1
|
Ahmad K, Shaikh S, Chun HJ, Ali S, Lim JH, Ahmad SS, Lee EJ, Choi I. Extracellular matrix: the critical contributor to skeletal muscle regeneration-a comprehensive review. Inflamm Regen 2023; 43:58. [PMID: 38008778 PMCID: PMC10680355 DOI: 10.1186/s41232-023-00308-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/01/2023] [Indexed: 11/28/2023] Open
Abstract
The regenerative ability of skeletal muscle (SM) in response to damage, injury, or disease is a highly intricate process that involves the coordinated activities of multiple cell types and biomolecular factors. Of these, extracellular matrix (ECM) is considered a fundamental component of SM regenerative ability. This review briefly discusses SM myogenesis and regeneration, the roles played by muscle satellite cells (MSCs), other cells, and ECM components, and the effects of their dysregulations on these processes. In addition, we review the various types of ECM scaffolds and biomaterials used for SM regeneration, their applications, recent advances in ECM scaffold research, and their impacts on tissue engineering and SM regeneration, especially in the context of severe muscle injury, which frequently results in substantial muscle loss and impaired regenerative capacity. This review was undertaken to provide a comprehensive overview of SM myogenesis and regeneration, the stem cells used for muscle regeneration, the significance of ECM in SM regeneration, and to enhance understanding of the essential role of the ECM scaffold during SM regeneration.
Collapse
Affiliation(s)
- Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Hee Jin Chun
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Shahid Ali
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Jeong Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea.
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea.
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea.
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea.
| |
Collapse
|
2
|
Mini review: Biomaterials in repair and regeneration of nerve in a volumetric muscle loss. Neurosci Lett 2021; 762:136145. [PMID: 34332029 DOI: 10.1016/j.neulet.2021.136145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 06/28/2021] [Accepted: 07/26/2021] [Indexed: 01/23/2023]
Abstract
Volumetric muscle loss (VML) following a severe trauma or injury is beyond the intrinsic regenerative capacity of muscle tissues, and hence interventional therapy is required. Extensive muscle loss concomitant with damage to neuromuscular components overwhelms the muscles' remarkable regenerative capacity. The loss of nervous and vascular tissue leads to further damage and atrophy, so a combined treatment for neuromuscular junction (NMJ) along with the volumetric muscle regeneration is important. There have been immense advances in the field of tissue engineering for skeletal muscle tissue and peripheral nerve regeneration, but very few address the interdependence of the tissues and the need for combined therapies to repair and regenerate fully functional muscle tissue. This review addresses the problem and presents an overview of the biomaterials that have been studied for tissue engineering of neuromuscular tissues associated with skeletal muscles.
Collapse
|
3
|
Kang MS, Lee SH, Park WJ, Lee JE, Kim B, Han DW. Advanced Techniques for Skeletal Muscle Tissue Engineering and Regeneration. Bioengineering (Basel) 2020; 7:bioengineering7030099. [PMID: 32858848 PMCID: PMC7552709 DOI: 10.3390/bioengineering7030099] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Tissue engineering has recently emerged as a novel strategy for the regeneration of damaged skeletal muscle tissues due to its ability to regenerate tissue. However, tissue engineering is challenging due to the need for state-of-the-art interdisciplinary studies involving material science, biochemistry, and mechanical engineering. For this reason, electrospinning and three-dimensional (3D) printing methods have been widely studied because they can insert embedded muscle cells into an extracellular-matrix-mimicking microenvironment, which helps the growth of seeded or laden cells and cell signals by modulating cell–cell interaction and cell–matrix interaction. In this mini review, the recent research trends in scaffold fabrication for skeletal muscle tissue regeneration using advanced techniques, such as electrospinning and 3D bioprinting, are summarized. In conclusion, the further development of skeletal muscle tissue engineering techniques may provide innovative results with clinical potential for skeletal muscle regeneration.
Collapse
Affiliation(s)
- Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea;
| | - Seok Hyun Lee
- Department of Optics and Mechatronics, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea; (S.H.L.); (W.J.P.); (J.E.L.)
| | - Won Jung Park
- Department of Optics and Mechatronics, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea; (S.H.L.); (W.J.P.); (J.E.L.)
| | - Ji Eun Lee
- Department of Optics and Mechatronics, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea; (S.H.L.); (W.J.P.); (J.E.L.)
| | - Bongju Kim
- Dental Life Science Research Institute & Clinical Translational Research Center for Dental Science, Seoul National University Dental Hospital, Seoul 03080, Korea
- Correspondence: (B.K.); (D.-W.H.)
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea;
- Department of Optics and Mechatronics, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea; (S.H.L.); (W.J.P.); (J.E.L.)
- Correspondence: (B.K.); (D.-W.H.)
| |
Collapse
|
4
|
Current Methods for Skeletal Muscle Tissue Repair and Regeneration. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1984879. [PMID: 29850487 PMCID: PMC5926523 DOI: 10.1155/2018/1984879] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/28/2018] [Accepted: 03/11/2018] [Indexed: 12/11/2022]
Abstract
Skeletal muscle has the capacity of regeneration after injury. However, for large volumes of muscle loss, this regeneration needs interventional support. Consequently, muscle injury provides an ongoing reconstructive and regenerative challenge in clinical work. To promote muscle repair and regeneration, different strategies have been developed within the last century and especially during the last few decades, including surgical techniques, physical therapy, biomaterials, and muscular tissue engineering as well as cell therapy. Still, there is a great need to develop new methods and materials, which promote skeletal muscle repair and functional regeneration. In this review, we give a comprehensive overview over the epidemiology of muscle tissue loss, highlight current strategies in clinical treatment, and discuss novel methods for muscle regeneration and challenges for their future clinical translation.
