1
|
Gonçalves MO, Di Iorio JF, Marin GV, Meneghetti P, Negreiros NGS, Torrecilhas AC. Extracellular vesicles. CURRENT TOPICS IN MEMBRANES 2024; 94:1-31. [PMID: 39370203 DOI: 10.1016/bs.ctm.2024.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Cells, pathogens, and other systems release extracellular vesicles (EVs). The particles promote intercellular communication and contain proteins, lipids, RNA and DNA. Initially considered to be cellular waste in the twentieth century, EVs were becoming recognized for their function in biological communication and control. EVs are divided into many subtypes: exosomes, microvesicles, and apoptotic bodies. Exosomes form in the late endosome/multivesicular body and are released when the compartments fuse with the plasma membrane. Microvesicles are generated by direct budding of the plasma membrane, whereas apoptotic bodies are formed after cellular apoptosis. The new guideline for EVs that describes alternate nomenclature for EVs. The particles modulate the immune response by affecting both innate and adaptive immunity, and their specific the structure allows them to be used as biomarkers to diagnose a variety of diseases. EVs have a wide range of applications, for example, delivery systems for medications and genetic therapies because of their ability to convey specific cellular material. In anti-tumor therapy, EVs deliver therapeutic chemicals to tumor cells. The EVs promote transplant compatibility and reduce organ rejection. Host-parasite interactions, therapeutic and diagnostic for cancer, cardiovascular disease, cardiac tissue regeneration, and the treatment of neurological diseases such as Alzheimer's and Parkinson's. The study of EVs keeps on expanding, revealing new functions and beneficial options. EVs have the potential to change drug delivery, diagnostics, and specific therapeutics, creating a new frontier in biomedical.
Collapse
Affiliation(s)
- Mariana Ottaiano Gonçalves
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Juliana Fortes Di Iorio
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Gabriela Villa Marin
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Paula Meneghetti
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Náthani Gabrielly Silva Negreiros
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Ana Claudia Torrecilhas
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.
| |
Collapse
|
2
|
Lee J. Trends in Developing Extracellular Vesicle-Based Therapeutics. Brain Tumor Res Treat 2024; 12:153-161. [PMID: 39109616 PMCID: PMC11306838 DOI: 10.14791/btrt.2024.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
Extracellular vesicles are nano-sized vesicles surrounded by lipid bilayers, and all cells release them to the extracellular environment for communication. Extracellular vesicles consist of molecules with various biological activities and can play essential roles as therapeutics, so they attract much attention as next-generation modalities to treat various diseases. As extracellular vesicles are cell-derived nanovesicles, they are favorable to be developed as therapeutics, but they also have limitations. In addition, there are a number of things to consider in terms of manufacturing, quality control, non-clinical studies, and clinical trials during the development of extracellular vesicle-based therapeutics. Meanwhile, as much attention has been paid to the potentials of extracellular vesicles as therapeutics, many biopharmaceutical companies are trying to develop extracellular vesicle-based therapeutics. This review will introduce the advantages and limitations of extracellular vesicles as therapeutics. In addition, it will cover things to consider during developing extracellular vesicle-based therapeutics and development cases of extracellular vesicle-based therapeutics.
Collapse
Affiliation(s)
- Jaewook Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea.
