1
|
Wei X, He Y, Yu Y, Tang S, Liu R, Guo J, Jiang Q, Zhi X, Wang X, Meng D. The Multifaceted Roles of BACH1 in Disease: Implications for Biological Functions and Therapeutic Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412850. [PMID: 39887888 PMCID: PMC11905017 DOI: 10.1002/advs.202412850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/22/2024] [Indexed: 02/01/2025]
Abstract
BTB domain and CNC homolog 1 (BACH1) belongs to the family of basic leucine zipper proteins and is expressed in most mammalian tissues. It can regulate its own expression and play a role in transcriptionally activating or inhibiting downstream target genes. It has a crucial role in various biological processes, such as oxidative stress, cell cycle, heme homeostasis, and immune regulation. Recent research highlights BACH1's significant regulatory roles in a series of conditions, including stem cell pluripotency maintenance and differentiation, growth, senescence, and apoptosis. BACH1 is closely associated with cardiovascular diseases and contributes to angiogenesis, atherosclerosis, restenosis, pathological cardiac hypertrophy, myocardial infarction, and ischemia/reperfusion (I/R) injury. BACH1 promotes tumor cell proliferation and metastasis by altering tumor metabolism and the epithelial-mesenchymal transition phenotype. Moreover, BACH1 appears to show an adverse role in diseases such as neurodegenerative diseases, gastrointestinal disorders, leukemia, pulmonary fibrosis, and skin diseases. Inhibiting BACH1 may be beneficial for treating these diseases. This review summarizes the role of BACH1 and its regulatory mechanism in different cell types and diseases, proposing that precise targeted intervention of BACH1 may provide new strategies for human disease prevention and treatment.
Collapse
Affiliation(s)
- Xiangxiang Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Zhongshan Hospital Immunotherapy Translational Research Center, Fudan University, Shanghai, 200032, China
| | - Yunquan He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Zhongshan Hospital Immunotherapy Translational Research Center, Fudan University, Shanghai, 200032, China
| | - Yueyang Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Zhongshan Hospital Immunotherapy Translational Research Center, Fudan University, Shanghai, 200032, China
| | - Sichong Tang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Zhongshan Hospital Immunotherapy Translational Research Center, Fudan University, Shanghai, 200032, China
| | - Ruiwen Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Zhongshan Hospital Immunotherapy Translational Research Center, Fudan University, Shanghai, 200032, China
| | - Jieyu Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Zhongshan Hospital Immunotherapy Translational Research Center, Fudan University, Shanghai, 200032, China
| | - Qingjun Jiang
- Department of Vascular & Endovascular Surgery, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Xiuling Zhi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Zhongshan Hospital Immunotherapy Translational Research Center, Fudan University, Shanghai, 200032, China
| | - Xinhong Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Zhongshan Hospital Immunotherapy Translational Research Center, Fudan University, Shanghai, 200032, China
| | - Dan Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Zhongshan Hospital Immunotherapy Translational Research Center, Fudan University, Shanghai, 200032, China
| |
Collapse
|
2
|
Farhadi A, Poursheikhani A, Heidari MF, Rajaeinejad M, Mosaed R, Faridfar A, Khosroshahi MA, Aslani P, Khalil-Moghaddam S, Behroozi J. Effects of miR-330 restoration on pancreatic cancer cells oncogenesis. Pathol Res Pract 2024; 258:155337. [PMID: 38735276 DOI: 10.1016/j.prp.2024.155337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/15/2024] [Accepted: 05/01/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Inappropriate expressions of various miRNAs have reported in different human malignancies. Evidence suggested that miR-330 may play as both onco-miR and/or tumor suppressor-miR in different cancers. In the present study, we evaluated effects of miR-330 on proliferation and migration of pancreatic cancer (PC) cells as well as underlying molecular mechanisms. DESIGN The expression of miR-330 was evaluated in clinical tissue samples of patients with PC. Transfection of the PC cells (PANC-1) by miR-330 was conducted by pCMV vector. The cancer-related genes expression was investigated in mRNA and protein level following transfection of the PC cells. Furthermore, the PC cells viability, invasion, migration, mitochondrial membrane potential, apoptosis, autophagy, and cell cycle profile were investigated after transfection by miR-330. RESULTS The results indicated that expression of miR-330 downregulated in patients with PC. Stable increase of miR-330 expression after transfection in PC cells reduces viability, mitochondrial membrane potential, invasion, and migration. Further assessments demonstrated that upregulation of miR-330 increases apoptosis and autophagy percentage in the PC cells. Moreover, a cell cycle arrest was observed in G1, Sub-G1, and S phases following transfection of the PC cells. These findings can be explained by modified mRNA and protein expression of apoptosis- and metastasis-related genes. CONCLUSION Our study suggested that miR-330 acts as a tumor suppressor in PC cells, and revealed that upregulation of miR-330 may provide an effective therapeutic approach for overcoming progression and metastasis in patients with PC.
Collapse
Affiliation(s)
- Arezoo Farhadi
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Arash Poursheikhani
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran; Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Foad Heidari
- Department of Medical Laboratory Sciences, School of Allied Health Medicine, AJA University of Medical Sciences, Tehran, Iran; Cancer Epidemiology Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Mohsen Rajaeinejad
- Cancer Epidemiology Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Reza Mosaed
- Department of Clinical Pharmacy, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Ali Faridfar
- Cancer Epidemiology Research Center, AJA University of Medical Sciences, Tehran, Iran
| | | | - Peyman Aslani
- Department of Parasitology and Mycology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | | | - Javad Behroozi
- Cancer Epidemiology Research Center, AJA University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
3
|
Shao Y, Yang Z, Miao W, Yu X, Pu Y. Circ_0005015 upregulates BACH1 to promote aggressive behaviors in glioblastoma by sponging microRNA-382-5p. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4139-4151. [PMID: 38032493 DOI: 10.1007/s00210-023-02868-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
To investigate the potential role and molecular mechanism of circ_0005015 in GBM progression. Circ_0005015, microRNA-382-5p (miR-382-5p), and BTB domain and CNC homolog 1 (BACH1) levels were measured by real-time quantitative polymerase chain reaction (RT-qPCR). Cell proliferation was determined by MTT, colony formation, and EdU assays. Cell apoptosis was analyzed using flow cytometry. Cell migration and invasion were assessed using wound healing and transwell assays. Glucose accumulation and lactate levels were examined by the corresponding kit. RNA pull-down and dual-luciferase reporter assays were performed to confirm the interaction between miR-382-5p and circ_0005015 or BACH1. Protein levels of MMP9, PCNA, and BACH1 were examined using western blot assay. Role of circ_0005015 on tumor growth in vivo was analyzed using a xenograft tumor model. Circ_0005015 content was up-regulated in GBM patients and cells, its knockdown restrained GBM cell proliferation, migration, invasion, glycolysis, and triggered apoptosis. Mechanistically, we found that circ_0005015 could directly interact with miR-382-5p and serve as a miRNA sponge to regulate BACH1 expression. In addition, circ_0005015 knockdown might repress tumor growth in vivo. Circ_0005015 boosted GBM progression via binding to miR-382-5p to up-regulate BACH1, which may offer new effective targets for GBM treatment.