Collapse
|
5
|
Borlongan CV, Yu G, Matsukawa N, Yasuhara T, Hara K, Xu L. Article Commentary: Cell Transplantation: Stem Cells in the Spotlight. Cell Transplant 2017; 14:519-526. [DOI: 10.3727/000000005783982774] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Cesar V. Borlongan
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| | - Guolong Yu
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| | - Noriyuki Matsukawa
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| | - Takao Yasuhara
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| | - Koichi Hara
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| | - Lin Xu
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| |
Collapse
|
6
|
SanMartin A, Borlongan CV. Article Commentary: Cell Transplantation: Toward Cell Therapy. Cell Transplant 2017; 15:665-73. [PMID: 17176618 DOI: 10.3727/000000006783981666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Agneta SanMartin
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, Tampa, FL 33612, USA.
| | | |
Collapse
|
7
|
Domínguez-Bendala J, Ricordi C. Article Commentary: Stem Cell Plasticity and Tissue Replacement. Cell Transplant 2017; 14:423-425. [DOI: 10.3727/000000005783982891] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Juan Domínguez-Bendala
- Diabetes Research Institute, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
8
|
Seuss H, Arkudas A, Hammon M, Bleiziffer O, Uder M, Horch RE, Yuan Q. Three-dimensional mapping of the arteriovenous loop model using two-dimensional histological methods. Microsc Res Tech 2016; 79:899-907. [DOI: 10.1002/jemt.22717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/16/2016] [Accepted: 06/23/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Hannes Seuss
- Department of Radiology; University Hospital Erlangen; Erlangen-Nuernberg (FAU, Germany, Friedrich Alexander University)
| | - Andreas Arkudas
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine; University Hospital Erlangen; Erlangen-Nuernberg (FAU, Germany, Friedrich Alexander University)
| | - Matthias Hammon
- Department of Radiology; University Hospital Erlangen; Erlangen-Nuernberg (FAU, Germany, Friedrich Alexander University)
| | - Oliver Bleiziffer
- Department of Plastic and Hand Surgery; Inselspital Bern, Universität Bern; Switzerland
| | - Michael Uder
- Department of Radiology; University Hospital Erlangen; Erlangen-Nuernberg (FAU, Germany, Friedrich Alexander University)
| | - Raymund E. Horch
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine; University Hospital Erlangen; Erlangen-Nuernberg (FAU, Germany, Friedrich Alexander University)
| | - Quan Yuan
- Department of Plastic Surgery; Union Hospital, Huazhong, China University of Science & Technology; Wuhan
| |
Collapse
|
9
|
Grasman JM, Zayas MJ, Page RL, Pins GD. Biomimetic scaffolds for regeneration of volumetric muscle loss in skeletal muscle injuries. Acta Biomater 2015. [PMID: 26219862 DOI: 10.1016/j.actbio.2015.07.038] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Skeletal muscle injuries typically result from traumatic incidents such as combat injuries where soft-tissue extremity injuries are present in one of four cases. Further, about 4.5 million reconstructive surgical procedures are performed annually as a result of car accidents, cancer ablation, or cosmetic procedures. These combat- and trauma-induced skeletal muscle injuries are characterized by volumetric muscle loss (VML), which significantly reduces the functionality of the injured muscle. While skeletal muscle has an innate repair mechanism, it is unable to compensate for VML injuries because large amounts of tissue including connective tissue and basement membrane are removed or destroyed. This results in a significant need to develop off-the-shelf biomimetic scaffolds to direct skeletal muscle regeneration. Here, the structure and organization of native skeletal muscle tissue is described in order to reveal clear design parameters that are necessary for scaffolds to mimic in order to successfully regenerate muscular tissue. We review the literature with respect to the materials and methodologies used to develop scaffolds for skeletal muscle tissue regeneration as well as the limitations of these materials. We further discuss the variety of cell sources and different injury models to provide some context for the multiple approaches used to evaluate these scaffold materials. Recent findings are highlighted to address the state of the field and directions are outlined for future strategies, both in scaffold design and in the use of different injury models to evaluate these materials, for regenerating functional skeletal muscle. STATEMENT OF SIGNIFICANCE Volumetric muscle loss (VML) injuries result from traumatic incidents such as those presented from combat missions, where soft-tissue extremity injuries are represented in one of four cases. These injuries remove or destroy large amounts of skeletal muscle including the basement membrane and connective tissue, removing the structural, mechanical, and biochemical cues that usually direct its repair. This results in a significant need to develop off-the-shelf biomimetic scaffolds to direct skeletal muscle regeneration. In this review, we examine current strategies for the development of scaffold materials designed for skeletal muscle regeneration, highlighting advances and limitations associated with these methodologies. Finally, we identify future approaches to enhance skeletal muscle regeneration.