| |
Collapse
|
3
|
Basso M, Gori A, Nardella C, Palviainen M, Holcar M, Sotiropoulos I, Bobis‐Wozowicz S, D'Agostino VG, Casarotto E, Ciani Y, Suetsugu S, Gualerzi A, Martin‐Jaular L, Boselli D, Kashkanova A, Parisse P, Lippens L, Pagliuca M, Blessing M, Frigerio R, Fourniols T, Meliciano A, Fietta A, Fioretti PV, Soroczyńska K, Picciolini S, Salviano‐Silva A, Bergese P, Zocco D, Chiari M, Jenster G, Waldron L, Milosavljevic A, Nolan J, Monopoli MP, Witwer KW, Bussolati B, Di Vizio D, Falcon Perez J, Lenassi M, Cretich M, Demichelis F. International Society for Extracellular Vesicles Workshop. QuantitatEVs: multiscale analyses, from bulk to single extracellular vesicle. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e137. [PMID: 38405579 PMCID: PMC10883470 DOI: 10.1002/jex2.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 02/27/2024]
Abstract
The 'QuantitatEVs: multiscale analyses, from bulk to single vesicle' workshop aimed to discuss quantitative strategies and harmonized wet and computational approaches toward the comprehensive analysis of extracellular vesicles (EVs) from bulk to single vesicle analyses with a special focus on emerging technologies. The workshop covered the key issues in the quantitative analysis of different EV-associated molecular components and EV biophysical features, which are considered the core of EV-associated biomarker discovery and validation for their clinical translation. The in-person-only workshop was held in Trento, Italy, from January 31st to February 2nd, 2023, and continued in Milan on February 3rd with "Next Generation EVs", a satellite event dedicated to early career researchers (ECR). This report summarizes the main topics and outcomes of the workshop.
Collapse
Affiliation(s)
- Manuela Basso
- Department of Cellular, Computational, and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Alessandro Gori
- National Research Council of ItalyIstituto di Scienze e Tecnologie Chimiche (SCITEC‐CNR)MilanItaly
| | - Caterina Nardella
- Department of Cellular, Computational, and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Mari Palviainen
- EV group, Molecular and Integrative Biosciences Research Program, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Marija Holcar
- Institute of Biochemistry and Molecular Genetics, Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Ioannis Sotiropoulos
- Institute of Biosciences & ApplicationsNational Center for Scientific Research (NCSR) DemokritosParaskeviGreece
| | - Sylwia Bobis‐Wozowicz
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell BiologyJagiellonian UniversityKrakowPoland
| | - Vito G. D'Agostino
- Department of Cellular, Computational, and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Elena Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti” (DiSFeB), Dipartimento di EccellenzaUniversità degli Studi di MilanoMilanItaly
| | - Yari Ciani
- Department of Cellular, Computational, and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Shiro Suetsugu
- Division of Biological ScienceGraduate School of Science and Technology, Nara Institute of Science and TechnologyIkomaJapan
| | | | | | - Daniela Boselli
- FRACTAL (Flow Cytometry Resource, Advanced Cytometry Technical Applications Laboratory)San Raffaele Scientific InstituteMilanItaly
| | - Anna Kashkanova
- Max Planck Institute for the Science of LightErlangenGermany
| | - Pietro Parisse
- National Research Council of Italy, Istituto Officina dei Materiali (IOM‐CNR)TriesteItaly
| | - Lien Lippens
- Department of Human Structure and Repair, Laboratory of Experimental Cancer ResearchGhent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| | - Martina Pagliuca
- Molecular Predictors and New Targets in OncologyGustave RoussyVillejuifFrance
- Clinical and Translational OncologyScuola Superiore MeridionaleNaplesItaly
| | - Martin Blessing
- Max Planck Institute for the Science of LightErlangenGermany
| | - Roberto Frigerio
- National Research Council of ItalyIstituto di Scienze e Tecnologie Chimiche (SCITEC‐CNR)MilanItaly
| | | | - Ana Meliciano
- iBET‐Instituto de Biologia Experimental e TecnológicaOeirasPortugal
| | - Anna Fietta
- Department of Biomedical Sciences (DSB)University of PaduaPaduaItaly
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP)PaduaItaly
| | - Paolo Vincenzo Fioretti
- Department of Cellular, Computational, and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | | | | | | | - Paolo Bergese
- Department of Molecular and Translational MedicineUniversità degli Studi di BresciaBresciaItaly
- IRIB ‐ Institute for Research and Biomedical Innovation of CNRPalermoItaly
| | | | - Marcella Chiari
- National Research Council of ItalyIstituto di Scienze e Tecnologie Chimiche (SCITEC‐CNR)MilanItaly
| | - Guido Jenster
- Department of Urology, Erasmus MC Cancer InstituteErasmus University Medical CenterRotterdamThe Netherlands
| | - Levi Waldron
- Graduate School of Public Health and Health PolicyCity University of New YorkNew YorkNew YorkUSA
| | - Aleksandar Milosavljevic
- Department of Molecular and Human Genetics, Dan L Duncan Comprehensive Cancer Center, and Program in Quantitative and Computational BiosciencesBaylor College of MedicineHoustonTexasUSA
| | - John Nolan
- Scintillon InstituteSan DiegoCaliforniaUSA
| | | | - Kenneth W. Witwer
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurinItaly
