1
|
Amin R, Hossaeini Marashi SM, Reza Noori SM, Alavi Z, Dehghani E, Maleki R, Safdarian M, Rocky A, Berizi E, Amin Alemohammad SM, Zamanpour S, Ali Noori SM. Medical, pharmaceutical, and nutritional applications of 3D-printing technology in diabetes. Diabetes Metab Syndr 2024; 18:103002. [PMID: 38615569 DOI: 10.1016/j.dsx.2024.103002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
AIMS Despite numerous studies covering the various features of three-dimensional printing (3D printing) technology, and its applications in food science and disease treatment, no study has yet been conducted to investigate applying 3D printing in diabetes. Therefore, the present study centers on the utilization and impact of 3D printing technology in relation to the nutritional, pharmaceutical, and medicinal facets of diabetes management. It highlights the latest advancements, and challenges in this field. METHODS In this review, the articles focusing on the application and effect of 3D printing technology on medical, pharmaceutical, and nutritional aspects of diabetes management were collected from different databases. RESULT High precision of 3D printing in the placement of cells led to accurate anatomic control, and the possibility of bio-printing pancreas and β-cells. Transdermal drug delivery via 3D-printed microneedle (MN) patches was beneficial for the management of diabetes disease. 3D printing supported personalized medicine for Diabetes Mellitus (DM). For instance, it made it possible for pharmaceutical companies to manufacture unique doses of medications for every diabetic patient. Moreover, 3D printing allowed the food industry to produce high-fiber and sugar-free products for the individuals with DM. CONCLUSIONS In summary, applying 3D printing technology for diabetes management is in its early stages, and needs to be matured and developed to be safely used for humans. However, its rapid progress in recent years showed a bright future for the treatment of diabetes.
Collapse
Affiliation(s)
- Reza Amin
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Sayed Mahdi Hossaeini Marashi
- College of Engineering, Design and Physical Sciences Michael Sterling Building (MCST 055), Brunel University London, Uxbridge, UB8 3PH, United Kingdom; School of Physics, Engineering and Computer Science, Centre for Engineering Research, University of Hertfordshire, Mosquito Way, Hatfield AL10 9EU, United Kingdom
| | - Seyyed Mohammad Reza Noori
- Department of Medical Imaging and Radiation Sciences, School of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zeinab Alavi
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elaheh Dehghani
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reyhaneh Maleki
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Safdarian
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Arash Rocky
- Department of Electrical and Computer Engineering, University of Windsor, Canada
| | - Enayat Berizi
- Nutrition Research Center, Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Setayesh Zamanpour
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Deputy of Food and Drug, Semnan University of Medical Sciences, Semnan, Iran
| | - Seyyed Mohammad Ali Noori
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
2
|
Omori K, Qi M, Salgado M, Gonzalez N, Hui LT, Chen KT, Rawson J, Miao L, Komatsu H, Isenberg JS, Al-Abdullah IH, Mullen Y, Kandeel F. A scalable human islet 3D-culture platform maintains cell mass and function long-term for transplantation. Am J Transplant 2024; 24:177-189. [PMID: 37813189 DOI: 10.1016/j.ajt.2023.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023]
Abstract
Present-day islet culture methods provide short-term maintenance of cell viability and function, limiting access to islet transplantation. Attempts to lengthen culture intervals remain unsuccessful. A new method was developed to permit the long-term culture of islets. Human islets were embedded in polysaccharide 3D-hydrogel in cell culture inserts or gas-permeable chambers with serum-free CMRL 1066 supplemented media for up to 8 weeks. The long-term cultured islets maintained better morphology, cell mass, and viability at 4 weeks than islets in conventional suspension culture. In fact, islets cultured in the 3D-hydrogel retained β cell mass and function on par with freshly isolated islets in vitro and, when transplanted into diabetic mice, restored glucose balance similar to fresh islets. Using gas-permeable chambers, the 3D-hydrogel culture method was scaled up over 10-fold and maintained islet viability and function, although the cell mass recovery rate was 50%. Additional optimization of scale-up methods continues. If successful, this technology could afford flexibility and expand access to islet transplantation, especially single-donor islet-after-kidney transplantation.
Collapse
Affiliation(s)
- Keiko Omori
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | - Meirigeng Qi
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Mayra Salgado
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Nelson Gonzalez
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Lauren T Hui
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Kuan-Tsen Chen
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jeffrey Rawson
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Lynn Miao
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Hirotake Komatsu
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jeffrey S Isenberg
- Department of Diabetes Complications & Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Ismail H Al-Abdullah
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yoko Mullen
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Fouad Kandeel
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
3
|
Kumar PP, Rao GV, Shetty M, Pradeep R, PremaVani C, Sasikala M, Reddy DN. Understanding the Structural Arrangement of Islets in Chronic Pancreatitis. J Histochem Cytochem 2024; 72:25-40. [PMID: 38063163 PMCID: PMC10795563 DOI: 10.1369/00221554231217552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 10/20/2023] [Indexed: 12/31/2023] Open
Abstract
Islet transplantation has become an established method for the treatment of insulin-deficient diabetes such as type 1 and type 3C (pancreatogenic). An effective transplantation necessitates a thorough understanding of the islet architecture and related functions to improve engraftment outcomes. However, in chronic pancreatitis (CP), the structural and related functional information is inadequate. Hence, the present study is aimed to understand the cytoarchitecture of endocrine cells and their functional implications in CP with and without diabetes. Herein, a set of human pancreatic tissue specimens (normal, n=5 and CP, n=20) was collected and processed for islet isolation. Furthermore, immunohistochemistry was used to assess the vascular densities, cell mass, organization, and cell-cell interactions. The glucose-stimulated insulin release results revealed that in chronic pancreatitis without diabetes mellitus altered (CPNDA), at basal glucose concentration the insulin secretion was increased by 24.2%, whereas at high glucose concentration the insulin levels were reduced by 77.4%. The impaired insulin secretion may be caused by alterations in the cellular architecture of islets during CP progression, particularly in chronic pancreatitis with diabetes mellitus and CPNDA conditions. Based on the results, a deeper comprehension of islet architecture would be needed to enhance successful transplantation in CP patients: (J Histochem Cytochem XX.XXX-XXX, XXXX).
Collapse
Affiliation(s)
- Pondugala Pavan Kumar
- Translational Research Center, Asian Healthcare Foundation, Hyderabad, India
- AIG Hospitals, Hyderabad, India
| | | | | | | | | | - Mitnala Sasikala
- Translational Research Center, Asian Healthcare Foundation, Hyderabad, India
| | - Duvvur Nageshwar Reddy
- Translational Research Center, Asian Healthcare Foundation, Hyderabad, India
- AIG Hospitals, Hyderabad, India
| |
Collapse
|
4
|
Homma J, Sekine H, Shimizu T. Tricultured Cell Sheets Develop into Functional Pancreatic Islet Tissue with a Vascular Network. Tissue Eng Part A 2023; 29:211-224. [PMID: 36565034 DOI: 10.1089/ten.tea.2022.0167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Methods to induce islet β-cells from induced pluripotent stem cells or embryonic stem cells have been established. However, islet β-cells are susceptible to apoptosis under hypoxic conditions, so the technique used to transplant β-cells must maintain the viability of cells in vivo. This study describes the development of a tricultured cell sheet, which was made by coculturing islet β-cells, vascular endothelial cells, and mesenchymal stem cells for 1 day. The islet β-cells in the tricultured cell sheet self-organized into islet-like structures surrounded by a dense vascular network in vitro. Triple-layered tricultured cell sheets engrafted well after transplantation in vivo and developed into insulin-secreting tissue with abundant blood vessels and a high density of islet β-cells. We anticipate that the tricultured cell sheet could be used as an in vitro pseudo-islet model for pharmaceutical testing and may have potential for development into transplantable grafts for use in regenerative medicine.
Collapse
Affiliation(s)
- Jun Homma
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Hidekazu Sekine
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
5
|
Fantuzzi F, Toivonen S, Schiavo AA, Chae H, Tariq M, Sawatani T, Pachera N, Cai Y, Vinci C, Virgilio E, Ladriere L, Suleiman M, Marchetti P, Jonas JC, Gilon P, Eizirik DL, Igoillo-Esteve M, Cnop M. In depth functional characterization of human induced pluripotent stem cell-derived beta cells in vitro and in vivo. Front Cell Dev Biol 2022; 10:967765. [PMID: 36060810 PMCID: PMC9428245 DOI: 10.3389/fcell.2022.967765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/06/2022] [Indexed: 01/05/2023] Open
Abstract
In vitro differentiation of human induced pluripotent stem cells (iPSCs) into beta cells represents an important cell source for diabetes research. Here, we fully characterized iPSC-derived beta cell function in vitro and in vivo in humanized mice. Using a 7-stage protocol, human iPSCs were differentiated into islet-like aggregates with a yield of insulin-positive beta cells comparable to that of human islets. The last three stages of differentiation were conducted with two different 3D culture systems, rotating suspension or static microwells. In the latter, homogeneously small-sized islet-like aggregates were obtained, while in rotating suspension size was heterogeneous and aggregates often clumped. In vitro function was assessed by glucose-stimulated insulin secretion, NAD(P)H and calcium fluctuations. Stage 7 aggregates slightly increased insulin release in response to glucose in vitro. Aggregates were transplanted under the kidney capsule of NOD-SCID mice to allow for further in vivo beta cell maturation. In transplanted mice, grafts showed glucose-responsiveness and maintained normoglycemia after streptozotocin injection. In situ kidney perfusion assays showed modulation of human insulin secretion in response to different secretagogues. In conclusion, iPSCs differentiated with equal efficiency into beta cells in microwells compared to rotating suspension, but the former had a higher experimental success rate. In vitro differentiation generated aggregates lacking fully mature beta cell function. In vivo, beta cells acquired the functional characteristics typical of human islets. With this technology an unlimited supply of islet-like organoids can be generated from human iPSCs that will be instrumental to study beta cell biology and dysfunction in diabetes.
