Zhang H, Duan X, Ma J, Sun H, Tian W, Wang S. Carbonaceous materials in structural dimensions for advanced oxidation processes. Chem Soc Rev 2025; 54:2436-2482. [PMID: 39895415 DOI: 10.1039/d4cs00338a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Carbonaceous materials have attracted extensive research and application interests in water treatment owing to their advantageous structural and physicochemical properties. Despite the significant interest and ongoing debates on the mechanisms through which carbonaceous materials facilitate advanced oxidation processes (AOPs), a systematic summary of carbon materials across all dimensions (0D-3D nanocarbon to bulk carbon) in various AOP systems remains absent. Addressing this gap, the current review presents a comprehensive analysis of various carbon/oxidant systems, exploring carbon quantum dots (0D), nanodiamonds (0D), carbon nanotubes (1D), graphene derivatives (2D), nanoporous carbon (3D), and biochar (bulk 3D), across different oxidant systems: persulfates (peroxymonosulfate/peroxydisulfate), ozone, hydrogen peroxide, and high-valent metals (Mn(VII)/Fe(VI)). Our discussion is anchored on the identification of active sites and elucidation of catalytic mechanisms, spanning both radical and nonradical pathways. By dissecting catalysis-related factors such as sp2/sp3 C, defects, and surface functional groups that include heteroatoms and oxygen groups in different carbon configurations, this review aims to provide a holistic understanding of the catalytic nature of different dimensional carbonaceous materials in AOPs. Furthermore, we address current challenges and underscore the potential for optimizing and innovating water treatment methodologies through the strategic application of carbon-based catalysts. Finally, prospects for future investigations and the associated bottlenecks are proposed.
Collapse
Affiliation(s)
- Yunpeng Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Ya Liu
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Huayang Zhang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Hongqi Sun
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Wenjie Tian
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
6
|
Luu TVH, Nguyen VC, Thuy Tran TD, Doan VD, Nguyen TL, Dung NX, Dang HP. A novel 3D Fe 2O 3@ZnBi 2O 4 n-p heterojunction with high photocatalytic activity under visible light. NANOSCALE ADVANCES 2025:d4na01039f. [PMID: 40177384 PMCID: PMC11959291 DOI: 10.1039/d4na01039f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/26/2025] [Indexed: 04/05/2025]
Abstract
A novel n-p Fe2O3@ZnBi2O4 (FZB) heterojunction with a unique 3D structure was fabricated in two simple steps to break down MB under visible light. First, the polymer gel combustion technique was employed to fabricate a 3D Fe2O3 framework. Next, a microwave-assisted precipitation approach was used to incorporate 3D ZnBi2O4 flakes onto the framework surface. FZB can effectively collect a broad range of UV-Vis light and sunlight. Surprisingly, the core-shell p-n heterojunction structure makes it easier for photogenerated charges to move and separate. This is because the semiconductor parts are better connected and the electric field is inside the two junctions. UV-Vis-DRS, EIS, PL, and XPS analyses confirmed this phenomenon. As a result, n-p FZB, with a Fe2O3/ZnBi2O4 molar ratio of 2 : 1, showed the highest photocatalytic activity, increasing the reaction rate by 4.2 times compared to Fe2O3 and 2.8 times compared to ZnBi2O4. Exposure to light for 100 min at a concentration of 0.7 g L-1 the FZB catalyst and pH = 9 led to the breakdown of more than 95% of the 50 ppm MB solution. In addition, the photodegradation of MB by n-p FZB increased the reaction rate by 2.15 times by adding hydrogen peroxide (H2O2), which is known as the photo-Fenton reaction. The efficacy showed remarkable photocatalytic activity, which increased the reaction rate by 5.95 times when persulfate was used. Finally, after examination of the energy band structure of the materials and the findings regarding the function of the oxidizing sites in the photocatalytic process, a reaction mechanism was proposed.
Collapse
Affiliation(s)
- Thi Viet Ha Luu
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City No. 12 Nguyen Van Bao, Ward 1, Go Vap District Ho Chi Minh City 700000 Vietnam
| | - Van Cuong Nguyen
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City No. 12 Nguyen Van Bao, Ward 1, Go Vap District Ho Chi Minh City 700000 Vietnam
| | - Thi Dieu Thuy Tran
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City No. 12 Nguyen Van Bao, Ward 1, Go Vap District Ho Chi Minh City 700000 Vietnam
| | - Van Dat Doan
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City No. 12 Nguyen Van Bao, Ward 1, Go Vap District Ho Chi Minh City 700000 Vietnam
| | - Thi Lieu Nguyen
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City No. 12 Nguyen Van Bao, Ward 1, Go Vap District Ho Chi Minh City 700000 Vietnam
| | | | - Huu Phuc Dang
- Faculty of Fundamental Science, Industrial University of Ho Chi Minh City No. 12 Nguyen Van Bao, Ward 1, Go Vap District Ho Chi Minh City 700000 Vietnam
| |
Collapse
|
7
|
Bawazeer S. A potential eco-friendly degradation of methyl orange by water-ball (sodium polyacrylate) stabilized zero valent iron nanoparticles. Heliyon 2025; 11:e41226. [PMID: 39802028 PMCID: PMC11719346 DOI: 10.1016/j.heliyon.2024.e41226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/12/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
This study presents the synthesis and application of water-ball (sodium polyacrylate) stabilized zero-valent iron nanoparticles (wb@Fe0) for the eco-friendly degradation of Methyl Orange (MO). The nanoparticles were prepared using a chemical reduction method using NaBH4. Characterization techniques including Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray Spectroscopy (EDS), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Photoelectron Spectroscopy (XPS), and X-ray Diffraction (XRD) were employed to analyze the morphology, elemental composition, valent state and crystallinity of the nanoparticles. The catalytic performance was evaluated under standard conditions, with a maximum degradation efficiency of 94 % achieved for a 0.05 mM MO solution using 10 mg of the catalyst, 0.1 mM NaBH4, at neutral pH and room temperature within 10 min. Optimal degradation occurred at 40 °C and pH 6. The catalyst demonstrated excellent recyclability, maintaining activity over ten reuse cycles. Kinetic studies revealed that the degradation followed first-order kinetics with an R2 value of 0.8907 and a rate constant of 0.3708. Though with a lower R2 value (0.6884), the second-order kinetics model indicated the highest rate constant of 2.6522. Regression and ANOVA analysis confirmed the accuracy of the reaction protocol. This study highlights the potential of water-ball stabilized zero-valent iron nanoparticles for effective dye pollutant removal and degradation, offering a promising approach for environmental remediation.
Collapse
Affiliation(s)
- Saud Bawazeer
- Department of Pharmaceutical Science, Faculty of Pharmacy, Umm Al-Qura University, Makkah, P.O. Box 751, Saudi Arabia
| |
Collapse
|
8
|
Zhou Y, Zhou S, Yi M, Li Y, Shang J, Cheng X. Enhanced peroxymonosulfate activation for organic decontamination by Ni-doped δ-FeOOH under visible-light assistance. ENVIRONMENTAL RESEARCH 2025; 265:120472. [PMID: 39608430 DOI: 10.1016/j.envres.2024.120472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/02/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
There is an urgent need for efficient and cost-effective methods without secondary pollution to decompose pollutants from contaminated water in the face of severe water pollution caused by the extensive use of synthetic dye in industry. In this work, Ni-doped δ-FeOOH was synthesized using co-precipitation method at room temperature and was applied as the catalyst in a visible-light-assisted peroxymonosulfate system for assessing its catalytic performance in RhB removal. An optimum RhB degradation of 99.5% was achieved after 30 min with the addition of 20 mg of PMS and 60 mg of isomorphic substituted δ-FeOOH at an initial pH value of 7. Through various characterization, degradation experiments and DFT calculation, the enhanced photocatalytic PMS performance of Ni-20 wt% doped δ-FeOOH compared to pure δ-FeOOH can be attributed to higher specific surface area and faster electron transfer, which resulted in the generation of more reactive oxygen species (ROSs), including SO4•-, •OH, O2•- and 1O2, all involved in the abatement of RhB. The possible RhB degradation pathways were inferred based on intermediates detected by liquid chromatograph-mass spectrometer (LC-MS), combined with Fukui indices and the analysis of bond lengths. The toxicity of the intermediates was evaluated using T.E.S.T. software, which proved that the system could effectively reduce the biotoxicity of the parent pollutant RhB.
Collapse
Affiliation(s)
- Yuerong Zhou
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Shengwen Zhou
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Ming Yi
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Yunhe Li
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Jiangwei Shang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Xiuwen Cheng
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
9
|
Kamranifar M, Ghanbari S, Fatehizadeh A, Taheri E, Azizollahi N, Momeni Z, Khiadani M, Ebrahimpour K, Ganachari SV, Aminabhavi TM. Unique effect of bromide ion on intensification of advanced oxidation processes for pollutants removal: A systematic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 354:124136. [PMID: 38734054 DOI: 10.1016/j.envpol.2024.124136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/23/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Advanced oxidation processes (AOPs) have been developed to decompose toxic pollutants to protect the aquatic environment. AOP has been considered an alternative treatment method for wastewater treatment. Bromine is present in natural waters posing toxic effects on human health and hence, its removal from drinking water sources is necessary. Of the many techniques advanced oxidation is covered in this review. This review systematically examines literature published from 1997 to April 2024, sourced from Scopus, PubMed, Science Direct, and Web of Science databases, focusing on the efficacy of AOPs for pollutant removal from aqueous solutions containing bromide ions to investigate the impact of bromide ions on AOPs. Data and information extracted from each article eligible for inclusion in the review include the type of AOP, type of pollutants, and removal efficiency of AOP under the presence and absence of bromide ion. Of the 1784 documents screened, 90 studies met inclusion criteria, providing insights into various AOPs, including UV/chlorine, UV/PS, UV/H2O2, UV/catalyst, and visible light/catalyst processes. The observed impact of bromide ion presence on the efficacy of AOP processes, alongside the AOP method under scrutiny, is contingent upon various factors such as the nature of the target pollutant, catalyst type, and bromide ion concentration. These considerations are crucial in selecting the best method for removing specific pollutants under defined conditions. Challenges were encountered during result analysis included variations in experimental setups, disparities in pollutant types and concentrations, and inconsistencies in reporting AOP performance metrics. Addressing these parameters in research reports will enhance the coherence and utility of subsequent systematic reviews.