| | - Dolores Di Vizio
- Department of Surgery, Division of Cancer Biology and TherapeuticsCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Juan Falcon Perez
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA), Exosomes LaboratoryDerioSpain
- Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd)MadridSpain
- IKERBASQUE, Basque Foundation for ScienceBilbaoSpain
| | - Metka Lenassi
- Institute of Biochemistry and Molecular Genetics, Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Marina Cretich
- National Research Council of ItalyIstituto di Scienze e Tecnologie Chimiche (SCITEC‐CNR)MilanItaly
| | - Francesca Demichelis
- Department of Cellular, Computational, and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| |
Collapse
|
4
|
Hao H, Dai C, Han X, Li Y. A novel therapeutic strategy for alleviating atrial remodeling by targeting exosomal miRNAs in atrial fibrillation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119365. [PMID: 36167158 DOI: 10.1016/j.bbamcr.2022.119365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/29/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Atrial fibrillation (AF) is one of the most frequent cardiac arrhythmias, and atrial remodeling is related to the progression of AF. Although several therapeutic approaches have been presented in recent years, the continuously increasing mortality rate suggests that more advanced strategies for treatment are urgently needed. Exosomes regulate pathological processes through intercellular communication mediated by microribonucleic acid (miRNA) in various cardiovascular diseases (CVDs). Exosomal miRNAs associated with signaling pathways have added more complexity to an already complex direct cell-to-cell interaction. Exosome delivery of miRNAs is involved in cardiac regeneration and cardiac protection. Recent studies have found that exosomes play a critical role in the diagnosis and treatment of cardiac fibrosis. By improving exosome stability and modifying surface epitopes, specific pharmaceutical agents can be supplied to improve tropism and targeting to cells and tissues in vivo. Exosomes harboring miRNAs may have clinical utility in cell-free therapeutic approaches and may serve as prognostic and diagnostic biomarkers for AF. Currently, limitations challenge pharmaceutic design, therapeutic utility and in vivo targeted delivery to patients. The aim of this article is to review the developmental features of AF associated with exosomal miRNAs and relate them to underlying mechanisms.
Collapse
Affiliation(s)
- Hongting Hao
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Chenguang Dai
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Xuejie Han
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Yue Li
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China; NHC Key Laboratory of Cell Translation, Harbin Medical University, Heilongjiang 150001, China; Key Laboratory of Hepatosplenic Surgery, Harbin Medical University, Ministry of Education, Harbin 150001, China; Key Laboratory of Cardiac Diseases and Heart Failure, Harbin Medical University, Harbin 150001, China; Heilongjiang Key Laboratory for Metabolic Disorder & Cancer Related Cardiovascular Diseases, Harbin 150081, China; Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin, China.
| |
Collapse
|
5
|
Liguori GL, Kisslinger A. Quality Management Tools on the Stage: Old but New Allies for Rigor and Standardization of Extracellular Vesicle Studies. Front Bioeng Biotechnol 2022; 10:826252. [PMID: 35360394 PMCID: PMC8960150 DOI: 10.3389/fbioe.2022.826252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/31/2022] [Indexed: 12/19/2022] Open
Affiliation(s)
- Giovanna L. Liguori
- Institute of Genetics and Biophysics (IGB), National Research Council (CNR), Naples, Italy
| | - Annamaria Kisslinger
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), Naples, Italy
| |
Collapse
|
6
|
Couch Y, Buzàs EI, Vizio DD, Gho YS, Harrison P, Hill AF, Lötvall J, Raposo G, Stahl PD, Théry C, Witwer KW, Carter DRF. A brief history of nearly EV-erything - The rise and rise of extracellular vesicles. J Extracell Vesicles 2021; 10:e12144. [PMID: 34919343 PMCID: PMC8681215 DOI: 10.1002/jev2.12144] [Citation(s) in RCA: 279] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/06/2021] [Accepted: 08/28/2021] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicles (EVs) are small cargo-bearing vesicles released by cells into the extracellular space. The field of EVs has grown exponentially over the past two decades; this growth follows the realisation that EVs are not simply a waste disposal system as had originally been suggested by some, but also a complex cell-to-cell communication mechanism. Indeed, EVs have been shown to transfer functional cargo between cells and can influence several biological processes. These small biological particles are also deregulated in disease. As we approach the 75th anniversary of the first experiments in which EVs were unknowingly isolated, it seems right to take stock and look back on how the field started, and has since exploded into its current state. Here we review the early experiments, summarise key findings that have propelled the field, describe the growth of an organised EV community, discuss the current state of the field, and identify key challenges that need to be addressed.