Collapse
Affiliation(s)
- Federica Fantuzzi
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium,Endocrinology and Metabolism, Department of Medicine and Surgery, University of Parma, Parma, Italy,*Correspondence: Miriam Cnop, ; Federica Fantuzzi,
| | - Sanna Toivonen
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Andrea Alex Schiavo
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Heeyoung Chae
- Institut de Recherche Expérimentale et Clinique, Pôle d’Endocrinologie, Diabète et Nutrition, Université Catholique de Louvain, Brussels, Belgium
| | - Mohammad Tariq
- Institut de Recherche Expérimentale et Clinique, Pôle d’Endocrinologie, Diabète et Nutrition, Université Catholique de Louvain, Brussels, Belgium
| | - Toshiaki Sawatani
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Nathalie Pachera
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Ying Cai
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Chiara Vinci
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Enrico Virgilio
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Laurence Ladriere
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Mara Suleiman
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Jean-Christophe Jonas
- Institut de Recherche Expérimentale et Clinique, Pôle d’Endocrinologie, Diabète et Nutrition, Université Catholique de Louvain, Brussels, Belgium
| | - Patrick Gilon
- Institut de Recherche Expérimentale et Clinique, Pôle d’Endocrinologie, Diabète et Nutrition, Université Catholique de Louvain, Brussels, Belgium
| | - Décio L. Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium,Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium,*Correspondence: Miriam Cnop, ; Federica Fantuzzi,
| |
Collapse
|
6
|
Nakashima Y, Iguchi H, Takakura K, Nakamura Y, Izumi K, Koba N, Haneda S, Tsukahara M. Adhesion Characteristics of Human Pancreatic Islets, Duct Epithelial Cells, and Acinar Cells to a Polymer Scaffold. Cell Transplant 2022; 31:9636897221120500. [PMID: 36062469 PMCID: PMC9449504 DOI: 10.1177/09636897221120500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We reported in 2018 that among several extracellular matrices, fibronectin, type I collagen, type IV collagen, laminin I, fibrinogen, and bovine serum albumin, fibronectin is particularly useful for adhesion of porcine pancreatic tissue. Subsequently, we developed a technology that enables the chemical coating of the constituent motifs of fibronectin onto cell culture dishes. In this experiment, we used islets (purity ≥ 90%), duct epithelial cells (purity ≥ 60%), and acinar cells (purity ≥ 99%) isolated from human pancreas according to the Edmonton protocol published in 2000 and achieved adhesion to the constituent motifs of fibronectin. A solution including cGMP Prodo Islet Media was used as the assay solution. In islets, adhesion was enhanced with the constitutive motifs of fibronectin compared with uncoated islets. In the functional evaluation of islets, insulin mRNA expression and insulin secretion were enhanced by the constitutive motif of fibronectin compared with non-coated islets. The stimulation index was comparable between non-coated islets and fibronectin motifs. In duct epithelial cells, adhesion was mildly promoted by the fibronectin component compared with non-coated component, while in acinar cells, adhesion was inhibited by the fibronectin component compared with the non-coated component. These data suggest that the constitutive motifs of fibronectin are useful for the adhesion of islets and duct epithelial cells.
Collapse
Affiliation(s)
- Yoshiki Nakashima
- Center for iPS Cell Research and Application Foundation, Facility for iPS Cell Therapy, Kyoto University, Kyoto, Japan
| | - Hiroki Iguchi
- R&D Center Corporate Advanced Technology Institute Life Science Development Center, Sekisui Chemical Co., Ltd., Osaka, Japan
| | - Kenta Takakura
- R&D Center Corporate Advanced Technology Institute Life Science Development Center, Sekisui Chemical Co., Ltd., Osaka, Japan
| | - Yuta Nakamura
- R&D Center Corporate Advanced Technology Institute Life Science Development Center, Sekisui Chemical Co., Ltd., Osaka, Japan
| | | | | | - Satoshi Haneda
- R&D Center Corporate Advanced Technology Institute Life Science Development Center, Sekisui Chemical Co., Ltd., Osaka, Japan
| | - Masayoshi Tsukahara
- Center for iPS Cell Research and Application Foundation, Facility for iPS Cell Therapy, Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
Perrier Q, Lavallard V, Pernin N, Wassmer CH, Cottet-Dumoulin D, Lebreton F, Bellofatto K, Andres A, Berishvili E, Bosco D, Berney T, Parnaud G. Failure mode and effect analysis in human islet isolation: from the theoretical to the practical risk. Islets 2021; 13:1-9. [PMID: 33616002 PMCID: PMC8018422 DOI: 10.1080/19382014.2020.1856618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
This study aimed to assess the global mapping risk of human islet isolation, using a failure mode and effect analysis (FMEA), and highlight the impact of quality assurance procedures on the risk level of criticality. Risks were scored using the risk priority number (RPN) scoring method. The risk level of criticality was made based on RPN and led to risk classification (low to critical). A raw risk analysis and a risk control analysis (with control means and quality assurance performance) were undertaken. The process of human islet isolation was divided into 11 steps, and 230 risks were identified. Analysis of the highest RPN of each of the 11 steps showed that the 4 highest risks were related to the pancreas digestion and islet purification stages. After implementation of reduction measures and controls, critical and severe risks were reduced by 3-fold and by 2-fold, respectively, so that 90% of risks could be considered as low to moderate. FMEA has proven to be a powerful approach for the identification of weaknesses in the islet isolation processes. The results demonstrated the importance of staff qualification and continuous training and supported the contribution of the quality assurance system to risk reduction.
Collapse
Affiliation(s)
- Quentin Perrier
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospital, Geneva, Switzerland
- Clinical Pharmacy Department , Grenoble Alpes University, Grenoble, France
- CONTACT Quentin Perrier Centre Médical Universitaire de Genève Laboratoire de Transplantation Cellulaire, 1 Rue Michel Servet, Genève1211, Switzerland
| | - Vanessa Lavallard
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospital, Geneva, Switzerland
| | - Nadine Pernin
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospital, Geneva, Switzerland
| | - Charles-Henri Wassmer
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospital, Geneva, Switzerland
| | - David Cottet-Dumoulin
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospital, Geneva, Switzerland
| | - Fanny Lebreton
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospital, Geneva, Switzerland
| | - Kevin Bellofatto
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospital, Geneva, Switzerland
| | - Axel Andres
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospital, Geneva, Switzerland
| | - Ekaterine Berishvili
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospital, Geneva, Switzerland
| | - Domenico Bosco
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospital, Geneva, Switzerland
| | - Thierry Berney
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospital, Geneva, Switzerland
| | - Géraldine Parnaud
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospital, Geneva, Switzerland
| |
Collapse
|
8
|
Kim MJ, Park HS, Kim JW, Lee EY, Rhee M, You YH, Khang G, Park CG, Yoon KH. Suppression of Fibrotic Reactions of Chitosan-Alginate Microcapsules Containing Porcine Islets by Dexamethasone Surface Coating. Endocrinol Metab (Seoul) 2021; 36:146-156. [PMID: 33677936 PMCID: PMC7937851 DOI: 10.3803/enm.2021.879] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 11/03/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The microencapsulation is an ideal solution to overcome immune rejection without immunosuppressive treatment. Poor biocompatibility and small molecular antigens secreted from encapsulated islets induce fibrosis infiltration. Therefore, the aims of this study were to improve the biocompatibility of microcapsules by dexamethasone coating and to verify its effect after xenogeneic transplantation in a streptozotocin-induced diabetes mice. METHODS Dexamethasone 21-phosphate (Dexa) was dissolved in 1% chitosan and was cross-linked with the alginate microcapsule surface. Insulin secretion and viability assays were performed 14 days after microencapsulation. Dexa-containing chitosan-coated alginate (Dexa-chitosan) or alginate microencapsulated porcine islets were transplanted into diabetic mice. The fibrosis infiltration score was calculated from the harvested microcapsules. The harvested microcapsules were stained with trichrome and for insulin and macrophages. RESULTS No significant differences in glucose-stimulated insulin secretion and islet viability were noted among naked, alginate, and Dexa-chitosan microencapsulated islets. After transplantation of microencapsulated porcine islets, nonfasting blood glucose were normalized in both the Dexa-chitosan and alginate groups until 231 days. The average glucose after transplantation were lower in the Dexa-chitosan group than the alginate group. Pericapsular fibrosis and inflammatory cell infiltration of microcapsules were significantly reduced in Dexa-chitosan compared with alginate microcapsules. Dithizone and insulin were positive in Dexa-chitosan capsules. Although fibrosis and macrophage infiltration was noted on the surface, some alginate microcapsules were stained with insulin. CONCLUSION Dexa coating on microcapsules significantly suppressed the fibrotic reaction on the capsule surface after transplantation of xenogenic islets containing microcapsules without any harmful effects on the function and survival of the islets.
Collapse
Affiliation(s)
- Min Jung Kim
- Department of Endocrinology and Metabolism, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Heon-Seok Park
- Department of Endocrinology and Metabolism, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji-Won Kim
- Department of Endocrinology and Metabolism, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Eun-Young Lee
- Department of Endocrinology and Metabolism, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Marie Rhee
- Department of Endocrinology and Metabolism, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Young-Hye You
- Department of Endocrinology and Metabolism, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Gilson Khang
- Department of Polymer Nano Science and Technology, Department of BIN Fusion Technology and BK-21 Polymer BIN Fusion Research Team, Chonbuk National University, Jeonju, Korea
| | - Chung-Gyu Park
- Department of Microbiology and Immunology, Translational Xenotransplantation Research Centre, Cancer Research Institute, Biomedical Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Kun-Ho Yoon
- Department of Endocrinology and Metabolism, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Endocrinology and Metabolism, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
9
|
Zhang M, Yan S, Xu X, Yu T, Guo Z, Ma M, Zhang Y, Gu Z, Feng Y, Du C, Wan M, Hu K, Han X, Gu N. Three-dimensional cell-culture platform based on hydrogel with tunable microenvironmental properties to improve insulin-secreting function of MIN6 cells. Biomaterials 2021; 270:120687. [PMID: 33540170 DOI: 10.1016/j.biomaterials.2021.120687] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/10/2020] [Accepted: 01/18/2021] [Indexed: 01/13/2023]
Abstract
Pancreatic β-cells have been reported to be mechanosensitive to cellular microenvironments, and subjecting the cells to more physiologically relevant microenvironments can produce better results than when subjecting them to the conventional two-dimensional (2D) cell-culture conditions. In this work, we propose a novel three-dimensional (3D) strategy for inducing multicellular spheroid formation based on hydrogels with tunable mechanical and interfacial properties. The results indicate that MIN6 cells can sense the substrates and form tightly clustered monolayers or multicellular spheroids on hydrogels with tunable physical properties. Compared to the conventional 2D cell-culture system, the glucose sensitivities of the MIN6 cells cultured in the 3D culture model is enhanced greatly and their insulin content (relative to the amount of protein) is increased 7.3-7.9 folds. Moreover, the relative gene and protein expression levels of some key factors such as Pdx1, NeuroD1, Piezo1, and Rac1 in the MIN6 cells are significantly higher on the 3D platform, compared to the 2D control group. We believe that this 3D cell-culture system developed for the generation of multicellular spheroids will be a promising platform for diabetes treatment in clinical islet transplantation.
