1
|
Rigal S, Casas B, Kanebratt KP, Wennberg Huldt C, Magnusson LU, Müllers E, Karlsson F, Clausen M, Hansson SF, Leonard L, Cairns J, Jansson Löfmark R, Ämmälä C, Marx U, Gennemark P, Cedersund G, Andersson TB, Vilén LK. Normoglycemia and physiological cortisone level maintain glucose homeostasis in a pancreas-liver microphysiological system. Commun Biol 2024; 7:877. [PMID: 39025915 PMCID: PMC11258270 DOI: 10.1038/s42003-024-06514-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 06/26/2024] [Indexed: 07/20/2024] Open
Abstract
Current research on metabolic disorders and diabetes relies on animal models because multi-organ diseases cannot be well studied with standard in vitro assays. Here, we have connected cell models of key metabolic organs, the pancreas and liver, on a microfluidic chip to enable diabetes research in a human-based in vitro system. Aided by mechanistic mathematical modeling, we demonstrate that hyperglycemia and high cortisone concentration induce glucose dysregulation in the pancreas-liver microphysiological system (MPS), mimicking a diabetic phenotype seen in patients with glucocorticoid-induced diabetes. In this diseased condition, the pancreas-liver MPS displays beta-cell dysfunction, steatosis, elevated ketone-body secretion, increased glycogen storage, and upregulated gluconeogenic gene expression. Conversely, a physiological culture condition maintains glucose tolerance and beta-cell function. This method was reproducible in two laboratories and was effective in multiple pancreatic islet donors. The model also provides a platform to identify new therapeutic proteins, as demonstrated with a combined transcriptome and proteome analysis.
Collapse
Affiliation(s)
| | - Belén Casas
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Kajsa P Kanebratt
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Charlotte Wennberg Huldt
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Lisa U Magnusson
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Erik Müllers
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Fredrik Karlsson
- Data Sciences and Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Maryam Clausen
- Translational Genomics, Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Sara F Hansson
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Louise Leonard
- Data Sciences and Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Jonathan Cairns
- Data Sciences and Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Rasmus Jansson Löfmark
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Carina Ämmälä
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Peter Gennemark
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Gunnar Cedersund
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Tommy B Andersson
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Liisa K Vilén
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
2
|
Taneera J, Saber-Ayad MM. Preservation of β-Cells as a Therapeutic Strategy for Diabetes. Horm Metab Res 2024; 56:261-271. [PMID: 38387480 DOI: 10.1055/a-2239-2668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The preservation of pancreatic islet β-cells is crucial in diabetes mellitus, encompassing both type 1 and type 2 diabetes. β-cell dysfunction, reduced mass, and apoptosis are central to insufficient insulin secretion in both types. Research is focused on understanding β-cell characteristics and the factors regulating their function to develop novel therapeutic approaches. In type 1 diabetes (T1D), β-cell destruction by the immune system calls for exploring immunosuppressive therapies, non-steroidal anti-inflammatory drugs, and leukotriene antagonists. Islet transplantation, stem cell therapy, and xenogeneic transplantation offer promising strategies for type 1 diabetes treatment. For type 2 diabetes (T2D), lifestyle changes like weight loss and exercise enhance insulin sensitivity and maintain β-cell function. Additionally, various pharmacological approaches, such as cytokine inhibitors and protein kinase inhibitors, are being investigated to protect β-cells from inflammation and glucotoxicity. Bariatric surgery emerges as an effective treatment for obesity and T2D by promoting β-cell survival and function. It improves insulin sensitivity, modulates gut hormones, and expands β-cell mass, leading to diabetes remission and better glycemic control. In conclusion, preserving β-cells offers a promising approach to managing both types of diabetes. By combining lifestyle modifications, targeted pharmacological interventions, and advanced therapies like stem cell transplantation and bariatric surgery, we have a significant chance to preserve β-cell function and enhance glucose regulation in diabetic patients.
Collapse
Affiliation(s)
- Jalal Taneera
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Maha M Saber-Ayad
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
3
|
Praska CE, Tamburrini R, Danobeitia JS. Innate immune modulation in transplantation: mechanisms, challenges, and opportunities. FRONTIERS IN TRANSPLANTATION 2023; 2:1277669. [PMID: 38993914 PMCID: PMC11235239 DOI: 10.3389/frtra.2023.1277669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/23/2023] [Indexed: 07/13/2024]
Abstract
Organ transplantation is characterized by a sequence of steps that involve operative trauma, organ preservation, and ischemia-reperfusion injury in the transplant recipient. During this process, the release of damage-associated molecular patterns (DAMPs) promotes the activation of innate immune cells via engagement of the toll-like receptor (TLR) system, the complement system, and coagulation cascade. Different classes of effector responses are then carried out by specialized populations of macrophages, dendritic cells, and T and B lymphocytes; these play a central role in the orchestration and regulation of the inflammatory response and modulation of the ensuing adaptive immune response to transplant allografts. Organ function and rejection of human allografts have traditionally been studied through the lens of adaptive immunity; however, an increasing body of work has provided a more comprehensive picture of the pivotal role of innate regulation of adaptive immune responses in transplant and the potential therapeutic implications. Herein we review literature that examines the repercussions of inflammatory injury to transplantable organs. We highlight novel concepts in the pathophysiology and mechanisms involved in innate control of adaptive immunity and rejection. Furthermore, we discuss existing evidence on novel therapies aimed at innate immunomodulation and how this could be harnessed in the transplant setting.
Collapse
Affiliation(s)
- Corinne E. Praska
- Division of Transplantation, Department of Surgery, University of Wisconsin, Madison, WI, United States
| | - Riccardo Tamburrini
- Division of Transplantation, Department of Surgery, University of Wisconsin, Madison, WI, United States
| | - Juan Sebastian Danobeitia
- Division of Transplantation, Department of Surgery, University of Wisconsin, Madison, WI, United States
- Baylor Annette C. and Harold C. Simmons Transplant Institute, Baylor University Medical Center, Dallas, TX, United States
| |
Collapse
|
4
|
Goddard GR, Wagner ML, Jenkins TM, Abu-El-Haija M, Lin TK, Goldstein SL, Nathan JD. Effect of intraoperative fluid type on postoperative systemic inflammatory response and end organ dysfunction following total pancreatectomy with islet autotransplantation in children. J Pediatr Surg 2022; 57:1649-1653. [PMID: 34802722 DOI: 10.1016/j.jpedsurg.2021.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/02/2021] [Accepted: 10/11/2021] [Indexed: 11/19/2022]
Abstract
PURPOSE To evaluate the effect of intraoperative fluid type [half normal saline (0.45NS) or lactated Ringer's solution (LR)] on the risk of systemic inflammatory response syndrome (SIRS) and acute kidney injury after total pancreatectomy with islet autotransplantation in children. METHODS Retrospective review where demographics, operative details, systemic inflammatory response, and evaluation for end organ dysfunction over the first 5 postoperative days was obtained. Mixed effects Poisson regression compared risk of SIRS and acute kidney injury by intraoperative fluid type. RESULTS Forty three patients were included with no difference in demographic characteristics between groups. SIRS was observed in 95, 77, and 71% over post operative days 1, 3, and 5. Intraoperative fluid type was found to not be associated with postoperative SIRS (RR: 0.91, p = 0.23). However, female sex (RR: 1.30, p < 0.01), increased BMI (RR: 1.08, p < 0.01), and longer operative time (RR: 1.07, p < 0.01) were found to be factors that are associated with increased risk of postoperative SIRS. Intraoperative 0.45NS use was associated with increased acute kidney injury compared to LR on postoperative day 1 (52% vs 0%, p < 0.01), but not on postoperative days 3 or 5. CONCLUSION Intraoperative fluid type (0.45NS vs LR) does not increase the risk of postoperative SIRS in children after TPIAT. Predictive factors that are associated with an increased risk of eliciting postoperative SIRS includes female sex, increased BMI, and longer operative times. LEVEL OF EVIDENCE III.