Collapse
|
10
|
Microsurgical techniques used to construct the vascularized and neurotized tissue engineered bone. BIOMED RESEARCH INTERNATIONAL 2014; 2014:281872. [PMID: 24900962 PMCID: PMC4036431 DOI: 10.1155/2014/281872] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/02/2014] [Indexed: 11/17/2022]
Abstract
The lack of vascularization in the tissue engineered bone results in poor survival and ossification. Tissue engineered bone can be wrapped in the soft tissue flaps which are rich in blood supply to complete the vascularization in vivo by microsurgical technique, and the surface of the bone graft can be invaded with new vascular network. The intrinsic vascularization can be induced via a blood vessel or an arteriovenous loop located centrally in the bone graft by microsurgical technique. The peripheral nerve especially peptidergic nerve has effect on the bone regeneration. The peptidergic nerve can be used to construct the neurotized tissue engineered bone by implanting the nerve fiber into the center of bone graft. Thus, constructing a highly vascularized and neurotized tissue engineered bone according with the theory of biomimetics has become a useful method for repairing the large bone defect. Many researchers have used the microsurgical techniques to enhance the vascularization and neurotization of tissue engineered bone and to get a better osteogenesis effect. This review aims to summarize the microsurgical techniques mostly used to construct the vascularized and neurotized tissue engineered bone.
Collapse
|
11
|
Vascularization of Nanohydroxyapatite/Collagen/Poly(L-lactic acid) Composites by Implanting Intramuscularly In Vivo. INT J POLYM SCI 2014. [DOI: 10.1155/2014/153453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It still remains a major challenge to repair large bone defects in the orthopaedic surgery. In previous studies, a nanohydroxyapatite/collagen/poly(L-lactic acid) (nHAC/PLA) composite, similar to natural bone in both composition and structure, has been prepared. It could repair small sized bone defects, but they were restricted to repair a large defect due to the lack of oxygen and nutrition supply for cell survival without vascularization. The aim of the present study was to investigate whether nHAC/PLA composites could be vascularized in vivo. Composites were implanted intramuscularly in the groins of rabbits for 2, 6, or 10 weeks (n=5×3). After removing, the macroscopic results showed that there were lots of rich blood supply tissues embracing the composites, and the volumes of tissue were increasing as time goes on. In microscopic views, blood vessels and vascular sprouts could be observed, and microvessel density (MVD) of the composites trended to increase over time. It suggested that nHAC/PLA composites could be well vascularized by implanting in vivo. In the future, it would be possible to generate vascular pedicle bone substitutes with nHAC/PLA composites for grafting.
Collapse
|
12
|
MacLean S, Khan WS, Malik AA, Anand S, Snow M. The potential of stem cells in the treatment of skeletal muscle injury and disease. Stem Cells Int 2011; 2012:282348. [PMID: 22220178 PMCID: PMC3246792 DOI: 10.1155/2012/282348] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 09/18/2011] [Indexed: 01/05/2023] Open
Abstract
Tissue engineering is a pioneering field with huge advances in recent times. These advances are not only in the understanding of how cells can be manipulated but also in potential clinical applications. Thus, tissue engineering, when applied to skeletal muscle cells, is an area of huge prospective benefit to patients with muscle disease/damage. This could include damage to muscle from trauma and include genetic abnormalities, for example, muscular dystrophies. Much of this research thus far has been focused on satellite cells, however, mesenchymal stem cells have more recently come to the fore. In particular, results of trials and further research into their use in heart failure, stress incontinence, and muscular dystrophies are eagerly awaited. Although no doubt, stem cells will have much to offer in the future, the results of further research still limit their use.
Collapse
Affiliation(s)
- S. MacLean
- University of Manchester, Manchester M13 9PL, UK
| | - W. S. Khan
- Institute of Orthpaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital, Stanmore, Middlesex HA7 4LP, UK
| | - A. A. Malik
- Spinal Deformity Unit, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, Middlesex HA7 4LP, UK
| | - S. Anand
- Stepping Hill Hospital, Stockport SK2 7JE, UK
| | - M. Snow
- Department of Sports Inury, Royal National Orthopaedic Hospital, Birimingham B31 2AP, UK
| |
Collapse
|
13
|
Pennisi CP, Olesen CG, de Zee M, Rasmussen J, Zachar V. Uniaxial Cyclic Strain Drives Assembly and Differentiation of Skeletal Myocytes. Tissue Eng Part A 2011; 17:2543-50. [DOI: 10.1089/ten.tea.2011.0089] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Cristian Pablo Pennisi
- Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Christian Gammelgaard Olesen
- The AnyBody Research Group, Department of Mechanical and Manufacturing Engineering, Aalborg University, Aalborg, Denmark
| | - Mark de Zee
- Laboratory for Musculoskeletal Modeling, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - John Rasmussen
- The AnyBody Research Group, Department of Mechanical and Manufacturing Engineering, Aalborg University, Aalborg, Denmark
| | - Vladimir Zachar
- Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
14
|
Myogenic differentiation of mesenchymal stem cells co-cultured with primary myoblasts. Cell Biol Int 2011; 35:397-406. [PMID: 20946104 DOI: 10.1042/cbi20100417] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
TE (tissue engineering) of skeletal muscle is a promising method to reconstruct loss of muscle tissue. This study evaluates MSCs (mesenchymal stem cells) as new cell source for this application. As a new approach to differentiate the MSCs towards the myogenic lineage, co-cultivation with primary myoblasts has been developed and the myogenic potential of GFP (green fluorescent protein)-transduced rat MSC co-cultured with primary rat myoblasts was assessed by ICC (immunocytochemistry). Myogenic potential of MSC was analysed by ICC, FACS and qPCR (quantitative PCR). MSC-myoblast fusion phenomena leading to hybrid myotubes were evaluated using a novel method to evaluate myotube fusion ratios based on phase contrast and fluorescence microscopy. Furthermore, MSC constitutively expressed the myogenic markers MEF2 (myogenic enhancer factor 2) and α-sarcomeric actin, and MEF2 expression was up-regulated upon co-cultivation with primary myoblasts and the addition of myogenic medium supplements. Significantly higher numbers of MSC nuclei were involved in myotube formations when bFGF (basic fibroblast growth factor) and dexamethasone were added to co-cultures. In summary, we have determined optimal co-culture conditions for MSC myogenic differentiation up to myotube formations as a promising step towards applicability of MSC as a cell source for skeletal muscle TE as well as other muscle cell-based therapies.