Collapse
Affiliation(s)
- Yvonne Couch
- Acute Stroke Programme, Radcliffe Department of MedicineUniversity of Oxford, John Radcliffe Hospital, Headley Way, HeadingtonOxfordUK
| | - Edit I. Buzàs
- Department of Genetics, Cell‐ and ImmunobiologySemmelweis UniversityBudapestHungary
- ELKH‐SE Immune‐Proteogenomics Extracellular Vesicle Research GroupBudapestHungary
- HCEMM‐SU Extracellular Vesicles Research GroupBudapestHungary
| | - Dolores Di Vizio
- Department of SurgeryPathology & Laboratory MedicineCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Yong Song Gho
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| | - Paul Harrison
- Institute of Inflammation and AgeingCollege of Medical and Dental SciencesUniversity of BirminghamEdgbastonBirminghamUK
| | - Andrew F. Hill
- Department of Biochemistry and GeneticsLa Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
| | - Jan Lötvall
- Krefting Research CentreInstitute of Medicine Sahlgrenska Academy at University of GothenburgGothenburgSweden
| | - Graça Raposo
- Institut CurieParis Sciences et Lettres Research UniversityCentre National de la Recherche Scientifique UMR144, Structure and Membrane CompartmentsParisFrance
| | - Philip D. Stahl
- Department of Cell BiologyWashington University School of MedicineSt LouisMissouriUSA
| | - Clotilde Théry
- INSERM U932Institut CurieParis Sciences et Lettres Research UniversityParisFrance
| | - Kenneth W. Witwer
- Molecular and Comparative Pathobiology and Neurology, and The Richman Family Precision Medicine Center of Excellence in Alzheimer’s DiseaseThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - David R. F. Carter
- Department of Biological and Medical SciencesFaculty of Health and Life SciencesOxford Brookes UniversityOxfordUK
- Evox Therapeutics LimitedOxford Science ParkOxfordOX4 4HGUK
| |
Collapse
|
7
|
Kaddour H, Tranquille M, Okeoma CM. The Past, the Present, and the Future of the Size Exclusion Chromatography in Extracellular Vesicles Separation. Viruses 2021; 13:2272. [PMID: 34835078 PMCID: PMC8618570 DOI: 10.3390/v13112272] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 01/13/2023] Open
Abstract
Extracellular vesicles (EVs) are cell-derived membranous particles secreted by all cell types (including virus infected and uninfected cells) into the extracellular milieu. EVs carry, protect, and transport a wide array of bioactive cargoes to recipient/target cells. EVs regulate physiological and pathophysiological processes in recipient cells and are important in therapeutics/drug delivery. Despite these great attributes of EVs, an efficient protocol for EV separation from biofluids is lacking. Numerous techniques have been adapted for the separation of EVs with size exclusion chromatography (SEC)-based methods being the most promising. Here, we review the SEC protocols used for EV separation, and discuss opportunities for significant improvements, such as the development of novel particle purification liquid chromatography (PPLC) system capable of tandem purification and characterization of biological and synthetic particles with near-single vesicle resolution. Finally, we identify future perspectives and current issues to make PPLC a tool capable of providing a unified, automated, adaptable, yet simple and affordable particle separation resource.