Collapse
Affiliation(s)
- Gillian R Goddard
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Medical Center, Cincinnati, OH, USA
| | - Monica L Wagner
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Medical Center, Cincinnati, OH, USA
| | - Todd M Jenkins
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Medical Center, Cincinnati, OH, USA
| | - Maisam Abu-El-Haija
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children's Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Tom K Lin
- Division of Pediatric Nephrology and Hypertension, Department of Pediatrics, Cincinnati Children's Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Stuart L Goldstein
- Division of Pediatric Nephrology and Hypertension, Department of Pediatrics, Cincinnati Children's Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Jaimie D Nathan
- Division of Pediatric General and Thoracic Surgery, Department of Surgery, Cincinnati Children's Medical Center, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
5
|
Szempruch KR, Walter K, Ebert N, Bridgens K, Desai CS. Pharmacological management of patients undergoing total pancreatectomy with auto-islet transplantation. Pancreatology 2022; 22:656-664. [PMID: 35490122 DOI: 10.1016/j.pan.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/17/2022] [Accepted: 04/15/2022] [Indexed: 12/11/2022]
Abstract
Chronic pancreatitis results in permanent parenchymal destruction of the pancreas gland leading to anatomical and physiological consequences for patients. Surgical management varies, and some patients require total pancreatectomy with autologous islet cell transplantation (TPIAT). Patients undergoing TPIAT require complex and diligent management after surgery. This encompasses the management of glucose control (endocrine function of the pancreas) and supplementing loss of exocrine function of the pancreas with digestive enzymes. Other areas of management include optimizing pain relief while reducing narcotic usage, providing antimicrobial prophylaxis, and reducing loss of islet cells by improving its integrity through anticoagulation and use of anti-inflammatory agents. Each aspect of care is unique to this population. However, comprehensive reviews on its pharmacological management are scarce. This review will discuss the available literature to date surrounding all aspects of pharmacological management of patients undergoing TPIAT.
Collapse
Affiliation(s)
- Kristen R Szempruch
- Pharmacy Department, University of North Carolina Medical Center, Chapel Hill, NC, USA
| | - Krysta Walter
- Pharmacy Department, Michigan Medicine, Ann Arbor, MI, USA
| | - Natassha Ebert
- Pharmacy Department, University of North Carolina Medical Center, Chapel Hill, NC, USA
| | - Kathryn Bridgens
- Department of Nutrition and Food Services, University of North Carolina Medical Center, Chapel Hill, NC, USA
| | - Chirag S Desai
- Department of Surgery, Transplant, University of North Carolina Medical Center, Chapel Hill, NC, USA.
| |
Collapse
|
6
|
Yan LL, Ye LP, Chen YH, He SQ, Zhang CY, Mao XL, Li SW. The Influence of Microenvironment on Survival of Intraportal Transplanted Islets. Front Immunol 2022; 13:849580. [PMID: 35418988 PMCID: PMC8995531 DOI: 10.3389/fimmu.2022.849580] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/03/2022] [Indexed: 12/21/2022] Open
Abstract
Clinical islet transplantation has the potential to cure type 1 diabetes. Despite recent therapeutic success, it is still uncommon because transplanted islets are damaged by multiple challenges, including instant blood mediated inflammatory reaction (IBMIR), inflammatory cytokines, hypoxia/reperfusion injury, and immune rejection. The transplantation microenvironment plays a vital role especially in intraportal islet transplantation. The identification and targeting of pathways that function as "master regulators" during deleterious inflammatory events after transplantation, and the induction of immune tolerance, are necessary to improve the survival of transplanted islets. In this article, we attempt to provide an overview of the influence of microenvironment on the survival of transplanted islets, as well as possible therapeutic targets.
Collapse
Affiliation(s)
- Ling-ling Yan
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Li-ping Ye
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Ya-hong Chen
- Health Management Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Sai-qin He
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Chen-yang Zhang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Xin-li Mao
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shao-wei Li
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
7
|
Gao Q, Davis R, Fitch Z, Mulvihill M, Ezekian B, Schroder P, Schmitz R, Song M, Leopardi F, Ribeiro M, Miller A, Moris D, Shaw B, Samy K, Reimann K, Williams K, Collins B, Kirk AD. Anti-thymoglobulin induction improves neonatal porcine xenoislet engraftment and survival. Xenotransplantation 2021; 28:e12713. [PMID: 34951057 PMCID: PMC8715890 DOI: 10.1111/xen.12713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/13/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022]
Abstract
Porcine islet xenotransplantation is a viable strategy to treat diabetes. Its translation has been limited by the pre-clinical development of a clinically available immunosuppressive regimen. We tested two clinically relevant induction agents in a non-human primate (NHP) islet xenotransplantation model to compare depletional versus nondepletional induction immunosuppression. Neonatal porcine islets were isolated from GKO or hCD46/GKO transgenic piglets and transplanted via portal vein infusion in diabetic rhesus macaques. Induction therapy consisted of either basiliximab (n = 6) or rhesus-specific anti-thymocyte globulin (rhATG, n = 6), combined with a maintenance regimen using B7 costimulation blockade, tacrolimus with a delayed transition to sirolimus, and mycophenolate mofetil. Xenografts were monitored by blood glucose levels and porcine C-peptide measurements. Of the six receiving basiliximab induction, engraftment was achieved in 4 with median graft survival of 14 days. All six receiving rhATG induction engrafted with significantly longer xenograft survival at 40.5 days (P = 0.03). These data suggest that depletional induction provides superior xenograft survival to nondepletional induction, in the setting of a costimulation blockade-based maintenance regimen.
Collapse
Affiliation(s)
- Qimeng Gao
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Robert Davis
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Zachary Fitch
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Michael Mulvihill
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Brian Ezekian
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Paul Schroder
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Robin Schmitz
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Mingqing Song
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Frank Leopardi
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Marianna Ribeiro
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Allison Miller
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Dimitrios Moris
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Brian Shaw
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Kannan Samy
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Keith Reimann
- MassBiologics, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| | - Kyha Williams
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Bradley Collins
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Allan D Kirk
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| |
Collapse
|
8
|
Chen C, Rong P, Yang M, Ma X, Feng Z, Wang W. The Role of Interleukin-1β in Destruction of Transplanted Islets. Cell Transplant 2021; 29:963689720934413. [PMID: 32543895 PMCID: PMC7563886 DOI: 10.1177/0963689720934413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Islet transplantation is a promising β-cell replacement therapy for type 1 diabetes, which can reduce glucose lability and hypoglycemic episodes compared with standard insulin therapy. Despite the tremendous progress made in this field, challenges remain in terms of long-term successful transplant outcomes. The insulin independence rate remains low after islet transplantation from one donor pancreas. It has been reported that the islet-related inflammatory response is the main cause of early islet damage and graft loss after transplantation. The production of interleukin-1β (IL-1β) has considered to be one of the primary harmful inflammatory events during pancreatic procurement, islet isolation, and islet transplantation. Evidence suggests that the innate immune response is upregulated through the activity of Toll-like receptors and The NACHT Domain-Leucine-Rich Repeat and PYD-containing Protein 3 inflammasome, which are the starting points for a series of signaling events that drive excessive IL-1β production in islet transplantation. In this review, we show recent contributions to the advancement of knowledge of IL-1β in islet transplantation and discuss several strategies targeting IL-1β for improving islet engraftment.