Collapse
|
15
|
Elliott NT, Yuan F. A review of three-dimensional in vitro tissue models for drug discovery and transport studies. J Pharm Sci 2010; 100:59-74. [PMID: 20533556 DOI: 10.1002/jps.22257] [Citation(s) in RCA: 328] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 05/04/2010] [Indexed: 12/12/2022]
Abstract
The use of animal models in drug discovery studies presents issues with feasibility and ethical concerns. To address these limitations, in vitro tissue models have been developed to provide a means for systematic, repetitive, and quantitative investigation of drugs. By eliminating or reducing the need for animal subjects, these models can serve as platforms for more tightly controlled, high-throughput screening of drugs and for pharmacokinetic and pharmacodynamic analyses of drugs. The focus of this review is three-dimensional (3D) tissue models that can capture cell-cell and cell-matrix interactions. Compared to the 2D culture of cell monolayers, 3D models more closely mimic native tissues since the cellular microenvironment established in the 3D models often plays a significant role in disease progression and cellular responses to drugs. A growing body of research has been published in the literature, which highlights the benefits of the 3D in vitro models of various tissues. This review provides an overview of some successful 3D in vitro models that have been developed to mimic liver, breast, cardiac, muscle, bone, and corneal tissues as well as malignant tissues in solid tumors.
Collapse
Affiliation(s)
- Nelita T Elliott
- Department of Biomedical Engineering, Duke University, 136 Hudson Hall, PO Box 90281, Durham, North Carolina 27708, USA
| | | |
Collapse
|
16
|
O'Connor MS, Carlson ME, Conboy IM. Differentiation rather than aging of muscle stem cells abolishes their telomerase activity. Biotechnol Prog 2009; 25:1130-7. [PMID: 19455648 DOI: 10.1002/btpr.223] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A general feature of stem cells is the ability to routinely proliferate to build, maintain, and repair organ systems. Accordingly, embryonic and germline, as well as some adult stem cells, produce the telomerase enzyme at various levels of expression. Our results show that, while muscle is a largely postmitotic tissue, the muscle stem cells (satellite cells) that maintain this biological system throughout adult life do indeed display robust telomerase activity. Conversely, primary myoblasts (the immediate progeny of satellite cells) quickly and dramatically downregulate telomerase activity. This work thus suggests that satellite cells, and early transient myoblasts, may be more promising therapeutic candidates for regenerative medicine than traditionally utilized myoblast cultures. Muscle atrophy accompanies human aging, and satellite cells endogenous to aged muscle can be triggered to regenerate old tissue by exogenous molecular cues. Therefore, we also examined whether these aged muscle stem cells would produce tissue that is "young" with respect to telomere maintenance. Interestingly, this work shows that the telomerase activity in muscle stem cells is largely retained into old age wintin inbred "long" telomere mice and in wild-derived short telomere mouse strains, and that age-specific telomere shortening is undetectable in the old differentiated muscle fibers of either strain. Summarily, this work establishes that young and old muscle stem cells, but not necessarily their progeny, myoblasts, are likely to produce tissue with normal telomere maintenance when used in molecular and regenerative medicine approaches for tissue repair.
Collapse
Affiliation(s)
- Matthew S O'Connor
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
17
|
Current opportunities and challenges in skeletal muscle tissue engineering. J Tissue Eng Regen Med 2009; 3:407-15. [DOI: 10.1002/term.190] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
18
|
Beier JP, Klumpp D, Rudisile M, Dersch R, Wendorff JH, Bleiziffer O, Arkudas A, Polykandriotis E, Horch RE, Kneser U. Collagen matrices from sponge to nano: new perspectives for tissue engineering of skeletal muscle. BMC Biotechnol 2009; 9:34. [PMID: 19368709 PMCID: PMC2674407 DOI: 10.1186/1472-6750-9-34] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 04/15/2009] [Indexed: 11/21/2022] Open
Abstract
Background Tissue engineering of vascularised skeletal muscle is a promising method for the treatment of soft tissue defects in reconstructive surgery. In this study we explored the characteristics of novel collagen and fibrin matrices for skeletal muscle tissue engineering. We analyzed the characteristics of newly developed hybrid collagen-I-fibrin-gels and collagen nanofibers as well as collagen sponges and OPLA®-scaffolds. Collagen-fibrin gels were also tested with genipin as stabilizing substitute for aprotinin. Results Whereas rapid lysis and contraction of pure collagen I- or fibrin-matrices have been great problems in the past, the latter could be overcome by combining both materials. Significant proliferation of cultivated myoblasts was detected in collagen-I-fibrin matrices and collagen nanofibers. Seeding cells on parallel orientated nanofibers resulted in strongly aligned myoblasts. In contrast, common collagen sponges and OPLA®-scaffolds showed less cell proliferation and in collagen sponges an increased apoptosis rate was evident. The application of genipin caused deleterious effects on primary myoblasts. Conclusion Collagen I-fibrin mixtures as well as collagen nanofibers yield good proliferation rates and myogenic differentiation of primary rat myoblasts in vitro In addition, parallel orientated nanofibers enable the generation of aligned cell layers and therefore represent the most promising step towards successful engineering of skeletal muscle tissue.