Collapse
Affiliation(s)
- Yun Shao
- Department of Neurosurgery, the Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi, 214023, China
- Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Zhengxiang Yang
- Department of Neurosurgery, the Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi, 214023, China
| | - Weifeng Miao
- Department of Neurosurgery, the Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi, 214023, China
| | - Xiangrong Yu
- Department of Neurosurgery, the Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi, 214023, China
| | - Yi Pu
- Department of Neurosurgery, the Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi, 214023, China.
| |
Collapse
|
4
|
Liu Y, Wang Y, Yu Z, Wang Z. Impacts of TP53TG1 in cancer-associated fibroblasts-derived exosomes on epithelial-mesenchymal transition capacity of colorectal carcinoma cells by targeting miR-330-3p. Heliyon 2024; 10:e30301. [PMID: 38707274 PMCID: PMC11068805 DOI: 10.1016/j.heliyon.2024.e30301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024] Open
Abstract
Objective This research aims at clarifying the action and mechanisms of action of TP53TG1 in cancer-associated fibroblasts (CAF)-derived exosomes (EXs) on colorectal carcinoma (CRC) cells. Methods CAF and CAF-EXs isolated from CRC tissues were incubated with CRC SW480 cells to determine alterations in biological behavior, epithelial-mesenchymal transition (EMT) capacity, and TP53TG1 and miR-330-3p expression. In addition, a dual luciferase reporter (DLR) assay was conducted to verify the connection between TP53TG1 and miR-330-3p, and the impacts of the two genes on CRC cells were analyzed. Results CRC-CAF-EXs extracted from CRC tissues were successfully identified and were able to promote SW480 multiplication, invasiveness, migration, and EMT ability while inhibiting apoptosis (P < 0.05). In addition, TP53TG1 increased and miR-330-3p decreased in SW480 when cultured with CRC-CAF-EXs (P < 0.05). The DLR assay identified notably reduced fluorescence activity of TP53TG1-WT after transfection with miR-330-3p-mimics (P < 0.05). Furthermore, SW480 cell multiplication, invasiveness and migration were found to be enhanced and the apoptosis decreased after up-regulating TP53TG1, while suppressing TP53TG1 and up-regulating miR-330-3p contributed to quite the opposite effect (P < 0.05). Moreover, by elevating TP53TG1 and miR-330-3p simultaneously, we found a cell activity similar to the NC group (P > 0.05). Conclusion By targeting miR-330-3p, TP53TG1 in CRC-CAF-EXs can enhance CRC cell activity and EMT capacity and inhibit apoptosis.
Collapse
Affiliation(s)
- Yawei Liu
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Youwei Wang
- Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Zhijuan Yu
- Hubei University of Science and Technology, Xianning, Hubei, 437000, China
| | - Ziheng Wang
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
- Suzhou Industrial Park Monash Research Institute of Science and Technology, Suzhou, Jiangsu, 215000, China
- The School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Mustafov D, Siddiqui SS, Klena L, Karteris E, Braoudaki M. SV2B/miR-34a/miR-128 axis as prognostic biomarker in glioblastoma multiforme. Sci Rep 2024; 14:6647. [PMID: 38503772 PMCID: PMC10951322 DOI: 10.1038/s41598-024-55917-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/28/2024] [Indexed: 03/21/2024] Open
Abstract
Glioblastoma (GBM) is a heterogenous primary brain tumour that is characterised with unfavourable patient prognosis. The identification of biomarkers for managing brain malignancies is of utmost importance. MicroRNAs (miRNAs) are small, non-coding RNAs implicated in cancer development. This study aimed to assess the prognostic significance of miRNAs and their gene targets in GBM. An in silico approach was employed to investigate the differentially expressed miRNAs in GBM. The most dysregulated miRNAs were identified and analysed via Sfold in association with their gene target. The candidate gene was studied via multi-omics approaches, followed by in vitro and in vivo experiments. The in silico analyses revealed that miR-128a and miR-34a were significantly downregulated within GBM. Both miRNAs displayed high binding affinity to the synaptic vesicle glycoprotein 2B (SV2B) 3' untranslated region (3'UTR). SV2B exhibited upregulation within brain regions with high synaptic activity. Significantly higher SV2B levels were observed in high grade brain malignancies in comparison to their normal counterparts. SV2B expression was observed across the cytoplasm of GBM cells. Our findings underscored the downregulated expression patterns of miR-128a and miR-34a, alongside the upregulation of SV2B in GBM suggesting the importance of the SV2B/miR-34a/miR-128 axis as a potential prognostic approach in GBM management.