Collapse
Affiliation(s)
- Cheng Chen
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Pengfei Rong
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Min Yang
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaoqian Ma
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhichao Feng
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Wang
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
9
|
Thompson CP, Jagdale A, Walcott G, Iwase H, Foote JB, Cron RQ, Hara H, Cleveland DC, Cooper DKC. A perspective on the potential detrimental role of inflammation in pig orthotopic heart xenotransplantation. Xenotransplantation 2021; 28:e12687. [PMID: 33786912 DOI: 10.1111/xen.12687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/26/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023]
Abstract
There is a critical shortage of deceased human donor organs for transplantation. The need is perhaps most acute in neonates and infants with life-threatening congenital heart disease, in whom mechanical support devices are largely unsuccessful. If orthotopic (life-supporting) heart transplantation (OHTx) were consistently successful in the genetically engineered pig-to-nonhuman primate (NHP) model, a clinical trial of bridging with a pig heart in such patients might be justified. However, the results of pig OHTx in NHPs have been mixed and largely poor. We hypothesise that a factor is the detrimental effects of the inflammatory response that is known to develop (a) during any surgical procedure that requires cardiopulmonary bypass, and (b) immediately after an NHP recipient is exposed to a pig xenograft. We suggest that the combination of these two inflammatory responses has a direct detrimental effect on pig heart graft function, but also, and possibly of more importance, on recipient baboon pulmonary function, which further impacts survival of the pig heart graft. In addition, the inflammatory response almost certainly adversely impacts the immune response to the graft. If our hypothesis is correct, the potential steps that could be taken to reduce the inflammatory response or its effects (with varying degrees of efficacy) include (a) white blood cell filtration, (b) complement depletion or inactivation, (c) immunosuppressive therapy, (d) high-dose corticosteroid therapy, (e) cytokine/chemokine-targeted therapy, (f) ultrafiltration or CytoSorb hemoperfusion, (g) reduction in the levels of endogenous catecholamines, (h) triiodothyronine therapy and (i) genetic engineering of the organ-source pig. Prevention of the inflammatory response, or attenuation of its effects, by judicious anti-inflammatory therapy may contribute not only to early survival of the recipient of a genetically engineered pig OHTx, but also to improved long-term pig heart graft survival. This would open the possibility of initiating a clinical trial of genetically engineered pig OHTx as a bridge to allotransplantation.
Collapse
Affiliation(s)
- Charles P Thompson
- Xenotransplantation Program, Division of Transplantation, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Abhijit Jagdale
- Xenotransplantation Program, Division of Transplantation, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gregory Walcott
- Department of Medicine/Cardiovascular Diseases, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hayato Iwase
- Xenotransplantation Program, Division of Transplantation, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jeremy B Foote
- Department of Microbiology and Animal Resources Program, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Randall Q Cron
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hidetaka Hara
- Xenotransplantation Program, Division of Transplantation, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David C Cleveland
- Division of Cardiothoracic Surgery, Children's Hospital of Alabama, and Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David K C Cooper
- Xenotransplantation Program, Division of Transplantation, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
10
|
Zhao YZ, Huang ZW, Zhai YY, Shi Y, Du CC, Zhai J, Xu HL, Xiao J, Kou L, Yao Q. Polylysine-bilirubin conjugates maintain functional islets and promote M2 macrophage polarization. Acta Biomater 2021; 122:172-185. [PMID: 33387663 DOI: 10.1016/j.actbio.2020.12.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/26/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022]
Abstract
Macrophage polarization is one of the main factors contributing to the proinflammatory milieu of transplanted islets. It causes significant islet loss. Bilirubin exhibits protective effects during the islet transplantation process, but the mode of delivering drugs along with the islet graft has not yet been developed. In addition, it remains unclear whether bilirubin or its derivatives can modulate macrophage polarization during islet transplantation. Therefore, this study aimed to develop an ε-polylysine-bilirubin conjugate (PLL-BR) to encapsulate the islets for protection and to explore its macrophage modulation activities. In in vitro studies, the PLL-BR was shown to tightly adhere to the islet surface. It also exhibited enhanced cytoprotective effects against oxidative and inflammatory conditions by promoting M2-type macrophage polarization. In in vivo studies, the PLL-BR-protected islets successfully prolonged the euglycemia period in diabetic mice and accelerated the blood glucose clearance rate by maintaining the insulin secretion function. Compared to the untreated islets, the PLL-BR-encapsulated islets induced anti-inflammatory responses that were characterized by elevated levels of M2 macrophage markers and local vascularization. In conclusion, PLL-BR can be used as a tool for reprograming macrophage polarization while providing a more efficient immune protection for transplanted islets. STATEMENT OF SIGNIFICANCE: Macrophage polarization is one main factor that caused significant loss of transplanted islets. Bilirubin possesses protective effects toward pancreatic islet, but how to deliver the drug along with the islet graft has not yet been harnessed. More importantly, whether bilirubin or its derivatives could modulate macrophage polarization during the host rejections has also not been answered. In this study, we developed an ε-polylysine-bilirubin conjugate (PLL-BR) to encapsulate the islets and explore its role in macrophage modulation activities. PLL-BR could attach to the surface of islets and exerted high oxidation resistance and anti-inflammatory effect. For the first time, we demonstrate that bilirubin and its derivatives effectively promoted the M2-type macrophage polarization, and optimize the immune microenvironment for islets survival and function.
Collapse
|
11
|
Abstract
Initial studies found increased severity of coronavirus disease 2019 (COVID-19), caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in patients with diabetes mellitus. Furthermore, COVID-19 might also predispose infected individuals to hyperglycaemia. Interacting with other risk factors, hyperglycaemia might modulate immune and inflammatory responses, thus predisposing patients to severe COVID-19 and possible lethal outcomes. Angiotensin-converting enzyme 2 (ACE2), which is part of the renin-angiotensin-aldosterone system (RAAS), is the main entry receptor for SARS-CoV-2; although dipeptidyl peptidase 4 (DPP4) might also act as a binding target. Preliminary data, however, do not suggest a notable effect of glucose-lowering DPP4 inhibitors on SARS-CoV-2 susceptibility. Owing to their pharmacological characteristics, sodium-glucose cotransporter 2 (SGLT2) inhibitors might cause adverse effects in patients with COVID-19 and so cannot be recommended. Currently, insulin should be the main approach to the control of acute glycaemia. Most available evidence does not distinguish between the major types of diabetes mellitus and is related to type 2 diabetes mellitus owing to its high prevalence. However, some limited evidence is now available on type 1 diabetes mellitus and COVID-19. Most of these conclusions are preliminary, and further investigation of the optimal management in patients with diabetes mellitus is warranted.
Collapse
Affiliation(s)
- Soo Lim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea.
| | - Jae Hyun Bae
- Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Hyuk-Sang Kwon
- Department of Internal Medicine, Yeouido St Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Michael A Nauck
- Diabetes Division, Katholisches Klinikum Bochum, St Josef-Hospital (Ruhr-Universität Bochum), Bochum, Germany.
