1
|
Mbisana M, Keroletswe N, Nareetsile F, Mogopodi D, Chibua I. Nanocellulose composites: synthesis, properties, and applications to wastewater treatment. CELLULOSE 2024; 31:10651-10678. [DOI: 10.1007/s10570-024-06268-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/31/2024] [Indexed: 01/06/2025]
Abstract
AbstractThe growing worldwide environmental and water pollution challenges require the use of renewable biomass-based materials to purify water systems. The remarkable qualities of nanocellulose (NC) and its eco-friendliness make it a desirable material for this purpose. Hence, many investigations have been conducted on the optimization of NC-based materials for water purification. This review presents the first examination of the progress made in creating emerging NC composites using molecularly imprinted polymers (MIPs), metal organic frameworks (MOFs), and aluminosilicates. MIPs, MOFs, and aluminosilicates endow NC composites with stability, multifunctionality, and extended reusability. The applications of these composites to wastewater treatment, such as the removal of toxic heavy metals, dyes, pharmaceuticals, and microorganisms are discussed. Finally, the economic viability, challenges, and future perspectives of these emerging NC composites and their applications are discussed. The research gaps demonstrated in this review will enable the exploration of new areas of study on functionalised NC composites, leading to enhanced industrial applications. Moreover, the utilisation of NC composites with suitably modified components results in multifunctional adsorbents that have great potential for effectively eliminating many contaminants simultaneously.
Collapse
|
2
|
Yu J, Jing W, Liu E, Du S, Cai H, Du H, Wang J. Effect of Polydopamine/Sodium Dodecyl Sulfate Modified Halloysite on the Microstructure and Permeability of a Polyamide Forward Osmosis Membrane. MEMBRANES 2023; 13:638. [PMID: 37505003 PMCID: PMC10384307 DOI: 10.3390/membranes13070638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/25/2023] [Indexed: 07/29/2023]
Abstract
Mine water cannot be directly consumed by trapped people when a mine collapses, so it is difficult for people to carry out emergency rescues to ensure their safety. Therefore, a water bag made of a forward osmosis (FO) membrane has been designed that can efficiently filter coal mine water to meet the urgent needs of emergency rescue. Before interfacial polymerization (IP), sodium-dodecyl-sulfate-modified halloysite (SDS-HNT) was added to an MPD aqueous solution to prepare an SDS-HNT polyamide active layer, and then the prepared membrane was placed into a polydopamine (PDA) solution formed by the self-polymerization of dopamine and a PDA/SDS-HNT composite film was prepared. The results showed that the original ridge-valley structure of the polyamide membrane was transformed to a rod-, circular-, and blade-like structure by the addition of SDS-HNTs. Subsequently, a dense PDA nanoparticle layer was formed on the modified membrane. The polyamide/polysulfone forward osmosis membrane modified by co-doping of PDA and SDS-HNTs displayed both the best water flux and rejection rate, confirming the synergistic effect of compound modification. Therefore, the high-performance permeability of the polyamide membrane modified by SDS-HNTs and PDA provides great convenience for the emergency filtration of coal mine water, and also has potential applications in wastewater treatment and seawater desalination.
Collapse
Affiliation(s)
- Jie Yu
- School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Weiqi Jing
- School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Eryong Liu
- School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Shuangming Du
- School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Hui Cai
- School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Huiling Du
- School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Jinlei Wang
- School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| |
Collapse
|
3
|
de Almeida R, Porto RF, Quintaes BR, Bila DM, Lavagnolo MC, Campos JC. A review on membrane concentrate management from landfill leachate treatment plants: The relevance of resource recovery to close the leachate treatment loop. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2023; 41:264-284. [PMID: 35924944 PMCID: PMC9972246 DOI: 10.1177/0734242x221116212] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/25/2022] [Indexed: 05/19/2023]
Abstract
Membrane filtration processes have been used to treat landfill leachate. On the other hand, closing the leachate treatment loop and finding a final destination for landfill leachate membrane concentrate (LLMC) - residual stream of membrane systems - is challenging for landfill operators. The re-introduction of LLMC into the landfill is typical; however, this approach is critical as concentrate pollutants may accumulate in the leachate treatment facility. From that, leachate concentrate management based on resource recovery rather than conventional treatment and disposal is recommended. This work comprehensively reviews the state-of-the-art of current research on LLMC management from leachate treatment plants towards a resource recovery approach. A general recovery train based on the main LLMC characteristics for implementing the best recovery scheme is presented in this context. LLMCs could be handled by producing clean water and add-value materials. This paper offers critical insights into LLMC management and highlights future research trends.