Collapse
Affiliation(s)
- D Mustafov
- School of Life and Medical Sciences, University of Hertfordshire, College Lane Campus, Hatfield, AL10 9AB, UK
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - S S Siddiqui
- School of Life and Medical Sciences, University of Hertfordshire, College Lane Campus, Hatfield, AL10 9AB, UK
| | - L Klena
- School of Life and Medical Sciences, University of Hertfordshire, College Lane Campus, Hatfield, AL10 9AB, UK
| | - E Karteris
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - M Braoudaki
- School of Life and Medical Sciences, University of Hertfordshire, College Lane Campus, Hatfield, AL10 9AB, UK.
| |
Collapse
|
6
|
Cui J, Wang H, Liu S, Zhao Y. New Insights into Roles of IL-7R Gene as a Therapeutic Target Following Intracerebral Hemorrhage. J Inflamm Res 2024; 17:399-415. [PMID: 38260810 PMCID: PMC10802176 DOI: 10.2147/jir.s438205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Background Spontaneous intracerebral hemorrhage (ICH) is a subtype of stroke leading to high rates of morbidity and mortality in adults. Recent studies showed that immune and inflammatory responses might play essential roles in secondary brain injury. The purpose of this article was to provide a reference for further therapeutic strategies for ICH patients. Methods GSE206971 and GSE216607 datasets from the gene expression omnibus (GEO) database were used to screen the highly immune-related differentally expressed genes (IRDEGs). We used the CIBERSORT algorithm to assess the level of immune signatures infiltration and got the possible function of IRDEGs which was analyzed through Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Protein-protein interaction (PPI) networks and six hub genes were identified in the Cytoscape plug-in. GSVA algorithm was performed to evaluate the potential pathways of six hub genes in ICH samples. The expression level of IL-7R chosen from six hub genes was further validated by Western blotting. The cell models of ICH were established for the research of IL-7/IL-7R signaling way. Results A total of six hub genes (ITGAX, ITGAM, CCR2, CD28, SELL, and IL-7R) were identified. IL-7R was highly expressed in the mice ICH group, as shown by immunoblotting. Next, we constructed ICH cell models in RAW264.7 cells and BV2 cells. After treatment with IL-7, iNOS expression (M1 marker) was greatly inhibited while Arg-1(M2 marker) was enhanced, and it might function via the JAK3/STAT5 signaling pathway. Conclusion The hypothesis is proposed that the IL-7/IL-7R signaling pathway might regulate the inflammatory process following ICH by regulating microglia polarization. Our study is limited and requires more in-depth experimental confirmation.
Collapse
Affiliation(s)
- Jie Cui
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
- NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, People’s Republic of China
| | - Hongbin Wang
- Department of Emergency, Jiangyin Hospital of Traditional Chinese Medicine, Wuxi, 214400, People’s Republic of China
- Department of Intensive Care Unit, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
| | - Shiyao Liu
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
- NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, People’s Republic of China
| | - Yiming Zhao
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
- NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, People’s Republic of China
| |
Collapse
|
7
|
Beylerli O, Encarnacion Ramirez MDJ, Shumadalova A, Ilyasova T, Zemlyanskiy M, Beilerli A, Montemurro N. Cell-Free miRNAs as Non-Invasive Biomarkers in Brain Tumors. Diagnostics (Basel) 2023; 13:2888. [PMID: 37761255 PMCID: PMC10529040 DOI: 10.3390/diagnostics13182888] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Diagnosing brain tumors, especially malignant variants, such as glioblastoma, medulloblastoma, or brain metastasis, presents a considerable obstacle, while current treatment methods often yield unsatisfactory results. The monitoring of individuals with brain neoplasms becomes burdensome due to the intricate tumor nature and associated risks of tissue biopsies, compounded by the restricted accuracy and sensitivity of presently available non-invasive diagnostic techniques. The uncertainties surrounding diagnosis and the tumor's reaction to treatment can lead to delays in critical determinations that profoundly influence the prognosis of the disease. Consequently, there exists a pressing necessity to formulate and validate dependable, minimally invasive biomarkers that can effectively diagnose and predict brain tumors. Cell-free microRNAs (miRNAs), which remain stable and detectable in human bodily fluids, such as blood and cerebrospinal fluid (CSF), have emerged as potential indicators for a range of ailments, brain tumors included. Numerous investigations have showcased the viability of profiling cell-free miRNA expression in both CSF and blood samples obtained from patients with brain tumors. Distinct miRNAs demonstrate varying expression patterns within CSF and blood. While cell-free microRNAs in the blood exhibit potential in diagnosing, prognosticating, and monitoring treatment across diverse tumor types, they fall short in effectively diagnosing brain tumors. Conversely, the cell-free miRNA profile within CSF demonstrates high potential in delivering precise and specific evaluations of brain tumors.
Collapse
Affiliation(s)
- Ozal Beylerli
- Bashkir State Medical University, 450008 Ufa, Russia
| | | | | | | | - Mikhail Zemlyanskiy
- Department of Neurosurgery, Podolsk Regional Hospital, 141110 Moscow, Russia
| | - Aferin Beilerli
- Department of Obstetrics and Gynecology, Tyumen State Medical University, 625000 Tyumen, Russia
| | - Nicola Montemurro
- Department of Neurosurgery, Azienda Ospedaliero Universitaria Pisana (AOUP), University of Pisa, 56100 Pisa, Italy
| |
Collapse
|
8
|
Zhao S, Xu F, Ji Y, Wang Y, Wei M, Zhang L. Circular RNA circ-CD44 regulates chemotherapy resistance by targeting the miR-330-5p/ABCC1 axis in colorectal cancer cells. Histol Histopathol 2023; 38:209-221. [PMID: 36106650 DOI: 10.14670/hh-18-516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is a common malignant tumor worldwide, ranking fourth for incidence. Recently, circular RNAs (circRNAs) have been demonstrated to play a key role in chemotherapy resistance to CRC treatment. Therefore, the role of circ-CD44 is investigated in CRC. METHODS The expression levels of circ-CD44, miR-330-5p, and ATP binding cassette subfamily C member 1 (ABCC1) were quantified by real-time quantitative polymerase chain reaction (RT-qPCR) assay. The sensitivity of CRC cells to oxaliplatin (OXA) was assessed by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-2H-tetrazol-3-ium bromide (MTT) assay. Colony-forming experiment was performed to measure the colony-forming ability of CRC cells. The apoptosis, migration, and invasion of CRC cells were determined by flow cytometry and transwell assays. A xenograft experiment was established to clarify the functional role of circ-CD44 silencing in vivo. The interactional relationship among circ-CD44, miR-330-5p, and ABCC1 was confirmed by dual-luciferase reporter and RNA immunoprecipitation assays. The protein expression of ABCC1 was quantified by western blot assay. RESULTS Circ-CD44 was obviously upregulated in OXA-resistant colorectal cancer tissues and cells. Loss-of-function experiments revealed that inhibition of circ-CD44 suppressed proliferation, migration, and invasion while it increased OXA sensitivity and apoptosis in OXA-resistant colorectal cancer cells, which was overturned by suppression of miR-330-5p; besides, silencing of circ-CD44 also slowed the tumor growth in vivo. Additionally, overexpression of miR-330-5p inhibited chemotherapy resistance, proliferation, migration, and invasion while it induced apoptosis by targeting ABCC1. CONCLUSION Mechanistically, circ-CD44 functioned as a miRNA sponge for miR-330-5p to upregulate the expression of ABCC1 and regulate chemotherapy resistance in CRC cells.