Collapse
Affiliation(s)
- Mohammad Kamranifar
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sobhan Ghanbari
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Fatehizadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ensiyeh Taheri
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Nastaran Azizollahi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Momeni
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Khiadani
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
| | - Karim Ebrahimpour
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sharanabasava V Ganachari
- Center for Energy and Environment,School of Advanced Sciences, KLE Technological University, Hubballi-580031, India
| | - Tejraj M Aminabhavi
- Center for Energy and Environment,School of Advanced Sciences, KLE Technological University, Hubballi-580031, India; University Center for Research & Development (UCRD), Chandigarh University, Mohali, Punjab 140 413, India; Korea University, Seoul, South Korea
| |
Collapse
|
10
|
Liu Y, Liu W, Gan X, Shang J, Cheng X. High-performance, stable CoNi LDH@Ni foam composite membrane with innovative peroxymonosulfate activation for 2,4-dichlorophenol destruction. J Environ Sci (China) 2024; 141:235-248. [PMID: 38408824 DOI: 10.1016/j.jes.2023.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 02/28/2024]
Abstract
In this study, the cobalt-nickel layered double hydroxides (CoNi LDH) were synthesized with a variety of Co/Ni mass ratio, as CoxNiy LDHs. In comparison, Co1Ni3 LDH presented the best peroxymonosulfate (PMS) activation efficiency for 2,4-dichlorophenol removal. Meanwhile, CoNi LDH@Nickel foam (CoNi LDH@NF) composite membrane was constructed for enhancing the stability of catalytic performance. Herein, CoNi LDH@NF-PMS system exerted high degradation efficiency of 99.22% within 90 min for 2,4-DCP when [PMS]0 = 0.4 g/L, Co1Ni3 LDH@NF = 2 cm × 2 cm (0.2 g/L), reaction temperature = 298 K. For the surface morphology and structure of the catalyst, it was demonstrated that the CoNi LDH@NF composite membrane possessed abundant cavity structure, good specific surface area and sufficient active sites. Importantly, ·OH, SO4·- and 1O2 played the primary role in the CoNi LDH@NF-PMS system for 2,4-DCP decomposition, which revealed the PMS activation mechanism in CoNi LDH@NF-PMS system. Hence, this study eliminated the stability and adaptability of CoNi LDH@NF composite membrane, proposing a new theoretical basis of PMS heterogeneous catalysts selection.
Collapse
Affiliation(s)
- Yu Liu
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Weibao Liu
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xinrui Gan
- College of Chemistry and Environmental Science, Xinjiang Laboratory of Phase Transitions and Microstructures of Condensed Matter Physics, Yili Normal University, Yining 835000, China
| | - Jiangwei Shang
- College of Chemistry and Environmental Science, Xinjiang Laboratory of Phase Transitions and Microstructures of Condensed Matter Physics, Yili Normal University, Yining 835000, China; Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Xiuwen Cheng
- College of Chemistry and Environmental Science, Xinjiang Laboratory of Phase Transitions and Microstructures of Condensed Matter Physics, Yili Normal University, Yining 835000, China; Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
11
|
Vaz T, Quina MMJ, Martins RC, Gomes J. Olive mill wastewater treatment strategies to obtain quality water for irrigation: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172676. [PMID: 38670378 DOI: 10.1016/j.scitotenv.2024.172676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
The olive mill industry is a relevant sector in the economy of Mediterranean countries, while it involves high consumption of water and the production of effluents with high environmental impact. The efficient treatment of olive mill wastewater (OMW) is of high relevance, particularly for these countries. Climate changes are leading to increasing periods of droughts, and water recovery from polluted streams is essential to ensure the sustainability of this scarce resource. A combination of various technologies involving physical, chemical, and biological processes has been developed for OMW treatment. However, the treatments studied have limitations such as the operation costs, difficulty of industrial scale-up, and the fact that the vast majority do not lead to suitable treated water for discharge/reuse. As such, it is urgent to develop a solution capable of efficiently treating this effluent, overcoming the disadvantages of existing processes to convert OMW from a serious environmental problem into a valuable source of water and nutrients. In this review, several studies based on the OMW treatment are critically discussed, from conventional approaches such as the physical (e.g. centrifugation, filtration, and adsorption) and biological (anaerobic digestion and anaerobic co-digestion) processes, to the most recent technologies such as advanced membrane filtration, advanced oxidation processes (AOPs) and sulfate radical based AOPs (SR-AOPs). Due to the complexity of the effluent, OMW cannot be efficiently treated by a single process, requiring a sequence of technologies before reaching the required characteristics for discharge into water courses or use in crop irrigation. Reviewing the published results in this matter, it seems that the sequence of processes encompassing ozonation, anaerobic digestion, and SR-AOPs could be the ideal combination for this purpose. However, membrane technologies may be necessary in the final stage of treatment so that the effluent meets legal discharge or irrigation limits.
Collapse
Affiliation(s)
- Telma Vaz
- University of Coimbra, CERES, Department of Chemical Engineering, Faculty of Sciences and Technology, Rua Sílvio Lima, Polo II, 3030-790 Coimbra, Portugal
| | - Margarida M J Quina
- University of Coimbra, CERES, Department of Chemical Engineering, Faculty of Sciences and Technology, Rua Sílvio Lima, Polo II, 3030-790 Coimbra, Portugal
| | - Rui C Martins
- University of Coimbra, CERES, Department of Chemical Engineering, Faculty of Sciences and Technology, Rua Sílvio Lima, Polo II, 3030-790 Coimbra, Portugal
| | - João Gomes
- University of Coimbra, CERES, Department of Chemical Engineering, Faculty of Sciences and Technology, Rua Sílvio Lima, Polo II, 3030-790 Coimbra, Portugal..
| |
Collapse
|
12
|
Voigt M, Dluziak JM, Wellen N, Jaeger M. Mechanistic study of the electrochemical oxidation of fluoroquinolones: Ciprofloxacin, danofloxacin, enoxacin, levofloxacin and lomefloxacin. CHEMOSPHERE 2024; 355:141763. [PMID: 38522672 DOI: 10.1016/j.chemosphere.2024.141763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
The fluoroquinolones ciprofloxacin, danofloxacin, enoxacin, levofloxacin and lomefloxacin, occur in water bodies worldwide and therefore pose a threat to the aquatic environment. Advanced purification procedures, such as electrochemical oxidation, may act as a remedy since they contribute to eliminating contaminants and prevent micropollutants from entering open water bodies. By electrochemical treatment in a micro-flow reactor equipped with a boron-doped diamond (BDD) electrode, the fluoroquinolones were efficiently degraded. A total of 15 new products were identified using high-performance high-resolution chromatography coupled with high-resolution multifragmentation mass spectrometry. The ecotoxicity of the emerging transformation products was estimated through in silico quantitative structure activity relationship analysis. Almost all transformation products were predicted less ecotoxic than the initial compounds. The fluoroquinolone degradation followed three major mechanisms depending on the voltage during the electrochemical oxidation. At approximately 1 V, the reactions started with the elimination of molecular hydrogen from the piperazine moiety. At approx. 1.25 V, methyl and methylene groups were eliminated. At 1.5 V, hydroxyl radicals, generated at the BDD electrode, led to substitution at the piperazine ring. This novel finding of the three reactions depending on voltage contributes to the mechanistic understanding of electrochemical oxidation as potential remedy against fluoroquinolones in the aquatic environment.
Collapse
Affiliation(s)
- Melanie Voigt
- Niederrhein University of Applied Sciences, Department of Chemistry and ILOC, Frankenring 20, D-47798, Krefeld, Germany
| | - Jean-Michel Dluziak
- Niederrhein University of Applied Sciences, Department of Chemistry and ILOC, Frankenring 20, D-47798, Krefeld, Germany
| | - Nils Wellen
- Niederrhein University of Applied Sciences, Department of Chemistry and ILOC, Frankenring 20, D-47798, Krefeld, Germany
| | - Martin Jaeger
- Niederrhein University of Applied Sciences, Department of Chemistry and ILOC, Frankenring 20, D-47798, Krefeld, Germany.
| |
Collapse
|
13
|
Bendjeffal H, Mamine H, Boukachabia M, Aloui A, Metidji T, Djebli A, Bouhedja Y. A Box-Behnken design-based chemometric approach to optimize the sono-photodegradation of hydroxychloroquine in water media using the Fe(0)/S 2O 82-/UV system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22453-22470. [PMID: 38407707 DOI: 10.1007/s11356-024-32596-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
The huge utilization of hydroxychloroquine in autoimmune infections led to an abnormal increment in its concentration in wastewater, which can pose a real risk to the environment, necessitating the development of a pretreatment technique. To do this, we are interested in researching how hydroxychloroquine degrades in contaminated water. The main goal of this investigation is to optimize the operating conditions for the sono-photodegradation of hydroxychloroquine in water using an ultrasound-assisted Fe(0)/S 2 O 8 2 - /UV system. To get adequate removal of HCQ, a chemometric method based on the Box-Behnken design was applied to optimize the influence of the empirical parameters selected, including Fe(0) dose,S 2 O 8 2 - concentration, pH, and initial HCQ concentration. The quadratic regression model representing the HCQ removal rate (η(%)) was evolved and validated by ANOVA. The optimal conditions as a result of the above-mentioned trade-off between the four input variables, with η(%) as the dependent output variable, were captured using RSM methodology and the composite desirability function approach. For HCQ full decomposition, the optimal values of the operating factors are as follows:S 2 O 8 2 - dose, 194.309 mg/L; Fe(0) quantity, 198.83 mg/L; pH = 2.017, and HCQ initial dose of 296.406 mg/L. Under these conditions, the HCQ removal rate, achieved after 60 min of reaction, attained 98.95%.
Collapse
Affiliation(s)
- Hacene Bendjeffal
- Laboratory of Physical Chemistry and Biology of Materials, Ecole Normale Superieure d'Enseignement Technologique de Skikda, Azzaba, Algeria.
| | - Hadjer Mamine
- Laboratory of Physical Chemistry and Biology of Materials, Ecole Normale Superieure d'Enseignement Technologique de Skikda, Azzaba, Algeria
| | - Mourad Boukachabia
- Ecocompatible Asymmetric Catalysis Laboratory, Badji Mokhtar-Annaba University, Annaba, Algeria
| | - Amel Aloui
- Laboratory of Physical Chemistry and Biology of Materials, Ecole Normale Superieure d'Enseignement Technologique de Skikda, Azzaba, Algeria
| | - Toufek Metidji
- LTEVI Laboratry, Badji Mokhtar-Annaba University, Annaba, Algeria
| | | | - Yacine Bouhedja
- Ecocompatible Asymmetric Catalysis Laboratory, Badji Mokhtar-Annaba University, Annaba, Algeria
| |
Collapse
|
14
|
Singh A, Majumder A, Saidulu D, Bhattacharya A, Bhatnagar A, Gupta AK. Oxidative treatment of micropollutants present in wastewater: A special emphasis on transformation products, their toxicity, detection, and field-scale investigations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120339. [PMID: 38401495 DOI: 10.1016/j.jenvman.2024.120339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/23/2024] [Accepted: 02/08/2024] [Indexed: 02/26/2024]
Abstract
Micropollutants have become ubiquitous in aqueous environments due to the increased use of pharmaceuticals, personal care products, pesticides, and other compounds. In this review, the removal of micropollutants from aqueous matrices using various advanced oxidation processes (AOPs), such as photocatalysis, electrocatalysis, sulfate radical-based AOPs, ozonation, and Fenton-based processes has been comprehensively discussed. Most of the compounds were successfully degraded with an efficiency of more than 90%, resulting in the formation of transformation products (TPs). In this respect, degradation pathways with multiple mechanisms, including decarboxylation, hydroxylation, and halogenation, have been illustrated. Various techniques for the analysis of micropollutants and their TPs have been discussed. Additionally, the ecotoxicity posed by these TPs was determined using the toxicity estimation software tool (T.E.S.T.). Finally, the performance and cost-effectiveness of the AOPs at the pilot scale have been reviewed. The current review will help in understanding the treatment efficacy of different AOPs, degradation pathways, and ecotoxicity of TPs so formed.