Collapse
Affiliation(s)
- Hussein Kaddour
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Malik Tranquille
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Chioma M. Okeoma
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
| |
Collapse
|
8
|
Novoa-Herrán S. Challenges and opportunities in the study of extracellular vesicles: Global institutional context and national state of the art. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2021; 41:555-589. [PMID: 34559503 PMCID: PMC8519601 DOI: 10.7705/biomedica.5749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 05/16/2021] [Indexed: 11/23/2022]
Abstract
In the last decade, the number of studies and publications on extracellular vesicles (EV) and exosomes has boomed. Colombia has displayed interest and progress in their study as shown in the increase of research project publications and products. However, this research field is still developing and has its own analytical challenges and technical limitations. For planning research projects and developing EV studies it is necessary to consider what is the state of the scientific field worldwide concerning EV nomenclature and classification, available techniques, resources, requirements and quality specifications, and the institutions that regulate the field. Answering this question will elicit EV studies that comply with international standards and respond to institutional demands and recommendations. However, the scientific information available is scattered and not all the aspects are considered in full. In this update, the available information is condensed and the official terms and currently defined nomenclature is presented, as well as the evolution of the field, the homogenization of the experimental parameters, the establishment of scientific authorities, institutions, and resources, and the recommendations generated worldwide for their development and research including their isolation, characterization, and functional studies. Finally, I analyzed the national context in a critical way, considering institutional strengths, common mistakes, and available analytical techniques and technologies.
Collapse
Affiliation(s)
- Susana Novoa-Herrán
- Grupo de Fisiología Molecular, Instituto Nacional de Salud, Bogotá, D.C., Colombia.
| |
Collapse
|
9
|
Mahyudin F, Prawiragara FA, Edward M, Utomo DN, Basuki MH, Bari YA, Nugraha AP, Rantam FA. The Escalation of Osteosarcoma Stem Cells Apoptosis After the Co-Cultivation of Peripheral Blood Mononuclear Cells Sensitized with Mesenchymal Stem Cells Secretome and Colony Stimulating Factor-2 in vitro. J Blood Med 2021; 12:601-611. [PMID: 34267571 PMCID: PMC8275193 DOI: 10.2147/jbm.s305566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/22/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Peripheral blood mononuclear cells (PBMCs) sensitized with mesenchymal stem cells (MSCs) secretome and/or colony stimulating factor-2 (CSF-2) as an immunotherapy candidate may escalate osteosarcoma stem cells (OS-SCs) apoptosis. This study aimed to investigate the escalation of osteosarcoma stem cells’ apoptosis after the co-cultivation with PBMCs sensitized by MSCs secretome with/or CSF-2 and it was completed by analyzing the level of serum tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL) and tumor necrosis factor-α (TNF-α) level, annexin V binding, caspase-3 and caspase-8 expression in vitro. Methods OS-SCs were derived from a single human osteosarcoma sample with its high grade and osteoblastic essential clinical characteristics obtained from a biopsy before the chemotherapy treatment. They were then isolated and cultured confirmed by the cluster of differentiation-133 (FITC) by applying immunofluorescence analysis with fluorescein isothiocyanate (FITC) labeled. MSCs secretome was obtained with cells extracted from the bone marrow of a healthy patient. Furthermore, enzyme linked immunosorbent assay (ELISA) was utilized to analyze sTRAIL and TNF-α level in each group. The expression of caspase-3, caspase-8, and annexin V assay in each group was examined by applying the immunofluorescence labeled with FITC. The comparison analysis between treatment groups and the control group was performed by utilizing the analysis of variance (ANOVA) and continued with Tukey Honest Significant Difference (HSD) (p<0.05). Results There was a significant difference in the upregulation of sTRAIL and TNF-α level indicated by the increased annexin V, caspase-3, and caspase-8 expression binding between groups (p<0.05). Conclusion MSCs Secretome and CSF-2 could significantly increase the activity of PBMCs through the improvement of sTRAIL and TNF-α levels which could lead to the escalation of OS-SCs apoptosis through an enhanced expression of caspase 3, caspase 8 and annexin V binding in vitro.