Collapse
Affiliation(s)
- Shuai Zhao
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Fei Xu
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Yiding Ji
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Yuanyuan Wang
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Ming Wei
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China.
| | - Like Zhang
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China.
| |
Collapse
|
9
|
Papale M, Netti GS, Stallone G, Ranieri E. Understanding Mechanisms of RKIP Regulation to Improve the Development of New Diagnostic Tools. Cancers (Basel) 2022; 14:cancers14205070. [PMID: 36291854 PMCID: PMC9600137 DOI: 10.3390/cancers14205070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Raf Kinase Inhibitor protein is a protein that governs multiple intracellular signalling involved primarily in the progression of tumours and the development of metastases. In this review, we discussed the main mechanisms that regulate the expression and activity of RKIP with the aim of identifying the link between the transcriptional, post-transcriptional and post-translational events in different tumour settings. We also tried to analyse the studies that have measured the levels of RKIP in biological fluids in order to highlight the possible advantages and potential of RKIP assessment to obtain an accurate diagnosis and prognosis of various tumours. Abstract One of the most dangerous aspects of cancer cell biology is their ability to grow, spread and form metastases in the main vital organs. The identification of dysregulated markers that drive intracellular signalling involved in the malignant transformation of neoplastic cells and the understanding of the mechanisms that regulate these processes is undoubtedly a key objective for the development of new and more targeted therapies. RAF-kinase inhibitor protein (RKIP) is an endogenous tumour suppressor protein that affects tumour cell survival, proliferation, and metastasis. RKIP might serve as an early tumour biomarker since it exhibits significantly different expression levels in various cancer histologies and it is often lost during metastatic progression. In this review, we discuss the specific impact of transcriptional, post-transcriptional and post-translational regulation of expression and activation/inhibition of RKIP and focus on those tumours for which experimental data on all these factors are available. In this way, we could select how these processes cooperate with RKIP expression in (1) Lung cancer; (2) Colon cancer, (3) Breast cancer; (4) myeloid neoplasm and Multiple Myeloma, (5) Melanoma and (6) clear cell Renal Cell Carcinoma. Furthermore, since RKIP seems to be a key marker of the development of several tumours and it may be assessed easily in various biological fluids, here we discuss the potential role of RKIP dosing in more accessible biological matrices other than tissues. Moreover, this objective may intercept the still unmet need to identify new and more accurate markers for the early diagnosis and prognosis of many tumours.
Collapse
Affiliation(s)
- Massimo Papale
- Unit of Clinical Pathology, Department of Laboratory Diagnostics, University Hospital “Policlinico Foggia”, 71122 Foggia, Italy
- Correspondence:
| | - Giuseppe Stefano Netti
- Unit of Clinical Pathology, Center for Molecular Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Unit of Nephology, Dialysis and Transplantation, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Giovanni Stallone
- Unit of Nephology, Dialysis and Transplantation, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Elena Ranieri
- Unit of Clinical Pathology, Center for Molecular Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Unit of Nephology, Dialysis and Transplantation, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
10
|
Tang M, Wang F, Wang K, Jiang Y, Wang Q. Circ_0058063 promotes progression of thyroid cancer by sponging miR-330-3p/SDC4 axis. Anticancer Drugs 2022; 33:642-651. [PMID: 35324533 DOI: 10.1097/cad.0000000000001307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Circular RNA takes a crucial part in carcinogenesis. Circ_0058063 has been found to act as an oncogene in esophageal cancer and bladder cancer, but its role in thyroid cancer (TC) is still under investigation. Therefore, we carried out a study to understand its role in TC and its association with miR-330-3p. The circ_0058063 and miR-330-3p in TC tissues and cells were quantified by quantitative reverse transcription PCR, and cell counting kit-8 and scratch adhesion test were conducted for evaluation of cell proliferation and migration. In addition, a dual luciferase reporter assay and RNA immunoprecipitation assay were conducted for interaction analysis between circ_0058063 and miR-330-3p. Circ_0058063 was upregulated in TC tissues and cells, but miR-330-3p expression showed an opposite trend. Both silencing circ_0058063 and upregulating miR-330-3p can suppress the proliferation and migration of TC cells, upregulate Bax, and downregulate Bcl-2. In addition, circ_0058063 is able to target miR-330-3p that is also able to target syndecan 4 (SDC4). circ_0058063 can act as a carcinogen in cases with TC via the miR-330-3p/SDC4 axis.