Collapse
Affiliation(s)
- Ronei de Almeida
- School of Chemistry, Inorganic
Processes Department, Universidade Federal do Rio de Janeiro, Rio de Janeiro,
Brazil
- Department of Civil, Environmental and
Architectural Engineering, University of Padova, Padova, Italy
- Ronei de Almeida, School of Chemistry,
Inorganic Processes Department, Universidade Federal do Rio de Janeiro, 149
Athos da Silveira Ramos Avenue, laboratory I-124, Rio de Janeiro, RJ 21941-909,
Brazil.
| | - Raphael Ferreira Porto
- School of Chemistry, Inorganic
Processes Department, Universidade Federal do Rio de Janeiro, Rio de Janeiro,
Brazil
| | | | - Daniele Maia Bila
- Department of Sanitary and Environment
Engineering, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Cristina Lavagnolo
- Department of Civil, Environmental and
Architectural Engineering, University of Padova, Padova, Italy
| | - Juacyara Carbonelli Campos
- School of Chemistry, Inorganic
Processes Department, Universidade Federal do Rio de Janeiro, Rio de Janeiro,
Brazil
| |
Collapse
|
4
|
Piash KS, Sanyal O. Design Strategies for Forward Osmosis Membrane Substrates with Low Structural Parameters-A Review. MEMBRANES 2023; 13:73. [PMID: 36676880 PMCID: PMC9865366 DOI: 10.3390/membranes13010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
This article reviews the many innovative strategies that have been developed to specifically design the support layers of forward osmosis (FO) membranes. Forward osmosis (FO) is one of the most viable separation technologies to treat hypersaline wastewater, but its successful deployment requires the development of new membrane materials beyond existing desalination membranes. Specifically, designing the FO membrane support layers requires new engineering techniques to minimize the internal concentration polarization (ICP) effects encountered in cases of FO. In this paper, we have reviewed several such techniques developed by different research groups and summarized the membrane transport properties corresponding to each approach. An important transport parameter that helps to compare the various approaches is the so-called structural parameter (S-value); a low S-value typically corresponds to low ICP. Strategies such as electrospinning, solvent casting, and hollow fiber spinning, have been developed by prior researchers-all of them aimed at lowering this S-value. We also reviewed the quantitative methods described in the literature, to evaluate the separation properties of FO membranes. Lastly, we have highlighted some key research gaps, and provided suggestions for potential strategies that researchers could adopt to enable easy comparison of FO membranes.
Collapse
|
5
|
Bardhan A, Subbiah S, Mohanty K, Ibrar I, Altaee A. Feasibility of Poly (Vinyl Alcohol)/Poly (Diallyldimethylammonium Chloride) Polymeric Network Hydrogel as Draw Solute for Forward Osmosis Process. MEMBRANES 2022; 12:1097. [PMID: 36363652 PMCID: PMC9692437 DOI: 10.3390/membranes12111097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Forward osmosis (FO) has been identified as an emerging technology for the concentration and crystallization of aqueous solutions at low temperatures. However, the application of the FO process has been limited due to the unavailability of a suitable draw solute. An ideal draw solute should be able to generate high osmotic pressure and must be easily regenerated with less reverse solute flux (RSF). Recently, hydrogels have attracted attention as a draw solution due to their high capacity to absorb water and low RSF. This study explores a poly (vinyl alcohol)/poly (diallyldimethylammonium chloride) (PVA-polyDADMAC) polymeric network hydrogel as a draw solute in forward osmosis. A low-pressure reverse osmosis (RO) membrane was used in the FO process to study the performance of the hydrogel prepared in this study as a draw solution. The robust and straightforward gel synthesis method provides an extensive-scale application. The results indicate that incorporating cationic polyelectrolyte poly (diallyldimethylammonium chloride) into the polymeric network increases swelling capacity and osmotic pressure, thereby resulting in an average water flux of the PVA-polyDADMAC hydrogel (0.97 L m−2 h−1) that was 7.47 times higher than the PVA hydrogel during a 6 h FO process against a 5000 mg L−1 NaCl solution (as a feed solution). The effect of polymer and cross-linker composition on swelling capacity was studied to optimize the synthesized hydrogel composition. At 50 °C, the hydrogel releases nearly >70% of the water absorbed during the FO process at room temperatures, and water flux can be recovered by up to 86.6% of the initial flux after 12 hydrogel (draw solute) regenerations. Furthermore, this study suggests that incorporating cationic polyelectrolytes into the polymeric network enhances FO performances and lowers the actual energy requirements for (draw solute) regeneration. This study represents a significant step toward the commercial implementation of a hydrogel-driven FO system for the concentration of liquid-food extract.