Collapse
Affiliation(s)
- Ferdiansyah Mahyudin
- Orthopedic and Traumatology Department, Faculty of Medicine, Dr Soetomo General Hospital, Airlangga University, Surabaya, Indonesia
| | - Fachrizal Arfani Prawiragara
- Orthopedic and Traumatology Department, Faculty of Medicine, Dr Soetomo General Hospital, Airlangga University, Surabaya, Indonesia
| | - Mouli Edward
- Orthopedic and Traumatology Department, Faculty of Medicine, Dr Soetomo General Hospital, Airlangga University, Surabaya, Indonesia
| | - Dwikora Novembri Utomo
- Orthopedic and Traumatology Department, Faculty of Medicine, Dr Soetomo General Hospital, Airlangga University, Surabaya, Indonesia
| | - Mohammad Hardian Basuki
- Orthopedic and Traumatology Department, Faculty of Medicine, Dr Soetomo General Hospital, Airlangga University, Surabaya, Indonesia
| | - Yunus Abdul Bari
- Orthopedic and Traumatology Department, Faculty of Medicine, Dr Soetomo General Hospital, Airlangga University, Surabaya, Indonesia
| | | | - Fedik Abdul Rantam
- Laboratory of Virology and Immunology, Microbiology Department, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
10
|
Yokoi A, Ochiya T. Exosomes and extracellular vesicles: Rethinking the essential values in cancer biology. Semin Cancer Biol 2021; 74:79-91. [PMID: 33798721 DOI: 10.1016/j.semcancer.2021.03.032] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/17/2021] [Accepted: 03/28/2021] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) such as exosomes are released by all living cells and contain diverse bioactive molecules, including nucleic acids, proteins, lipids, and metabolites. Accumulating evidence of EV-related functions has revealed that these tiny vesicles can mediate specific cell-to-cell communication. Within the tumor microenvironment, diverse cells are actively interacting with their surroundings via EVs facilitating tumor malignancy by regulating malignant cascades including angiogenesis, immune modulation, and metastasis. This review summarizes the recent studies of fundamental understandings of EVs from the aspect of EV heterogeneity and highlights the role of EVs in the various steps from oncogenic to metastatic processes. The recognition of EV subtypes is necessary to identify which pathways can be affected by EVs and which subtypes can be targeted in therapeutic approaches or liquid biopsies.
Collapse
Affiliation(s)
- Akira Yokoi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Tokyo Medical University, Tokyo, Japan.
| |
Collapse
|
11
|
Nieuwland R, Falcón‐Pérez JM, Théry C, Witwer KW. Rigor and standardization of extracellular vesicle research: Paving the road towards robustness. J Extracell Vesicles 2020; 10:e12037. [PMID: 33343835 PMCID: PMC7735957 DOI: 10.1002/jev2.12037] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/02/2020] [Accepted: 11/11/2020] [Indexed: 12/27/2022] Open
Affiliation(s)
- Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, Department of Clinical Chemistry, Amsterdam UMC, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Vesicle Observation Centre, Amsterdam UMC, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Juan M. Falcón‐Pérez
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Exosomes LaboratoryDerioSpain
- Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd)MadridSpain
- IKERBASQUEBasque Foundation for ScienceBilbaoSpain
| | - Clotilde Théry
- Institut CurieINSERM U932PSL Research UniversityParisFrance
| | - Kenneth W. Witwer
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
12
|
Royo F, Théry C, Falcón-Pérez JM, Nieuwland R, Witwer KW. Methods for Separation and Characterization of Extracellular Vesicles: Results of a Worldwide Survey Performed by the ISEV Rigor and Standardization Subcommittee. Cells 2020; 9:cells9091955. [PMID: 32854228 PMCID: PMC7563174 DOI: 10.3390/cells9091955] [Citation(s) in RCA: 263] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/10/2020] [Accepted: 08/23/2020] [Indexed: 02/05/2023] Open
Abstract
Research on extracellular vesicles (EVs) is growing exponentially due to an increasing appreciation of EVs as disease biomarkers and therapeutics, an expanding number of EV-containing materials under study, and application of new preparation, detection, and cargo analysis methods. Diversity of both sources and methodologies imposes challenges on the comparison of measurement results between studies and laboratories. While reference guidelines and minimal requirements for EV research have achieved the important objective of assembling community consensus, it is also essential to understand which methodologies and quality controls are currently being applied, and how usage trends are evolving. As an initial response to this need, the International Society for Extracellular Vesicles (ISEV) performed a worldwide survey in 2015 on "Techniques used for the isolation and characterization of extracellular vesicles" and published the results from this survey in 2016. In 2019, a new survey was performed to assess the changing state of the field. The questionnaire received more than 600 full or partial responses, and the present manuscript summarizes the results of this second worldwide survey. The results emphasize that separation methods such as ultracentrifugation and density gradients are still the most commonly used methods, the use of size exclusion chromatography has increased, and techniques based on tangential flow and microfluidics are now being used by more than 10% of respondents. The survey also reveals that most EV researchers still do not perform sample quality controls before or after isolation of EVs. Finally, the majority of EV researchers emphasize that separation and characterization of EVs should receive more attention.