Collapse
Affiliation(s)
| | - Fengbo Wang
- Rehabilitation Medicine, Clinical Medical College of Chengdu Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Ke Wang
- Rehabilitation Medicine, Clinical Medical College of Chengdu Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yuan Jiang
- Rehabilitation Medicine, Clinical Medical College of Chengdu Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Qiongfen Wang
- Rehabilitation Medicine, Clinical Medical College of Chengdu Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
11
|
Mazloum-Ravasan S, Mohammadi M, Hiagh EM, Ebrahimi A, Hong JH, Hamishehkar H, Kim KH. Nano-liposomal zein hydrolysate for improved apoptotic activity and therapeutic index in lung cancer treatment. Drug Deliv 2022; 29:1049-1059. [PMID: 35363101 PMCID: PMC8979517 DOI: 10.1080/10717544.2022.2057618] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Lung cancer is one of the most common cancers in the world with a high mortality rate. Zein is a protein compound whose protein isolate is not useful and whose protein hydrolysis produces biological activity. By encapsulating this bioactive compound inside the nanoparticles (NPs), it causes itself to reach the tumor site and destroy it rapidly. In this study, the effects of zein hydrolysate (ZH) and nano-liposomal ZH (N-ZH) were investigated on the human A549 cell line. Western blotting and cell cycle analyses showed that ZH and N-ZH caused cytotoxicity. They induced apoptosis via cell cycle arrest at the G0 phase, as well as significant increases in pro-apoptotic genes, such as Bax, caspase-3, -8, -9, and p53, accompanied with significant decreases in the anti-apoptotic marker Bcl-2. Based on the results, the cytotoxic and anticancer effects of N-ZH were higher than those of free ZH. In conclusion, liposomes improved the performance of ZH and dramatically reduced the IC50 value of ZH. These findings provided the experimental evidence that N-ZH with favorable anticancer activity can be used as a therapeutic agent and strategy for lung cancer treatment in future clinical trials.
Collapse
Affiliation(s)
| | - Maryam Mohammadi
- Department of Food Science and Engineering, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran.,Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Madadi Hiagh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran.,Pediatrics III, University Hospital Essen, Essen, Germany
| | - Alireza Ebrahimi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Joo-Hyun Hong
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
12
|
Guo Q, Dong L, Zhang C, Liu D, Peng P. MicroRNA-363-3p, negatively regulated by long non-coding RNA small nucleolar RNA host gene 5, inhibits tumor progression by targeting Aurora kinase A in colorectal cancer. Bioengineered 2022; 13:5357-5372. [PMID: 35166647 PMCID: PMC8973704 DOI: 10.1080/21655979.2021.2018972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
MicroRNA-363-3p (miR-363-3p), reportedly, exhibits a tumor-suppressive role in human malignancies. Herein, our research was designed to further explain the functions and molecular mechanisms of miR-363-3p in the progression of colorectal cancer (CRC). With in vitro models, this study found that miR-363-3p was markedly under-expressed in CRC tissues and cells, and its overexpression suppressed the viability, migration, and invasion of CRC cells, and promoted cell apoptosis, whereas inhibiting miR-363-3p expression exhibited an opposite role. Additionally, aurora kinase A (AURKA), capable of counteracting the impacts of miR-363-3p on malignant biological behaviors of CRC cells, was identified as a direct target of miR-363-3p. Besides, miR-363-3p was sponged by long non-coding RNA small nucleolar RNA host gene 5 (SNHG5), which suppressed miR-363-3p expression. This research shows that SNHG5/miR-363-3p/AURKA axis partakes in CRC progression.
Collapse
Affiliation(s)
- Qiuyun Guo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, China
| | - Lujia Dong
- Department of Gastrointestinal Surgery, Xi'an No. 3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi Province, China
| | - Chenxiao Zhang
- Department of Gastrointestinal Surgery, Xi'an No. 3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi Province, China
| | - Dechun Liu
- Department of Gastrointestinal Surgery, Xi'an No. 3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi Province, China
| | - Ping Peng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, China
| |
Collapse
|
13
|
Basiri P, Afshar S, Amini R, Soltanian AR, Saidijam M, Mahdavinezhad A. Evaluation of miR-330-3p and BMI1 Expression in Colorectal Cancer Patients, Healthy Adjacent Tissues, and Polypoid Adenomatous Lesions. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2022; 11:334-345. [PMID: 37727645 PMCID: PMC10506674 DOI: 10.22088/ijmcm.bums.11.4.334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 05/17/2023] [Accepted: 07/15/2023] [Indexed: 09/21/2023]
Abstract
MicroRNAs (miRNAs) have emerged as essential gene expression regulators associated with human diseases such as colorectal cancer (CRC). The purpose of this study was to evaluate the expression of miR-330-3p and its target gene BMI1 in tissue samples of patients with CRC, polyp, and healthy adjacent tissue samples and their association with clinicopathological and demographic factors such as age, tumor stage, grade, and lymph node invasion of the tumor. Following the extraction of total RNA from approximately 50 mg of colon and rectum tissue of 82 patients with CRC, 13 polypoid lesions, and 26 marginal healthy tissues using RiboEx reagent, cDNA synthesis was performed, and then quantitative real-time PCR was used to detect the expression levels of miR-330-3p and BMI1. Alterations in the gene expression were assessed using the 2(-∆∆ CT) method. The expression of miR-330-3p in all of the CRC samples was significantly lower than in adjacent healthy tissues and polyp (P<0.001). BMI1 was up-regulated in 97.9% of CRC tissue compared to healthy adjacent tissues and polyps (P<0.001). A negative reverse correlation between the miR-330-3p and BMI1 gene was observed in the CRC samples (r= -0.882, P<0.001). Down-regulation of miR-330-3p and BMI1 overexpression strongly correlates with higher tumor stage and lymph node invasion. The AUC for miR-330-3p and BMI1expression was 0.982 (sensitivity, 98.5%; specificity, 78.8%), and 0.971 (sensitivity, 97.6%; specificity, 84.6%) (P<0.001), respectively. Our results indicated that miR-330-3p and BMI1 expression probably could be considered potential diagnostic or prognostic biomarkers for CRC patient.