Collapse
Affiliation(s)
- Justus P Beier
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, 91054 Erlangen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Cho MH, Kim KS, Ahn HH, Kim MS, Kim SH, Khang G, Lee B, Lee HB. Chitosan gel as an in situ-forming scaffold for rat bone marrow mesenchymal stem cells in vivo. Tissue Eng Part A 2009. [PMID: 19230130 DOI: 10.1089/tea.2007.0305] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We herein formulated and characterized an in situ-forming chitosan gel consisting of chitosan and glycerol phosphate (GP) disodium salt, and examined its use as an in vivo scaffold for rat bone marrow mesenchymal stem cells (rBMSCs). First, the phase transition behaviors of chitosan solutions formulated with and without GP were characterized as a function of temperature. Chitosan solutions containing > 20 wt % GP became a gel at 37 degrees C and maintained this form for 28 days in vitro and in vivo. Next, we examined whether the chitosan gel could act as a suitable biocompatible substrate for the attachment and proliferation of rBMSCs. Immunohistochemistry clearly demonstrated that rBMSCs survived well on the scaffold created by in situ-forming chitosan gel in rats. Injection of chitosan gel alone induced macrophage accumulation in the host tissue and at the edge of the chitosan, whereas injection of chitosan gel containing rBMSCs was associated with decreased macrophage accumulation, indicating immunosuppression by the transplanted rBMSCs. Our results collectively show for the first time that chitosan gel could serve as an in situ-forming gel scaffold for entrapped rBMSCs in vivo.
Collapse
Affiliation(s)
- Mi Hee Cho
- Fusion Biotechnology Research Center, Korea Research Institute of Chemical Technology, Yuseung, Daejon, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Cho MH, Kim KS, Ahn HH, Kim MS, Kim SH, Khang G, Lee B, Lee HB. Chitosan Gel as an In Situ–Forming Scaffold for Rat Bone Marrow Mesenchymal Stem Cells In Vivo. Tissue Eng Part A 2008; 14:1099-108. [DOI: 10.1089/ten.tea.2007.0305] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Mi Hee Cho
- Fusion Biotechnology Research Center, Korea Research Institute of Chemical Technology, Yuseung, Daejon, Republic of Korea
- Department of Polymer Engineering, Pukyong National University, Nam Ku, Busan, Republic of Korea
| | - Kyung Sook Kim
- Fusion Biotechnology Research Center, Korea Research Institute of Chemical Technology, Yuseung, Daejon, Republic of Korea
- Department of Polymer Engineering, Pukyong National University, Nam Ku, Busan, Republic of Korea
| | - Hyun Hee Ahn
- Fusion Biotechnology Research Center, Korea Research Institute of Chemical Technology, Yuseung, Daejon, Republic of Korea
| | - Moon Suk Kim
- Fusion Biotechnology Research Center, Korea Research Institute of Chemical Technology, Yuseung, Daejon, Republic of Korea
| | - Soon Hee Kim
- BK-21 Polymer BIN Fusion Research Team, Chonbuk National University, Dukjin Ku, Jeonju, Republic of Korea
| | - Gilson Khang
- BK-21 Polymer BIN Fusion Research Team, Chonbuk National University, Dukjin Ku, Jeonju, Republic of Korea
| | - Bong Lee
- Department of Polymer Engineering, Pukyong National University, Nam Ku, Busan, Republic of Korea
| | - Hai Bang Lee
- Fusion Biotechnology Research Center, Korea Research Institute of Chemical Technology, Yuseung, Daejon, Republic of Korea
| |
Collapse
|
21
|
Kaspar K, Schell H, Toben D, Matziolis G, Bail HJ. An easily reproducible and biomechanically standardized model to investigate bone healing in rats, using external fixation / Ein leicht reproduzierbares und biomechanisch standardisiertes Modell zur Untersuchung der Knochenheilung in der Ratte unter Verwendung eines Fixateur Externe. BIOMED ENG-BIOMED TE 2007; 52:383-90. [DOI: 10.1515/bmt.2007.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Arkudas A, Beier JP, Heidner K, Tjiawi J, Polykandriotis E, Srour S, Sturzl M, Horch RE, Kneser U. Axial prevascularization of porous matrices using an arteriovenous loop promotes survival and differentiation of transplanted autologous osteoblasts. ACTA ACUST UNITED AC 2007; 13:1549-60. [PMID: 17518756 DOI: 10.1089/ten.2006.0387] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Generation of axially vascularized bioartificial bone might be performed using matrix neovascularization in connection with osteoblast injection. We sought to evaluate whether prevascularization of porous hard matrices using an arteriovenous (AV) loop promotes survival of transplanted osteoblasts. A processed bovine cancellous bone matrix was inserted into the AV loop. Six weeks later, 5 x 10(6) carboxyfluorescein diacetate-stained osteoblasts were injected into the matrix (group A, n = 34). Osteoblast-seeded matrices without prevascularization were implanted subcutaneously as controls (group B, n = 32). Specimens were subjected to histologic, morphometric, and molecular-biological analysis after 1, 4, 8, and 16 weeks. Upon cell injection, matrices were completely vascularized. An intense foreign body reaction was observed in matrices from both groups. Group A was significantly superior to group B in terms of osteoblast survival at any time point. Expression of bone-specific genes was detected in the AV loop group but not in the subcutaneous control. Bone formation was only detectable in 1 long-term animal of group A. This study demonstrates for the first time that axial prevascularization increases the survival of implanted osteoblasts in porous matrices. Matrices with optimized biocompatibility might eventually facilitate generation of axially vascularized bone tissue after injection of osteogenic cells in the AV loop model.