Collapse
Affiliation(s)
- Felix Royo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Exosomes Laboratory, 48160 Derio, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Clotilde Théry
- Institut Curie, INSERM U932, PSL Research University, 75005 Paris, France;
| | - Juan M. Falcón-Pérez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Exosomes Laboratory, 48160 Derio, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
- Correspondence: (J.M.F.-P.); (R.N.); (K.W.W.)
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, Department of Clinical Chemistry, Amsterdam UMC, Location AMC, University of Amsterdam, 19268 Amsterdam, The Netherlands
- Vesicle Observation Centre, Amsterdam UMC, Location AMC, University of Amsterdam, 19268 Amsterdam, The Netherlands
- Correspondence: (J.M.F.-P.); (R.N.); (K.W.W.)
| | - Kenneth W. Witwer
- School of Medicine, Departments of Molecular and Comparative Pathobiology and Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
- Correspondence: (J.M.F.-P.); (R.N.); (K.W.W.)
| |
Collapse
|
13
|
Witwer KW, Hill AF, Tahara H. Announcing the ISEV2019 special achievement award recipients: Takahiro Ochiya and Marca Wauben. J Extracell Vesicles 2019; 8:1620080. [PMID: 31164970 PMCID: PMC6534244 DOI: 10.1080/20013078.2019.1620080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew F Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
14
|
Wiegmans AP, Saunus JM, Ham S, Lobb R, Kutasovic JR, Dalley AJ, Miranda M, Atkinson C, Foliaki ST, Ferguson K, Niland C, Johnstone CN, Lewis V, Collins SJ, Lakhani SR, Al-Ejeh F, Möller A. Secreted cellular prion protein binds doxorubicin and correlates with anthracycline resistance in breast cancer. JCI Insight 2019; 5:124092. [PMID: 30830863 DOI: 10.1172/jci.insight.124092] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Anthracyclines are amongst the most effective chemotherapeutics ever developed, but they produce grueling side-effects, serious adverse events and resistance often develops over time. We found that these compounds can be sequestered by secreted cellular Prion protein (PrPC), blocking their cytotoxic activity. This effect was dose-dependent using either cell line-conditioned medium or human serum as a source of PrPC. Genetic depletion of PrPC or inhibition of binding via chelation of ionic copper prevented the interaction and restored cytotoxic activity. This was more pronounced for doxorubicin than its epimer, epirubicin. Investigating the relevance to breast cancer management, we found that the levels of PRNP transcript in pre-treatment tumor biopsies stratified relapse-free survival after neoadjuvant treatment with anthracyclines, particularly amongst doxorubicin-treated patients with residual disease at surgery (p=2.8E-08). These data suggest that local sequestration could mediate treatment resistance. Consistent with this, tumor cell expression of PrPC protein correlated with poorer response to doxorubicin but not epirubicin in an independent cohort analyzed by immunohistochemistry, particularly soluble isoforms released into the extracellular environment by shedding (p=0.015). These findings have important potential clinical implications for frontline regimen decision-making. We suggest there is warranted utility for prognostic PrPC/PRNP assays to guide chemo-sensitization strategies that exploit an understanding of PrPC-anthracycline-copper ion complexes.