Collapse
Affiliation(s)
- Miao Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Sen Yan
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xueqin Xu
- Key Laboratory of Clinical and Medical Engineering, School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Tingting Yu
- Department of Medical Genetics, School of Basic Medical Science & Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Zhaobin Guo
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Ming Ma
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yi Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Zhuxiao Gu
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yiwei Feng
- Key Laboratory of Clinical and Medical Engineering, School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Chunyue Du
- Key Laboratory of Clinical and Medical Engineering, School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Mengqi Wan
- Key Laboratory of Clinical and Medical Engineering, School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Ke Hu
- Key Laboratory of Clinical and Medical Engineering, School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
10
|
Yang Z, Li X, Zhang C, Sun N, Guo T, Lin J, Li F, Zhang J. Amniotic Membrane Extract Protects Islets From Serum-Deprivation Induced Impairments and Improves Islet Transplantation Outcome. Front Endocrinol (Lausanne) 2020; 11:587450. [PMID: 33363516 PMCID: PMC7753361 DOI: 10.3389/fendo.2020.587450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/04/2020] [Indexed: 11/25/2022] Open
Abstract
Islet culture prior to transplantation is a standard practice in many transplantation centers. Nevertheless, the abundant islet mass loss and function impairment during this serum-deprivation culture period restrain the success of islet transplantation. In the present study, we used a natural biomaterial derived product, amniotic membrane extract (AME), as medium supplementation of islet pretransplant cultivation to investigate its protective effect on islet survival and function and its underlying mechanisms, as well as the engraftment outcome of islets following AME treatment. Results showed that AME supplementation improved islet viability and function, and decreased islet apoptosis and islet loss during serum-deprived culture. This was associated with the increased phosphorylation of PI3K/Akt and MAPK/ERK signaling pathway. Moreover, transplantation of serum-deprivation stressed islets that were pre-treated with AME into diabetic mice revealed better blood glucose control and improved islet graft survival. In conclusion, AME could improve islet survival and function in vivo and in vitro, and was at least partially through increasing phosphorylation of PI3K/Akt and MAPK/ERK signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jialin Zhang
- Department of Hepatobiliary Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
11
|
Figueiredo H, Figueroa ALC, Garcia A, Fernandez-Ruiz R, Broca C, Wojtusciszyn A, Malpique R, Gasa R, Gomis R. Targeting pancreatic islet PTP1B improves islet graft revascularization and transplant outcomes. Sci Transl Med 2020; 11:11/497/eaar6294. [PMID: 31217339 DOI: 10.1126/scitranslmed.aar6294] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/16/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022]
Abstract
Deficient vascularization is a major driver of early islet graft loss and one of the primary reasons for the failure of islet transplantation as a viable treatment for type 1 diabetes. This study identifies the protein tyrosine phosphatase 1B (PTP1B) as a potential modulator of islet graft revascularization. We demonstrate that grafts of pancreatic islets lacking PTP1B exhibit increased revascularization, which is accompanied by improved graft survival and function, and recovery of normoglycemia and glucose tolerance in diabetic mice transplanted with PTP1B-deficient islets. Mechanistically, we show that the absence of PTP1B leads to activation of hypoxia-inducible factor 1α-independent peroxisome proliferator-activated receptor γ coactivator 1α/estrogen-related receptor α signaling and enhanced expression and production of vascular endothelial growth factor A (VEGF-A) by β cells. These observations were reproduced in human islets. Together, these findings reveal that PTP1B regulates islet VEGF-A production and suggest that this phosphatase could be targeted to improve islet transplantation outcomes.
Collapse
Affiliation(s)
- Hugo Figueiredo
- Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.,University of Barcelona, 08036 Barcelona, Spain.,Escuela de Medicina y Ciencias de la Salud, Dept. Medicina Cardiovascular y Metabolómica, Tecnológico de Monterrey, 66278 San Pedro Garza García, Nuevo León, Mexico
| | - Ana Lucia C Figueroa
- Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.,University of Barcelona, 08036 Barcelona, Spain
| | - Ainhoa Garcia
- Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Rebeca Fernandez-Ruiz
- Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Christophe Broca
- CHU Montpellier, Laboratory of Cell Therapy for Diabetes (LTCD), Hospital St-Eloi, 34295 Montpellier, France
| | - Anne Wojtusciszyn
- CHU Montpellier, Laboratory of Cell Therapy for Diabetes (LTCD), Hospital St-Eloi, 34295 Montpellier, France.,Department of Endocrinology, Diabetes and Nutrition, University Hospital of Montpellier, Lapeyronie Hospital, 34295 Montpellier, France.,Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Rita Malpique
- Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Rosa Gasa
- Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Ramon Gomis
- Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain. .,University of Barcelona, 08036 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.,Universitat Oberta de Catalunya (UOC), 08018 Barcelona, Spain.,Department of Endocrinology and Nutrition, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
12
|
Scharfmann R, Staels W, Albagli O. The supply chain of human pancreatic β cell lines. J Clin Invest 2019; 129:3511-3520. [PMID: 31478912 PMCID: PMC6715382 DOI: 10.1172/jci129484] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Patients with type 1 or type 2 diabetes have an insufficiency in their functional β cell mass. To advance diabetes treatment and to work toward a cure, a better understanding of how to protect the pancreatic β cells against autoimmune or metabolic assaults (e.g., obesity, gestation) will be required. Over the past decades, β cell protection has been extensively investigated in rodents both in vivo and in vitro using isolated islets or rodent β cell lines. Transferring these rodent data to humans has long been challenging, at least partly for technical reasons: primary human islet preparations were scarce and functional human β cell lines were lacking. In 2011, we described a robust protocol of targeted oncogenesis in human fetal pancreas and produced the first functional human β cell line, and in subsequent years additional lines with specific traits. These cell lines are currently used by more than 150 academic and industrial laboratories worldwide. In this Review, we first explain how we developed the human β cell lines and why we think we succeeded where others, despite major efforts, did not. Next, we discuss the use of such functional human β cell lines and share some perspectives on their use to advance diabetes research.
Collapse
Affiliation(s)
- Raphael Scharfmann
- INSERM U1016, Institut Cochin, Université Paris Descartes, Paris, France
| | - Willem Staels
- INSERM U1016, Institut Cochin, Université Paris Descartes, Paris, France
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Brussels, Belgium
| | - Olivier Albagli
- INSERM U1016, Institut Cochin, Université Paris Descartes, Paris, France
| |
Collapse
|
13
|
Optimizing Temperature and Oxygen Supports Long-term Culture of Human Islets. Transplantation 2019; 103:299-306. [PMID: 29781952 DOI: 10.1097/tp.0000000000002280] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Islet transplantation is a promising treatment for type-1 diabetes; however, donor shortage is a concern. Even when a pancreas is available, low islet yield limits the success of transplantation. Islet culture enables pooling of multiple low-yield isolations into an effective islet mass, but isolated islets rapidly deteriorate under conventional culture conditions. Oxygen (O2) depletion in the islet core, which leads to central necrosis and volume loss, is one of the major reasons for this deterioration. METHODS To promote long-term culture of human islets in PIM-R medium (used for islet research), we adjusted temperature (12°C, 22°C, and 37°C) and O2 concentration (21% and 50%). We simulated the O2 distribution in islets based on islet O2 consumption rate and dissolved O2 in the medium. We determined the optimal conditions for O2 distribution and volume maintenance in a 2-week culture and assessed viability and insulin secretion compared to noncultured islets. In vivo islet engraftment was assessed by transplantation into diabetic nonobese diabetic-severe combined immunodeficiency mouse kidneys. We validated our results using CMRL 1066 medium (used for clinical islet transplantation). RESULTS Simulation revealed that 12°C of 50% O2 PIM-R culture supplied O2 effectively into the islet core. This condition maintained islet volume at greater than 90% for 2 weeks. There were no significant differences in viability and function in vitro or diabetic reversal rate in vivo between 2-week cultured and noncultured islets. Similar results were obtained using CMRL 1066. CONCLUSIONS By optimizing temperature and O2 concentration, we cultured human islets for 2 weeks with minimal loss of volume and function.
Collapse
|
14
|
Incidental Neuroendocrine Tumor Discovered After Total Pancreatectomy Intended for Islet Autotransplantation: Important Considerations for Surgical Decision-Making. Pancreas 2018; 47:778-782. [PMID: 29894419 DOI: 10.1097/mpa.0000000000001069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Total pancreatectomy (TP) is a treatment option for patients experiencing chronic pancreatitis (CP) refractory to medical management. Patients who are candidates for TP benefit from islet autotransplantation (IAT), which preserves available β-cell mass and thereby reduces the risk of brittle diabetes. Malignancy is an absolute contraindication for IAT to prevent the transplantation of occult malignant cells. We present the case of a patient with CP who was approved to undergo TP with IAT (TPIAT) but was intraoperatively discovered to have a pancreatic neuroendocrine tumor. The case illustrates a number of important surgical decision-making considerations for patients undergoing TPIAT and should help guide surgeons should they be presented with this clinical scenario. We stress the importance of vigilance for possible malignancy and to consider an intraoperative biopsy to further investigate unexpected findings that might represent an occult pancreatic malignancy in patients with CP undergoing TPIAT.
Collapse
|
15
|
Weegman BP, Taylor MJ, Baicu SC, Mueller K, O'brien TD, Wilson J, Papas KK. Plasticity and Aggregation of Juvenile Porcine Islets in Modified Culture: Preliminary Observations. Cell Transplant 2018; 25:1763-1775. [PMID: 27109912 DOI: 10.3727/096368916x691475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Diabetes is a major health problem worldwide, and there is substantial interest in developing xenogeneic islet transplantation as a potential treatment. The potential to relieve the demand on an inadequate supply of human pancreata is dependent upon the efficiency of techniques for isolating and culturing islets from the source pancreata. Porcine islets are favored for xenotransplantation, but mature pigs (>2 years) present logistic and economic challenges, and young pigs (3-6 months) have not yet proven to be an adequate source. In this study, islets were isolated from 20 juvenile porcine pancreata (~3 months; 25 kg Yorkshire pigs) immediately following procurement or after 24 h of hypothermic machine perfusion (HMP) preservation. The resulting islet preparations were characterized using a battery of tests during culture in silicone rubber membrane flasks. Islet biology assessment included oxygen consumption, insulin secretion, histopathology, and in vivo function. Islet yields were highest from HMP-preserved pancreata (2,242 ± 449 IEQ/g). All preparations comprised a high proportion (>90%) of small islets (<100 μm), and purity was on average 63 ± 6%. Morphologically, islets appeared as clusters on day 0, loosely disaggregated structures at day 1, and transitioned to aggregated structures comprising both exocrine and endocrine cells by day 6. Histopathology confirmed both insulin and glucagon staining in cultures and grafts excised after transplantation in mice. Nuclear staining (Ki-67) confirmed mitotic activity consistent with the observed plasticity of these structures. Metabolic integrity was demonstrated by oxygen consumption rates = 175 ± 16 nmol/min/mg DNA, and physiological function was intact by glucose stimulation after 6-8 days in culture. In vivo function was confirmed with blood glucose control achieved in nearly 50% (8/17) of transplants. Preparation and culture of juvenile porcine islets as a source for islet transplantation require specialized conditions. These immature islets undergo plasticity in culture and form fully functional multicellular structures. Further development of this method for culturing immature porcine islets is expected to generate small pancreatic tissue-derived organoids termed "pancreatites," as a therapeutic product from juvenile pigs for xenotransplantation and diabetes research.