Collapse
Affiliation(s)
- Parviz Basiri
- School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Saeid Afshar
- Research Center for Molecular Medicine, Department of Molecular Medicine and Genetics, Medical School, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Razieh Amini
- Research Center for Molecular Medicine, Department of Molecular Medicine and Genetics, Medical School, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Ali Reza Soltanian
- Modeling of Non-Communicable Diseases Research Center, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Department of Molecular Medicine and Genetics, Medical School, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Ali Mahdavinezhad
- Research Center for Molecular Medicine, Department of Molecular Medicine and Genetics, Medical School, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
14
|
Circ_0011385 knockdown inhibits cell proliferation, migration and invasion, whereas promotes cell apoptosis by regulating miR-330-3p/MYO6 axis in colorectal cancer. Biomed J 2022; 46:110-121. [PMID: 35091088 PMCID: PMC10104957 DOI: 10.1016/j.bj.2022.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 11/23/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a malignant tumor. Recent studies have showed circular RNA (circRNA) participates in the development of CRC. The study was designed to reveal the role of circ_0011385 in CRC progression and underneath mechanism. METHODS The expression circ_0011385, microRNA-330-3p (miR-330-3p) and myosin VI (MYO6) mRNA were determined by quantitative real-time polymerase chain reaction. Protein expression was detected by Western blot assay. Cell proliferation was investigated by 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT), cell colony formation and flow cytometry assays. Cell apoptosis was demonstrated by flow cytometry analysis. Cell migration and invasion were evaluated by wound-healing assay and transwell invasion assay, respectively. The binding sites between miR-330-3p and circ_0011385 or MYO6 were predicted by CircInteractome or starBase online databases, and identified by dual-luciferase reporter and RNA immunoprecipitation assays. RESULTS Circ_0011385 and MYO6 expression were dramatically upregulated, while miR-330-3p expression was downregulated in CRC tissues or cells compared with control groups. Circ_0011385 expression was associated with tumor size, tumor-node-metastasis stage (TNM) stage and lymph node metastasis of CRC patients. Circ_0011385 silencing or MYO6 absence repressed cell proliferation, migration and invasion, whereas induced cell apoptosis in CRC. Additionally, miR-330-3p inhibitor or MYO6 overexpression attenuated the repressive impacts of circ_0011385 silencing on CRC process. Circ_0011385 was associated with miR-330-3p, and miR-330-3p targeted MYO6. Circ_0011385 knockdown inactivated MEK1/2/ERK1/2 signaling pathway by miR-330-3p/MYO6 axis. Furthermore, circ_0011385 knockdown suppressed tumor growth in vivo. CONCLUSION Circ_0011385 regulated CRC process by miR-330-3p/MYO6 axis through MEK1/2/ERK1/2 signaling pathway, providing a novel therapeutic target for CRC.
Collapse
|
15
|
Jafarzadeh A, Paknahad MH, Nemati M, Jafarzadeh S, Mahjoubin-Tehran M, Rajabi A, Shojaie L, Mirzaei H. Dysregulated expression and functions of microRNA-330 in cancers: A potential therapeutic target. Biomed Pharmacother 2021; 146:112600. [PMID: 34968919 DOI: 10.1016/j.biopha.2021.112600] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 12/21/2022] Open
Abstract
As small non-coding RNAs, MicroRNAs (miRNAs) bind to the 3' untranslated region (3'-UTR) of mRNA targets to control gene transcription and translation. The gene of miR-330 has two miRNA products, including miR-330-3p and miR-330-5p, which exhibit anti-tumorigenesis and/or pro-tumorigenesis effects in many kinds of malignancies. In cancers, miR-330-3p and miR-330-5p aberrant expression can influence many malignancy-related processes such as cell proliferation, migration, invasion, apoptosis and epithelial-mesenchymal transition, as well as angiogenesis and responsiveness to treatment. In many cancer types (such as lung, prostate, gastric, breast, bladder, ovarian, colorectal, and pancreatic cancer, and osteosarcoma), miR-330-5p acts as an anti-tumor agent. These cancers have low levels of miR-330-5p that leads to the upregulation of the tumor promotor target genes leading to tumor progression. Here, overexpression of miR-330-5p using miRNA inducers can prevent tumor development. Dual roles of miR-330-5p have been also indicated in the thyroid, liver and cervical cancers. Moreover, miR-330-3p exhibits pro-tumorigenesis effects in lung cancer, pancreatic cancer, osteosarcoma, bladder cancer, and cervical cancer. Here, downregulation of miR-330-3p using miRNA inhibitors can prevent tumor development. Demonstrated in breast and liver cancers, miR-330-3p also has dual roles. Importantly, the activities of miR-330-3p and/or miR-330-5p are regulated by upstream regulators long non-coding RNAs (lncRNAs), including circular and linear lncRNAs. This review comprehensively explained miR-330-3p and miR-330-5p role in development of cancers, while highlighting their downstream target genes and upstream regulators as well as possible therapeutic strategies.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Mohammad Hossein Paknahad
- Department of Cardiology, Chamran Cardiovascular Research Education Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Nemati
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Haematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Jafarzadeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Layla Shojaie
- Research center for Liver diseases, Keck school of medicine, Department of Medicine, University of Southern California, Los angeles, CA, USA.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
16
|
Jiang P, Li F, Liu Z, Hao S, Gao J, Li S. BTB and CNC homology 1 (Bach1) induces lung cancer stem cell phenotypes by stimulating CD44 expression. Respir Res 2021; 22:320. [PMID: 34949193 PMCID: PMC8697453 DOI: 10.1186/s12931-021-01918-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Growing evidence suggests that cancer stem cells (CSCs) are responsible for cancer initiation in tumors. Bach1 has been identified to contribute to several tumor progression, including lung cancer. The role of Bach1 in CSCs remains poorly known. Therefore, the function of Bach1 on lung CSCs was focused currently. METHODS The expression of Bach1, CD133, CD44, Sox2, Nanog and Oct4 mRNA was assessed using Real-Time Quantitative Reverse Transcription PCR (RT-qPCR). Protein expression of Bach1, CD133, CD44, Sox2, Nanog, Oct4, p53, BCL2, BAX, p-p38, p-AKT1, c-Fos and c-Jun protein was analyzed by western blotting. 5-ethynyl-29-deoxyuridine (EdU), colony formation, Flow cytometry analysis and transwell invasion assay were carried out to analyze lung cancer cell proliferation, apoptosis and invasion respectively. Tumor sphere formation assay was utilized to evaluate spheroid capacity. Flow cytometry analysis was carried out to isolate CD133 or CD44 positive lung cancer cells. The relationship between Bach1 and CD44 was verified using ChIP-qPCR and dual-luciferase reporter assay. Xenograft tumor tissues were collected for hematoxylin and eosin (HE) staining and IHC analysis to evaluate histology and Ki-67. RESULTS The ratio of CD44 + CSCs from A549 and SPC-A1 cells were significantly enriched. Tumor growth of CD44 + CSCs was obviously suppressed in vivo compared to CD44- CSCs. Bach1 expression was obviously increased in CD44 + CSCs. Then, via using the in vitro experiment, it was observed that CSCs proliferation and invasion were greatly reduced by the down-regulation of Bach1 while cell apoptosis was triggered by knockdown of Bach1. Loss of Bach1 was able to repress tumor-sphere formation and tumor-initiating CSC markers. A repression of CSCs growth and metastasis of shRNA-Bach1 was confirmed using xenograft models and caudal vein injection. The direct interaction between Bach1 and CD44 was confirmed by ChIP-qPCR and dual-luciferase reporter assay. Furthermore, mitogen-activated protein kinases (MAPK) signaling pathway was selected and we proved the effects of Bach1 on lung CSCs were associated with the activation of the MAPK pathway. As manifested, loss of Bach1 was able to repress p-p38, p-AKT1, c-Fos, c-Jun protein levels in lung CSCs. Inhibition of MAPK signaling remarkably restrained lung CSCs growth and CSCs properties induced by Bach1 overexpression. CONCLUSION In summary, we imply that Bach1 demonstrates great potential for the treatment of lung cancer metastasis and recurrence via activating CD44 and MPAK signaling.