| |
Collapse
|
12
|
Kim MS, An MH, Kim WJ, Hwang TH. Comparative efficacy and safety of pharmacological interventions for the treatment of COVID-19: A systematic review and network meta-analysis. PLoS Med 2020; 17:e1003501. [PMID: 33378357 DOI: 10.2139/ssrn.3619770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/08/2021] [Accepted: 12/10/2020] [Indexed: 05/23/2023] Open
Abstract
BACKGROUND Numerous clinical trials and observational studies have investigated various pharmacological agents as potential treatment for Coronavirus Disease 2019 (COVID-19), but the results are heterogeneous and sometimes even contradictory to one another, making it difficult for clinicians to determine which treatments are truly effective. METHODS AND FINDINGS We carried out a systematic review and network meta-analysis (NMA) to systematically evaluate the comparative efficacy and safety of pharmacological interventions and the level of evidence behind each treatment regimen in different clinical settings. Both published and unpublished randomized controlled trials (RCTs) and confounding-adjusted observational studies which met our predefined eligibility criteria were collected. We included studies investigating the effect of pharmacological management of patients hospitalized for COVID-19 management. Mild patients who do not require hospitalization or have self-limiting disease courses were not eligible for our NMA. A total of 110 studies (40 RCTs and 70 observational studies) were included. PubMed, Google Scholar, MEDLINE, the Cochrane Library, medRxiv, SSRN, WHO International Clinical Trials Registry Platform, and ClinicalTrials.gov were searched from the beginning of 2020 to August 24, 2020. Studies from Asia (41 countries, 37.2%), Europe (28 countries, 25.4%), North America (24 countries, 21.8%), South America (5 countries, 4.5%), and Middle East (6 countries, 5.4%), and additional 6 multinational studies (5.4%) were included in our analyses. The outcomes of interest were mortality, progression to severe disease (severe pneumonia, admission to intensive care unit (ICU), and/or mechanical ventilation), viral clearance rate, QT prolongation, fatal cardiac complications, and noncardiac serious adverse events. Based on RCTs, the risk of progression to severe course and mortality was significantly reduced with corticosteroids (odds ratio (OR) 0.23, 95% confidence interval (CI) 0.06 to 0.86, p = 0.032, and OR 0.78, 95% CI 0.66 to 0.91, p = 0.002, respectively) and remdesivir (OR 0.29, 95% CI 0.17 to 0.50, p < 0.001, and OR 0.62, 95% CI 0.39 to 0.98, p = 0.041, respectively) compared to standard care for moderate to severe COVID-19 patients in non-ICU; corticosteroids were also shown to reduce mortality rate (OR 0.54, 95% CI 0.40 to 0.73, p < 0.001) for critically ill patients in ICU. In analyses including observational studies, interferon-alpha (OR 0.05, 95% CI 0.01 to 0.39, p = 0.004), itolizumab (OR 0.10, 95% CI 0.01 to 0.92, p = 0.042), sofosbuvir plus daclatasvir (OR 0.26, 95% CI 0.07 to 0.88, p = 0.030), anakinra (OR 0.30, 95% CI 0.11 to 0.82, p = 0.019), tocilizumab (OR 0.43, 95% CI 0.30 to 0.60, p < 0.001), and convalescent plasma (OR 0.48, 95% CI 0.24 to 0.96, p = 0.038) were associated with reduced mortality rate in non-ICU setting, while high-dose intravenous immunoglobulin (IVIG) (OR 0.13, 95% CI 0.03 to 0.49, p = 0.003), ivermectin (OR 0.15, 95% CI 0.04 to 0.57, p = 0.005), and tocilizumab (OR 0.62, 95% CI 0.42 to 0.90, p = 0.012) were associated with reduced mortality rate in critically ill patients. Convalescent plasma was the only treatment option that was associated with improved viral clearance rate at 2 weeks compared to standard care (OR 11.39, 95% CI 3.91 to 33.18, p < 0.001). The combination of hydroxychloroquine and azithromycin was shown to be associated with increased QT prolongation incidence (OR 2.01, 95% CI 1.26 to 3.20, p = 0.003) and fatal cardiac complications in cardiac-impaired populations (OR 2.23, 95% CI 1.24 to 4.00, p = 0.007). No drug was significantly associated with increased noncardiac serious adverse events compared to standard care. The quality of evidence of collective outcomes were estimated using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) framework. The major limitation of the present study is the overall low level of evidence that reduces the certainty of recommendations. Besides, the risk of bias (RoB) measured by RoB2 and ROBINS-I framework for individual studies was generally low to moderate. The outcomes deducted from observational studies could not infer causality and can only imply associations. The study protocol is publicly available on PROSPERO (CRD42020186527). CONCLUSIONS In this NMA, we found that anti-inflammatory agents (corticosteroids, tocilizumab, anakinra, and IVIG), convalescent plasma, and remdesivir were associated with improved outcomes of hospitalized COVID-19 patients. Hydroxychloroquine did not provide clinical benefits while posing cardiac safety risks when combined with azithromycin, especially in the vulnerable population. Only 29% of current evidence on pharmacological management of COVID-19 is supported by moderate or high certainty and can be translated to practice and policy; the remaining 71% are of low or very low certainty and warrant further studies to establish firm conclusions.
Collapse
Affiliation(s)
- Min Seo Kim
- Korea University, College of Medicine, Seoul, Republic of Korea
- Cheongsan Public Health Center, Wando, Republic of Korea
| | - Min Ho An
- Ajou University, School of Medicine, Suwon, Republic of Korea
- So Ahn Public Health Center, Wando, Republic of Korea
| | - Won Jun Kim
- Korea University, College of Medicine, Seoul, Republic of Korea
- Gangneung Prison Medical Department, Ministry of Justice, Republic of Korea
| | - Tae-Ho Hwang
- Department of Pharmacology, Pusan National University, School of Medicine, Yangsan, Republic of Korea
- Gene and Cell Therapy Research Center for Vessel-associated Diseases, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
13
|
Kim MS, An MH, Kim WJ, Hwang TH. Comparative efficacy and safety of pharmacological interventions for the treatment of COVID-19: A systematic review and network meta-analysis. PLoS Med 2020; 17:e1003501. [PMID: 33378357 PMCID: PMC7794037 DOI: 10.1371/journal.pmed.1003501] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/08/2021] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Numerous clinical trials and observational studies have investigated various pharmacological agents as potential treatment for Coronavirus Disease 2019 (COVID-19), but the results are heterogeneous and sometimes even contradictory to one another, making it difficult for clinicians to determine which treatments are truly effective. METHODS AND FINDINGS We carried out a systematic review and network meta-analysis (NMA) to systematically evaluate the comparative efficacy and safety of pharmacological interventions and the level of evidence behind each treatment regimen in different clinical settings. Both published and unpublished randomized controlled trials (RCTs) and confounding-adjusted observational studies which met our predefined eligibility criteria were collected. We included studies investigating the effect of pharmacological management of patients hospitalized for COVID-19 management. Mild patients who do not require hospitalization or have self-limiting disease courses were not eligible for our NMA. A total of 110 studies (40 RCTs and 70 observational studies) were included. PubMed, Google Scholar, MEDLINE, the Cochrane Library, medRxiv, SSRN, WHO International Clinical Trials Registry Platform, and ClinicalTrials.gov were searched from the beginning of 2020 to August 24, 2020. Studies from Asia (41 countries, 37.2%), Europe (28 countries, 25.4%), North America (24 countries, 21.8%), South America (5 countries, 4.5%), and Middle East (6 countries, 5.4%), and additional 6 multinational studies (5.4%) were included in our analyses. The outcomes of interest were mortality, progression to severe disease (severe pneumonia, admission to intensive care unit (ICU), and/or mechanical ventilation), viral clearance rate, QT prolongation, fatal cardiac complications, and noncardiac serious adverse events. Based on RCTs, the risk of progression to severe course and mortality was significantly reduced with corticosteroids (odds ratio (OR) 0.23, 95% confidence interval (CI) 0.06 to 0.86, p = 0.032, and OR 0.78, 95% CI 0.66 to 0.91, p = 0.002, respectively) and remdesivir (OR 0.29, 95% CI 0.17 to 0.50, p < 0.001, and OR 0.62, 95% CI 0.39 to 0.98, p = 0.041, respectively) compared to standard care for moderate to severe COVID-19 patients in non-ICU; corticosteroids were also shown to reduce mortality rate (OR 0.54, 95% CI 0.40 to 0.73, p < 0.001) for critically ill patients in ICU. In analyses including observational studies, interferon-alpha (OR 0.05, 95% CI 0.01 to 0.39, p = 0.004), itolizumab (OR 0.10, 95% CI 0.01 to 0.92, p = 0.042), sofosbuvir plus daclatasvir (OR 0.26, 95% CI 0.07 to 0.88, p = 0.030), anakinra (OR 0.30, 95% CI 0.11 to 0.82, p = 0.019), tocilizumab (OR 0.43, 95% CI 0.30 to 0.60, p < 0.001), and convalescent plasma (OR 0.48, 95% CI 0.24 to 0.96, p = 0.038) were associated with reduced mortality rate in non-ICU setting, while high-dose intravenous immunoglobulin (IVIG) (OR 0.13, 95% CI 0.03 to 0.49, p = 0.003), ivermectin (OR 0.15, 95% CI 0.04 to 0.57, p = 0.005), and tocilizumab (OR 0.62, 95% CI 0.42 to 0.90, p = 0.012) were associated with reduced mortality rate in critically ill patients. Convalescent plasma was the only treatment option that was associated with improved viral clearance rate at 2 weeks compared to standard care (OR 11.39, 95% CI 3.91 to 33.18, p < 0.001). The combination of hydroxychloroquine and azithromycin was shown to be associated with increased QT prolongation incidence (OR 2.01, 95% CI 1.26 to 3.20, p = 0.003) and fatal cardiac complications in cardiac-impaired populations (OR 2.23, 95% CI 1.24 to 4.00, p = 0.007). No drug was significantly associated with increased noncardiac serious adverse events compared to standard care. The quality of evidence of collective outcomes were estimated using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) framework. The major limitation of the present study is the overall low level of evidence that reduces the certainty of recommendations. Besides, the risk of bias (RoB) measured by RoB2 and ROBINS-I framework for individual studies was generally low to moderate. The outcomes deducted from observational studies could not infer causality and can only imply associations. The study protocol is publicly available on PROSPERO (CRD42020186527). CONCLUSIONS In this NMA, we found that anti-inflammatory agents (corticosteroids, tocilizumab, anakinra, and IVIG), convalescent plasma, and remdesivir were associated with improved outcomes of hospitalized COVID-19 patients. Hydroxychloroquine did not provide clinical benefits while posing cardiac safety risks when combined with azithromycin, especially in the vulnerable population. Only 29% of current evidence on pharmacological management of COVID-19 is supported by moderate or high certainty and can be translated to practice and policy; the remaining 71% are of low or very low certainty and warrant further studies to establish firm conclusions.