Collapse
Affiliation(s)
- Bradley P Weegman
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA.,Sylvatica Biotech, LLC, N. Charleston, SC, USA
| | - Michael J Taylor
- Sylvatica Biotech, LLC, N. Charleston, SC, USA.,Tissue Testing Technologies, LLC, N. Charleston, SC, USA.,Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Simona C Baicu
- Tissue Testing Technologies, LLC, N. Charleston, SC, USA.,LifePoint, Inc., Charleston, SC, USA
| | - Kate Mueller
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Timothy D O'brien
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN, USA
| | - John Wilson
- Wilson Wolf Manufacturing, New Brighton, MN, USA
| | | |
Collapse
|
16
|
Buchwald P, Tamayo-Garcia A, Manzoli V, Tomei AA, Stabler CL. Glucose-stimulated insulin release: Parallel perifusion studies of free and hydrogel encapsulated human pancreatic islets. Biotechnol Bioeng 2018; 115:232-245. [PMID: 28865118 PMCID: PMC5699962 DOI: 10.1002/bit.26442] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/14/2017] [Accepted: 08/30/2017] [Indexed: 12/29/2022]
Abstract
To explore the effects immune-isolating encapsulation has on the insulin secretion of pancreatic islets and to improve our ability to quantitatively describe the glucose-stimulated insulin release (GSIR) of pancreatic islets, we conducted dynamic perifusion experiments with isolated human islets. Free (unencapsulated) and hydrogel encapsulated islets were perifused, in parallel, using an automated multi-channel system that allows sample collection with high temporal resolution. Results indicated that free human islets secrete less insulin per unit mass or islet equivalent (IEQ) than murine islets and with a less pronounced first-phase peak. While small microcapsules (d = 700 µm) caused only a slightly delayed and blunted first-phase insulin response compared to unencapsulated islets, larger capsules (d = 1,800 µm) completely blunted the first-phase peak and decreased the total amount of insulin released. Experimentally obtained insulin time-profiles were fitted with our complex insulin secretion computational model. This allowed further fine-tuning of the hormone-release parameters of this model, which was implemented in COMSOL Multiphysics to couple hormone secretion and nutrient consumption kinetics with diffusive and convective transport. The results of these GSIR experiments, which were also supported by computational modeling, indicate that larger capsules unavoidably lead to dampening of the first-phase insulin response and to a sustained-release type insulin secretion that can only slowly respond to changes in glucose concentration. Bioartificial pancreas type devices can provide long-term and physiologically desirable solutions only if immunoisolation and biocompatibility considerations are integrated with optimized nutrient diffusion and insulin release characteristics by design.
Collapse
Affiliation(s)
- Peter Buchwald
- Diabetes Research Institute, University of Miami, Miller School of Medicine, Miami, FL
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL
| | | | - Vita Manzoli
- Diabetes Research Institute, University of Miami, Miller School of Medicine, Miami, FL
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy
| | - Alice A. Tomei
- Diabetes Research Institute, University of Miami, Miller School of Medicine, Miami, FL
- Biomedical Engineering, University of Miami, Miller School of Medicine, Miami, FL
| | - Cherie L. Stabler
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
17
|
Borlongan CV, Yu G, Matsukawa N, Yasuhara T, Hara K, Xu L. Article Commentary: Cell Transplantation: Stem Cells in the Spotlight. Cell Transplant 2017; 14:519-526. [DOI: 10.3727/000000005783982774] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Cesar V. Borlongan
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| | - Guolong Yu
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| | - Noriyuki Matsukawa
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| | - Takao Yasuhara
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| | - Koichi Hara
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| | - Lin Xu
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| |
Collapse
|
18
|
SanMartin A, Borlongan CV. Article Commentary: Cell Transplantation: Toward Cell Therapy. Cell Transplant 2017; 15:665-73. [PMID: 17176618 DOI: 10.3727/000000006783981666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Agneta SanMartin
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, Tampa, FL 33612, USA.
| | | |
Collapse
|
19
|
Abstract
Clinical pancreatic islet transplantation can be considered one of the safest and least invasive transplant procedures. Remarkable progress has occurred in both the technical aspects of islet cell processing and the outcomes of clinical islet transplantation. With >1,500 patients treated since 2000, this therapeutic strategy has moved from a curiosity to a realistic treatment option for selected patients with type 1 diabetes mellitus (that is, those with hypoglycaemia unawareness, severe hypoglycaemic episodes and glycaemic lability). This Review outlines the techniques required for human islet isolation, in vitro culture before the transplant and clinical islet transplantation, and discusses indications, optimization of recipient immunosuppression and management of adjunctive immunomodulatory and anti-inflammatory strategies. The potential risks, long-term outcomes and advances in treatment after the transplant are also discussed to further move this treatment towards becoming a more widely available option for patients with type 1 diabetes mellitus and eventually a potential cure.
Collapse
Affiliation(s)
- A M James Shapiro
- Clinical Islet Transplant Program, University of Alberta, 2000 College Plaza, 8215 112th Street, Edmonton, Alberta T6G 2C8, Canada
- The Diabetes Research Institute Federation, 1450 NW 10 Avenue, Miami, Florida 33136, USA
- The Cure Alliance, 550 Bay Point Road, Miami, Florida 33137, USA
| | - Marta Pokrywczynska
- The Diabetes Research Institute Federation, 1450 NW 10 Avenue, Miami, Florida 33136, USA
- The Cure Alliance, 550 Bay Point Road, Miami, Florida 33137, USA
- Department of Regenerative Medicine, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Karlowicza 24 Street, 85-092 Bydgoszcz, Poland
| | - Camillo Ricordi
- The Diabetes Research Institute Federation, 1450 NW 10 Avenue, Miami, Florida 33136, USA
- The Cure Alliance, 550 Bay Point Road, Miami, Florida 33137, USA
- Diabetes Research Institute and Cell Transplant Program, University of Miami Miller School of Medicine, 1450 NW 10th Avenue, Miami, Florida 33136, USA
| |
Collapse
|
20
|
Hawthorne WJ, Williams L, Chew YV. Clinical Islet Isolation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 938:89-122. [PMID: 27586424 DOI: 10.1007/978-3-319-39824-2_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The overarching success of islet transplantation relies on the success in the laboratory to isolate the islets. This chapter focuses on the processes of human islet cell isolation and the ways to optimally provide islet cells for transplantation. The major improvements in regards to the choice of enzyme type, way the digested pancreas tissue is handled to best separate islets from the acinar and surrounding tissues, the various methods of purification of the islets, their subsequent culture and quality assurance to improve outcomes to culminate in safe and effective islet transplantation will be discussed. After decades of improvements, islet cell isolation and transplantation now clearly offer a safe, effective and feasible therapeutic treatment option for an increasing number of patients suffering from type 1 diabetes specifically for those with severe hypoglycaemic unawareness.
Collapse
Affiliation(s)
- Wayne J Hawthorne
- National Pancreas and Islet Transplant Laboratories, The Westmead Institute for Medical Research, Westmead, NSW, 2145, Australia. .,Department of Surgery, Westmead Clinical School, Westmead Hospital, University of Sydney, Westmead, NSW, 2145, Australia.
| | - Lindy Williams
- National Pancreas and Islet Transplant Laboratories, The Westmead Institute for Medical Research, Westmead, NSW, 2145, Australia
| | - Yi Vee Chew
- National Pancreas and Islet Transplant Laboratories, The Westmead Institute for Medical Research, Westmead, NSW, 2145, Australia
| |
Collapse
|
21
|
Brandhorst D, Brandhorst H, Mullooly N, Acreman S, Johnson PRV. High Seeding Density Induces Local Hypoxia and Triggers a Proinflammatory Response in Isolated Human Islets. Cell Transplant 2015; 25:1539-46. [PMID: 26628048 DOI: 10.3727/096368915x689929] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Hypoxia is the main threat to morphological and functional integrity of isolated pancreatic islets. Lack of oxygen seems to be of particular importance for functionality of encapsulated islets. The present study was initiated as an experimental model for the environment experienced by human islets in a confined space present during culture, shipment, and in an implanted macrodevice. Quadruplicate aliquots of isolated human islets (n = 12) were cultured for 24 h at 37°C under normoxic conditions using 24-well plates equipped with 8-µm pore size filter inserts and filled with islet aliquots adjusted to obtain a seeding density of 75, 150, 300, or 600 IEQ/cm(2). After culture viability, glucose-stimulated insulin release, DNA content as well as Bax and Bcl-2 gene expression were measured. Culture supernatants were collected to determine production of VEGF and MCP-1. Viability correlated inversely with IEQ seeding density (r = -0.71, p < 0.001), while the correlation of VEGF and MCP-1 secretion with seeding density was positive (r = 0.78, p < 0.001; r = 0.54, p < 0.001). Decreased viability corresponded with a significant increase in the Bax/Bcl-2 mRNA ratio at 300 and 600 IEQ/cm(2) and with a sigificantly reduced glucose-stimulated insulin secretion and insulin content compared to 75 or 150 IEQ/cm(2) (p < 0.01). The present study demonstrates that the seeding density is inversely correlated with islet viability and in vitro function. This is associated with a significant increase in VEGF and MCP-1 release suggesting a hypoxic and proinflammatory islet microenvironment.
Collapse
Affiliation(s)
| | - Heide Brandhorst
- Nuffield Department of Surgical Sciences, University of Oxford, Headington, Oxford, UK
| | | | | | | |
Collapse
|
22
|
Noguchi H, Miyagi-Shiohira C, Kurima K, Kobayashi N, Saitoh I, Watanabe M, Noguchi Y, Matsushita M. Islet Culture/Preservation Before Islet Transplantation. CELL MEDICINE 2015; 8:25-9. [PMID: 26858905 DOI: 10.3727/215517915x689047] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Although islet culture prior to transplantation provides flexibility for the evaluation of isolated islets and the pretreatment of patients, it is well known that isolated islets deteriorate rapidly in culture. Human serum albumin (HSA) is used for medium supplementation instead of fetal bovine serum (FBS), which is typically used for islet culture research, to avoid the introduction of xenogeneic materials. However, FBS contains several factors that are beneficial to islet viability and which also neutralize the endogenous pancreatic enzymes or exogenous enzymes left over from the isolation process. Several groups have reported the comparison of cultures at 22°C and 37°C. Recent studies have demonstrated the superiority of 4°C preservation to 22°C and 37°C cultures. We herein review the current research on islet culture/preservation for clinical islet transplantation.