Collapse
Affiliation(s)
- Andreas Arkudas
- Department of Plastic and Hand Surgery, University of Erlangen Medical Center, Erlangen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Polykandriotis E, Horch RE, Arkudas A, Labanaris A, Brune K, Greil P, Bach AD, Kopp J, Hess A, Kneser U. Intrinsic versus extrinsic vascularization in tissue engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 585:311-26. [PMID: 17120793 DOI: 10.1007/978-0-387-34133-0_21] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
|
24
|
Bach AD, Arkudas A, Tjiawi J, Polykandriotis E, Kneser U, Horch RE, Beier JP. A new approach to tissue engineering of vascularized skeletal muscle. J Cell Mol Med 2007; 10:716-26. [PMID: 16989731 PMCID: PMC3933153 DOI: 10.1111/j.1582-4934.2006.tb00431.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Tissue Engineering of skeletal muscle tissue still remains a major challenge. Every neo-tissue construct of clinically relevant dimensions is highly dependent on an intrinsic vascularisation overcoming the limitations of diffusion conditioned survival. Approaches incorporating the arteriovenous-loop model might bring further advances to the generation of vascularised skeletal muscle tissue. In this study 12 syngeneic rats received transplantation of carboxy-fluorescine diacetate-succinimidyl ester (CFDA)-labelled, expanded primary myoblasts into a previously vascularised fibrin matrix, containing a microsurgically created AV loop. As control cells were injected into fibrin-matrices without AV-loops. Intra-arterial ink injection followed by explantation was performed 2, 4 and 8 weeks after cell implantation. Specimens were evaluated for CFDA, MyoD and DAPI staining, as well as for mRNA expression of muscle specific genes. Results showed enhanced fibrin resorption in dependence of AV loop presence. Transplanted myoblasts could be detected in the AV loop group even after 8 weeks by CFDA-fluorescence, still showing positive MyoD staining. RT-PCR revealed gene expression of MEF-2 and desmin after 4 weeks on the AV loop side, whereas expression analysis of myogenin and MHCembryo was negative. So far myoblast injection in the microsurgical rat AV loop model enhances survival of the cells, keeping their myogenic phenotype, within pre-vascularised fibrin matrices. Probably due to the lack of potent myogenic stimuli and additionally the rapid resorption of the fibrin matrix, no formation of skeletal muscle-like tissue could be observed. Thus further studies focussing on long term stability of the matrix and the incorporation of neural stimuli will be necessary for generation of vascularised skeletal muscle tissue.
Collapse
Affiliation(s)
- A D Bach
- Department of Plastic and Hand Surgery, University of ErlangenErlangen, Germany
| | - A Arkudas
- Department of Plastic and Hand Surgery, University of ErlangenErlangen, Germany
| | - J Tjiawi
- Department of Plastic and Hand Surgery, University of ErlangenErlangen, Germany
| | - E Polykandriotis
- Department of Plastic and Hand Surgery, University of ErlangenErlangen, Germany
| | - U Kneser
- Department of Plastic and Hand Surgery, University of ErlangenErlangen, Germany
| | - R E Horch
- Department of Plastic and Hand Surgery, University of ErlangenErlangen, Germany
| | - J P Beier
- Department of Plastic and Hand Surgery, University of ErlangenErlangen, Germany
- *Correspondence to: J. P. BEIER (MD) Department of Plastic and Hand Surgery, Head of Dpt. Prof. R. E. Horch, University of Erlangen Medical Center, Krankenhausstr. 12, 91054 Erlangen, Germany. Tel: ++49-9131-8533277 Fax: ++49-9131-8533297 E-mail:
| |
Collapse
|
25
|
Beier JP, Stern-Straeter J, Foerster VT, Kneser U, Stark GB, Bach AD. Tissue engineering of injectable muscle: three-dimensional myoblast-fibrin injection in the syngeneic rat animal model. Plast Reconstr Surg 2006; 118:1113-1121. [PMID: 17016175 DOI: 10.1097/01.prs.0000221007.97115.1d] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Surgical treatment of skeletal muscle loss resulting from trauma, tumor ablation, or inborn tissue defects is hampered by the scarcity of functional substitute tissue. By using techniques of tissue engineering, reconstitution of skeletal muscle defects might become a more viable option. However, it is necessary to develop an adequate, practical method for delivering myoblasts within a three-dimensional scaffold in vivo. The aim of this study was to create and evaluate a novel method for the transfer of myoblasts with clinically approved components within a three-dimensional matrix. METHODS The authors injected expanded primary male myoblasts into muscle defects in female syngeneic rats using a two-way syringe (Duploject) within a three-dimensional fibrin matrix. Detection and evaluation were performed using Y chromosome in situ hybridization, antidesmin immunostaining, and hematoxylin and eosin staining. To identify possible differences by means of integration, the injected myoblasts were compared with 7 days of precultivated constructs. RESULTS Injected myoblasts showed increasing integration into host muscle fibers in a time-dependent manner, exclusively at the injection site. Antidesmin staining revealed a conserved myogenic phenotype of transplanted cells. The fibrin matrix resolved over a period of 12 weeks, with no indication of an inflammatory reaction. No significant difference in the number of detected Y chromosome-positive nuclei was found between the two transplantation groups. CONCLUSIONS The presented technique of myoblast-fibrin injection indicates a clinical potential for reconstruction of skeletal muscle defects in vivo using a ready-to-use device in combination with tissue-engineering methods.