Collapse
Affiliation(s)
- Ananya Bardhan
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Senthilmurugan Subbiah
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Kaustubha Mohanty
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Ibrar Ibrar
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, Sydney, NSW 2007, Australia
| | - Ali Altaee
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, Sydney, NSW 2007, Australia
| |
Collapse
|
6
|
Jain H, Kumar A, Verma AK, Wadhwa S, Rajput VD, Minkina T, Garg MC. Treatment of textile industry wastewater by using high-performance forward osmosis membrane tailored with alpha-manganese dioxide nanoparticles for fertigation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80032-80043. [PMID: 35426022 DOI: 10.1007/s11356-022-20047-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Forward osmosis (FO) technology has been acknowledged as an energy-efficient cutting-edge water treatment innovation; however, the inefficient performance of polymer-based membranes remains a tailback in the practical utilization of FO. A significant issue in FO is membrane fouling, which negatively influences the flux efficiency, working expenses and membrane life expectancy. Membranes having high water flux and minimum reverse solute flux at low operating pressures are the ideal membranes for this process. This study reports a thin-film nanocomposite (TFNC) membrane for the treatment of textile industry wastewater utilizing fertilizer as draw solution fabricated via the phase inversion process. The chemical structure and morphology of the synthesized manganese oxide (MnO2) incorporated membrane were studied by various characterization techniques like X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy-energy-dispersive X-ray spectroscopy, contact angle and gravimetry. The outcomes demonstrated that the nanoparticles were bonded to cellulose acetate polymer via covalent bonds and showed very hydrophilic membrane surface, along with an increased osmotic water flux of 52.5 L.m2.h-1 and reverse salt flux of 10.9 g.m2.h-1, when deionized wastewater and potassium chloride were used as the feed solution and the draw solution, respectively. In this manner, incorporating manganese oxide into the FO membrane may introduce its extraordinary possible application for the production of diluted fertilizer solution with balanced nutrients.
Collapse
Affiliation(s)
- Harshita Jain
- Amity Institute of Environmental Sciences, Amity University Uttar Pradesh, Sector 125, Noida, Uttar Pradesh, 201313, India
| | - Ajay Kumar
- Department of Hydrology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Anoop Kumar Verma
- School of Energy and Environment, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147005, India
| | - Shikha Wadhwa
- Department of Chemistry, School of Engineering, University of Petroleum & Energy Studies, Bidholi Campus, Dehradun, Uttarakhand, 248007, India
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia
| | - Manoj Chandra Garg
- Amity Institute of Environmental Sciences, Amity University Uttar Pradesh, Sector 125, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|
7
|
Osmotic urine fuel cell to recover water, energy, and nutrients along with salinity reduction. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01738-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
8
|
Al-Sakaji BAK, Al-Asheh S, Maraqa MA. A Review on the Development of an Integer System Coupling Forward Osmosis Membrane and Ultrasound Waves for Water Desalination Processes. Polymers (Basel) 2022; 14:2710. [PMID: 35808754 PMCID: PMC9269142 DOI: 10.3390/polym14132710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
This review considers the forward osmosis (FO) membrane process as one of the feasible solutions for water desalination. Different aspects related to the FO process are reviewed with an emphasis on ultrasound assisted FO membrane processes. The different types of membranes used in FO are also reviewed and discussed; thus, their configuration, structure and applications are considered. Coupling ultrasound with FO enhances water flux through the membrane under certain conditions. In addition, this review addresses questions related to implementation of an ultrasound/FO system for seawater desalination, such as the impact on fouling, flow configuration, and location of fouling. Finally, the mechanisms for the impact of ultrasound on FO membranes are discussed and future research directions are suggested.
Collapse
Affiliation(s)
- Bara A. K. Al-Sakaji
- Department of Civil and Environmental Engineering, College of Engineering, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates; (B.A.K.A.-S.); (M.A.M.)
| | - Sameer Al-Asheh
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 2666, United Arab Emirates
| | - Munjed A. Maraqa
- Department of Civil and Environmental Engineering, College of Engineering, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates; (B.A.K.A.-S.); (M.A.M.)