Collapse
Affiliation(s)
- Adarsh Singh
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Abhradeep Majumder
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Duduku Saidulu
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Animesh Bhattacharya
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, Mikkeli FI-50130, Finland
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
15
|
Clemente E, Domingues E, Quinta-Ferreira RM, Leitão A, Martins RC. Solar photo-Fenton and persulphate-based processes for landfill leachate treatment: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169471. [PMID: 38145668 DOI: 10.1016/j.scitotenv.2023.169471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/27/2023]
Abstract
Landfilling is the most usual solid waste management strategy for solid residues disposal. However, it entails several drawbacks such as the generation of landfill leachate that seriously threaten human life and the environment due to their toxicity and carcinogenic character. Among various technologies, solar photo-Fenton and sulphate-based processes have proven to be suitable for the treatment of these polluted streams. This review critically summarises the last three decades of studies in this field. It is found that the solar homogeneous photo-Fenton process should be preferably used as a pre- and post-treatment of biological technologies and as a standalone treatment for young, medium, and mature leachates, respectively. Studies on heterogeneous solar photo-Fenton process are lacking so that this technology may be scaled-up for industrial applications. Sulphate radicals are attractive for removing both COD and ammonia. However, no study has been reported on solar sulphate activation for landfill leachate treatment. This review discusses the main advances and challenges on treating landfill leachate through solar AOPs, it compares solar photo-Fenton and solar persulphate-based treatments, indicates the future research directions and contributes for a better understanding of these technologies towards sustainable treatment of landfill leachate in sunny and not-so-sunny regions.
Collapse
Affiliation(s)
- E Clemente
- University of Coimbra, CIEPQPF - Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, Faculty of Sciences and Technology, Rua Sílvio Lima, Polo II, 3030-790 Coimbra, Portugal; LESRA - Laboratory of Separation, Reaction and Environmental Engineering, Faculty of Engineering, Agostinho Neto University, Av. Ho Chi Min no 201, Luanda, Angola
| | - E Domingues
- University of Coimbra, CIEPQPF - Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, Faculty of Sciences and Technology, Rua Sílvio Lima, Polo II, 3030-790 Coimbra, Portugal
| | - R M Quinta-Ferreira
- University of Coimbra, CIEPQPF - Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, Faculty of Sciences and Technology, Rua Sílvio Lima, Polo II, 3030-790 Coimbra, Portugal
| | - A Leitão
- LESRA - Laboratory of Separation, Reaction and Environmental Engineering, Faculty of Engineering, Agostinho Neto University, Av. Ho Chi Min no 201, Luanda, Angola
| | - R C Martins
- University of Coimbra, CIEPQPF - Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, Faculty of Sciences and Technology, Rua Sílvio Lima, Polo II, 3030-790 Coimbra, Portugal.
| |
Collapse
|
16
|
Zheng K, Xiao L. Fe loading 3D micro-meso-porous carbon sphere derived from natural cellulose of sawdust activating peroxymonosulfate for degradation of enrofloxacin. Int J Biol Macromol 2024; 259:129366. [PMID: 38218278 DOI: 10.1016/j.ijbiomac.2024.129366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/11/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Fe loading 3D micro-meso-porous carbon sphere (Fe@3C-2N) was derived from natural cellulose of sawdust and melamine through sodium alginate and ferric chloride cross-linking followed by carbonization processes, which served as peroxymonosulfate (PMS) activators for enrofloxacin (ENR) degradation. The cellulose was produced by the delignification of sawdust with sodium chlorite. The delignification of sawdust and the addition of melamine increased the porosity and electron transport capacity of Fe@3C-2N. When the dosages of Fe@3C-2N and PMS were 0.60 g L-1 and 0.20 g L-1 respectively, the degradation rate of ENR (20 mg L-1) reached 92.17 % within 80 min, suggesting the satisfactory activation performance of PMS. The good structural stability of Fe@3C-2N makes it suitable for use as packing in continuous flow reactors for wastewater treatment. Quenching experiments and electron paramagnetic resonance (EPR) suggested that SO4•- and 1O2 were the dominant reactive oxygen species (ROSs) in Fe@3C-2N/PMS system. X-ray photoelectron spectroscopy (XPS) revealed that Fe3C, pyrrolic N and graphitic N were the potential active sites.
Collapse
Affiliation(s)
- Kewang Zheng
- School of Resource and Environmental Science, Key Laboratory for Biomass-Resource Chemistry and Environmental Biotechnology of Hubei Province, Wuhan University, Wuhan 430072, China; School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan, China
| | - Ling Xiao
- School of Resource and Environmental Science, Key Laboratory for Biomass-Resource Chemistry and Environmental Biotechnology of Hubei Province, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
17
|
Wang X, Li Y, Qin J, Pan P, Shao T, Long X, Jiang D. Degradation of Ciprofloxacin in Water by Magnetic-Graphene-Oxide-Activated Peroxymonosulfate. TOXICS 2023; 11:1016. [PMID: 38133416 PMCID: PMC10747872 DOI: 10.3390/toxics11121016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Antibiotics are extensively applied in the pharmaceutical industry, while posing a tremendous hazard to the ecosystem and human health. In this study, the degradation performance of ciprofloxacin (CIP), one of the typical contaminants of antibiotics, in an oxidation system of peroxymonosulfate (PMS) activated by magnetic graphene oxide (MGO) was investigated. The effects of the MGO dosage, PMS concentration and pH on the degradation of CIP were evaluated, and under the optimal treatment conditions, the CIP degradation rate was up to 96.5% with a TOC removal rate of 63.4%. A kinetic model of pseudo-secondary adsorption indicated that it involves an adsorption process with progressively intensified chemical reactions. Furthermore, the MGO exhibited excellent recyclability and stability, maintaining strong catalytic activity after three regenerative cycles, with a CIP removal rate of 87.0%. EPR and LC-MS experiments suggested that •OH and SO4-• generated in the MGO/PMS system served as the main reactants contributing to the decomposition of the CIP, whereby the CIP molecule was effectively destroyed to produce other organic intermediates. Results of this study indicate that organic pollutants in the aqueous environment can be effectively removed in the MGO/PMS system, in which MGO has excellent catalytic activity and stabilization for being recycled to avoid secondary pollution, with definite research value and application prospects in the field of water treatment.
Collapse
Affiliation(s)
- Xiaoping Wang
- Chongqing Key Laboratory of Catalysis and Environmental New Material, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China; (Y.L.); (J.Q.); (T.S.); (X.L.); (D.J.)
| | - Yulan Li
- Chongqing Key Laboratory of Catalysis and Environmental New Material, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China; (Y.L.); (J.Q.); (T.S.); (X.L.); (D.J.)
| | - Jiayuan Qin
- Chongqing Key Laboratory of Catalysis and Environmental New Material, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China; (Y.L.); (J.Q.); (T.S.); (X.L.); (D.J.)
| | - Ping Pan
- Chongqing Ecological Environment Monitoring Center, No. 252, Qishan Road, Ranjiaba, Yubei District, Chongqing 401147, China;
| | - Tianqing Shao
- Chongqing Key Laboratory of Catalysis and Environmental New Material, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China; (Y.L.); (J.Q.); (T.S.); (X.L.); (D.J.)
| | - Xue Long
- Chongqing Key Laboratory of Catalysis and Environmental New Material, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China; (Y.L.); (J.Q.); (T.S.); (X.L.); (D.J.)
| | - Debin Jiang
- Chongqing Key Laboratory of Catalysis and Environmental New Material, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China; (Y.L.); (J.Q.); (T.S.); (X.L.); (D.J.)
| |
Collapse
|
18
|
Piccirillo G, De Sousa RB, Dias LD, Calvete MJF. Degradation of Pesticides Using Semiconducting and Tetrapyrrolic Macrocyclic Photocatalysts-A Concise Review. Molecules 2023; 28:7677. [PMID: 38005399 PMCID: PMC10675728 DOI: 10.3390/molecules28227677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Exposure to pesticides is inevitable in modern times, and their environmental presence is strongly associated to the development of various malignancies. This challenge has prompted an increased interest in finding more sustainable ways of degrading pesticides. Advanced oxidation processes in particular appear as highly advantageous, due to their ability of selectively removing chemical entities form wastewaters. This review provides a concise introduction to the mechanisms of photochemical advanced oxidation processes with an objective perspective, followed by a succinct literature review on the photodegradation of pesticides utilizing metal oxide-based semiconductors as photosensitizing catalysts. The selection of reports discussed here is based on relevance and impact, which are recognized globally, ensuring rigorous scrutiny. Finally, this literature review explores the use of tetrapyrrolic macrocyclic photosensitizers in pesticide photodegradation, analyzing their benefits and limitations and providing insights into future directions.
Collapse
Affiliation(s)
- Giusi Piccirillo
- Coimbra Chemistry Centre-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal;
| | - Rodrigo B. De Sousa
- Laboratório de Novos Materiais, Universidade Evangélica de Goiás, Anápolis 75083-515, GO, Brazil;
| | - Lucas D. Dias
- Laboratório de Novos Materiais, Universidade Evangélica de Goiás, Anápolis 75083-515, GO, Brazil;
| | - Mário J. F. Calvete
- Coimbra Chemistry Centre-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal;
| |
Collapse
|
19
|
Yang H, He D, Liu C, Zhou X, Qu J. Magnetic photocatalytic antimicrobial materials for water disinfection. Sep Purif Technol 2023; 325:124697. [DOI: 10.1016/j.seppur.2023.124697] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
20
|
Takahashi M, Nakatsuka R, Kutsuna S, Shirai Y, Sugawa S. Mineralization of Poly(vinyl alcohol) by Ozone Microbubbles under a Wide Range of pH Conditions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15215-15221. [PMID: 37851539 DOI: 10.1021/acs.langmuir.3c01838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Poly(vinyl alcohol) (PVA) is a well-known recalcitrant pollutant that threatens ecological systems and human health. In this study, ozone-microbubble treatment was evaluated as a physicochemical method to mineralize PVA in solution for wastewater treatment. Microbubbles are very small bubbles (<50 μm in diameter) and shrink in water because of the rapid dissolution of the interior gas. Ozone microbubbles were generated by a hybrid microbubble generator in PVA solutions with pH conditions of 2, 7, and 10. Ordinary ozone bubbling was also performed as control tests. The change in the total-organic-carbon content was measured to evaluate the efficiency of the system for wastewater treatment. Ordinary ozone bubbling was not able to mineralize aqueous PVA solutions under nonalkaline conditions, and approximately 30% of the total organic carbon remained at pH 2 and 7. Conversely, ozone microbubbles effectively mineralized PVA in aqueous solution to almost 0% in total organic carbon regardless of the pH condition. Effective mineralization of PVA, a recalcitrant organic chemical, demonstrates the potential of ozone-microbubble systems for physicochemical wastewater treatment.
Collapse
Affiliation(s)
- Masayoshi Takahashi
- New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Ryo Nakatsuka
- Department of Mechanical Science and Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino 275-0016, Japan
| | - Shuzo Kutsuna
- Environment Management Research Institute, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba 305-8569, Japan
| | - Yasuyuki Shirai
- New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Shigetoshi Sugawa
- New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
21
|
Wilsey MK, Taseska T, Meng Z, Yu W, Müller AM. Advanced electrocatalytic redox processes for environmental remediation of halogenated organic water pollutants. Chem Commun (Camb) 2023; 59:11895-11922. [PMID: 37740361 DOI: 10.1039/d3cc03176d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Halogenated organic compounds are widespread, and decades of heavy use have resulted in global bioaccumulation and contamination of the environment, including water sources. Here, we introduce the most common halogenated organic water pollutants, their classification by type of halogen (fluorine, chlorine, or bromine), important policies and regulations, main applications, and environmental and human health risks. Remediation techniques are outlined with particular emphasis on carbon-halogen bond strengths. Aqueous advanced redox processes are discussed, highlighting mechanistic details, including electrochemical oxidations and reductions of the water-oxygen system, and thermodynamic potentials, protonation states, and lifetimes of radicals and reactive oxygen species in aqueous electrolytes at different pH conditions. The state of the art of aqueous advanced redox processes for brominated, chlorinated, and fluorinated organic compounds is presented, along with reported mechanisms for aqueous destruction of select PFAS (per- and polyfluoroalkyl substances). Future research directions for aqueous electrocatalytic destruction of organohalogens are identified, emphasizing the crucial need for developing a quantitative mechanistic understanding of degradation pathways, the improvement of analytical detection methods for organohalogens and transient species during advanced redox processes, and the development of new catalysts and processes that are globally scalable.