Collapse
Affiliation(s)
- Pan Jiang
- Department of Nutrition, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Fan Li
- Department of Nutrition, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Zilong Liu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Shengyu Hao
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China.
| | - Jian Gao
- Department of Nutrition, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China.
| | - Shanqun Li
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China.
| |
Collapse
|
17
|
Karimi L, Jaberi M, Asadi M, Zarredar H, Zafari V, Bornehdeli S, Niknam S, Kermani TA. Significance of microRNA-330-5p/TYMS Expression Axis in the Pathogenesis of Colorectal Tumorigenesis. J Gastrointest Cancer 2021; 53:965-970. [PMID: 34651293 DOI: 10.1007/s12029-021-00695-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common types of cancer worldwide. A number of dysregulated microRNAs (miRNAs) have been linked to CRC progression and treatment response and are thought to be promising prognostic biomarkers for this cancer. microRNA-330 (miR-330-5p) has been reported to inhibit cell proliferation through suppressing thymidylate synthase (TYMS). In the current study, miR-330-5p, TYMS, and their interactions were investigated to evaluate their therapeutic and diagnostic value for CRC treatment. METHODS The expression levels of miR-330-5p and TYMS were evaluated in silico using TCGA datasets for CRC. Data validation was performed on a set of internal samples (100 pairs of CRC tumor specimens and adjacent non-cancerous samples) utilizing real-time PCR assay. The linkage between clinicopathological parameters and expression levels was also investigated. RESULTS TCGA results indicated that miR-330-5p and TYMS were significantly upregulated and downregulated in the CRC, respectively. Real-time PCR results confirmed that the expression of miR-330-5p was significantly upregulated in tumor tissues relative to marginal tissues (P = 0.0005), whereas TYMS expression was significantly downregulated (P = 0.0001). The transcript level of miR-330-5p was associated with tumor stage and lymph node metastases. CONCLUSION The microRNA-330 inhibited cell proliferation by suppressing thymidylate synthase (TYMS) in colorectal cancer. Therefore, suggesting that they are valuable factors for further studies of alternative treatment and diagnostic methods.
Collapse
Affiliation(s)
- Leila Karimi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Jaberi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Asadi
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Turkey
| | - Habib Zarredar
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Venus Zafari
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soghra Bornehdeli
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saman Niknam
- Department of General Surgery, Sina Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Touraj Asvadi Kermani
- Department of General Surgery, School of Medicine, Imam Reza Hospital, Tabriz University of Medical Sciences, P.O. Box: 5175971583, Tabriz, Iran.
| |
Collapse
|
18
|
MicroRNA-532-5p upregulation protects neurological deficits after ischemic stroke through inhibition of BTB and CNC homology 1. Int Immunopharmacol 2021; 100:108003. [PMID: 34464885 DOI: 10.1016/j.intimp.2021.108003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/23/2021] [Accepted: 07/18/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE MicroRNA (miR)-532-5p has been reported to protect against ischemic stroke (IS), while the underlying mechanism of miR-532-5p targeting BTB and CNC homology 1 (BACH1) in IS remains unknown. Thus, we aim to detect the role of miR-532-5p in IS via targeting BACH1. METHODS Blood samples were collected from IS patients and healthy controls. Rat middle cerebral artery occlusion (MCAO) models were established and intracerebrally injected with altered miR-532-5p or BACH1 plasmid vectors to reveal their roles in neurological function, brain tissue pathology and inflammation in MCAO. Expression of miR-532-5p and BACH1 in patients' blood samples and rat brain tissues was assessed, and the targeting relationship between miR-532-5p and BACH1 was confirmed. RESULTS MiR-532-5p was downregulated and BACH1 was upregulated in IS. BACH1 was targeted by miR-532-5p. Restored miR-532-5p or inhibited BACH1 improved neurological function and inhibited inflammation and apoptosis in MCAO rats. On the contrary, miR-532-5p reduction or BACH1 overexpression had totally opposite effects on MCAO rats. The protective role of miR-532-5p for MCAO rats was reversed by upregulated BACH1. CONCLUSION MiR-532-5p upregulation protects against neurological deficits after IS through inhibition of BACH1.