Collapse
Affiliation(s)
- Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus , Okinawa , Japan
| | - Chika Miyagi-Shiohira
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus , Okinawa , Japan
| | - Kiyoto Kurima
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus , Okinawa , Japan
| | | | - Issei Saitoh
- ‡ Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University , Niigata , Japan
| | - Masami Watanabe
- § Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Yasufumi Noguchi
- ¶ Department of Socio-environmental Design, Hiroshima International University , Hiroshima , Japan
| | - Masayuki Matsushita
- # Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus , Okinawa , Japan
| |
Collapse
|
23
|
Nacher M, Estil Les E, Garcia A, Nadal B, Pairó M, Garcia C, Secanella L, Novials A, Montanya E. Human Serum Versus Human Serum Albumin Supplementation in Human Islet Pretransplantation Culture: In Vitro and In Vivo Assessment. Cell Transplant 2015; 25:343-52. [PMID: 25955150 DOI: 10.3727/096368915x688119] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
There is conflicting evidence favoring both the use of human serum (HS) and of human serum albumin (HSA) in human islet culture. We evaluated the effects of HS versus HSA supplementation on 1) in vitro β-cell viability and function and 2) in vivo islet graft revascularization, islet viability, β-cell death, and metabolic outcome after transplantation. Islets isolated from 14 cadaveric organ donors were cultured for 3 days in CMRL 1066 medium supplemented with HS or HSA. After 3 days in culture, β-cell apoptosis was lower in HS group (1.41 ± 0.27 vs. 2.38 ± 0.39%, p = 0.029), and the recovery of islets was 77 ± 11% and 54 ± 1% in HS- and HSA-cultured groups, respectively. Glucose-stimulated insulin secretion (GSIS) was higher in HS group (29.4, range 10.4-99.9, vs. 22.3, range 8.7-70.6, p = 0.031). In vivo viability and revascularization was determined in HS- and HSA-cultured islets transplanted into the anterior chamber of the eye of Balb/c mice (n = 14), and β-cell apoptosis in paraffin-embedded mouse eyes. Islet viability and β-cell apoptosis were similar in both groups. Revascularization was observed in one graft (HS group) on day 10 after transplantation. Islet function was determined in streptozotocin (STZ)-diabetic nude mice (n = 33) transplanted with 2,000 IEQs cultured with HS or HSA that showed similar blood glucose levels and percentage of normoglycemic animals over time. In conclusion, human islets cultured in medium supplemented with HS showed higher survival in vitro, as well as islet viability and function. The higher in vitro survival increased the number of islets available for transplantation. However, the beneficial effect on viability and function did not translate into an improved metabolic evolution when a similar number of HSA- and HS-cultured islets was transplanted.
Collapse
Affiliation(s)
- Montserrat Nacher
- Hospital Universitari Bellvitge-IDIBELLL, Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Naujok O, Bandou Y, Shikama Y, Funaki M, Lenzen S. Effect of substrate rigidity in tissue culture on the function of insulin-secreting INS-1E cells. J Tissue Eng Regen Med 2014; 11:58-65. [DOI: 10.1002/term.1857] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 09/05/2013] [Accepted: 11/10/2013] [Indexed: 11/10/2022]
Affiliation(s)
- O. Naujok
- Institute of Clinical Biochemistry; Hannover Medical School; Germany
| | - Y. Bandou
- Clinical Research Centre for Diabetes; Tokushima University Hospital; Japan
| | - Y. Shikama
- Clinical Research Centre for Diabetes; Tokushima University Hospital; Japan
| | - M. Funaki
- Clinical Research Centre for Diabetes; Tokushima University Hospital; Japan
| | - S. Lenzen
- Institute of Clinical Biochemistry; Hannover Medical School; Germany
| |
Collapse
|
25
|
Szlyk B, Braun CR, Ljubicic S, Patton E, Bird GH, Osundiji MA, Matschinsky FM, Walensky LD, Danial NN. A phospho-BAD BH3 helix activates glucokinase by a mechanism distinct from that of allosteric activators. Nat Struct Mol Biol 2013; 21:36-42. [PMID: 24317490 DOI: 10.1038/nsmb.2717] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 10/15/2013] [Indexed: 01/10/2023]
Abstract
Glucokinase (GK) is a glucose-phosphorylating enzyme that regulates insulin release and hepatic metabolism, and its loss of function is implicated in diabetes pathogenesis. GK activators (GKAs) are attractive therapeutics in diabetes; however, clinical data indicate that their benefits can be offset by hypoglycemia, owing to marked allosteric enhancement of the enzyme's glucose affinity. We show that a phosphomimetic of the BCL-2 homology 3 (BH3) α-helix derived from human BAD, a GK-binding partner, increases the enzyme catalytic rate without dramatically changing glucose affinity, thus providing a new mechanism for pharmacologic activation of GK. Remarkably, BAD BH3 phosphomimetic mediates these effects by engaging a new region near the enzyme's active site. This interaction increases insulin secretion in human islets and restores the function of naturally occurring human GK mutants at the active site. Thus, BAD phosphomimetics may serve as a new class of GKAs.
Collapse
Affiliation(s)
- Benjamin Szlyk
- 1] Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. [2]
| | - Craig R Braun
- 1] Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. [2]
| | - Sanda Ljubicic
- 1] Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. [2] Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Elaura Patton
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Gregory H Bird
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Mayowa A Osundiji
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Franz M Matschinsky
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Loren D Walensky
- 1] Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. [2] Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA. [3] Department of Pediatric Oncology, Children's Hospital, Boston, Massachusetts, USA
| | - Nika N Danial
- 1] Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. [2] Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Weegman BP, Nash P, Carlson AL, Voltzke KJ, Geng Z, Jahani M, Becker BB, Papas KK, Firpo MT. Nutrient regulation by continuous feeding removes limitations on cell yield in the large-scale expansion of Mammalian cell spheroids. PLoS One 2013; 8:e76611. [PMID: 24204645 PMCID: PMC3799778 DOI: 10.1371/journal.pone.0076611] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 08/25/2013] [Indexed: 02/06/2023] Open
Abstract
Cellular therapies are emerging as a standard approach for the treatment of several diseases. However, realizing the promise of cellular therapies across the full range of treatable disorders will require large-scale, controlled, reproducible culture methods. Bioreactor systems offer the scale-up and monitoring needed, but standard stirred bioreactor cultures do not allow for the real-time regulation of key nutrients in the medium. In this study, β-TC6 insulinoma cells were aggregated and cultured for 3 weeks as a model of manufacturing a mammalian cell product. Cell expansion rates and medium nutrient levels were compared in static, stirred suspension bioreactors (SSB), and continuously fed (CF) SSB. While SSB cultures facilitated increased culture volumes, no increase in cell yields were observed, partly due to limitations in key nutrients, which were consumed by the cultures between feedings, such as glucose. Even when glucose levels were increased to prevent depletion between feedings, dramatic fluctuations in glucose levels were observed. Continuous feeding eliminated fluctuations and improved cell expansion when compared with both static and SSB culture methods. Further improvements in growth rates were observed after adjusting the feed rate based on calculated nutrient depletion, which maintained physiological glucose levels for the duration of the expansion. Adjusting the feed rate in a continuous medium replacement system can maintain the consistent nutrient levels required for the large-scale application of many cell products. Continuously fed bioreactor systems combined with nutrient regulation can be used to improve the yield and reproducibility of mammalian cells for biological products and cellular therapies and will facilitate the translation of cell culture from the research lab to clinical applications.
Collapse
Affiliation(s)
- Bradley P. Weegman
- Stem Cell Institute, Division of Endocrinology, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Peter Nash
- Stem Cell Institute, Division of Endocrinology, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Alexandra L. Carlson
- Stem Cell Institute, Division of Endocrinology, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Kristin J. Voltzke
- Stem Cell Institute, Division of Endocrinology, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Zhaohui Geng
- Stem Cell Institute, Division of Endocrinology, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Marjan Jahani
- Stem Cell Institute, Division of Endocrinology, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Benjamin B. Becker
- Stem Cell Institute, Division of Endocrinology, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Klearchos K. Papas
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Cellular Transplantation, Department of Surgery, University of Arizona, Tucson, Arizona, United States of America
| | - Meri T. Firpo
- Stem Cell Institute, Division of Endocrinology, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
27
|
Mueller KR, Martins KV, Murtaugh MP, Schuurman HJ, Papas KK. Manufacturing porcine islets: culture at 22 °C has no advantage above culture at 37 °C: a gene expression evaluation. Xenotransplantation 2013; 20:418-28. [PMID: 23941232 DOI: 10.1111/xen.12048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 07/16/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND The manufacturing process of islets includes a culture step which was originally introduced to ease the logistics of procedures in preparing the graft and transplant recipient. It has been suggested that culture at room temperature has an advantage over culture at 37 °C, in part by reducing immunogenicity via preferential elimination of contaminating cells (such as passenger leukocytes) within islets. We investigated this using islets isolated from pancreata of adult pigs. METHODS Porcine islets were isolated from three donors and cultured at 37 °C for 1 day, and then under three different conditions: 37 °C for 6 days (condition A); 22 °C for 6 days (condition B); or 22 °C for 5 days followed by 37 °C for 1 day (condition C). Recovery was assessed by DNA measurement, viability by oxygen consumption rate normalized for DNA (OCR/DNA), and gene expression by RT-PCR for a series of 9 lymphocyte markers, 11 lymphokines and chemokines, and 14 apoptotic and stress markers. RESULTS Post-culture islet recoveries were similar for the three culture conditions. Average OCR/DNA values were 129-159 nmol/min·mgDNA before culture, and 259-291, 204-212, and 207-228 nmol/min·mgDNA, respectively, for culture under conditions A, B, and C, respectively. Irrespective of culture condition, examined gene expression in all three series of lymphocyte markers, lymphokines and chemokines, and apoptotic and stress markers manifested a statistically significant decrease upon culture for 7 days. This decrease was most dramatic for condition A: in particular, most of lymphocyte markers showed a >10-fold reduction and also six markers in the lymphokine and chemokine series; these reductions are consistent with the elimination of immune cells present within islets during culture. The reduction was less for apoptotic and stress markers. For culture under condition B, the reduction in gene expression was less, and culture under condition C resulted in gene expression levels similar to those under condition A: this indicates that 24 h at 37 °C is sufficient to re-equilibrate gene expression levels from those in islets cultured at 22 °C to those in islets cultured at 37 °C. Results were consistent among the preparations from the three donors. CONCLUSIONS Culture of porcine islets at 37 °C provides benefits over culture at 22 °C with respect to OCR/DNA outcomes and reduced expression of genes encoding lymphocyte markers, lymphokines and chemokines, and markers for apoptosis and stress.