Collapse
Affiliation(s)
- Madeleine K Wilsey
- Materials Science Program, University of Rochester, Rochester, New York 14627, USA.
| | - Teona Taseska
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, USA
| | - Ziyi Meng
- Materials Science Program, University of Rochester, Rochester, New York 14627, USA.
| | - Wanqing Yu
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, USA
| | - Astrid M Müller
- Materials Science Program, University of Rochester, Rochester, New York 14627, USA.
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, USA
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
22
|
Zhao H, Ren Y, Liu C, Li L, Li N, Lai B, Li J. In-depth insights into Fe(III)-doped g-C 3N 4 activated peracetic acid: Intrinsic reactive species, catalytic mechanism and environmental application. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132117. [PMID: 37531769 DOI: 10.1016/j.jhazmat.2023.132117] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023]
Abstract
In this study, we demonstrate that Fe(III)-doped g-C3N4 can efficiently activate peracetic acid (PAA) to degrade electron-rich pollutants (e.g., sulfamethoxazole, SMX) over a wide pH range (3-7). Almost ∼100% high-valent iron-oxo species (Fe(V)) was generated and acted as the dominant reactive species responsible for the micropollutants oxidation based on the analysis result of quenching experiments, 18O isotope-labeling examination and methyl phenyl sulfoxide (PMSO) probe method. Electrochemical testing (e.g., amperometric i-t and linear sweep voltammetry (LSV)) and density functional theory (DFT) calculations illustrated that the main active site Fe atom and PAA underwent electron transfer to form Fe(V) for attacking SMX. Linear free energy relationship (LFER) between the pseudo-first-order rates of different substituted phenols (SPs) and the Hammett constant σ+ depicted the electrophilic oxidation properties. The selective oxidation of Fe(V) endows the established system remarkable anti-interference capacity against water matrices, while the Fe(V) lead to the formation of iodinated disinfection by-products (I-DBPs) in the presence of I-. Fe(III)-doped g-C3N4/PAA system showed excellent degradation efficiency of aquaculture antibiotics. This study enriches the knowledge and research of high-valent iron-oxo species and provides a novel perspective for the activation of PAA via heterogeneous iron-based catalysts and practical environmental applications.
Collapse
Affiliation(s)
- Hailing Zhao
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Yi Ren
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Chao Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Longguo Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Naiwen Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Bo Lai
- Department of Environmental Science and Engineering, School of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Jun Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
23
|
Chu C, Yan Y, Ma J, Jin S, Spinney R, Dionysiou DD, Zhang H, Xiao R. Implementation of laser flash photolysis for radical-induced reactions and environmental implications. WATER RESEARCH 2023; 244:120526. [PMID: 37672949 DOI: 10.1016/j.watres.2023.120526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/06/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023]
Abstract
Confronted with the imperative crisis of water quality deterioration, the pursuit of state-of-the-art decontamination technologies for a sustainable future never stops. Fitting into the framework of suitability, advanced oxidation processes have been demonstrated as powerful technologies to produce highly reactive radicals for the degradation of toxic and refractory contaminants. Therefore, investigations on their radical-induced degradation have been the subject of scientistic and engineering interests for decades. To better understand the transient nature of these radical species and rapid degradation processes, laser flash photolysis (LFP) has been considered as a viable and powerful technique due to its high temporal resolution and rapid response. Although a number of studies exploited LFP for one (or one class of) specific reaction(s), reactions of many possible contaminants with radicals are largely unknown. Therefore, there is a pressing need to critically review its implementation for kinetic quantification and mechanism elucidation. Within this context, we introduce the development process and milestones of LFP with emphasis on compositions and operation principles. We then compare the specificity and suitability of different spectral modes for monitoring radicals and their decay kinetics. Radicals with high environmental relevance, namely hydroxyl radical, sulfate radical, and reactive chlorine species, are selected, and we discuss their generation, detection, and implications within the frame of LFP. Finally, we highlight remaining challenges and future perspectives. This review aims to advance our understandings of the implementation of LFP in radical-induced transient processes, and yield new insights for extrapolating this pump-probe technique to make significant strides in environmental implications.
Collapse
Affiliation(s)
- Chu Chu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Yiqi Yan
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Junye Ma
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Shengye Jin
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Richard Spinney
- Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, Ohio, 45221, USA
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, Ohio, 45221, USA; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Haijun Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Ruiyang Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China.
| |
Collapse
|
24
|
Kumari M, Pulimi M. Sulfate Radical-Based Degradation of Organic Pollutants: A Review on Application of Metal-Organic Frameworks as Catalysts. ACS OMEGA 2023; 8:34262-34280. [PMID: 37779959 PMCID: PMC10536895 DOI: 10.1021/acsomega.3c02977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/15/2023] [Indexed: 10/03/2023]
Abstract
The degradation of organic pollutants present in domestic and industrial effluents is a matter of concern because of their high persistence and ecotoxicity. Recently, advanced oxidation processes (AOPs) are being emphasized for organic pollutant removal from effluents, as they have shown higher degradation efficiencies when compared to conventional activated sludge processes. Sulfate radical-based methods are some of the AOPs, mainly carried out using persulfate (PS) and peroxymonosulfate (PMS), which have gained attention due to the ease of sulfate radical generation and the effective degradation of organic molecules. PMS is gaining more popularity because of its high reactivity and ability to generate excess sulfate radicals. PMS has been the major focus; therefore, its mechanism has been explained, and limitations have been elaborated. The involvement of metal-organic frameworks for PMS/PS activation applied to organic pollutant removal and recent advances in the application of biochar and hydrogel-assisted metal-organic frameworks have been discussed.
Collapse
Affiliation(s)
- Madhu Kumari
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Mrudula Pulimi
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
25
|
Javanroudi SR, Fattahi N, sharafi K, Arfaeinia H, Moradi M. Chalcopyrite as an oxidants activator for organic pollutant remediation: A review of mechanisms, parameters, and future perspectives. Heliyon 2023; 9:e19992. [PMID: 37809581 PMCID: PMC10559683 DOI: 10.1016/j.heliyon.2023.e19992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Advanced oxidation processes (AOPs) based on oxidants have attracted attention for the degradation of organic pollutants. The combination of chalcopyrite with oxidants such as persulfate, peroxide, percarbonate, and others shows promise as a system due to its ability to activate through various pathways, leading to the formation of numerous radical and non-radical species. In this review, the generation of sulfate radical (SR) and hydroxyl radical (HR) in AOPs were summarized. The significance of chalcopyrite in various approaches including Fenton, photo-Fenton, and photo/Fenton-like methods, as well as its involvement in electrochemical Fenton-based processes was discussed. The stability and reusability, toxicity, catalyst mechanism, and effects of operational parameters (pH, catalyst dosage, and oxidant concentration) are evaluated in detail. The review also discusses the role of Fe2+/3+, Cu1+/2+, S2- and Sn2- present in CuFeS2 in the generation of free radicals. Finally, guidelines for future research are presented in terms of future perspectives.
Collapse
Affiliation(s)
- Setareh Rostami- Javanroudi
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nazir Fattahi
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kiomars sharafi
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Environmental Health Engineering, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Arfaeinia
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Masoud Moradi
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
26
|
Song T, Gao Y, Li G, Wei H, Chen L, Jiang Y. The performance of a visible light-responsive material Fe 3O 4/Bi 2WO 6 cooperating with peroxymonosulfate to degrade bisphenol A. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:96782-96794. [PMID: 37581737 DOI: 10.1007/s11356-023-29312-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023]
Abstract
In this study, the visible light-responsive catalysts Fe3O4/Bi2WO6 were prepared and characterized by BET, SEM, EDS, XRD, XPS, and MPMS. The performances of five catalysts (0.05 Fe/Bi, 0.13 Fe/Bi, 0.17 Fe/Bi, 0.21 Fe/Bi, and 0.30 Fe/Bi) for photocatalytic degradation of bisphenol A under visible light (300-W Xe lamp) were compared. Among five catalysts, 0.17 Fe/Bi (the molar ratio of Fe3O4 to Bi2WO6 was 0.17) acquired the highest BPA photocatalytic removal of 90.2% at 120 min. With the synergistic effect between Vis/0.17 Fe/Bi and peroxymonosulfate (PMS), the BPA removal obtained was as high as 100% at 90 min ([BPA] = 100 mg/L, [0.17 Fe/Bi] = 1.25 g/L, [PMS] = 2.0 g/L, and T = 25 °C). After five times reused of 0.17 Fe/Bi, its removal of BPA dropped by 13.4% in presence of PMS, which demonstrated 0.17 Fe/Bi possessed relatively stable performance. High BPA degradation was attributed to the attacking effects of various oxide species (SO4•-, •OH, h+, O2•-) generated in the Fe3O4/Bi2WO6/PMS system under the cooperation of photocatalyst Fe3O4/Bi2WO6 and oxidizing agent PMS.
Collapse
Affiliation(s)
- Tiehong Song
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China
| | - Yanjiao Gao
- College of Civil Engineering and Architecture, Liaoning University of Technology, Jinzhou, 121001, China.
| | - Guanqiao Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China
| | - Hongyan Wei
- Urban Construction College, Changchun University of Architecture and Civil Engineering, Changchun, 130600, China
| | - Lizhu Chen
- Urban Construction College, Changchun University of Architecture and Civil Engineering, Changchun, 130600, China
| | - Yi Jiang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China
| |
Collapse
|
27
|
Yan Y, Wei Z, Duan X, Long M, Spinney R, Dionysiou DD, Xiao R, Alvarez PJJ. Merits and Limitations of Radical vs. Nonradical Pathways in Persulfate-Based Advanced Oxidation Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12153-12179. [PMID: 37535865 DOI: 10.1021/acs.est.3c05153] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Urbanization and industrialization have exerted significant adverse effects on water quality, resulting in a growing need for reliable and eco-friendly treatment technologies. Persulfate (PS)-based advanced oxidation processes (AOPs) are emerging as viable technologies to treat challenging industrial wastewaters or remediate groundwater impacted by hazardous wastes. While the generated reactive species can degrade a variety of priority organic contaminants through radical and nonradical pathways, there is a lack of systematic and in-depth comparison of these pathways for practical implementation in different treatment scenarios. Our comparative analysis of reaction rate constants for radical vs. nonradical species indicates that radical-based AOPs may achieve high removal efficiency of organic contaminants with relatively short contact time. Nonradical AOPs feature advantages with minimal water matrix interference for complex wastewater treatments. Nonradical species (e.g., singlet oxygen, high-valent metals, and surface activated PS) preferentially react with contaminants bearing electron-donating groups, allowing enhancement of degradation efficiency of known target contaminants. For byproduct formation, analytical limitations and computational chemistry applications are also considered. Finally, we propose a holistically estimated electrical energy per order of reaction (EE/O) parameter and show significantly higher energy requirements for the nonradical pathways. Overall, these critical comparisons help prioritize basic research on PS-based AOPs and inform the merits and limitations of system-specific applications.