Collapse
Affiliation(s)
- Min Seo Kim
- Korea University, College of Medicine, Seoul, Republic of Korea
- Cheongsan Public Health Center, Wando, Republic of Korea
| | - Min Ho An
- Ajou University, School of Medicine, Suwon, Republic of Korea
- So Ahn Public Health Center, Wando, Republic of Korea
| | - Won Jun Kim
- Korea University, College of Medicine, Seoul, Republic of Korea
- Gangneung Prison Medical Department, Ministry of Justice, Republic of Korea
| | - Tae-Ho Hwang
- Department of Pharmacology, Pusan National University, School of Medicine, Yangsan, Republic of Korea
- Gene and Cell Therapy Research Center for Vessel-associated Diseases, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
14
|
Yamane K, Anazawa T, Tada S, Fujimoto N, Inoguchi K, Emoto N, Nagai K, Masui T, Okajima H, Takaori K, Sumi S, Uemoto S. Mitomycin C treatment improves pancreatic islet graft longevity in intraportal islet transplantation by suppressing proinflammatory response. Sci Rep 2020; 10:12086. [PMID: 32694579 PMCID: PMC7374693 DOI: 10.1038/s41598-020-69009-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
The in vitro culture period prior to cell transplantation (i.e. pancreatic islet transplantation) enables cell modification and is thus advantageous. However, the islet preconditioning method has not been fully explored. Here we present a simple approach for islet preconditioning that uses the antibiotic mitomycin C (MMC), which has antitumor activity, to reduce islet immunogenicity and prevent proinflammatory events in an intraportal islet transplantation model. Freshly isolated mice islets were treated for 30 min with 10 μg/mL MMC or not, cultured for 20 h and transplanted into the livers of syngeneic or allogeneic diabetic mouse recipients. In the allogeneic model, MMC preconditioning significantly prolonged graft survival without requiring immunosuppressants. In vitro, MMC treatment suppressed the expression of proinflammatory cytokines in islet allografts, while immunohistochemical studies revealed the suppression of inflammatory cell infiltration into MMC-treated allografts relative to untreated allografts. Furthermore, MMC preconditioning significantly suppressed the mRNA expression of proinflammatory cytokines into the transplant site and induced the differentiation of regulatory T cells with the ability to suppress CD4+ T cell-mediated immune responses. In conclusion, islet preconditioning with MMC prolonged graft survival in an intraportal islet transplantation model by suppressing proinflammatory events and inducing potentially regulatory lymphocytes.
Collapse
Affiliation(s)
- Kei Yamane
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 6068507, Japan
| | - Takayuki Anazawa
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 6068507, Japan.
| | - Seiichiro Tada
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 6068507, Japan
| | - Nanae Fujimoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 6068507, Japan
| | - Kenta Inoguchi
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 6068507, Japan
| | - Norio Emoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 6068507, Japan
| | - Kazuyuki Nagai
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 6068507, Japan
| | - Toshihiko Masui
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 6068507, Japan
| | - Hideaki Okajima
- Department of Paediatric Surgery, Kanazawa Medical University, Kanazawa, 9200293, Japan
| | - Kyoichi Takaori
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 6068507, Japan
| | - Shoichiro Sumi
- Laboratory of Organ and Tissue Reconstruction, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, 6068507, Japan
| | - Shinji Uemoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 6068507, Japan
| |
Collapse
|
15
|
Wu XS, Lu XL, Wu J, Ma M, Yu J, Zhang ZY. Tocilizumab promotes corneal allograft survival in rats by modulating Treg-Th17 balance. Int J Ophthalmol 2019; 12:1823-1831. [PMID: 31850163 DOI: 10.18240/ijo.2019.12.02] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/27/2019] [Indexed: 02/08/2023] Open
Abstract
AIM To examine the therapeutic effects of tocilizumab on experimental corneal transplantation and its effect on Treg/Th17 balance. METHODS Allograft corneal graft was performed between host Sprague Dawley and Wistar donor rats. The rats were randomly divided into four groups: normal, autograft, allograft, and allograft treated with tocilizumab. Kaplan-Meier was performed to draw the survival curve. The protein levels of interleukin-17A (IL-17A), vascular endothelial growth factor (VEGF), and forkhead box protein 3 (Foxp3) were measured by immunohistochemistry. The mRNA levels of IL-17A, VEGF, retinoid-related orphan receptor gammat (RORγt), interleukin-6 (IL-6) and Foxp3 were detected by reverse transcription real-time polymerase chain reaction (RT-PCR). The Treg and Th17 cells were investigated by flow cytometry. RESULTS The survival time of tocilizumab group was (24±1.27d) longer than that of allograft group (10±0.55d). Moreover, immunohistochemical examination revealed that IL-17A and VEGF protein levels in the allograft group were significantly higher than that of tocilizumab group (P<0.01), while Foxp3 levels in the allograft group was significantly lower than that of the tocilizumab treated group (P<0.001). Flow cytometry showed that the number of Th17 cells in allograft group was significantly higher than that in tocilizumab group (P<0.001). Meanwhile, the number of Tregs was significantly lower than in tocilizumab group (P<0.001). Simultaneously, Foxp3 mRNA expression level in corneal tissues of tocilizumab treated group was significantly higher than other groups (P<0.001). CONCLUSION These findings suggest that tocilizumab may promote corneal allograft survival, possibly by modulating Treg-Th17 balance.
Collapse
Affiliation(s)
- Xiao-Song Wu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Xiao-Li Lu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Jing Wu
- Department of Huiqiao Building, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Ming Ma
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Jian Yu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Zhen-Yu Zhang
- Guangdong Women And Children Hospital, Guangzhou 511400, Guangdong Province, China
| |
Collapse
|
16
|
Szempruch KR, Banerjee O, McCall RC, Desai CS. Use of anti-inflammatory agents in clinical islet cell transplants: A qualitative systematic analysis. Islets 2019; 11:65-75. [PMID: 31149871 PMCID: PMC6548473 DOI: 10.1080/19382014.2019.1601543] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Immunologic and non-immunologic loss of islet cells upon their transplantation into the liver leads to suboptimal outcomes. Anti-inflammatory agents are used during autologous and allogeneic transplantation. The aim of this qualitative systematic literature review is to evaluate their clinical use and safety. Electronic databases Embase, PubMed, Cumulative Index for Nursing and Allied Health Literature, ClinicalTrials.gov, and EU Clinical Trials Register were searched. Of the 216 unique citations, 10 with tumor necrosis factor (TNF) blockers [etanercept (ETA) or infliximab] and 3 with both TNF blockers and an interluekin-1 receptor antagonist [anakinra (ANA)]) were included. Of these, 12 were in allogeneic and one in autologous transplant. Insulin independence with decreased islet cells and number of transfusions were reported with their use. One infection was reported in a group receiving ETA. Analysis suggested that the use of ETA ± ANA have the potential to improve outcomes in islet cell transplant.