Collapse
Affiliation(s)
- Kate R Mueller
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | |
Collapse
|
28
|
Domínguez-Bendala J, Ricordi C. Present and future cell therapies for pancreatic beta cell replenishment. World J Gastroenterol 2012; 18:6876-84. [PMID: 23322984 PMCID: PMC3531670 DOI: 10.3748/wjg.v18.i47.6876] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 05/27/2012] [Accepted: 07/18/2012] [Indexed: 02/06/2023] Open
Abstract
If only at a small scale, islet transplantation has successfully addressed what ought to be the primary endpoint of any cell therapy: the functional replenishment of damaged tissue in patients. After years of less-than-optimal approaches to immunosuppression, recent advances consistently yield long-term graft survival rates comparable to those of whole pancreas transplantation. Limited organ availability is the main hurdle that stands in the way of the widespread clinical utilization of this pioneering intervention. Progress in stem cell research over the past decade, coupled with our decades-long experience with islet transplantation, is shaping the future of cell therapies for the treatment of diabetes. Here we review the most promising avenues of research aimed at generating an inexhaustible supply of insulin-producing cells for islet regeneration, including the differentiation of pluripotent and multipotent stem cells of embryonic and adult origin along the beta cell lineage and the direct reprogramming of non-endocrine tissues into insulin-producing cells.
Collapse
|
29
|
Kaddis JS, Hanson MS, Cravens J, Qian D, Olack B, Antler M, Papas KK, Iglesias I, Barbaro B, Fernandez L, Powers AC, Niland JC. Standardized transportation of human islets: an islet cell resource center study of more than 2,000 shipments. Cell Transplant 2012; 22:1101-11. [PMID: 22889479 DOI: 10.3727/096368912x653219] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Preservation of cell quality during shipment of human pancreatic islets for use in laboratory research is a crucial, but neglected, topic. Mammalian cells, including islets, have been shown to be adversely affected by temperature changes in vitro and in vivo, yet protocols that control for thermal fluctuations during cell transport are lacking. To evaluate an optimal method of shipping human islets, an initial assessment of transportation conditions was conducted using standardized materials and operating procedures in 48 shipments sent to a central location by eight pancreas-processing laboratories using a single commercial airline transporter. Optimization of preliminary conditions was conducted, and human islet quality was then evaluated in 2,338 shipments pre- and postimplementation of a finalized transportation container and standard operating procedures. The initial assessment revealed that the outside temperature ranged from a mean of -4.6 ± 10.3°C to 20.9 ± 4.8°C. Within-container temperature drops to or below 15°C occurred in 16 shipments (36%), while the temperature was found to be stabilized between 15°C and 29°C in 29 shipments (64%). Implementation of an optimized transportation container and operating procedure reduced the number of within-container temperature drops (≤ 15°C) to 13% (n = 37 of 289 winter shipments), improved the number desirably maintained between 15°C and 29°C to 86% (n = 250), but also increased the number reaching or exceeding 29°C to 1% (n = 2; overall p < 0.0001). Additionally, postreceipt quality ratings of excellent to good improved pre- versus postimplantation of the standardized protocol, adjusting for preshipment purity/viability levels (p < 0.0001). Our results show that extreme temperature fluctuations during transport of human islets, occurring when using a commercial airline transporter for long distance shipping, can be controlled using standardized containers, materials, and operating procedures. This cost-effective and pragmatic standardized protocol for the transportation of human islets can potentially be adapted for use with other mammalian cell systems and is available online at http://iidp.coh.org/sops.aspx.
Collapse
Affiliation(s)
- John S Kaddis
- Department of Information Sciences, City of Hope, Duarte, CA 91010-3000, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Avgoustiniatos ES, Scott WE, Suszynski TM, Schuurman HJ, Nelson RA, Rozak PR, Mueller KR, Balamurugan AN, Ansite JD, Fraga DW, Friberg AS, Wildey GM, Tanaka T, Lyons CA, Sutherland DER, Hering BJ, Papas KK. Supplements in human islet culture: human serum albumin is inferior to fetal bovine serum. Cell Transplant 2012; 21:2805-14. [PMID: 22863057 DOI: 10.3727/096368912x653138] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Culture of human islets before clinical transplantation or distribution for research purposes is standard practice. At the time the Edmonton protocol was introduced, clinical islet manufacturing did not include culture, and human serum albumin (HSA), instead of fetal bovine serum (FBS), was used during other steps of the process to avoid the introduction of xenogeneic material. When culture was subsequently introduced, HSA was also used for medium supplementation instead of FBS, which was typically used for research islet culture. The use of HSA as culture supplement was not evaluated before this implementation. We performed a retrospective analysis of 103 high-purity islet preparations (76 research preparations, all with FBS culture supplementation, and 27 clinical preparations, all with HSA supplementation) for oxygen consumption rate per DNA content (OCR/DNA; a measure of viability) and diabetes reversal rate in diabetic nude mice (a measure of potency). After 2-day culture, research preparations exhibited an average OCR/DNA 51% higher (p < 0.001) and an average diabetes reversal rate 54% higher (p < 0.05) than clinical preparations, despite 87% of the research islet preparations having been derived from research-grade pancreata that are considered of lower quality. In a prospective paired study on islets from eight research preparations, OCR/DNA was, on average, 27% higher with FBS supplementation than that with HSA supplementation (p < 0.05). We conclude that the quality of clinical islet preparations can be improved when culture is performed in media supplemented with serum instead of albumin.
Collapse
|
31
|
Giraud S, Bon D, Neuzillet Y, Thuillier R, Eugene M, Hauet T, Barrou B. Concentration and chain length of polyethylene glycol in islet isolation solution: evaluation in a pancreatic islet transplantation model. Cell Transplant 2012; 21:2079-88. [PMID: 22507302 DOI: 10.3727/096368912x638928] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
To improve graft preservation and consequently reduce conservation injuries, the composition of preservation solution is of outmost importance. It was demonstrated that the colloid polyethylene glycol (PEG), used in SCOT solution, has protective effects on cell membranes and immunocamouflage properties. The aim of this study was to optimize the concentration and chain length of PEG to improve pancreatic islet preservation and outcome. In a model of murine islet allotransplantation, islets were isolated with SCOT containing various concentrations of PEG 20 kDa or 35 kDa. Better islet yield (IEQ) was obtained with SCO +PEG at 15-30 g/L versus other PEG concentrations and control CMRL-1066 + 1% BSA solution (p < 0.05). Allograft survival was better prolonged (up to 20 days) in the groups SCOT + PEG 20 kDa 10-30 g/L compared to PEG 35 kDa (less than 17.8 days) and to control solutions (less than 17.5 days). In terms of graft function recovery, the use of PEG 20 kDa 15-30 g/L induced no primary nonfunction and delayed graft function contrary to CMRL-1066 and other PEG solutions. The use of the extracellular-type solution SCOT containing PEG 20 kDa 15 g/L as colloid could be a new way to optimize graft integrity preservation and allograft outcome.
Collapse
|
32
|
Loganathan G, Dawra RK, Pugazhenthi S, Guo Z, Soltani SM, Wiseman A, Sanders MA, papas KK, Kumaravel V, Saluja AK, Sutherland DE, Hering BJ, Balamurugan AN. Insulin degradation by acinar cell proteases creates a dysfunctional environment for human islets before/after transplantation: benefits of α-1 antitrypsin treatment. Transplantation 2011; 92:1222-30. [PMID: 22089666 PMCID: PMC3587768 DOI: 10.1097/tp.0b013e318237585c] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Pancreatic acinar cells are commonly cotransplanted along with islets during auto- and allotransplantations. The aims of this study were to identify how acinar cell proteases cause human islet cell loss before and after transplantation of impure islet preparations and to prevent islet loss and improve function with supplementation of α-1 antitrypsin (A1AT). METHODS Acinar cell protease activity, insulin levels, and percent islet loss were measured after culture of pure and impure clinical islet preparations. The effect of proteases on ultrastructure of islets and β-cell insulin granules were examined by transmission electron microscopy. The number of insulin granules and insulin-labeled immunogold particles were counted. The in vivo effect of proteases on islet function was studied by transplanting acinar cells adjacent to islet grafts in diabetic mice. The effects of A1AT culture supplementation on protease activity, insulin levels, and islet function were assessed in pure and impure islets. RESULTS Islet loss after culture was significantly higher in impure relative to pure preparations (30% vs. 14%, P<0.04). Lower islet purity was associated with increased protease activity and decreased insulin levels in culture supernatants. Reduced β-cell insulin granules and insulin degradation by proteases were confirmed by transmission electron microscopy. Transplantations in mice showed delayed islet graft function when acinar cells were transplanted adjacent to the islets under the kidney capsule. Supplementation of A1AT to impure islet cultures maintained islet cell mass, restored insulin levels, and preserved islet functional integrity. CONCLUSION Culture of impure human islet fractions in the presence of A1AT prevents insulin degradation and improves islet recovery.
Collapse
Affiliation(s)
| | - Rajinder K. Dawra
- Department of Surgery, Basic and Translational Research, University of Minnesota, Minneapolis, MN.
| | | | - Zhiguang Guo
- Sanford Project, Sanford Health/University of South Dakota, Sioux Falls, SD.
| | - Sajjad M. Soltani
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN.
| | | | | | - Klearchos K. papas
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN.
| | - V. Kumaravel
- Alpha Hospital and Research Center, Institute of Diabetes and Endocrinology, Madurai-9, Tamilnadu, India.
| | - Ashok K. Saluja
- Department of Surgery, Basic and Translational Research, University of Minnesota, Minneapolis, MN.
| | - David E.R. Sutherland
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN.
| | - Bernhard J. Hering
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN.
| | - A. N. Balamurugan
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN.
- Corresponding author: Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA. Phone: 651-253-0656, Fax: 612-626-5855
| |
Collapse
|
33
|
Walpita D, Hasaka T, Spoonamore J, Vetere A, Takane KK, Fomina-Yadlin D, Fiaschi-Taesch N, Shamji A, Clemons PA, Stewart AF, Schreiber SL, Wagner BK. A human islet cell culture system for high-throughput screening. ACTA ACUST UNITED AC 2011; 17:509-18. [PMID: 22156222 DOI: 10.1177/1087057111430253] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A small-molecule inducer of beta-cell proliferation in human islets represents a potential regeneration strategy for treating type 1 diabetes. However, the lack of suitable human beta cell lines makes such a discovery a challenge. Here, we adapted an islet cell culture system to high-throughput screening to identify such small molecules. We prepared microtiter plates containing extracellular matrix from a human bladder carcinoma cell line. Dissociated human islets were seeded onto these plates, cultured for up to 7 days, and assessed for proliferation by simultaneous Ki67 and C-peptide immunofluorescence. Importantly, this environment preserved beta-cell physiological function, as measured by glucose-stimulated insulin secretion. Adenoviral overexpression of cdk-6 and cyclin D(1), known inducers of human beta cell proliferation, was used as a positive control in our assay. This induction was inhibited by cotreatment with rapamycin, an immunosuppressant often used in islet transplantation. We then performed a pilot screen of 1280 compounds, observing some phenotypic effects on cells. This high-throughput human islet cell culture method can be used to assess various aspects of beta-cell biology on a relatively large number of compounds.