- National Water and Energy Center, United Arab Emirates University, Al-Ain P.O. Box 1551, United Arab Emirates
| |
Collapse
|
9
|
Effects of Operating Conditions on the Performance of Forward Osmosis with Ultrasound for Seawater Desalination. WATER 2022. [DOI: 10.3390/w14132092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This study investigates the effect of using ultrasound on water flux through a forward osmosis membrane when applied for seawater desalination. A synthetically prepared solution simulating seawater with scaling substances and organic foulants was used. The parameters considered include membrane cross-flow velocity, flow configuration (co-current versus counter-current), direction of ultrasound waves relative to the membrane side (active layer versus support layer), and type of draw solution (NaCl versus MgCl2). The study revealed that applying a continuous ultrasound frequency of 40 kHz was effective in enhancing water flux, especially when the ultrasound source faces the membrane active layer, irrespective of the used draw solution. The highest water flux enhancement (70.8% with NaCl draw solution and 61.9% with MgCl2 draw solution) occurred at low cross-flow velocity and with the ultrasound waves facing the membrane active layer. It was also observed that the use of ultrasound generally caused an adverse effect on the water flux when the ultrasound source faces the membrane support layer. Moreover, applying the ultrasound at the membrane support layer increased the reverse solute flux. For all tested cases, higher water flux enhancement was observed with NaCl as a draw solution compared to the cases when MgCl2 was used as a draw solution.
Collapse
|
10
|
Iqbal D, Zhao Y, Zhao R, Russell SJ, Ning X. A Review on Nanocellulose and Superhydrophobic Features for Advanced Water Treatment. Polymers (Basel) 2022; 14:2343. [PMID: 35745924 PMCID: PMC9229312 DOI: 10.3390/polym14122343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Globally, developing countries require access to safe drinking water to support human health and facilitate long-term sustainable development, in which waste management and control are critical tasks. As the most plentiful, renewable biopolymer on earth, cellulose has significant utility in the delivery of potable water for human consumption. Herein, recent developments in the application of nanoscale cellulose and cellulose derivatives for water treatment are reviewed, with reference to the properties and structure of the material. The potential application of nanocellulose as a primary component for water treatment is linked to its high aspect ratio, high surface area, and the high number of hydroxyl groups available for molecular interaction with heavy metals, dyes, oil-water separation, and other chemical impurities. The ability of superhydrophobic nanocellulose-based textiles as functional fabrics is particularly acknowledged as designed structures for advanced water treatment systems. This review covers the adsorption of heavy metals and chemical impurities like dyes, oil-water separation, as well as nanocellulose and nanostructured derivative membranes, and superhydrophobic coatings, suitable for adsorbing chemical and biological pollutants, including microorganisms.
Collapse
Affiliation(s)
- Danish Iqbal
- Shandong Center for Engineered Nonwovens, Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; (D.I.); (Y.Z.); (R.Z.)
| | - Yintao Zhao
- Shandong Center for Engineered Nonwovens, Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; (D.I.); (Y.Z.); (R.Z.)
| | - Renhai Zhao
- Shandong Center for Engineered Nonwovens, Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; (D.I.); (Y.Z.); (R.Z.)
| | - Stephen J. Russell
- Leeds Institute of Textiles and Colour (LITAC), School of Design, University of Leeds, Leeds LS2 9JT, UK;
| | - Xin Ning
- Shandong Center for Engineered Nonwovens, Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; (D.I.); (Y.Z.); (R.Z.)
| |
Collapse
|
11
|
Park J, Lee S. Desalination Technology in South Korea: A Comprehensive Review of Technology Trends and Future Outlook. MEMBRANES 2022; 12:204. [PMID: 35207124 PMCID: PMC8876571 DOI: 10.3390/membranes12020204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/05/2022] [Accepted: 02/06/2022] [Indexed: 11/28/2022]
Abstract
Due to advances in desalination technology, desalination has been considered as a practical method to meet the increasing global fresh water demand. This paper explores the status of the desalination industry and research work in South Korea. Desalination plant designs, statistics, and the roadmap for desalination research were analyzed. To reduce energy consumption in desalination, seawater reverse osmosis (SWRO) has been intensively investigated. Recently, alternative desalination technologies, including forward osmosis, pressure-retarded osmosis, membrane distillation, capacitive deionization, renewable-energy-powered desalination, and desalination batteries have also been actively studied. Related major consortium-based desalination research projects and their pilot plants suggest insights into lowering the energy consumption of desalination and mitigation of the environmental impact of SWRO brine as well. Finally, considerations concerning further development are suggested based on the current status of desalination technology in South Korea.