Collapse
Affiliation(s)
- Yiqi Yan
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Zongsu Wei
- Centre for Water Technology (WATEC) & Department of Engineering, Aarhus University, Hangøvej 2, DK-8200 Aarhus N, Denmark
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide SA5005, Australia
| | - Mingce Long
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Richard Spinney
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Ruiyang Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, 77005, United States
| |
Collapse
|
28
|
Zhou Q, Bian Z, Yang D, Fu L. Stability of Drinking Water Distribution Systems and Control of Disinfection By-Products. TOXICS 2023; 11:606. [PMID: 37505570 PMCID: PMC10385944 DOI: 10.3390/toxics11070606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
The stability of drinking water distribution systems and the management of disinfection by-products are critical to ensuring public health safety. In this paper, the interrelationships between corrosion products in the network, microbes, and drinking water quality are elucidated. This review also discusses the mechanisms through which corrosive by-products from the piping network influence the decay of disinfectants and the formation of harmful disinfection by-products. Factors such as copper corrosion by-products, CuO, Cu2O, and Cu2+ play a significant role in accelerating disinfectant decay and catalyzing the production of by-products. Biofilms on pipe walls react with residual chlorine, leading to the formation of disinfection by-products (DBPs) that also amplify health risks. Finally, this paper finally highlights the potential of peroxymonosulfate (PMS), an industrial oxidant, as a disinfectant that can reduce DBP formation, while acknowledging the risks associated with its corrosive nature. Overall, the impact of the corrosive by-products of pipe scale and microbial communities on water quality in pipe networks is discussed, and recommendations for removing DBPs are presented.
Collapse
Affiliation(s)
- Qingwei Zhou
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Zhengfu Bian
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Dejun Yang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
29
|
Zhao B, Sun H, Jiang P, Rizwan M, Zhou M, Zhou X. Study on the treatment of sulfite wastewater by Desulfovibrio. Bioprocess Biosyst Eng 2023:10.1007/s00449-023-02895-0. [PMID: 37418179 DOI: 10.1007/s00449-023-02895-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/09/2023] [Indexed: 07/08/2023]
Abstract
In the wet flue gas desulfurization (WFGD) process, SO2 is adsorbed by alkaline liquor to produce alkaline wastewater containing sulfate and sulfite. Although the traditional chemical treatment method can achieve a high removal rate, it consumes a large number of chemicals and yields a large number of low-value by-products. The biological treatment process is a greener and more environmentally friendly treatment method. The current work studies microbial flue gas desulfurization directly using sulfite as the electron acceptor in the reduction process. Desulfovibrio were obtained by isolation and purification, and their growth conditions in sulfite wastewater and desulfurization process conditions were investigated by intermittent and continuous experiments. The results of intermittent experiments indicated that the optimal growth conditions of Desulfovibrio were a temperature of 38 °C, a pH value of 8.0, a COD/SO32- of 2 and that the growth of bacteria would be inhibited at a pH above 9.0 or below 7.3. Furthermore, Desulfovibrio could grow in simulated wastewater with a high SO32- concentration of 8000 mg/L. The results of continuous experiments showed that the removal of sulfite and the recovery of elemental sulfur was realized by a micro-oxygen depletion process, and the removal rate of sulfite of 99%, the yield of elemental sulfur is more than 80% and can reach 90% under the condition of low influent concentration. The bacteria grew well at a temperature of 40 °C and a pH value of the influent water of 7.5. To ensure the treatment effect, the hydraulic retention time (HRT) should be more than doubled for each 1000 mg/L increase in the influent sulfite concentration under the same reflux ratio. When the influent sulfite concentration was 1000 mg/L, 2000 mg/L, 3000 mg/L, and 4000 mg/L, the corresponding HRT was 3.01 h, 6.94 h, 17.4 h, and 31.9 h, respectively. The dominant species in the reactor was Desulfovibrio bacteria at 63.9% abundance. This study demonstrated the feasibility of using sulfite as an electron acceptor for microbial desulfurization, which can optimize the initial process and provide the possibility of treating high-concentration sulfite wastewater.
Collapse
Affiliation(s)
- Baofu Zhao
- International Joint Research Center of Green Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hui Sun
- International Joint Research Center of Green Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Peng Jiang
- International Joint Research Center of Green Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Muhammad Rizwan
- International Joint Research Center of Green Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Mengke Zhou
- International Joint Research Center of Green Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaolong Zhou
- International Joint Research Center of Green Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
30
|
Mojiri A, Zhou JL, Ozaki N, KarimiDermani B, Razmi E, Kasmuri N. Occurrence of per- and polyfluoroalkyl substances in aquatic environments and their removal by advanced oxidation processes. CHEMOSPHERE 2023; 330:138666. [PMID: 37068615 DOI: 10.1016/j.chemosphere.2023.138666] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/15/2023] [Accepted: 04/10/2023] [Indexed: 05/14/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS), one of the main categories of emerging contaminants, are a family of fluorinated organic compounds of anthropogenic origin. PFAS can endanger the environment and human health because of their wide application in industries, long-term persistence, unique properties, and bioaccumulation potential. This study sought to explain the accumulation of different PFAS in water bodies. In aquatic environments, PFAS concentrations range extensively from <0.03 (groundwater; Melbourne, Australia) to 51,000 ng/L (Groundwater, Sweden). Additionally, bioaccumulation of PFAS in fish and water biota has been stated to range from 0.2 (Burbot, Lake Vättern, Sweden) to 13,900 ng/g (Bluegill samples, U.S.). Recently, studies have focused on PFAS removal from aqueous solutions; one promising technique is advanced oxidation processes (AOPs), including microwaves, ultrasound, ozonation, photocatalysis, UV, electrochemical oxidation, the Fenton process, and hydrogen peroxide-based and sulfate radical-based systems. The removal efficiency of PFAS ranges from 3% (for MW) to 100% for UV/sulfate radical as a hybrid reactor. Therefore, a hybrid reactor can be used to efficiently degrade and remove PFAS. Developing novel, efficient, cost-effective, and sustainable AOPs for PFAS degradation in water treatment systems is a critical area of research.
Collapse
Affiliation(s)
- Amin Mojiri
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Hiroshima, Japan.
| | - John L Zhou
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Noriatsu Ozaki
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Hiroshima, Japan
| | - Bahareh KarimiDermani
- Department of Geological Sciences, Hydrogeology, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Elham Razmi
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Norhafezah Kasmuri
- School of Civil Engineering, College of Engineering, Universiti Teknologi MARA (UiTM), Shah Alam, 40450, Selangor, Malaysia
| |
Collapse
|
31
|
Méndez-Novelo RI, Cervantes-Cocom GA, San-Pedro L, Zetina-Moguel C, Quintal-Franco C, Giácoman-Vallejos G. Regeneration of granular activated carbon clogged in the treatment of leachates. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53833-53846. [PMID: 36864336 DOI: 10.1007/s11356-023-25724-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 01/31/2023] [Indexed: 06/19/2023]
Abstract
Landfill leachates are highly contaminated liquids and complex to treat. Two of the processes which are promising for the treatment are the advanced oxidation and adsorption methods. With the combination of the Fenton and adsorption methods, practically all the organic load of leachates can be removed; however, this combination of processes is limited due to the soon clogging of adsorbent material, which leads to high operation costs. In the present work, the results of the regeneration of clogged activated carbon are shown after the application of the Fenton/adsorption process in leachates. This research consisted of four stages: sampling and leachate characterization, clogging of the carbon through the Fenton/adsorption process, carbon regeneration through the oxidative Fenton process, and lastly, evaluation of regenerated carbon adsorption through jar and column tests. In the experiments, HCl 3 M was used, and different concentration of hydrogen peroxide (0.15 M, 0.2 M, 0.25 M) were tested at different times (16 h and 30 h). The activated carbon regeneration through the Fenton process and the optimal peroxide dosage was 0.15 M for 16 h. The regeneration efficiency was obtained from comparing the adsorption efficiency between regenerated and virgin carbon, reaching 98.27% and can be applied up to 4 times without losing regeneration efficiency. These results prove that it is possible to restore the clogged activated carbon adsorption capacity during the Fenton/adsorption process.
Collapse
Affiliation(s)
- Roger Iván Méndez-Novelo
- Faculty of Engineering, Autonomous University of Yucatan, Av. Industrias No Contaminantes Por Anillo Periférico Norte S / N, Catastral Plan 12685, Mérida, Yucatán, México.
| | - Grisel Anahí Cervantes-Cocom
- Tecnológico Nacional de México - Instituto Tecnológico Superior de Valladolid, Carretera Valladolid-Tizimín Km. 3.5. C.P. 97780, Valladolid, Yucatán, México
| | - Liliana San-Pedro
- Faculty of Engineering, Autonomous University of Yucatan, Av. Industrias No Contaminantes Por Anillo Periférico Norte S / N, Catastral Plan 12685, Mérida, Yucatán, México
| | - Carlos Zetina-Moguel
- Faculty of Engineering, Autonomous University of Yucatan, Av. Industrias No Contaminantes Por Anillo Periférico Norte S / N, Catastral Plan 12685, Mérida, Yucatán, México
| | - Carlos Quintal-Franco
- Faculty of Engineering, Autonomous University of Yucatan, Av. Industrias No Contaminantes Por Anillo Periférico Norte S / N, Catastral Plan 12685, Mérida, Yucatán, México
| | - Germán Giácoman-Vallejos
- Faculty of Engineering, Autonomous University of Yucatan, Av. Industrias No Contaminantes Por Anillo Periférico Norte S / N, Catastral Plan 12685, Mérida, Yucatán, México
| |
Collapse
|
32
|
Liu Z, Ren X, Duan X, Sarmah AK, Zhao X. Remediation of environmentally persistent organic pollutants (POPs) by persulfates oxidation system (PS): A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160818. [PMID: 36502984 DOI: 10.1016/j.scitotenv.2022.160818] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/17/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Over the past few years, persistent organic pollutants (POPs) exhibiting high ecotoxicity have been widely detected in the environment. Persulfate-oxidation hybrid system is one of the most widely used novel advanced oxidation techniques and is based on the persulfate generation of SO4-∙ and ∙OH from persulfate to degrade POPs. The overarching aim of this work is to provide a critical review of the variety of methods of peroxide activation (e.g., light activated persulfate, heat-activated persulfate, ultrasound-activated persulfate, electrochemically-activated persulfate, base-activated persulfate, transition metal activated persulfate, as well as Carbon based material activated persulfate). Specifically, through this article we make an attempt to provide the important characteristics and uses of main activated PS methods, as well as the prevailing mechanisms of activated PS to degrade organic pollutants in water. Finally, the advantages and disadvantages of each activation method are analyzed. This work clearly illustrates the benefits of different persulfate activation technologies, and explores persulfate activation in terms of Sustainable Development Goals, technical feasibility, toxicity assessment, and economics to facilitate the large-scale application of persulfate technologies. It also discusses how to choose the most suitable activation method to degrade different types of POPs, filling the research gap in this area and providing better guidance for future research and engineering applications of persulfates.