Collapse
Affiliation(s)
- Deepika Walpita
- Chemical Biology Program, Broad Institute, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Arifin DR, Long CM, Gilad AA, Alric C, Roux S, Tillement O, Link TW, Arepally A, Bulte JWM. Trimodal gadolinium-gold microcapsules containing pancreatic islet cells restore normoglycemia in diabetic mice and can be tracked by using US, CT, and positive-contrast MR imaging. Radiology 2011; 260:790-8. [PMID: 21734156 DOI: 10.1148/radiol.11101608] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To develop microcapsules that immunoprotect pancreatic islet cells for treatment of type I diabetes and enable multimodal cellular imaging of transplanted islet cells. MATERIALS AND METHODS All animal experiments were approved by the institutional animal care and use committee. Gold nanoparticles functionalized with DTDTPA (dithiolated diethylenetriaminepentaacetic acid):gadolinium chelates (GG) were coencapsulated with pancreatic islet cells by using protamine sulfate as a clinical-grade alginate cross linker. Conventional poly-l-lysine-cross-linked microcapsules and unencapsulated islets were included as controls. The viability and glucose responsiveness of islet cells were assessed in vitro, and in vivo insulin (C-peptide) secretion was monitored for 6 weeks in (streptozotocin-induced) diabetic mice with (n = 7) or without (n = 8) intraabdominally engrafted islet cells. Five nondiabetic mice were included as controls. Differences between samples were calculated by using a nonparametric Wilcoxon Mann-Whitney method. To adjust for multiple comparisons, a significance level of P < .01 was chosen. Generalized estimating equations were used to model cell function over time. Three mice with engrafted capsules were imaged in vivo with high-field-strength (9.4-T) magnetic resonance (MR) imaging, micro-computed tomography (CT), and 40-MHz ultrasonography (US). RESULTS Encapsulated human pancreatic islets were functional in vitro for at least 2 weeks after encapsulation. Blood glucose levels in the diabetic mice transplanted with GG-labeled encapsulated mouse βTC6 insulinoma cells returned to normal within 1 week after transplantation, and normoglycemia was sustained for at least 6 weeks without the use of immunosuppressive drugs. GG microcapsules could be readily visualized with positive-contrast high-field-strength MR imaging, micro-CT, and US both in vitro and in vivo. CONCLUSION Cell encapsulation with GG provides a means of trimodal noninvasive tracking of engrafted cells.
Collapse
Affiliation(s)
- Dian R Arifin
- Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 720 Rutland Ave, 217 Traylor, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Neurogenic differentiation 1 directs differentiation of cytokeratin 19-positive human pancreatic nonendocrine cells into insulin-producing cells. Transplant Proc 2011; 42:2071-4. [PMID: 20692411 DOI: 10.1016/j.transproceed.2010.05.114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND It has been reported that the human pancreatic nonendocrine fraction, which remains after islet isolation, can be differentiated toward beta cells. However, the optimal method to accomplish this goal has not been established. In this study, we introduced the human neurogenic differentiation 1 (NeuroD1) gene into human nonendocrine pancreatic epithelial cells (NEPECs) and promoted insulin-producing cells in vitro. METHODS The human pancreatic nonislet fractions were obtained from brain-dead donors and cultured in suspension for 2-3 days followed by culture with G418 for 4 days. These cells (NEPECs) were then plated on dishes. The NEPECs spread into a cell monolayer within 7 days and all of the cells were cytokeratin-19 (CK19) positive. Seven days after plating, plasmids encoding human NeuroD1 gene under human CK19 promoter were transfected 3 times every other day (termed NEPEC+ND). Seven days after starting induction, these cells were characterized. RESULTS Seven days after starting the induction of human NeuroD1, NEPEC+ND strongly expressed NeuroD1 and insulin mRNA. The ratio of NeuroD1-positive cells in NEPEC+ND was significantly higher than in NEPEC. Human insulin-positive cells in NEPEC+ND were also significantly greater than in NEPEC. Human insulin and C-peptide levels in culture medium in NEPEC+ND were significantly higher than in NEPEC. CONCLUSIONS These findings demonstrated that human NeuroD1 under control of the CK19 promoter can induce the differentiation of CK19-positive NEPECs into insulin-producing cells.
Collapse
|
36
|
Daoud J, Rosenberg L, Tabrizian M. Pancreatic Islet Culture and Preservation Strategies: Advances, Challenges, and Future Outlook. Cell Transplant 2010; 19:1523-35. [DOI: 10.3727/096368910x515872] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Postisolation islet survival is a critical step for achieving successful and efficient islet transplantation. This involves the optimization of islet culture in order to prolong survival and functionality in vitro. Many studies have focused on different strategies to culture pancreatic islets in vitro through manipulation of culture media, surface modified substrates, and the use of various techniques such as encapsulation, embedding, scaffold, and bioreactor culture strategies. This review aims to present and discuss the different methodologies employed to optimize pancreatic islet culture in vitro as well as address their respective advantages and drawbacks.
Collapse
Affiliation(s)
- Jamal Daoud
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Lawrence Rosenberg
- Department of Surgery, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Maryam Tabrizian
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
37
|
Upgrading pretransplant human islet culture technology requires human serum combined with media renewal. Transplantation 2010; 89:1154-60. [PMID: 20098354 DOI: 10.1097/tp.0b013e3181d154ac] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND.: The original Edmonton protocol used fresh islets, but for obvious logistic advantages most transplant centers have implemented pretransplant culture in human albumin. The aim of this study was to improve current pretransplant human islet culture techniques. METHODS.: Clinical-grade purified human islets from a total of 24 donors were directly resuspended after isolation in CMRL 1066-based media at 37 degrees C, and media additions and renewal were tested. At days 1 and 5 of culture, in vitro quality controls included islet viability, insulin content and function, apoptosis, and in vivo islet potency assay in nude mice. RESULTS.: Replacing human albumin with human AB serum improved 1- and 5-day preservation of islet function and viability which was further enhanced with antioxidant Stem Ease, leading to the iCulture medium (enriched CMRL: pyruvate, zinc sulfate, insulin, transferrin, selenium, 2.5% human AB serum and Stem Ease). Major damage occurs in the first day of culture and frequent media renewal (25% vol/hr) in this period further improved viability, apoptosis, islet recovery, and function in vitro and in vivo, compared with only changing medium after overnight culture. CONCLUSIONS.: The described human islet culture technique (iCulture medium+renewal) seems to be the best choice for clinical human islet culture when short (1 day) or long (5 days) periods are used. Media choice and dilution play a major role in the function and survival of human islets in culture.
Collapse
|
38
|
Malosio ML, Esposito A, Poletti A, Chiaretti S, Piemonti L, Melzi R, Nano R, Tedoldi F, Canu T, Santambrogio P, Brigatti C, De Cobelli F, Maffi P, Secchi A, Del Maschio A. Improving the procedure for detection of intrahepatic transplanted islets by magnetic resonance imaging. Am J Transplant 2009; 9:2372-82. [PMID: 19681816 DOI: 10.1111/j.1600-6143.2009.02791.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Islet transplantation is an effective therapy for restoring normoglycemia in type-1 diabetes, but long-term islet graft function is achieved only in a minority of cases. Noninvasive magnetic resonance imaging of pancreatic islets is an attractive option for "real-time" monitoring of graft evolution. So far, previous studies have been performed in the absence of a standardized labeling procedure and, besides a feasibility study in patients, the effectiveness and safety of various labeling approaches were tested only with high field magnets (4.7 T). In this study, we addressed: (a) standardization of a labeling procedure for human islets with clinically-approved contrast agent Endorem, (b) safety aspects of labeling related to inflammation and (c) quality of imaging both at 7 T and 1.5 T. We have highlighted that the ratio of Endorem/islet is crucial for reproducible labeling, with a ratio of 2.24 ug/IEQ, allowing successful in vivo imaging both with 1.5 T and 7.0 T magnets up to 143 days after intrahepatic transplant. With this standardized labeling procedure, labeled islets are neither inflamed nor more susceptible to inflammatory insults than unlabeled ones. This report represents an important contribution towards the development of a standardized and safe clinical protocol for the noninvasive imaging of transplanted islets in humans.
Collapse
Affiliation(s)
- M L Malosio
- HSR-DRI, Università Vita-Salute San Raffaele, Milano, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Buchwald P. FEM-based oxygen consumption and cell viability models for avascular pancreatic islets. Theor Biol Med Model 2009; 6:5. [PMID: 19371422 PMCID: PMC2678100 DOI: 10.1186/1742-4682-6-5] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 04/16/2009] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The function and viability of cultured, transplanted, or encapsulated pancreatic islets is often limited by hypoxia because these islets have lost their vasculature during the isolation process and have to rely on gradient-driven passive diffusion, which cannot provide adequate oxygen transport. Pancreatic islets (islets of Langerhans) are particularly susceptible due to their relatively large size, large metabolic demand, and increased sensitivity to hypoxia. Here, finite element method (FEM) based multiphysics models are explored to describe oxygen transport and cell viability in avascular islets both in static and in moving culture media. METHODS Two- and three-dimensional models were built in COMSOL Multiphysics using the convection and diffusion as well as the incompressible Navier-Stokes fluid dynamics application modes. Oxygen consumption was assumed to follow Michaelis-Menten-type kinetics and to cease when local concentrations fell below a critical threshold; in a dynamic model, it was also allowed to increase with increasing glucose concentration. RESULTS Partial differential equation (PDE) based exploratory cellular-level oxygen consumption and cell viability models incorporating physiologically realistic assumptions have been implemented for fully scaled cell culture geometries with 100, 150, and 200 microm diameter islets as representative. Calculated oxygen concentrations and intra-islet regions likely to suffer from hypoxia-related necrosis obtained for traditional flask-type cultures, oxygen-permeable silicone-rubber membrane bottom cultures, and perifusion chambers with flowing media and varying incoming glucose levels are presented in detail illustrated with corresponding colour-coded figures and animations. CONCLUSION Results of the computational models are, as a first estimate, in good quantitative agreement with existing experimental evidence, and they confirm that during culture, hypoxia is often a problem for non-vascularised islet and can lead to considerable cell death (necrosis), especially in the core region of larger islets. Such models are of considerable interest to improve the function and viability of cultured, transplanted, or encapsulated islets. The present implementation allows convenient extension to true multiphysics applications that solve coupled physics phenomena such as diffusion and consumption with convection due to flowing or moving media.