Collapse
Affiliation(s)
- Justus P Beier
- Erlangen and Freiburg, Germany From the Department of Plastic and Hand Surgery, University Hospital of Erlangen, and the Department of Plastic and Hand Surgery, Tissue Engineering Laboratory, University Hospital of Freiburg
| | | | | | | | | | | |
Collapse
|
26
|
De Coppi P, Bellini S, Conconi MT, Sabatti M, Simonato E, Gamba PG, Nussdorfer GG, Parnigotto PP. Myoblast-acellular skeletal muscle matrix constructs guarantee a long-term repair of experimental full-thickness abdominal wall defects. ACTA ACUST UNITED AC 2006; 12:1929-36. [PMID: 16889522 DOI: 10.1089/ten.2006.12.1929] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To obtain a valuable treatment of congenital muscle defect, cell-matrix constructs composed of satellite cell-derived myoblasts (XY karyotype) seeded on muscle acellular matrices were used to repair a previously created full-thickness defect of abdominal wall of 18 1-month-old female Lewis rats. Acellular abdominal matrices, obtained by a detergent-enzymatic method, were positive for both basic fibroblast growth factor and transforming growth factor-beta, and were able to support in vitro cell adhesion. All animals survived the surgery, without signs of infection or implant rejection, and were humanely killed at 1, 3, or 9 months after surgery. The implants appeared well preserved, were integrated in the host tissue, and maintained their original dimension and thickness until 9 months. Vesicular acetylcholine transporter was expressed on the surface of muscle fibers from 1 month postsurgery. Finally, implanted male myoblasts were present inside the patches until 9 months, as demonstrated by the expression of SrY mRNA and by the presence of Y chromosome probe signal. These results allow us to conclude that cell-matrix constructs could represent a promising approach to the repair of muscle defects, because they are repopulated in vivo by skeletal muscle cells and nervous elements and maintain their structural integrity over the long term.
Collapse
Affiliation(s)
- Paolo De Coppi
- Department of Pediatrics, Division of Pediatric Surgery, University of Padua, Padua, Italy
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Driven by enormous clinical need, interest in peripheral nerve regeneration has become a prime focus of research and area of growth within the field of tissue engineering. While using autologous donor nerves for bridging peripheral defects remains today's gold standard, it remains associated with high donor site morbidity and lack of full recovery. This dictates research towards the development of biomimetic constructs as alternatives. Based on current concepts, this review summarizes various approaches including different extracellular matrices, scaffolds, and growth factors that have been shown to promote migration and proliferation of Schwann cells. Since neither of these concepts in isolation is enough, although each is gaining increased interest to promote nerve regeneration, various combinations will need to be identified to strike a harmonious balance. Additional factors that must be incorporated into tissue engineered nerve constructs are also unknown and warrant further research efforts. It seems that future directions may allow us to determine the "missing link".
Collapse
Affiliation(s)
- C T Chalfoun
- Aesthetic and Plastic Surgery Institute, University of California - Irvine, Orange, 92868, USA
| | | | | |
Collapse
|
28
|
Borschel GH, Dow DE, Dennis RG, Brown DL. Tissue-Engineered Axially Vascularized Contractile Skeletal Muscle. Plast Reconstr Surg 2006; 117:2235-42. [PMID: 16772923 DOI: 10.1097/01.prs.0000224295.54073.49] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND As tissue-engineered muscle constructs increase in scale, their size is limited by the need for a vascular supply. In this work, the authors demonstrate a method of producing three-dimensional contractile skeletal muscles in vivo by incorporating an axial vascular pedicle. METHODS Primary myoblast cultures were generated from adult F344 rat soleus muscle. The cells were suspended in a fibrinogen hydrogel contained within cylindrical silicone chambers, and situated around the femoral vessels in isogeneic adult recipient rats. The constructs were allowed to incubate in vivo for 3 weeks, at which point they were explanted and subjected to isometric force measurements and histologic evaluation. RESULTS The resulting three-dimensional engineered skeletal muscle constructs produced longitudinal contractile force when electrically stimulated. Length-tension, force-voltage, and force-frequency relationships were similar to those found in developing skeletal muscle. Desmin staining demonstrated that individual myoblasts had undergone fusion to form multinucleated myotubes. Von Willebrand staining showed that the local environment within the chamber was richly angiogenic, and capillaries had grown into and throughout the constructs from the femoral artery and vein. CONCLUSIONS Three-dimensional, vascularized skeletal muscle can be engineered in vivo. The resulting tissues have histologic and functional properties consistent with native skeletal muscle.
Collapse
Affiliation(s)
- Gregory H Borschel
- Section of Plastic Surgery and Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | | | | | | |
Collapse
|
29
|
Stangenberg L, Schaefer DJ, Buettner O, Ohnolz J, Möbest D, Horch RE, Stark GB, Kneser U. Differentiation of osteoblasts in three-dimensional culture in processed cancellous bone matrix: quantitative analysis of gene expression based on real-time reverse transcription-polymerase chain reaction. ACTA ACUST UNITED AC 2006; 11:855-64. [PMID: 15998225 DOI: 10.1089/ten.2005.11.855] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Processed bovine cancellous bone (PBCB) is an attractive material for tissue engineering of bone. It is biocompatible, osteoconductive, nonimmunogenic, and porous and its biomechanical properties are close to those of native bone. In this study, differentiation of primary rat osteoblasts (rOBs) incubated on PBCB was investigated in vitro. rOBs were isolated and expanded in two-dimensional culture. Expanded rOBs were seeded into PBCB disks and cultured either in basal medium (BM) or differentiation medium (DM) containing ascorbic acid, beta-glycerol phosphate, and dexamethasone. Alkaline phosphatase (ALP) activity and RNA expression of ALP, bone sialoprotein (BSP), collagen type I (COL1), osteocalcin (OC), and osteopontin (OPN) were assessed by chemiluminescence assay and quantitative real-time RT-PCR over 14 days. Histologic analysis was performed on day 14. ALP increased over the observation period independent of stimulation. OPN and BSP expression was significantly higher in the DM group whereas COL1 and OC expression was significantly higher in the BM group. Matrix calcification was detectable only in the DM group by von Kossa stain. The observed expression patterns suggest a physiological response of rOBs to the differentiation stimulus. PBCB is a suitable matrix for in vitro differentiation of osteoblasts. Cell-seeded PBCB is a potential osteogenic construct for in vivo application.