Collapse
Affiliation(s)
- Zhibo Liu
- College of Environmental Science and Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping 136000, China
| | - Xin Ren
- College of Environmental Science and Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping 136000, China; Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping 136000, China
| | - Xiaoyue Duan
- College of Environmental Science and Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping 136000, China
| | - Ajit K Sarmah
- The Department of Civil & Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Xuesong Zhao
- College of Environmental Science and Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping 136000, China; Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping 136000, China.
| |
Collapse
|
33
|
Badiger SM, Nidheesh PV. Applications of biochar in sulfate radical-based advanced oxidation processes for the removal of pharmaceuticals and personal care products. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:1329-1348. [PMID: 37001152 DOI: 10.2166/wst.2023.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Recently, biochar (BC) has been increasingly used as a catalyst for the degradation of 'emerging pollutants' (EPs). Pharmaceuticals and personal care products (PPCPs), which come under 'EPs', can be harmful to the aquatic ecosystem despite being present in very low concentrations (ng/L-μg/L). Advanced oxidation processes (AOPs), which produce sulfate radical (SR-AOPs), show a great potential to degrade PPCPs effectively from wastewater. It is mainly due to the higher stability, long half-lives and better non-selectivity of SO4• - compared with AOPs with •OH generation. Furthermore, research focus is now given on AOPs coupled with BC-supported catalyst to enhance the degradation of PPCPs because of quicker generation of radicals (•OH, SO4•-) by the activation of persulfate (PS) and peroxymonosulfate (PMS). This article sheds light on the catalytic ability of BC after its physical and chemical modifications such as acid/alkali treatment and metal doping. The role of persistent free radicals (PFRs) in the BC for effective removal of PPCPs has been elaborated. Its potential applications in synthetic as well as real wastewater have also been discussed.
Collapse
Affiliation(s)
- Sourabh M Badiger
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India E-mail: ; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - P V Nidheesh
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India E-mail: ; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
34
|
Modeling the electrosynthesis of H2O2: Understanding the role of predatory species. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
35
|
Bayode A, Folorunso MT, Helmreich B, Omorogie MO. Biomass-Tuned Reduced Graphene Oxide@Zn/Cu: Benign Materials for the Cleanup of Selected Nonsteroidal Anti-inflammatory Drugs in Water. ACS OMEGA 2023; 8:7956-7967. [PMID: 36872960 PMCID: PMC9979318 DOI: 10.1021/acsomega.2c07769] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
The persistent increase in the amount of nonsteroidal anti-inflammatory drugs such as ibuprofen (IBP) and diclofenac (DCF) in water bodies is alarming, thereby calling for a need to be addressed. To address this challenge, a bimetallic (copper and zinc) plantain-based adsorbent (CZPP) and reduced graphene oxide modified form (CZPPrgo) was prepared by facile synthesis for the removal of ibuprofen (IBP) and diclofenac (DCF) in water. Both the CZPP and CZPPrgo were characterized by different techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and pHpzc analysis. FTIR and XRD confirmed the successful synthesis of the CZPP and CZPPrgo. The adsorption of the contaminants was carried out in a batch system, and several operational variables were optimized. The adsorption is affected by the initial concentration of the pollutants (5-30 mg·L-1), the adsorbent dose (0.05-0.20 g), and pH (2.0-12.0). The CZPPrgo has the best performance with maximum adsorption capacities of 148 and 146 mg·g-1 for removing IBP and DCF from water, respectively. The experimental data were fitted into different kinetic and isotherm models; the removal of IBP and DCF follows the pseudo-second order, which can be best explained by the Freundlich isotherm model. The reuse efficiency was above 80% even after four adsorption cycles. This shows that the CZPPrgo is a promising adsorbent for removing IBP and DCF in water.
Collapse
Affiliation(s)
- Ajibola
A. Bayode
- Department
of Chemical Sciences, Faculty of Natural Sciences, Redeemer’s University, P.M.B. 230, 232101 Ede, Nigeria
- Laboratório
de Química Analítica Ambiental e Ecotoxicologia (LaQuAAE),
Departamento de Química e Física Molecular, Instituto
de Química de Sao Carlos, Universidade
de Sao Paulo, Avenida
Trabalhador Sãocarlense 400, 13566-590 São Carlos, SP, Brazil
- Innovative
Materials and Processes for Advanced Environmental Clean Technologies
(IMPACT) Research Group Laboratory, Department of Chemical Sciences, University of Padova, 35122 Padua, Italy
| | - Mercy T. Folorunso
- Department
of Chemical Sciences, Faculty of Natural Sciences, Redeemer’s University, P.M.B. 230, 232101 Ede, Nigeria
| | - Brigitte Helmreich
- Chair
of Urban Water Systems Engineering, Technical
University of Munich (TUM), Am Coulombwall 3, 85748 Garching, Germany
| | - Martins O. Omorogie
- Department
of Chemical Sciences, Faculty of Natural Sciences, Redeemer’s University, P.M.B. 230, 232101 Ede, Nigeria
- Chair
of Urban Water Systems Engineering, Technical
University of Munich (TUM), Am Coulombwall 3, 85748 Garching, Germany
| |
Collapse
|
36
|
Jeong Y, Gong G, Lee HJ, Seong J, Hong SW, Lee C. Transformation of microplastics by oxidative water and wastewater treatment processes: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130313. [PMID: 36372022 DOI: 10.1016/j.jhazmat.2022.130313] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) are contaminants of emerging concern that accumulate in various environments, where they pose threats to both the ecosystem and public health. Since MPs have been detected in drinking water resources and wastewater effluents, more efficient treatment is needed at wastewater treatment plants (WWTPs) and drinking water treatment plants (DWTPs). This review discusses the potential of biological, photochemical, Fenton (-like) systems, ozonation, and other oxidation processes in the treatment of MPs in terms of their indicators of oxidation such as mass loss and surface oxidation. The oxidation processes were further analyzed in terms of limitations and environmental implications. Most previous studies examining MPs degradation using conventional treatments-such as UV disinfection, ozonation, and chlorination-employed significantly higher doses than the common doses applied in DWTPs and WWTPs. Owing to such dose gaps, the oxidative transformation of MPs observed in many previous studies are not likely to occur under practical conditions. Some novel oxidation processes showed promising MPs treatment efficiencies, while many of them have not yet been applied on a larger scale due to high costs and the lack of extensive basic research. Health and environmental impacts related to the discharge of oxidized MPs in effluents should be considered carefully in different aspects: the role as vectors of external pollutants, release of organic compounds (including organic byproducts from oxidation) and fragmentation into smaller particles as MPs circulate in the ecosystem as well as the possibility of bioaccumulation. Future research should also focus on ways to incorporate developed oxidation processes in DWTPs and WWTPs to mitigate MPs contamination.
Collapse
Affiliation(s)
- Yeonseo Jeong
- Department of Chemical Engineering and Materials Science, University of Minnesota, 21 Washington Ave. SE, Minneapolis, MN 55455-0132, United States
| | - Gyeongtaek Gong
- Clean Energy Research Center, Division of Energy and Environment Technology, KIST-School, University of Science and Technology, Korea Institute of Science and Technology, 5, Hwarang-ro, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hye-Jin Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), and Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jihye Seong
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), and Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seok Won Hong
- Center for Water Cycle Research, Division of Energy and Environment Technology, KIST-School, University of Science and Technology, Korea Institute of Science and Technology, 5, Hwarang-ro, Seongbuk-gu, Seoul 02792, Republic of Korea.
| | - Changha Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), and Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
37
|
Venâncio JPF, Ribeirinho-Soares S, Lopes LC, Madeira LM, Nunes OC, Rodrigues CSD. Disinfection of treated urban effluents for reuse by combination of coagulation/flocculation and Fenton processes. ENVIRONMENTAL RESEARCH 2023; 218:115028. [PMID: 36495956 DOI: 10.1016/j.envres.2022.115028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
In this study, a combination of coagulation/flocculation and Fenton processes was studied as tertiary treatment in order to generate treated water susceptible to reuse. The combination of both processes has never been applied in disinfection of real urban wastewater. The best removals of turbidity and enterobacteria were achieved when applying a coagulant (FeCl3) dosage of 120 mg/L and the natural pH of the effluent (7.14). The following Fenton reaction presented the maximal enterobacteria inactivation after 120 min at 25 °C, when using hydrogen peroxide and added iron concentrations of 100 mg/L and 7 mg/L, respectively. The abundance of antibiotic resistant (amoxicillin and sulfamethoxazole) enterobacteria and total enterobacteria, enterococci, and heterotrophs, and antibiotic resistance genes - ARG - (sul1, blaTEM and qnrS) was evaluated before and after each step of the treatment. Values below 10 CFU/100 mL were achieved for total and resistant cultivable enterobacteria immediately after treatment and after storage for 72 h, therefore meeting the strictest limit imposed for E. coli. Physico-chemical parameters also met the established limits for water reuse. Despite harbouring a rich and diverse bacterial community, the final stored disinfected wastewater contained high relative abundance of potentially hazardous bacteria. Such results point out the need of a deep microbiological characterization of treated wastewater to evaluate the risk of its reuse in irrigation.
Collapse
Affiliation(s)
- João P F Venâncio
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Sara Ribeirinho-Soares
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Luísa C Lopes
- SIMDOURO - Saneamento do Grande Porto, S.A., Rua Alto das Chaquedas, s/n, 4400-356, Vila Nova de Gaia, Portugal
| | - Luis M Madeira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Olga C Nunes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Carmen S D Rodrigues
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| |
Collapse
|
38
|
Ahmad A, Priyadarshini M, Raj R, Das S, Ghangrekar MM. Appraising efficacy of existing and advanced technologies for the remediation of beta-blockers from wastewater: A review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25427-25451. [PMID: 35094282 DOI: 10.1007/s11356-021-18287-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/19/2021] [Indexed: 02/08/2023]
Abstract
The discharge of emerging pollutants, such as beta-blockers (BB), has been recognized as one of the major threats to the environment due to the ecotoxicity associated with these emerging pollutants. The BB are prescribed to treat high blood pressure and cardiovascular diseases; however, even at lower concentration, these pollutants can pose eco-toxic impacts towards aquatic organisms. Additionally, owing to their recalcitrant nature, BB are not effectively removed through conventional technologies, such as activated sludge process, trickling filter and moving bed bioreactor; thus, it is essential to understand the degradation mechanism of BB in established as well as embryonic technologies, like adsorption, electro-oxidation, Fenton process, ultraviolet-based advance oxidation process, ozonation, membrane systems, wetlands and algal treatment. In this regard, this review articulates the recalcitrant nature of BB and their associated removal technologies. Moreover, the major advantages and limitations of these BB removal technologies along with the recent advancements with regard to the application of innovative materials and strategies have also been elucidated. Therefore, the present review intends to aid the researchers in improving the BB removal efficiency of these technologies, thus alleviating the problem of the release of BB into the environment.
Collapse
Affiliation(s)
- Azhan Ahmad
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Monali Priyadarshini
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Rishabh Raj
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Sovik Das
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Makarand Madhao Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India.