Collapse
Affiliation(s)
- Jongkwan Park
- School of Civil, Environmental and Chemical Engineering, Changwon National University, 20 Changwondaehak-ro, Changwon-si 51140, Korea;
| | - Sungyun Lee
- Department of Civil Environmental Engineering, School of Disaster Prevention and Environmental Engineering, Kyungpook National University, 2559 Gyeongsang-daero, Sangju-si 37224, Korea
- Department of Advanced Science and Technology Convergence, Kyungpook National University, 2559 Gyeongsang-daero, Sangju-si 37224, Korea
| |
Collapse
|
12
|
Kim MK, Chang JW, Park K, Yang DR. Comprehensive assessment of the effects of operating conditions on membrane intrinsic parameters of forward osmosis (FO) based on principal component analysis (PCA). J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Modern Use of Water Produced by Purification of Municipal Wastewater: A Case Study. ENERGIES 2021. [DOI: 10.3390/en14227610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
All the urban areas of developed countries have hydric distribution grids and sewage systems for collecting municipal wastewater to treatment plants. In this way, the municipal wastewater is purified from human excreta and other minor contaminants while producing excess sludges and purified water. In arid and semi-arid areas of the world, the purified water can be used, before discharging, to enhance the energy efficiency of seawater desalination and solve the problems of marine pollution created by desalination plants. Over the past half-century, seawater desalination has gradually met demand in urbanized, oil-rich, arid areas. At the same time, technological evolution has made it possible to significantly increase the energy efficiency of the plants and reduce the unit cost of the produced water. However, for some years, these trends have flattened out. The purified water passes through the hybridized desalination plant and produces renewable osmotic energy before the final discharge in the sea to restart the descent behaviour. Current technological development of reverse osmosis (RO), pressure retarded osmosis (PRO) and very efficient energy recovery devices (ERDs) allows this. Furthermore, it is reasonable to predict that, in the short-medium term, a new generation of membranes specifically designed for improving the performance of the pressure retarded osmosis will be available. In such circumstances, the presently estimated 13-20% decrease of the specific energy consumption will improve up to more than 30%. With the hybrid plant, the salinity of the final discharged brine is like that of seawater, while the adverse effect of GHG emission will be significantly mitigated.
Collapse
|
14
|
Ratna S, Rastogi S, Kumar R. Current trends for distillery wastewater management and its emerging applications for sustainable environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 290:112544. [PMID: 33862317 DOI: 10.1016/j.jenvman.2021.112544] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 03/16/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Ethanol distillation generates a huge volume of unwanted chemical liquid known as distillery wastewater. Distillery wastewater is acidic, dark brown having high biological oxygen demand, chemical oxygen demand, contains various salt contents, and heavy metals. Inadequate and indiscriminate disposal of distillery wastewater deteriorates the quality of the soil, water, and ultimately groundwater. Its direct exposure via food web shows toxic, carcinogenic, and mutagenic effects on aquatic-terrestrial organisms including humans. So, there is an urgent need for its proper management. For this purpose, a group of researchers applied distillery wastewater for fertigation while others focused on its physico-chemical, biological treatment approaches. But until now no cutting-edge technology has been proposed for its effective management. So, it becomes imperative to comprehend its toxicity, treatment methods, and implication for environmental sustainability. This paper reviews the last decade's research data on advanced physico-chemical, biological, and combined (physico-chemical and biological) methods to treat distillery wastewater and its reuse aspects. Finally, it revealed that the combined methods along with the production of value-added products are one of the best options for distillery wastewater management.
Collapse
Affiliation(s)
- Sheel Ratna
- Rhizosphere Biology Laboratory, Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, (A Central University), Vidya Vihar, Raibareli Road, Lucknow, 226025, India.