Collapse
Affiliation(s)
- Lars Stangenberg
- Department of Plastic and Hand Surgery, University of Freiburg Medical Center, Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Stern-Straeter J, Bach AD, Stangenberg L, Foerster VT, Horch RE, Stark GB, Beier JP. Impact of electrical stimulation on three-dimensional myoblast cultures - a real-time RT-PCR study. J Cell Mol Med 2006; 9:883-92. [PMID: 16364197 PMCID: PMC6740088 DOI: 10.1111/j.1582-4934.2005.tb00386.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Several focal skeletal muscle diseases, including tumours and trauma lead to a limited loss of functional muscle tissue. There is still no suitable clinical approach for treating such defects. A promising approach could be the tissue engineering of skeletal muscle. However, a clinically reliable differentiation stimulus for three-dimensional (3-D) cultures is necessary for this process, and this condition has not yet been established. In order to quantify and analyze the differentiation potential of electrical cell stimulation, primary myoblasts were stimulated within a 3-D fibrin- matrix. Gene expression of MyoD, myogenin and AChR-epsilon were measured by real-time RT-PCR over a time period of eight days, showing immediate down-regulation of all marker genes. For tissue engineering approaches, cell multiplication is crucial for acquisition of sufficient tissue volumes for reconstruction. Therefore, all experiments were performed with high and low passaged myoblasts, demonstrating higher transcript rates of marker genes in lowpassage cells. Our findings strongly suggest a reconsideration of electrical stimulation in muscle tissue engineering.
Collapse
Affiliation(s)
- J Stern-Straeter
- Department of Plastic and Hand Surgery, Tissue Engineering Laboratory University of Freiburg Medical Center, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Kneser U, Schaefer DJ, Polykandriotis E, Horch RE. Tissue engineering of bone: the reconstructive surgeon's point of view. J Cell Mol Med 2006; 10:7-19. [PMID: 16563218 PMCID: PMC3933098 DOI: 10.1111/j.1582-4934.2006.tb00287.x] [Citation(s) in RCA: 339] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Accepted: 02/06/2006] [Indexed: 12/23/2022] Open
Abstract
Bone defects represent a medical and socioeconomic challenge. Different types of biomaterials are applied for reconstructive indications and receive rising interest. However, autologous bone grafts are still considered as the gold standard for reconstruction of extended bone defects. The generation of bioartificial bone tissues may help to overcome the problems related to donor site morbidity and size limitations. Tissue engineering is, according to its historic definition, an "interdisciplinary field that applies the principles of engineering and the life sciences toward the development of biological substitutes that restore, maintain, or improve tissue function". It is based on the understanding of tissue formation and regeneration and aims to rather grow new functional tissues than to build new spare parts. While reconstruction of small to moderate sized bone defects using engineered bone tissues is technically feasible, and some of the currently developed concepts may represent alternatives to autologous bone grafts for certain clinical conditions, the reconstruction of large-volume defects remains challenging. Therefore vascularization concepts gain on interest and the combination of tissue engineering approaches with flap prefabrication techniques may eventually allow application of bone-tissue substitutes grown in vivo with the advantage of minimal donor site morbidity as compared to conventional vascularized bone grafts. The scope of this review is the introduction of basic principles and different components of engineered bioartificial bone tissues with a strong focus on clinical applications in reconstructive surgery. Concepts for the induction of axial vascularization in engineered bone tissues as well as potential clinical applications are discussed in detail.
Collapse
Affiliation(s)
- U Kneser
- Department of Plastic and Hand Surgery, University of Erlangen Medical Center, Krankenhausstrasse 12, 91054 Erlangen Germany.
| | | | | | | |
Collapse
|
32
|
Abstract
The reconstruction of skeletal muscle tissue either lost by traumatic injury or tumor ablation or functional damage due to myopathies is hampered by the lack of availability of functional substitution of this native tissue. Until now, only few alternatives exist to provide functional restoration of damaged muscle tissues. Loss of muscle mass and their function can surgically managed in part using a variety of muscle transplantation or transposition techniques. These techniques represent a limited degree of success in attempts to restore the normal functioning, however they are not perfect solutions. A new alternative approach to addressing difficult tissue reconstruction is to engineer new tissues. Although those tissue engineering techniques attempting regeneration of human tissues and organs have recently entered into clinical practice, the engineering of skeletal muscle tissue ist still a scientific challenge. This article reviews some of the recent findings resulting from tissue engineering science related to the attempt of creation and regeneration of functional skeletal muscle tissue.
Collapse
Affiliation(s)
- A D Bach
- Department of Plastic and Hand Surgery, University of Erlangen Medical Centre, Erlangen, D-91054, Germany.
| | | | | | | |
Collapse
|