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
39
|
Milanović Ž, Dimić D, Klein E, Biela M, Lukeš V, Žižić M, Avdović E, Bešlo D, Vojinović R, Dimitrić Marković J, Marković Z. Degradation Mechanisms of 4,7-Dihydroxycoumarin Derivatives in Advanced Oxidation Processes: Experimental and Kinetic DFT Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2046. [PMID: 36767412 PMCID: PMC9916318 DOI: 10.3390/ijerph20032046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Coumarins represent a broad class of compounds with pronounced pharmacological properties and therapeutic potential. The pursuit of the commercialization of these compounds requires the establishment of controlled and highly efficient degradation processes, such as advanced oxidation processes (AOPs). Application of this methodology necessitates a comprehensive understanding of the degradation mechanisms of these compounds. For this reason, possible reaction routes between HO• and recently synthesized aminophenol 4,7-dihydroxycoumarin derivatives, as model systems, were examined using electron paramagnetic resonance (EPR) spectroscopy and a quantum mechanical approach (a QM-ORSA methodology) based on density functional theory (DFT). The EPR results indicated that all compounds had significantly reduced amounts of HO• radicals present in the reaction system under physiological conditions. The kinetic DFT study showed that all investigated compounds reacted with HO• via HAT/PCET and SPLET mechanisms. The estimated overall rate constants (koverall) correlated with the EPR results satisfactorily. Unlike HO• radicals, the newly formed radicals did not show (or showed negligible) activity towards biomolecule models representing biological targets. Inactivation of the formed radical species through the synergistic action of O2/NOx or the subsequent reaction with HO• was thermodynamically favored. The ecotoxicity assessment of the starting compounds and oxidation products, formed in multistage reactions with O2/NOx and HO•, indicated that the formed products showed lower acute and chronic toxicity effects on aquatic organisms than the starting compounds, which is a prerequisite for the application of AOPs procedures in the degradation of compounds.
Collapse
Affiliation(s)
- Žiko Milanović
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Dušan Dimić
- Faculty of Physical Chemistry, University of Belgrade, 12−16 Studentski Trg, 11000 Belgrade, Serbia
| | - Erik Klein
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia
| | - Monika Biela
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia
| | - Vladimír Lukeš
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia
| | - Milan Žižić
- Life Sciences Department, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Edina Avdović
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Drago Bešlo
- Department of Agroecology and Environmental Protection, Faculty of Agrobiotechnical Sciences Osijek, University Josip Juraj Strossmayer Osijek, Vladimir Prelog 1, 31000 Osijek, Croatia
| | - Radiša Vojinović
- Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevc, Serbia
| | | | - Zoran Marković
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
- Department of Chemical-Technological Sciences, State University of Novi Pazar, Vuka Karadžića bb, 36300 Novi Pazar, Serbia
| |
Collapse
|
40
|
Türk OK, Adalar G, Yazici Guvenc S, Can-Güven E, Varank G, Demir A. Photodegradation of oxytetracycline by UV-assisted persulfate and percarbonate processes: kinetics, influencing factors, anion effect, and radical species. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:869-883. [PMID: 35904739 DOI: 10.1007/s11356-022-22229-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
In this study, the performance of ultraviolet (UV)-assisted persulfate (PS) and percarbonate (PC) oxidation processes in oxytetracycline (OTC) removal was investigated. UVC lamps were used for the photolysis process and the effect of operating parameters (initial pH, oxidant dose, initial OTC concentration, UV intensity) on OTC removal efficiency was determined. Control experiments were carried out at pH 5.5 and 32 W UV power for 60 min by adding a 4 mM oxidant with 10 mg/L initial OTC concentration. The OTC removal efficiency obtained as a result of only photolysis was 17.3% and the removal efficiency obtained by PS and PC oxidation alone was 18.3% and 12.7%, respectively. The OTC removal efficiencies increased in the combined processes and reached 58.1% and 69.9% for the UV-PS and UV-PC processes, respectively. The reaction rates of the processes were ranked as UV-PC > UV-PS > PS > UV > PC. In the UV-PS and UV-PC processes, the highest removal efficiencies were achieved at alkaline pH values. The OTC removal efficiency was increased with the increase in oxidant dose; however, the efficiency decreased after a certain dose due to the scavenging effect. The removal efficiency also increased as the initial OTC concentration decreased. The UV intensity had a positive effect on OTC removal efficiency. The effect of the water matrix on OTC removal efficiency was investigated while the dominant radical types were determined in UV-assisted processes. The EE/O values for the UV-PS and UV-PC processes were calculated as 211 kWh/m3 and 153 kWh/m3, respectively for 60 min of reaction time. Although similar removal efficiencies were obtained with both UV-assisted processes, the UV-PC process steps forward in terms of being a novel, environmentally friendly, more economic, and promising technology for OTC removal.
Collapse
Affiliation(s)
- Oruç Kaan Türk
- Faculty of Civil Engineering, Department of Environmental Engineering, Yildiz Technical University, Esenler, Instanbul, 34220, Turkey
| | - Gizem Adalar
- Faculty of Civil Engineering, Department of Environmental Engineering, Yildiz Technical University, Esenler, Instanbul, 34220, Turkey
| | - Senem Yazici Guvenc
- Faculty of Civil Engineering, Department of Environmental Engineering, Yildiz Technical University, Esenler, Instanbul, 34220, Turkey.
| | - Emine Can-Güven
- Faculty of Civil Engineering, Department of Environmental Engineering, Yildiz Technical University, Esenler, Instanbul, 34220, Turkey
| | - Gamze Varank
- Faculty of Civil Engineering, Department of Environmental Engineering, Yildiz Technical University, Esenler, Instanbul, 34220, Turkey
| | - Ahmet Demir
- Faculty of Civil Engineering, Department of Environmental Engineering, Yildiz Technical University, Esenler, Instanbul, 34220, Turkey
| |
Collapse
|
41
|
UV and Zero-Valent Iron (ZVI) Activated Continuous Flow Persulfate Oxidation of Municipal Wastewater. Catalysts 2022. [DOI: 10.3390/catal13010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Currently, sulfate-radical-based advanced oxidation processes are promising candidates to become viable post-treatment processes for wastewater purification. In this work, a continuous flow UV light/persulfate (PS)/zero-valent iron (ZVI) system has been applied for wastewater treatment for the first time. The influence of certain photo-Fenton-like process parameters, such as space time, PS concentration, and PS to ZVI molar ratio, on the removal of total organic carbon (TOC), was examined using the Box–Behnken design. First, synthetic municipal wastewater was used for the experiments, and the polynomial regression model was constructed utilizing the real data by using the response surface methodology (RSM). The adequacy of the RSM model was assessed by analysis of variance, which showed that the model was reliable and could be applied to improve the process parameters for TOC removal. Moreover, both synthetic and real municipal wastewater were spiked with carbamazepine (CBZ), which is commonly prescribed as an antiepileptic drug, to investigate its fate in the UV/PS/ZVI system. With a space time of 60 min, PS concentration of 60 mM, and PS to ZVI molar ratio of 15, it was possible to remove 71% of TOC and completely remove CBZ from the synthetic municipal wastewater, whereas a 60% TOC removal and complete removal of CBZ were achieved at a space time of 50 min, PS concentration of 50 mM, and PS/ZVI molar ratio of 15 for the real municipal wastewater. This difference in TOC removal could possibly be linked to the complex matrix of the real wastewater and the presence of radical scavenging agents.
Collapse
|
42
|
Saravanan A, Deivayanai VC, Kumar PS, Rangasamy G, Hemavathy RV, Harshana T, Gayathri N, Alagumalai K. A detailed review on advanced oxidation process in treatment of wastewater: Mechanism, challenges and future outlook. CHEMOSPHERE 2022; 308:136524. [PMID: 36165838 DOI: 10.1016/j.chemosphere.2022.136524] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The presence of several contaminants in waterbodies raises global pollution and creates major risks to mankind, wildlife, as well as other living organisms. Development of an effective, feasible, cost-effective and eco-friendly approach for treating wastewater that is discharged from various industries is important for bringing down the deposition of contaminants into environment. Advanced oxidation process is an efficient technique for treating wastewater owing to its advantages such as high oxidation efficacy and does not produce any secondary pollutants. Advanced oxidation process can be performed through various methods such as ozone, Fenton, electrochemical, photolysis, sonolysis, etc. These methods have been widely utilized for degradation of emerging pollutants that cannot be destroyed using conventional approaches. This review focuses on wastewater treatment using advanced oxidation process. A brief discussion on mechanism involved is provided. In addition, various types of advanced oxidation process and their mechanism are explained in detail. Challenges faced during wastewater treatment process using oxidation, electrochemical, Fenton, photocatalysis and sonolysis are discussed elaborately. Advanced oxidation process can be viewed as potential approach for treating wastewater with certain modifications and solving challenges.
Collapse
Affiliation(s)
- A Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - V C Deivayanai
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - R V Hemavathy
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - T Harshana
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - N Gayathri
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | | |
Collapse
|
43
|
Sun Z, Zhang X, Yang Z, Ma X, Mei R, Zhang X, Tan Y, Liang J, Li C. Efficient peroxymonosulfate activation of immobilized Fe-N-C catalyst on ceramsite for the continuous flow removal of phenol. CHEMOSPHERE 2022; 307:136149. [PMID: 36029862 DOI: 10.1016/j.chemosphere.2022.136149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Nowadays, developing environmentally friendly catalysts with both low cost and high efficiency was still a challenge in actual organic wastewater purification. Herein, the Fe-N-C catalyst was successfully immobilized on solid waste derived ceramsite for efficient degradation of phenol under continuous flow conditions by activating peroxymonosulfate (PMS). After the introduction of ceramsite, the microstructure of Fe-N-C catalyst was changed from granular structure to worm-like structure, promoting the dispersion of the nanoscale catalyst and providing more reactive sites. Therefore, the phenol removal rate and mineralization rate of the obtained 0.5FNNC within 30 min were up to 96.79% and 71.79%, respectively. In addition, the degradation rate of the optimal composite (0.5FNNC)/PMS system was about 4.06 times higher than that of bare Fe-N-C/PMS system. Intriguingly, the Fe ion leaching from 0.5FNNC during the degradation reaction was significantly lower than bare Fe-N-C owing to the strong catalyst-support chemical bonding. Based on electron paramagnetic resonance, quenching experiments, X-ray photoelectron spectroscopy analysis and electrochemical analysis, it was indicated that the non-radical processes (1O2 and high valent iron-oxo species) should be responsible for the phenol degradation. Meanwhile, the possible phenol degradation pathways were proposed, and the intermediates were evaluated for ecotoxicity by ECOSAR. Finally, a preliminary economic analysis of this process was carried out. Overall, this work would provide a new strategy for the construction of ceramsite based multi-pore composite catalysts and the large-scale application of persulfate oxidation technology in organic wastewater treatment.