Collapse
Affiliation(s)
| | - Oyshik Banerjee
- Department of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca C. McCall
- Health Sciences Library University of North Carolina, Chapel Hill, USA
| | - Chirag S. Desai
- Department of Surgery, Abdominal Transplant, University of North Carolina, Chapel Hill, NC, USA
- CONTACT Chirag S. Desai Department of Surgery, Abdominal Transplant, University of North Carolina Medical Center, 4021 Burnett-Womack CB 7211, Chapel Hill, NC 27599
| |
Collapse
|
17
|
White PC, Adhikari S, Grishman EK, Sumpter KM. A phase I study of anti-inflammatory therapy with rilonacept in adolescents and adults with type 1 diabetes mellitus. Pediatr Diabetes 2018; 19:788-793. [PMID: 29504185 DOI: 10.1111/pedi.12634] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 11/02/2017] [Accepted: 12/08/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The innate immune system may be activated around the time of diagnosis of type 1 diabetes (T1D). Components of this system, including cytokines such as interleukin-1β (IL-1β) represent potential therapeutic targets for disease modifying therapy. OBJECTIVE We conducted a phase 1 trial of rilonacept, an IL-1 cytokine trap, in patients with T1D. SUBJECTS AND METHODS Thirteen T1D patients (10 males) with median age (interquartile range, IQR) of 17 years (16-18), a median (IQR) of 5 months (5-7) since diagnosis. Rilonacept was administered subcutaneously for 26 weeks. Incidence of infections was the primary end-point. RESULTS There were 85 adverse events; 13 were Grade 2, of which 9 (8 infectious) were judged "possibly related" to the drug. The mean (SD) C-peptide on 2-hour mixed meal tolerance tests decreased from 0.87 (0.42) to 0.59 (0.29) ng/mL (P = .01 by paired t test) during 6 months on treatment. Hemoglobin A1c (HbA1c) increased from 6.8 (1.1) to 7.3 (1.1) (P = .05), but there was not a significant change in daily insulin dose (0.41 ± 0.23 to 0.47 ± 0.18), or in insulin dose-adjusted HbA1c (IDAA1c, 8.4 ± 1.8 to 9.0 ± 1.5). Subjects in "remission," defined as HbA1c <6.5 and a total daily insulin dose <0.5 units/kg/24 h, decreased from 5 to 4. There were no significantly differentially expressed genes in peripheral blood leukocytes before and after rilonacept. CONCLUSIONS Rilonacept treatment for 6 months is well-tolerated in individuals with T1D of recent onset, but is unlikely to be efficacious as a single agent in preserving beta cell function.
Collapse
Affiliation(s)
- Perrin C White
- Division of Pediatric Endocrinology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Soumya Adhikari
- Division of Pediatric Endocrinology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ellen K Grishman
- Division of Pediatric Endocrinology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kathryn M Sumpter
- Division of Pediatric Endocrinology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
18
|
Abadpour S, Halvorsen B, Sahraoui A, Korsgren O, Aukrust P, Scholz H. Interleukin-22 reverses human islet dysfunction and apoptosis triggered by hyperglycemia and LIGHT. J Mol Endocrinol 2018; 60:171-183. [PMID: 29330151 DOI: 10.1530/jme-17-0182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 01/11/2018] [Indexed: 01/30/2023]
Abstract
Interleukin (IL)-22 has recently been suggested as an anti-inflammatory cytokine that could protect the islet cells from inflammation- and glucose-induced toxicity. We have previously shown that the tumor necrosis factor family member, LIGHT, can impair human islet function at least partly via pro-apoptotic effects. Herein, we aimed to investigate the protective role of IL-22 on human islets exposed to the combination of hyperglycemia and LIGHT. First, we found upregulation of LIGHT receptors (LTβR and HVEM) in engrafted human islets exposed to hyperglycemia (>11 mM) for 17 days post transplantation by using a double islet transplantation mouse model as well as in human islets cultured with high glucose (HG) (20 mM glucose) + LIGHT in vitro, and this latter effect was attenuated by IL-22. The effect of HG + LIGHT impairing glucose-stimulated insulin secretion was reversed by IL-22. The harmful effect of HG + LIGHT on human islet function seemed to involve enhanced endoplasmic reticulum stress evidenced by upregulation of p-IRE1α and BiP, elevated secretion of pro-inflammatory cytokines (IL-6, IL-8, IP-10 and MCP-1) and the pro-coagulant mediator tissue factor (TF) release and apoptosis in human islets, whereas all these effects were at least partly reversed by IL-22. Our findings suggest that IL-22 could counteract the harmful effects of LIGHT/hyperglycemia on human islet cells and potentially support the strong protective effect of IL-22 on impaired islet function and survival.
Collapse
Affiliation(s)
- Shadab Abadpour
- Section for Transplant SurgeryOslo University Hospital, Oslo, Norway
- Institute for Surgical ResearchOslo University Hospital, Oslo, Norway
- Institute of Clinical MedicineUniversity of Oslo, Oslo, Norway
| | - Bente Halvorsen
- Institute of Clinical MedicineUniversity of Oslo, Oslo, Norway
- Research Institute of Internal MedicineOslo University Hospital, Oslo, Norway
| | - Afaf Sahraoui
- Section for Transplant SurgeryOslo University Hospital, Oslo, Norway
- Institute for Surgical ResearchOslo University Hospital, Oslo, Norway
- Institute of Clinical MedicineUniversity of Oslo, Oslo, Norway
| | - Olle Korsgren
- Department of ImmunologyGenetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Pål Aukrust
- Institute of Clinical MedicineUniversity of Oslo, Oslo, Norway
- Research Institute of Internal MedicineOslo University Hospital, Oslo, Norway
- Section of Clinical Immunology and Infectious DiseasesOslo University Hospital, Oslo, Norway
| | - Hanne Scholz
- Section for Transplant SurgeryOslo University Hospital, Oslo, Norway
- Institute for Surgical ResearchOslo University Hospital, Oslo, Norway
- Institute of Clinical MedicineUniversity of Oslo, Oslo, Norway
| |
Collapse
|
19
|
Kaminitz A, Ash S, Askenasy N. Neutralization Versus Reinforcement of Proinflammatory Cytokines to Arrest Autoimmunity in Type 1 Diabetes. Clin Rev Allergy Immunol 2018; 52:460-472. [PMID: 27677500 DOI: 10.1007/s12016-016-8587-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As physiological pathways of intercellular communication produced by all cells, cytokines are involved in the pathogenesis of inflammatory insulitis as well as pivotal mediators of immune homeostasis. Proinflammatory cytokines including interleukins, interferons, transforming growth factor-β, tumor necrosis factor-α, and nitric oxide promote destructive insulitis in type 1 diabetes through amplification of the autoimmune reaction, direct toxicity to β-cells, and sensitization of islets to apoptosis. The concept that neutralization of cytokines may be of therapeutic benefit has been tested in few clinical studies, which fell short of inducing sustained remission or achieving disease arrest. Therapeutic failure is explained by the redundant activities of individual cytokines and their combinations, which are rather dispensable in the process of destructive insulitis because other cytolytic pathways efficiently compensate their deficiency. Proinflammatory cytokines are less redundant in regulation of the inflammatory reaction, displaying protective effects through restriction of effector cell activity, reinforcement of suppressor cell function, and participation in islet recovery from injury. Our analysis suggests that the role of cytokines in immune homeostasis overrides their contribution to β-cell death and may be used as potent immunomodulatory agents for therapeutic purposes rather than neutralized.
Collapse
Affiliation(s)
- Ayelet Kaminitz
- The Leah and Edward M. Frankel Laboratory of Experimental Bone Marrow Transplantation, 14 Kaplan Street, Petach Tikva, Israel, 49202
| | - Shifra Ash
- The Leah and Edward M. Frankel Laboratory of Experimental Bone Marrow Transplantation, 14 Kaplan Street, Petach Tikva, Israel, 49202
| | - Nadir Askenasy
- The Leah and Edward M. Frankel Laboratory of Experimental Bone Marrow Transplantation, 14 Kaplan Street, Petach Tikva, Israel, 49202.
| |
Collapse
|
20
|
Mulders-Manders CM, Baas MC, Molenaar FM, Simon A. Peri- and Postoperative Treatment with the Interleukin-1 Receptor Antagonist Anakinra Is Safe in Patients Undergoing Renal Transplantation: Case Series and Review of the Literature. Front Pharmacol 2017; 8:342. [PMID: 28620307 PMCID: PMC5449651 DOI: 10.3389/fphar.2017.00342] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 05/19/2017] [Indexed: 12/29/2022] Open
Abstract
In patients undergoing solid organ transplantation, the presence of an interleukin-1 (IL-1) driven disease may require the addition of IL-1 inhibiting drugs to the standard immunosuppressive regimen to protect against inflammation and negative graft outcome. Three patients undergoing renal transplantation were treated perioperatively with the interleukin-1 receptor antagonist anakinra. Kidney function increased rapidly in all three and the only complications seen were minor infections. In vitro studies report associations between serum and urinary levels of IL-1β and IL-1 receptor antagonist and negative graft outcome, and studies in animals and two small human trials illustrate a possible protective effect of anti-IL-1 therapy after solid organ transplantation. Peri- and postoperative use of anakinra is safe and effective in patients undergoing renal transplantation.