| | - Swati Rastogi
- Rhizosphere Biology Laboratory, Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, (A Central University), Vidya Vihar, Raibareli Road, Lucknow, 226025, India
| | - Rajesh Kumar
- Rhizosphere Biology Laboratory, Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, (A Central University), Vidya Vihar, Raibareli Road, Lucknow, 226025, India
| |
Collapse
|
15
|
A Review of CFD Modelling and Performance Metrics for Osmotic Membrane Processes. MEMBRANES 2020; 10:membranes10100285. [PMID: 33076290 PMCID: PMC7602433 DOI: 10.3390/membranes10100285] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 01/10/2023]
Abstract
Simulation via Computational Fluid Dynamics (CFD) offers a convenient way for visualising hydrodynamics and mass transport in spacer-filled membrane channels, facilitating further developments in spiral wound membrane (SWM) modules for desalination processes. This paper provides a review on the use of CFD modelling for the development of novel spacers used in the SWM modules for three types of osmotic membrane processes: reverse osmosis (RO), forward osmosis (FO) and pressure retarded osmosis (PRO). Currently, the modelling of mass transfer and fouling for complex spacer geometries is still limited. Compared with RO, CFD modelling for PRO is very rare owing to the relative infancy of this osmotically driven membrane process. Despite the rising popularity of multi-scale modelling of osmotic membrane processes, CFD can only be used for predicting process performance in the absence of fouling. This paper also reviews the most common metrics used for evaluating membrane module performance at the small and large scales.
Collapse
|
16
|
Seawater Desalination: A Review of Forward Osmosis Technique, Its Challenges, and Future Prospects. Processes (Basel) 2020. [DOI: 10.3390/pr8080901] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Currently over 845 million people are believed to be living under severe water scarcity, and an estimated 2.8 billion people across the globe are projected to come under serious water scarcity by the year 2025, according to a United Nations (UN) report. Seawater desalination has gained more traction as the solution with the most potential for increasing global freshwater supplies amongst other solutions. However, the economic and energy costs associated with the major desalination technologies are considered intrinsically prohibitive largely due to their humongous energy requirements alongside the requirements of complex equipment and their maintenance in most cases. Whilst forward osmosis (FO) is being touted as a potentially more energy efficient and cost-effective alternative desalination technique, its efficiency is challenged by draw solutes and the draw solutes recovery step in FO applications alongside other challenges. This paper looks at the present situation of global water scarcity, and a brief leap into the major desalination technologies employed. A closer look at the key drivers of FO as a seawater desalination technique in their individual domain and its outlook as an technology are further highlighted.
Collapse
|
17
|
Membrane-Based Processes Used in Municipal Wastewater Treatment for Water Reuse: State-Of-The-Art and Performance Analysis. MEMBRANES 2020; 10:membranes10060131. [PMID: 32630495 PMCID: PMC7344726 DOI: 10.3390/membranes10060131] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 12/11/2022]
Abstract
Wastewater reuse as a sustainable, reliable and energy recovery concept is a promising approach to alleviate worldwide water scarcity. However, the water reuse market needs to be developed with long-term efforts because only less than 4% of the total wastewater worldwide has been treated for water reuse at present. In addition, the reclaimed water should fulfill the criteria of health safety, appearance, environmental acceptance and economic feasibility based on their local water reuse guidelines. Moreover, municipal wastewater as an alternative water resource for non-potable or potable reuse, has been widely treated by various membrane-based treatment processes for reuse applications. By collecting lab-scale and pilot-scale reuse cases as much as possible, this review aims to provide a comprehensive summary of the membrane-based treatment processes, mainly focused on the hydraulic filtration performance, contaminants removal capacity, reuse purpose, fouling resistance potential, resource recovery and energy consumption. The advances and limitations of different membrane-based processes alone or coupled with other possible processes such as disinfection processes and advanced oxidation processes, are also highlighted. Challenges still facing membrane-based technologies for water reuse applications, including institutional barriers, financial allocation and public perception, are stated as areas in need of further research and development.
Collapse
|
18
|
Abstract
The use of forward osmosis (FO) for water purification purposes has gained extensive attention in recent years. In this review, we first discuss the advantages, challenges and various applications of FO, as well as the challenges in selecting the proper draw solution for FO, after which we focus on transport limitations in FO processes. Despite recent advances in membrane development for FO, there is still room for improvement of its selective layer and support. For many applications spiral wound membrane will not suffice. Furthermore, a defect-free selective layer is a prerequisite for FO membranes to ensure low solute passage, while a support with low internal concentration polarization is necessary for a high water flux. Due to challenges affiliated to interfacial polymerization (IP) on non-planar geometries, we discuss alternative approaches to IP to form the selective layer. We also explain that, when provided with a defect-free selective layer with good rejection, the membrane support has a dominant influence on the performance of an FO membrane, which can be estimated by the structural parameter (S). We emphasize the necessity of finding a new method to determine S, but also that predominantly the thickness of the support is the major parameter that needs to be optimized.
Collapse
|