Collapse
Affiliation(s)
- Zhiming Sun
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, PR China
| | - Xinchao Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, PR China
| | - Zhongqing Yang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, PR China; Gansu Construction Investment (Holdings) Group Corporation Mining Co. Ltd, Lanzhou, 730000, PR China
| | - Xin Ma
- Water Conservancy Science Research Institute of Inner Mongolia, Hohhot, 010018, China
| | - Ruifeng Mei
- Water Conservancy Science Research Institute of Inner Mongolia, Hohhot, 010018, China
| | - Xiangwei Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, PR China
| | - Ye Tan
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, PR China
| | - Jialin Liang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, PR China
| | - Chunquan Li
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, PR China.
| |
Collapse
|
44
|
Lin CC, Ke JY. Degradation of ofloxacin in water using heat/S2O82− process. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Senthilkumar A, Ganeshbabu M, Karuppiah Lazarus J, Sevugarathinam S, John J, Ponnusamy SK, Velayudhaperumal Chellam P, Sillanpää M. Thermal and Radiation Based Catalytic Activation of Persulfate Systems in the Removal of Micropollutants: A Review. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Abiramasundari Senthilkumar
- Centre for Research, Department of Biotechnology, Kamaraj College of Engineering & Technology, Vellakulam 625701, India
| | - Madhubala Ganeshbabu
- Centre for Research, Department of Biotechnology, Kamaraj College of Engineering & Technology, Vellakulam 625701, India
| | - Jesintha Karuppiah Lazarus
- Centre for Research, Department of Biotechnology, Kamaraj College of Engineering & Technology, Vellakulam 625701, India
| | - Shalini Sevugarathinam
- Centre for Research, Department of Biotechnology, Kamaraj College of Engineering & Technology, Vellakulam 625701, India
| | - Juliana John
- Department of Civil Engineering, National Institute of Technology Tiruchirappalli, Tiruchirappalli 620015, India
| | - Senthil Kumar Ponnusamy
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India
- Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India
| | | | - Mika Sillanpää
- Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, 8000 Aarhus, Denmark
| |
Collapse
|
46
|
Samzadeh A, Dehghani M, Baghapour MA, Azhdarpoor A, Derakhshan Z, Cvetnić M, Bolanča T, Giannakis S, Cao Y. Comparative photo-oxidative degradation of etodolac, febuxostat and imatinib mesylate by UV-C/H 2O 2 and UV-C/S 2O 82- processes: Modeling, treatment optimization and biodegradability enhancement. ENVIRONMENTAL RESEARCH 2022; 212:113385. [PMID: 35569533 DOI: 10.1016/j.envres.2022.113385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
The pharmaceutical contamination in aquatic environment has arisen increasing concern due to its potentially chronic toxicity. In recent years, HO° and SO4°- based advanced oxidation processes (AOPs) have been widely applied in water and wastewater treatments due to their highly efficiency on contaminant removal. Here, the response surface modeling (RSM) was used to investigate the degradation of three typical pharmaceuticals (i.e., etodolac (ETD), febuxostat (FBU) and imatinib mesylate (IMT)) by UV/H2O2 and UV/S2O82- processes. Based on the multiple regression analysis on full factorial design matrix and calculated reaction rate constants, the RSM was built. The experimental rate constants under optimal conditions were quite close to those obtained from the model, implying the good fit of the RSM. In addition, the RSM results indicated that UV/S2O82- process was less sensitive to pH in comparison to the UV/H2O2 process on target contaminant removal. Finally, it showed that UV/S2O82- process was superior to the UV/H2O2 process to on the enhancement of target contaminant biodegradability.
Collapse
Affiliation(s)
- Amin Samzadeh
- Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mansooreh Dehghani
- Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran; Research Center for Health Sciences, Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Ali Baghapour
- Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abooalfazl Azhdarpoor
- Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Derakhshan
- Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran; Research Center for Health Sciences, Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Matija Cvetnić
- University of Zagreb, Faculty of Chemical Engineering and Technology, Marulićev Trg 19, 10000, Zagreb, Croatia
| | - Tomislav Bolanča
- University of Zagreb, Faculty of Chemical Engineering and Technology, Marulićev Trg 19, 10000, Zagreb, Croatia; University North, Trg Dr. Žarka Dolinara 1, Koprivnica, 48000, Croatia
| | - Stefanos Giannakis
- Universidad Politécnica de Madrid, E.T.S. Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Unidad docente Ingeniería Sanitaria, c/ Profesor Aranguren, s/n, ES-28040, Madrid, Spain
| | - Ying Cao
- Universidad Politécnica de Madrid, E.T.S. Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Unidad docente Ingeniería Sanitaria, c/ Profesor Aranguren, s/n, ES-28040, Madrid, Spain; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
47
|
Guo X, Ehindero T, Lau C, Zhao R. Impact of glycol-based solvents on indoor air quality-Artificial fog and exposure pathways of formaldehyde and various carbonyls. INDOOR AIR 2022; 32:e13100. [PMID: 36168228 DOI: 10.1111/ina.13100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/20/2022] [Accepted: 08/02/2022] [Indexed: 06/16/2023]
Abstract
Artificial fog is commonly employed in the entertainment industry and indoor household celebrations. The fog is generated from glycol-based solvents, which can also be found in e-cigarettes and personal care products. Although potential health impacts of glycol inhalation are frequently cited by studies of e-cigarette smoking, the dynamics and the chemical composition of glycol-based aerosols have never been studied systematically. The objective of this work is to investigate the impact of glycol-based aerosol on indoor air quality. Specifically, we targeted artificial fogs generated with common glycols, including propylene glycol (PG) and triethylene glycol (TEG). With the aid of a novel aerosol collecting and monitoring instrument setup, we obtained time-resolved aerosol profiles and their chemical compositions in an experimental room. Artificial fog has given rise to a significant amount of ultra-fine particulate matter, demonstrating its negative impact on indoor air quality. Additionally, we found a high concentration (9.75 mM) of formaldehyde and other carbonyls in fog machine fluids stored for months. These compounds are introduced to the indoor air upon artificial fog application. We propose that carbonyls have accumulated from the oxidative decomposition of glycols, initiated by OH radicals and singlet oxygens (1 O2 ) and likely sustained by autooxidation. Oxidation of glycols by indoor oxidants has never been reported previously. Such chemical processes can represent an unrecognized source of toxic carbonyl compounds which is also applicable to other glycol-based solvents.
Collapse
Affiliation(s)
- Xinyang Guo
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Toluwatise Ehindero
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Chester Lau
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ran Zhao
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
48
|
Zhao J, Chen T, Hou C, Huang B, Du J, Liu N, Zhou X, Zhang Y. Efficient Activation of Peroxymonosulfate by Biochar-Loaded Zero-Valent Copper for Enrofloxacin Degradation: Singlet Oxygen-Dominated Oxidation Process. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2842. [PMID: 36014706 PMCID: PMC9415348 DOI: 10.3390/nano12162842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The removal of contaminants of emerging concern (CECs) has become a hot research topic in the field of environmental engineering in recent years. In this work, a simple pyrolysis method was designed to prepare a high-performance biochar-loaded zero-valent copper (CuC) material for the catalytic degradation of antibiotics ENR by PMS. The results showed that 10 mg/L of ENR was completely removed within 30 min at an initial pH of 3, CuC 0.3 g/L, and PMS 2 mmol/L. Further studies confirmed that the reactive oxygen species (ROS) involved in ENR degradation are ·OH, SO4-·, 1O2, and O2-. Among them, 1O2 played a major role in degradation, whereas O2-· played a key role in the indirect generation of 1O2. On the one hand, CuC adsorbed and activated PMS to generate ·OH, SO4-· and O2-·. O2-· was unstable and reacted rapidly with H2O and ·OH to generate large amounts of 1O2. On the other hand, both the self-decomposition of PMS and direct activation of PMS by C=O on biochar also generated 1O2. Five byproducts were generated during degradation and eventually mineralized to CO2, H2O, NO3-, and F-. This study provides a facile strategy and new insights into the biochar-loaded zero-valent transition-metal-catalyzed PMS degradation of CECs.
Collapse
Affiliation(s)
- Jiang Zhao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Tianyin Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Cheng Hou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Baorong Huang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jiawen Du
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Nengqian Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
49
|
Priyadarshini M, Das I, Ghangrekar MM, Blaney L. Advanced oxidation processes: Performance, advantages, and scale-up of emerging technologies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115295. [PMID: 35597211 DOI: 10.1016/j.jenvman.2022.115295] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Advanced oxidation processes (AOPs) are promising technologies for partial or complete mineralization of contaminants of emerging concern by highly reactive hydroxyl, hydroperoxyl, superoxide, and sulphate radicals. Detailed investigations and reviews have been reported for conventional AOP systems that have been installed in full-scale wastewater treatment plants. However, recent efforts have focused on the peroxymonosulphate, persulphate, catalytic ozonation, ultrasonication and hydrodynamic cavitation, gamma radiation, electrochemical oxidation, modified Fenton, and plasma-assisted AOPs. This critical review presents the detailed mechanisms of emerging AOP technologies, their performance for treatment of contaminants of emerging concern, the relative advantages and disadvantages of each technology, and the remaining challenges to scale-up and implementation. Among the evaluated technologies, the modified electrochemical oxidation, gamma radiation, and plasma-assisted systems demonstrated the greatest potential for successful and sustainable implementation in wastewater treatment due to their environmental safety, compatibility, and efficient transformation of contaminants of emerging concern by a variety of reactive species. The other emerging AOP systems were also promising, but additional scale-up trials and a deeper understanding of their reaction kinetics in complex wastewater matrices are necessary to determine the technical and economic feasibility of full-scale processes.
Collapse
Affiliation(s)
- Monali Priyadarshini
- School of Environmental Science and Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Indrasis Das
- Environmental Engineering Department, CSIR-Central Leather Research Institute, Adyar, Chennai, Tamil Nadu, 600020, India; Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| | - Makarand M Ghangrekar
- School of Environmental Science and Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India; Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Lee Blaney
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.
| |
Collapse
|
50
|
Lee J, Singh BK, Hafeez MA, Oh K, Um W. Comparative study of PMS oxidation with Fenton oxidation as an advanced oxidation process for Co-EDTA decomplexation. CHEMOSPHERE 2022; 300:134494. [PMID: 35390411 DOI: 10.1016/j.chemosphere.2022.134494] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
In nuclear industry, Co-EDTA complex is generated due to the decontamination activities of nuclear power plants (NPPs). This complex is extremely refractory to the convention methods and can escalate the mobility of Co radionuclide in the environment. Due to its hazardous impact on human and environment, the effective treatments of Co-EDTA complexes are highly recommended. In this study, for the first time, we applied both hydroxyl (OH) and sulfate radical (SO4-) based advanced oxidation processes (AOPs) namely Fenton and peroxymonosulfate (PMS) reactions for the Co-EDTA decomplexation. Both reactions exhibited higher Co-EDTA decomplexation at pH = 3, however, the PMS based reaction was found to be superior, which showed highest decomplexation efficiency (without pH adjustment) over Fenton reaction (pH = 1-13). Moreover, PMS based system was found to be more suitable than Fenton reaction, because PMS showed best Co-EDTA decomplexation efficiency without any additional catalyst dosages at the shorter reaction time. XRD data confirmed the presence of both CoO and Co(OH)2 in the precipitates after treatment. The electron spin resonance spectroscopy (ESR) analysis identified OH and SO4- in Fenton and PMS system, respectively. From this study, we believe that PMS based reaction is a superior alternative of Fenton reaction for the Co-EDTA decomplexation.
Collapse
Affiliation(s)
- Juhyeok Lee
- Division of Advanced Nuclear Engineering (DANE), Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-GU, Pohang, 37673, Republic of Korea
| | - Bhupendra Kumar Singh
- Division of Advanced Nuclear Engineering (DANE), Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-GU, Pohang, 37673, Republic of Korea; Nuclear Environmental Technology Institute (NETI), Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 790-784, Republic of Korea
| | - Muhammad Aamir Hafeez
- Division of Advanced Nuclear Engineering (DANE), Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-GU, Pohang, 37673, Republic of Korea
| | - Kyeongseok Oh
- Department of Chemical and Biological Engineering, Inha Technical College, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Wooyong Um
- Division of Advanced Nuclear Engineering (DANE), Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-GU, Pohang, 37673, Republic of Korea; Division of Environmental Science and Engineering (DESE), Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-Gu, Pohang, 37673, Republic of Korea; Nuclear Environmental Technology Institute (NETI), Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 790-784, Republic of Korea.
| |
Collapse
|