Collapse
Affiliation(s)
- Catharina M Mulders-Manders
- Department of Internal Medicine and Expertise Center for Immunodeficiency and Autoinflammation, Radboud University Medical CenterNijmegen, Netherlands
| | - Marije C Baas
- Department of Nephrology, Radboud University Medical CenterNijmegen, Netherlands
| | - Femke M Molenaar
- Department of Nephrology, University Medical CenterUtrecht, Netherlands
| | - Anna Simon
- Department of Internal Medicine and Expertise Center for Immunodeficiency and Autoinflammation, Radboud University Medical CenterNijmegen, Netherlands
| |
Collapse
|
21
|
Kam WR, Liu Y, Ding J, Sullivan DA. Do Cyclosporine A, an IL-1 Receptor Antagonist, Uridine Triphosphate, Rebamipide, and/or Bimatoprost Regulate Human Meibomian Gland Epithelial Cells? Invest Ophthalmol Vis Sci 2017; 57:4287-94. [PMID: 27552406 PMCID: PMC5015965 DOI: 10.1167/iovs.16-19937] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
PURPOSE Researchers have hypothesized that treatment with cyclosporine A (CyA), interleukin-1 receptor antagonists (IL-1RA; e.g., anakinra), P2Y2 receptor agonists (e.g., uridine triphosphate; UTP), and rebamipide may alleviate human meibomian gland dysfunction (MGD) and/or dry eye disease. Investigators have also proposed that prostaglandin analogues (e.g., bimatoprost) may induce MGD. Our goal was to determine whether these compounds directly influence human meibomian gland epithelial cell (HMGEC) function. METHODS Multiple concentrations of each compound were tested for effects on immortalized (I) HMGEC morphology and survival. Nontoxic dosages were used for our studies. Immortalized HMGEC were cultured in the presence of vehicle, CyA, IL-1RA, UTP, rebamipide, or bimatoprost for up to 6 days in various media. Experiments included positive controls for proliferation (epidermal growth factor and bovine pituitary extract), differentiation (azithromycin), and signaling pathway activation (insulin-like growth factor 1). Cells were analyzed for neutral lipid staining, lysosome accumulation, lipid composition, and phosphatidylinositol-3-kinase/Akt (AKT), phosphorylation. RESULTS Our findings demonstrate that CyA, IL-1RA, UTP, rebamipide, and bimatoprost had no effect on the proliferation; neutral lipid content; lysosome number; or levels of free cholesterol, triglycerides, or phospholipids in IHMGECs. Cylosporine A, IL-1RA, rebamipide, and bimatoprost significantly reduced the phosphorylation of AKT, as compared to control. Of interest, tested doses of CyA above 8 nM killed the IHMGECs. CONCLUSIONS Our results show that CyA, IL-1RA, UTP, rebamipide, and bimatoprost do not influence the proliferation or differentiation of IHMGEC. However, with the exception of UTP, these compounds do decrease the activity of the AKT signaling pathway, which is known to promote cell survival.
Collapse
|
22
|
Glial cell-line derived neurotrophic factor protects human islets from nutrient deprivation and endoplasmic reticulum stress induced apoptosis. Sci Rep 2017; 7:1575. [PMID: 28484241 PMCID: PMC5431546 DOI: 10.1038/s41598-017-01805-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 04/10/2017] [Indexed: 12/19/2022] Open
Abstract
One of the key limitations to successful human islet transplantation is loss of islets due to stress responses pre- and post-transplantation. Nutrient deprivation and ER stress have been identified as important mechanisms leading to apoptosis. Glial Cell-line Derived Neurotrophic Factor (GDNF) has recently been found to promote islet survival after isolation. However, whether GDNF could rescue human islets from nutrient deprivation and ER stress-mediated apoptosis is unknown. Herein, by mimicking those conditions in vitro, we have shown that GDNF significantly improved glucose stimulated insulin secretion, reduced apoptosis and proinsulin:insulin ratio in nutrient deprived human islets. Furthermore, GDNF alleviated thapsigargin-induced ER stress evidenced by reduced expressions of IRE1α and BiP and consequently apoptosis. Importantly, this was associated with an increase in phosphorylation of PI3K/AKT and GSK3B signaling pathway. Transplantation of ER stressed human islets pre-treated with GDNF under kidney capsule of diabetic mice resulted in reduced expressions of IRE1α and BiP in human islet grafts with improved grafts function shown by higher levels of human C-peptide post-transplantation. We suggest that GDNF has protective and anti-apoptotic effects on nutrient deprived and ER stress activated human islets and could play a significant role in rescuing human islets from stress responses.
Collapse
|
23
|
Giraldo JA, Molano RD, Rengifo HR, Fotino C, Gattás-Asfura KM, Pileggi A, Stabler CL. The impact of cell surface PEGylation and short-course immunotherapy on islet graft survival in an allogeneic murine model. Acta Biomater 2017; 49:272-283. [PMID: 27915019 DOI: 10.1016/j.actbio.2016.11.060] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 11/22/2016] [Accepted: 11/29/2016] [Indexed: 12/22/2022]
Abstract
Islet transplantation is a promising therapy for Type 1 diabetes mellitus; however, host inflammatory and immune responses lead to islet dysfunction and destruction, despite potent systemic immunosuppression. Grafting of poly(ethylene glycol) (PEG) to the periphery of cells or tissues can mitigate inflammation and immune recognition via generation of a steric barrier. Herein, we sought to evaluate the complementary impact of islet PEGylation with a short-course immunotherapy on the survival of fully-MHC mismatched islet allografts (DBA/2 islets into diabetic C57BL/6J recipients). Anti-Lymphocyte Function-associated Antigen 1 (LFA-1) antibody was selected as a complementary, transient, systemic immune monotherapy. Islets were PEGylated via an optimized protocol, with resulting islets exhibiting robust cell viability and function. Following transplantation, a significant subset of diabetic animals receiving PEGylated islets (60%) or anti-LFA-1 antibody (50%) exhibited long-term (>100d) normoglycemia. The combinatorial approach proved synergistic, with 78% of the grafts exhibiting euglycemia long-term. Additional studies examining graft cellular infiltrates at early time points characterized the local impact of the transplant protocol on graft survival. Results illustrate the capacity of a simple polymer grafting approach to impart significant immunoprotective effects via modulation of the local transplant environment, while short-term immunotherapy serves to complement this effect. STATEMENT OF SIGNIFICANCE We believe this study is important and of interest to the biomaterials and transplant community for several reasons: 1) it provides an optimized protocol for the PEGylation of islets, with minimal impact on the coated islets, which can be easily translated for clinical applications; 2) this optimized protocol demonstrates the benefits of islet PEGylation in providing modest immunosuppression in a murine model; 3) this work demonstrates the combinatory impact of PEGylation with short-course immunotherapy (via LFA-1 blockage), illustrating the capacity of PEGylation to complement existing immunotherapy; and 4) it suggests macrophage phenotype shifting as the potential mechanism for this observed benefit.