Collapse
Affiliation(s)
- Peter Buchwald
- Diabetes Research Institute and the Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
40
|
Jahanshahi P, Wu R, Carter JD, Nunemaker CS. Evidence of diminished glucose stimulation and endoplasmic reticulum function in nonoscillatory pancreatic islets. Endocrinology 2009; 150:607-15. [PMID: 18818288 PMCID: PMC2646533 DOI: 10.1210/en.2008-0773] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pulsatility is a fundamental feature of pancreatic islets and a hallmark of hormone secretion. Isolated pancreatic islets endogenously generate rhythms in secretion, metabolic activity, and intracellular calcium ([Ca(2+)](i)) that are important to normal physiological function. Few studies have directly compared oscillatory and nonoscillatory islets to identify possible differences in function. We investigated the hypothesis that the loss of these oscillations is a leading indicator of islet dysfunction by comparing oscillatory and nonoscillatory mouse islets for multiple parameters of function. Nonoscillatory islets displayed elevated basal [Ca(2+)](i) and diminished [Ca(2+)](i) response and insulin secretory response to 3-28 mm glucose stimulation compared with oscillatory islets, suggesting diminished glucose sensitivity. We investigated several possible mechanisms to explain these differences. No differences were observed in mitochondrial membrane potential, estimated ATP-sensitive potassium channel and L-type calcium channel activity, or cell death rates. Nonoscillatory islets, however, showed a reduced response to the sarco(endo)plasmic reticulum calcium ATPase inhibitor thapsigargin, suggesting a disruption in calcium homeostasis in the endoplasmic reticulum (ER) compared with oscillatory islets. The diminished ER calcium homeostasis among nonoscillatory islets was also consistent with the higher cytosolic calcium levels observed in 3 mm glucose. Inducing mild damage with low-dose proinflammatory cytokines reduced islet oscillatory capacity and produced similar effects on glucose-stimulated [Ca(2+)](i), basal [Ca(2+)](i), and thapsigargin response observed among untreated nonoscillatory islets. Our data suggest the loss of oscillatory capacity may be an early indicator of diminished islet glucose sensitivity and ER dysfunction, suggesting targets to improve islet assessment.
Collapse
Affiliation(s)
- Pooya Jahanshahi
- Department of Medicine, Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, VA 22908-1413, USA
| | | | | | | |
Collapse
|
41
|
Abstract
In vitro culture has been well defined as a useful tool to improve survival and functionality of isolated islets of Langerhans. Evaluation of islet morphology and function is essential prior to use for experimental investigations. Novel techniques such as co-culture and the use of matrices have been shown to improve islet survival and functional viability, and can enhance the purity of the islet preparations, which is particularly important prior to experimental use or patient transplantation.
Collapse
Affiliation(s)
- Anna L Nolan
- Elixir Pharmaceuticals, 12 Emily Street, Cambridge, MA 02139, USA.
| |
Collapse
|
42
|
Ichii H, Ricordi C. Current status of islet cell transplantation. ACTA ACUST UNITED AC 2008; 16:101-12. [PMID: 19110649 DOI: 10.1007/s00534-008-0021-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2008] [Accepted: 07/15/2008] [Indexed: 02/08/2023]
Abstract
Despite substantial advances in islet isolation methods and immunosuppressive protocol, pancreatic islet cell transplantation remains an experimental procedure currently limited to the most severe cases of type 1 diabetes mellitus. The objectives of this treatment are to prevent severe hypoglycemic episodes in patients with hypoglycemia unawareness and to achieve a more physiological metabolic control. Insulin independence and long term-graft function with improvement of quality of life have been obtained in several international islet transplant centers. However, experimental trials of islet transplantation clearly highlighted several obstacles that remain to be overcome before the procedure could be proposed to a much larger patient population. This review provides a brief historical perspective of islet transplantation, islet isolation techniques, the transplant procedure, immunosuppressive therapy, and outlines current challenges and future directions in clinical islet transplantation.
Collapse
Affiliation(s)
- Hirohito Ichii
- Cell Transplant Center, Diabetes Research Institute, University of Miami Leonard M Miller School of Medicine, Miami, FL 33136, USA.
| | | |
Collapse
|
43
|
Chao KC, Chao KF, Chen CF, Liu SH. A novel human stem cell coculture system that maintains the survival and function of culture islet-like cell clusters. Cell Transplant 2008; 17:657-64. [PMID: 18819254 DOI: 10.3727/096368908786092801] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Islet-like cell clusters (ICCs) have been suggested to be a source of insulin-producing tissue for xenotransplantation in type 1 diabetes. We designed an approach to maintain the cultured rat pancreatic ICC survival and function, when cocultured with human umbilical cord mesenchymal stem cells (HUMSCs). HUMSCs in coculture have the ability to maintain ICC survival and function, for which number and insulin secretion of ICCs are increasing and lasting for 3 months, while ICCs gradually crash, which results in cell death after a period of 12 days of culture without HUMSCs. Cytokine protein array showed it has more than a twofold increase in levels of several cytokines (interleukin-6, tissue inhibitor of metalloproteinases-1, tissue inhibitor of metalloproteinases-2, monocyte chemoattractant protein-1, growth related oncogene, hepatocyte growth factor, insulin-like growth factor binding proteins 4, and interleukin-8) on coculture medium, implying an important role of these cytokines in this coculture system. These findings suggest that coculture with HUMSCs may have a significant potential to protect ICCs from damage during culture, and may be employed in a novel culture approach to maintain islet cell survival and function before transplantation.
Collapse
Affiliation(s)
- Kuo Ching Chao
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
44
|
Ihm SH, Matsumoto I, Zhang HJ, Ansite JD, Hering BJ. Effect of short-term culture on functional and stress-related parameters in isolated human islets. Transpl Int 2008; 22:207-16. [DOI: 10.1111/j.1432-2277.2008.00769.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Huang X, Moore DJ, Ketchum RJ, Nunemaker CS, Kovatchev B, McCall AL, Brayman KL. Resolving the conundrum of islet transplantation by linking metabolic dysregulation, inflammation, and immune regulation. Endocr Rev 2008; 29:603-30. [PMID: 18664617 PMCID: PMC2819735 DOI: 10.1210/er.2008-0006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although type 1 diabetes cannot be prevented or reversed, replacement of insulin production by transplantation of the pancreas or pancreatic islets represents a definitive solution. At present, transplantation can restore euglycemia, but this restoration is short-lived, requires islets from multiple donors, and necessitates lifelong immunosuppression. An emerging paradigm in transplantation and autoimmunity indicates that systemic inflammation contributes to tissue injury while disrupting immune tolerance. We identify multiple barriers to successful islet transplantation, each of which either contributes to the inflammatory state or is augmented by it. To optimize islet transplantation for diabetes reversal, we suggest that targeting these interacting barriers and the accompanying inflammation may represent an improved approach to achieve successful clinical islet transplantation by enhancing islet survival, regeneration or neogenesis potential, and tolerance induction. Overall, we consider the proinflammatory effects of important technical, immunological, and metabolic barriers including: 1) islet isolation and transplantation, including selection of implantation site; 2) recurrent autoimmunity, alloimmune rejection, and unique features of the autoimmune-prone immune system; and 3) the deranged metabolism of the islet transplant recipient. Consideration of these themes reveals that each is interrelated to and exacerbated by the other and that this connection is mediated by a systemic inflammatory state. This inflammatory state may form the central barrier to successful islet transplantation. Overall, there remains substantial promise in islet transplantation with several avenues of ongoing promising research. This review focuses on interactions between the technical, immunological, and metabolic barriers that must be overcome to optimize the success of this important therapeutic approach.
Collapse
Affiliation(s)
- Xiaolun Huang
- Department of Surgery, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Marzorati S, Antonioli B, Nano R, Maffi P, Piemonti L, Giliola C, Secchi A, Lakey JR, Bertuzzi F. Culture medium modulates proinflammatory conditions of human pancreatic islets before transplantation. Am J Transplant 2006; 6:2791-5. [PMID: 16939517 DOI: 10.1111/j.1600-6143.2006.01512.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A portion of transplanted islets is lost during engraftment as a result of stressful events, involving hypoxia and production of proinflammatory molecules by islets. Two of these molecules (monocyte chemoattractant protein-1, CCL2/MCP-1 and tissue factor, TF) are directly correlated with reduced graft function. We evaluated which factors reduce islet proinflammatory conditions. In particular the effects of different culture media supplemented with proteins or antioxidant agents on CCL2/MCP-1 and TF human islet release were evaluated. We observed that human islets after culture in final wash culture medium (FW) significantly decreased CCL2/MCP-1 release and TF production compared with CMRL and M199. These effects were independent from the type of protein added to the media (human serum, human albumin, fetal calf serum). Glutathione in FW further decreased CCL2/MCP-1 in a dose-dependent manner. Culture conditions can modulate the proinflammatory state of islets, and could be used in clinical islet transplantation to reduce inflammation during engraftment.
Collapse
Affiliation(s)
- S Marzorati
- Unit of Cell Therapy for Type 1 Diabetes Mellitus, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Narang AS, Mahato RI. Biological and biomaterial approaches for improved islet transplantation. Pharmacol Rev 2006; 58:194-243. [PMID: 16714486 DOI: 10.1124/pr.58.2.6] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Islet transplantation may be used to treat type I diabetes. Despite tremendous progress in islet isolation, culture, and preservation, the clinical use of this modality of treatment is limited due to post-transplantation challenges to the islets such as the failure to revascularize and immune destruction of the islet graft. In addition, the need for lifelong strong immunosuppressing agents restricts the use of this option to a limited subset of patients, which is further restricted by the unmet need for large numbers of islets. Inadequate islet supply issues are being addressed by regeneration therapy and xenotransplantation. Various strategies are being tried to prevent beta-cell death, including immunoisolation using semipermeable biocompatible polymeric capsules and induction of immune tolerance. Genetic modification of islets promises to complement all these strategies toward the success of islet transplantation. Furthermore, synergistic application of more than one strategy is required for improving the success of islet transplantation. This review will critically address various insights developed in each individual strategy and for multipronged approaches, which will be helpful in achieving better outcomes.
Collapse
Affiliation(s)
- Ajit S Narang
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 26 S. Dunlap St., Feurt Building, Room 413, Memphis, TN 38163, USA
| | | |
Collapse
|
48
|
Bucher P, Mathe Z, Buhler LH, Andres A, Bosco D, Berney T, Morel P. [Diabetes Type I therapy through transplantation]. ACTA ACUST UNITED AC 2005; 130:374-83. [PMID: 15992762 DOI: 10.1016/j.anchir.2005.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2004] [Accepted: 06/01/2005] [Indexed: 11/25/2022]
Abstract
Diabetes is one of the most common chronic diseases in our society. While insulin treatment for diabetes type I could delay and reduce the incidence of diabetic complications, it is associated with an increased risk of severe hypoglycemia. To restore physiologic insulin metabolism, transplantation of insulin producing cells (pancreatic Beta cells) represent the sole available therapy. It could be done either through pancreas or islet of Langerhans transplantation. In this paper, we review actual knowledge regarding these two types of transplantations.
Collapse
Affiliation(s)
- P Bucher
- Département de chirurgie, service de chirurgie viscérale et de transplantation, hôpitaux universitaires de Genève, 24 rue Micheli-Du-Crest, 1211 Geneva 14, Switzerland.
| | | | | | | | | | | | | |
Collapse
|