Collapse
|
19
|
Huang B, Cui DJ, Yan F, Yang LC, Zhang MM, Zhao X. Circ_0087862 promotes the progression of colorectal cancer by sponging miR-142-3p and up-regulating BACH1 expression. Kaohsiung J Med Sci 2021; 37:1048-1057. [PMID: 34390174 DOI: 10.1002/kjm2.12437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 06/22/2021] [Accepted: 07/08/2021] [Indexed: 12/15/2022] Open
Abstract
Circular RNAs (circRNAs) feature prominently in regulating the malignant biological behaviors of colorectal cancer (CRC), including cell viability, cell cycle progression, apoptosis, migration, invasion, and so on. This study is performed to probe into the biological function and molecular mechanism of circ_0087862 in CRC. The expression profile of GSE138589 was available from Gene Expression Omnibus (GEO), and the differentially expressed circRNAs were analyzed by GEO2R. The expression of circ_0087862, miR-142-3p, and BACH1 mRNA in CRC tissues and cells was measured by qRT-PCR. CCK-8 assay was employed to determine the proliferation of CRC cells. Scratch wound healing and transwell assays were used to examine the migration and invasion of CRC cells. The targeting relationships between circ_0087862 and miR-142-3p, and between miR-142-3p and BACH1 3'UTR were verified by dual-luciferase reporter gene assay and RIP assay. BACH1 protein expression was probed by western blot. Circ_0087862 was highly expressed in CRC tissues and cell lines. Knocking down circ_0087862 significantly restrained the multiplication, migration and invasion of CRC cells. miR-142-3p inhibition weakened the impact of circ_0087862 knockdown on CRC cells. Circ_0087862 regulated BACH1 expressions by targeting miR-142-3p. Circ_0087862 regulates BACH1 expressions through sponging miR-142-3p, and promotes the proliferation, migration, and invasion of CRC cells.
Collapse
Affiliation(s)
- Bo Huang
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, China
| | - De-Jun Cui
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, China
| | - Fang Yan
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, China
| | - Liu-Chan Yang
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, China
| | - Man-Man Zhang
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, China
| | - Xun Zhao
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, China
| |
Collapse
|
20
|
Ghafouri-Fard S, Hussen BM, Badrlou E, Abak A, Taheri M. MicroRNAs as important contributors in the pathogenesis of colorectal cancer. Biomed Pharmacother 2021; 140:111759. [PMID: 34091180 DOI: 10.1016/j.biopha.2021.111759] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/06/2021] [Accepted: 05/20/2021] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is the third most fatal and fourth most frequently diagnosed neoplasm in the world. Numerous non-coding RNAs have been shown to contribute in the development of CRC. MicroRNAs (miRNAs) are among the mostly assessed non-coding RNAs in CRC. These transcripts influence expression and activity of TGF-β, Wnt/β-catenin, MAPK, PI3K/AKT and other CRC-related pathways. In the context of CRC, miRNAs interact with long non-coding RNAs to influence CRC course. Stool and serum levels of miRNAs have been used to distinguish CRC patients from healthy controls, indicating diagnostic roles of these transcripts in CRC. Therapeutic application of miRNAs in CRC has been assessed in animal models, yet has not been verified in clinical settings. In the current review, we have provided a recent update on the role of miRNAs in CRC development as well as diagnostic and prognostic approaches.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Elham Badrlou
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
A Novel Therapeutic Target, BACH1, Regulates Cancer Metabolism. Cells 2021; 10:cells10030634. [PMID: 33809182 PMCID: PMC8001775 DOI: 10.3390/cells10030634] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
BTB domain and CNC homology 1 (BACH1) is a transcription factor that is highly expressed in tumors including breast and lung, relative to their non-tumor tissues. BACH1 is known to regulate multiple physiological processes including heme homeostasis, oxidative stress response, senescence, cell cycle, and mitosis. In a tumor, BACH1 promotes invasion and metastasis of cancer cells, and the expression of BACH1 presents a poor outcome for cancer patients including breast and lung cancer patients. Recent studies identified novel functional roles of BACH1 in the regulation of metabolic pathways in cancer cells. BACH1 inhibits mitochondrial metabolism through transcriptional suppression of mitochondrial membrane genes. In addition, BACH1 suppresses activity of pyruvate dehydrogenase (PDH), a key enzyme that converts pyruvate to acetyl-CoA for the citric acid (TCA) cycle through transcriptional activation of pyruvate dehydrogenase kinase (PDK). Moreover, BACH1 increases glucose uptake and lactate secretion through the expression of metabolic enzymes involved such as hexokinase 2 (HK2) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) for aerobic glycolysis. Pharmacological or genetic inhibition of BACH1 could reprogram by increasing mitochondrial metabolism, subsequently rendering metabolic vulnerability of cancer cells against mitochondrial respiratory inhibition. Furthermore, inhibition of BACH1 decreased antioxidant-induced glycolysis rates as well as reduced migration and invasion of cancer cells, suggesting BACH1 as a potentially useful cancer therapeutic target.
Collapse
|
22
|
Zhang Q, Wang SF. miR-330 alleviates dextran sodium sulfate-induced ulcerative colitis through targeting IRAK1 in rats. Kaohsiung J Med Sci 2021; 37:497-504. [PMID: 33508876 DOI: 10.1002/kjm2.12359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/22/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic multifactorial inflammatory bowel disease that severely impairs patients' life quality. microRNAs (miRNAs) have been reported to exhibit potential therapeutic effects in the management of UC. With the aim to investigate the regulatory effects of miR-330 on UC-related colon tissue damage and inflammation, a rat model of experimental colitis was established by oral administration of dextran sodium sulfate (DSS). DSS-treated rats showed mucosal damage, colonic inflammation, and elevated myeloperoxidase activity compared with the healthy controls. Dual-luciferase reporter assay confirmed the binding of interleukin-1 receptor-associated kinase 1 (IRAK1) and miR-330. Subsequently, rats were intracolonically injected with miR-330 argomir with/without administration of IRAK1 during DSS treatment. The miR-330 overexpression reduced DSS-induced colonic injury and the production of proinflammatory cytokines. The level of IRAK1 was negatively regulated by the expression of miR-330. IRAK1 overexpression abolished the protective effect of miR-330 on DSS-induced colonic inflammation and mucosal injury in rats. In conclusion, we clarify the role of miR-330 in pathogenesis of UC, suggesting miR-330 alleviated DSS-induced colitis by downregulating IRAK1, shedding lights on miR-330 as a therapeutic candidate for UC treatment.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Spleen-stomach Hepatobiliary, Lianyungang Hospital of Traditional Chinese Medicine, Jiangsu Province, China
| | - Shu-Fang Wang
- Department of Digestive Internal Medicine, Lianyungang Second People's Hospital, Jiangsu Province, China
| |
Collapse
|