Collapse
Affiliation(s)
- Adrian P Wiegmans
- Tumor Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Jodi M Saunus
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Sunyoung Ham
- Tumor Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Richard Lobb
- Tumor Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Jamie R Kutasovic
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Andrew J Dalley
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Mariska Miranda
- Personalized Medicine Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Caroline Atkinson
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Simote T Foliaki
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, Victoria, Australia
| | - Kaltin Ferguson
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Colleen Niland
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Cameron N Johnstone
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
| | - Victoria Lewis
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, Victoria, Australia
| | - Steven J Collins
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, Victoria, Australia
| | - Sunil R Lakhani
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia.,Pathology Queensland, The Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Fares Al-Ejeh
- Personalized Medicine Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Andreas Möller
- Tumor Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| |
Collapse
|
15
|
Liu YR, Ortiz-Bonilla CJ, Lee YF. Extracellular Vesicles in Bladder Cancer: Biomarkers and Beyond. Int J Mol Sci 2018; 19:E2822. [PMID: 30231589 PMCID: PMC6165150 DOI: 10.3390/ijms19092822] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/12/2018] [Accepted: 09/15/2018] [Indexed: 12/14/2022] Open
Abstract
Tumor-derived extracellular vesicles (TEVs) are membrane-bound, nanosized vesicles released by cancer cells and taken up by cells in the tumor microenvironment to modulate the molecular makeup and behavior of recipient cells. In this report, we summarize the pivotal roles of TEVs involved in bladder cancer (BC) development, progression and treatment resistance through transferring their bioactive cargos, including proteins and nucleic acids. We also report on the molecular profiling of TEV cargos derived from urine and blood of BC patients as non-invasive disease biomarkers. The current hurdles in EV research and plausible solutions are discussed.
Collapse
Affiliation(s)
- Yu-Ru Liu
- Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Carlos J Ortiz-Bonilla
- Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, USA.
- Department of Pathology and Lab Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Yi-Fen Lee
- Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, USA.
- Department of Pathology and Lab Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
16
|
Rilla K, Siiskonen H, Tammi M, Tammi R. Hyaluronan-coated extracellular vesicles--a novel link between hyaluronan and cancer. Adv Cancer Res 2015; 123:121-48. [PMID: 25081528 DOI: 10.1016/b978-0-12-800092-2.00005-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The synthesis of hyaluronan (HA) on the plasma membrane is a unique and still partly mysterious way of macromolecular biosynthesis. HA forms pericellular coats around many cell types and accumulates in the extracellular matrix (ECM) of growing and renewing tissues. It is secreted to high concentrations in body fluids with antifriction properties like pleural, peritoneal, and synovial fluids, but is also detectable in plasma, saliva, and urine. In pathological states, like cancer and inflammation, the amount of HA is increased around cells, in the ECM, and in the body fluids. HA is an indicator of poor prognosis for cancer patients and creates a favorable environment for cellular growth and motility. The recent finding that HA-coated extracellular vesicles act both as a product of HA synthase activity and as special vehicles for HA, and perhaps carry signals important for malignant growth, provides a novel link between HA and cancer. HA could be carried on the surface of these vesicles in tissues and body fluids, creating beneficial environments by itself, or by associated molecules, for the invasion and metastasis of cancer cells. The HA-coated plasma membrane protrusions and vesicles shed from them are potential biomarkers in cancer and other HA-associated disease states.
Collapse
Affiliation(s)
- Kirsi Rilla
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
| | - Hanna Siiskonen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland; Department of Dermatology, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| | - Markku Tammi
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Raija Tammi
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
17
|
Diagnostic and Prognostic Potential of Extracellular Vesicles in Peripheral Blood. Clin Ther 2014; 36:830-46. [DOI: 10.1016/j.clinthera.2014.05.008] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/15/2014] [Accepted: 05/15/2014] [Indexed: 12/21/2022]
|
18
|
Oberemkoм AV. EXTRACELLULAR VESICLES: CLASSIFICATION, FUNCTIONS AND CLINICAL RELEVANCE. BIOTECHNOLOGIA ACTA 2014. [DOI: 10.15407/biotech7.06.102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|