Collapse
Affiliation(s)
- Jaime A Giraldo
- Diabetes Research Institute, University of Miami, Miami, FL, USA; Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - R Damaris Molano
- Diabetes Research Institute, University of Miami, Miami, FL, USA; Department of Surgery, University of Miami, Miami, FL, USA
| | - Hernán R Rengifo
- Diabetes Research Institute, University of Miami, Miami, FL, USA
| | - Carmen Fotino
- Diabetes Research Institute, University of Miami, Miami, FL, USA
| | - Kerim M Gattás-Asfura
- Diabetes Research Institute, University of Miami, Miami, FL, USA; Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Antonello Pileggi
- Diabetes Research Institute, University of Miami, Miami, FL, USA; Department of Biomedical Engineering, University of Miami, Miami, FL, USA; Department of Surgery, University of Miami, Miami, FL, USA; Department of Microbiology & Immunology, University of Miami, Miami, FL, USA
| | - Cherie L Stabler
- Diabetes Research Institute, University of Miami, Miami, FL, USA; Department of Biomedical Engineering, University of Miami, Miami, FL, USA; Department of Surgery, University of Miami, Miami, FL, USA; Department of Microbiology & Immunology, University of Miami, Miami, FL, USA; Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
24
|
Jin SM, Shim W, Oh BJ, Oh SH, Yu SJ, Choi JM, Park HJ, Park JB, Kim JH. Anakinra Protects Against Serum Deprivation-Induced Inflammation and Functional Derangement in Islets Isolated From Nonhuman Primates. Am J Transplant 2017; 17:365-376. [PMID: 27376767 DOI: 10.1111/ajt.13953] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 06/09/2016] [Accepted: 06/25/2016] [Indexed: 01/25/2023]
Abstract
We investigated whether serum deprivation induces islet amyloid polypeptide (IAPP) oligomer accumulation and/or a proinflammatory response and, if so, whether the addition of interleukin (IL)-1 receptor antagonist to the culture medium can relieve the proinflammatory response during serum-deprived culture of nonhuman primate (NHP) islets. After culture in medium with and without Ana under serum-deprived culture conditions, IAPP oligomer/amyloid accumulation, in vitro viability, islet function, cytokine secretion, and posttransplantation outcome in streptozotocin-induced diabetic nude mice were determined in islets isolated from heterozygote human IAPP transgenic (hIAPP+/- ) mice and/or NHP islets. Serum deprivation induced accumulation of IAPP oligomer, but not amyloid, in NHP islets. Anakinra (Ana) protected islets from the serum deprivation-induced impairment of in vitro viability and glucose-stimulated insulin secretion and attenuated serum deprivation-induced caspase-1 activation, transcription, and secretion of IL-1β, IL-6, and tumor necrosis factor-α in hIAPP+/- mice and NHP islets. Supplementation of medium with Ana during serum-deprived culture also improved posttransplantation in vivo outcomes of NHP islets. In conclusion, serum deprivation induced accumulation of IAPP oligomers and proinflammatory responses in cultured isolated islets. Supplementation of the culture medium with Ana attenuated the functional impairment and proinflammatory responses induced by serum deprivation in ex vivo culture of NHP islets.
Collapse
Affiliation(s)
- S-M Jin
- Division of Endocrinology and Metabolism, Department of Medicine, Diabetes and Endocrinology Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - W Shim
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea.,Molecular Science and Technology Research Center, Ajou University, Suwon, Korea
| | - B J Oh
- Division of Endocrinology and Metabolism, Department of Medicine, Diabetes and Endocrinology Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - S-H Oh
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - S J Yu
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - J M Choi
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - H J Park
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - J B Park
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - J H Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Diabetes and Endocrinology Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, SAIHST (Samsung Advanced Institute for Health Sciences & Technology), Seoul, Korea
| |
Collapse
|
25
|
Rice CR, Faulkner RA, Jewsbury RA, Bullock S, Dunmore R. A structural study of dithizone coordination chemistry. CrystEngComm 2017. [DOI: 10.1039/c7ce00580f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Jiang K, Weaver JD, Li Y, Chen X, Liang J, Stabler CL. Local release of dexamethasone from macroporous scaffolds accelerates islet transplant engraftment by promotion of anti-inflammatory M2 macrophages. Biomaterials 2017; 114:71-81. [DOI: 10.1016/j.biomaterials.2016.11.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 02/05/2023]
|
27
|
McLaughlin RJ, de Haan A, Zaldumbide A, de Koning EJ, de Ru AH, van Veelen PA, van Lummel M, Roep BO. Human islets and dendritic cells generate post-translationally modified islet autoantigens. Clin Exp Immunol 2016; 185:133-40. [PMID: 26861694 DOI: 10.1111/cei.12775] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/15/2016] [Accepted: 02/07/2016] [Indexed: 12/14/2022] Open
Abstract
The initiation of type 1 diabetes (T1D) requires a break in peripheral tolerance. New insights into neoepitope formation indicate that post-translational modification of islet autoantigens, for example via deamidation, may be an important component of disease initiation or exacerbation. Indeed, deamidation of islet autoantigens increases their binding affinity to the T1D highest-risk human leucocyte antigen (HLA) haplotypes HLA-DR3/DQ2 and -DR4/DQ8, increasing the chance that T cells reactive to deamidated autoantigens can be activated upon T cell receptor ligation. Here we investigated human pancreatic islets and inflammatory and tolerogenic human dendritic cells (DC and tolDC) as potential sources of deamidated islet autoantigens and examined whether deamidation is altered in an inflammatory environment. Islets, DC and tolDC contained tissue transglutaminase, the key enzyme responsible for peptide deamidation, and enzyme activity increased following an inflammatory insult. Islets treated with inflammatory cytokines were found to contain deamidated insulin C-peptide. DC, heterozygous for the T1D highest-risk DQ2/8, pulsed with native islet autoantigens could present naturally processed deamidated neoepitopes. HLA-DQ2 or -DQ8 homozygous DC did not present deamidated islet peptides. This study identifies both human islets and DC as sources of deamidated islet autoantigens and implicates inflammatory activation of tissue transglutaminase as a potential mechanism for islet and DC deamidation.
Collapse
Affiliation(s)
- R J McLaughlin
- Department of Immunohematology and Blood Transfusion, Leiden, the Netherlands
| | - A de Haan
- Department of Immunohematology and Blood Transfusion, Leiden, the Netherlands
| | - A Zaldumbide
- Department of Molecular Cell Biology, Leiden, the Netherlands
| | - E J de Koning
- Department of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - A H de Ru
- Department of Immunohematology and Blood Transfusion, Leiden, the Netherlands
| | - P A van Veelen
- Department of Immunohematology and Blood Transfusion, Leiden, the Netherlands
| | - M van Lummel
- Department of Immunohematology and Blood Transfusion, Leiden, the Netherlands
| | - B O Roep
- Department of Immunohematology and Blood Transfusion, Leiden, the Netherlands.,Department of Diabetes Immunology, Diabetes and Metabolism Research Institute at the Beckman Research Institute of the City of Hope, Duarte, CA, USA
| |
Collapse
|
28
|
Weaver JD, Song Y, Yang EY, Ricordi C, Pileggi A, Buchwald P, Stabler CL. Controlled Release of Dexamethasone from Organosilicone Constructs for Local Modulation of Inflammation in Islet Transplantation. Tissue Eng Part A 2015; 21:2250-61. [DOI: 10.1089/ten.tea.2014.0487] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Jessica D. Weaver
- Department of Biomedical Engineering, University of Miami, Miami, Florida
- Diabetes Research Institute, University of Miami, Miami, Florida
| | - Yun Song
- Diabetes Research Institute, University of Miami, Miami, Florida
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, Florida
| | - Ethan Y. Yang
- Diabetes Research Institute, University of Miami, Miami, Florida
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, Florida
| | - Camillo Ricordi
- Department of Biomedical Engineering, University of Miami, Miami, Florida
- Diabetes Research Institute, University of Miami, Miami, Florida
- Department of Surgery, University of Miami, Miami, Florida
- Department of Microbiology and Immunology, University of Miami, Miami, Florida
- Department of Medicine, University of Miami, Miami, Florida
| | - Antonello Pileggi
- Department of Biomedical Engineering, University of Miami, Miami, Florida
- Diabetes Research Institute, University of Miami, Miami, Florida
- Department of Surgery, University of Miami, Miami, Florida
- Department of Microbiology and Immunology, University of Miami, Miami, Florida
- Department of Medicine, University of Miami, Miami, Florida
| | - Peter Buchwald
- Diabetes Research Institute, University of Miami, Miami, Florida
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, Florida
| | - Cherie L. Stabler
- Department of Biomedical Engineering, University of Miami, Miami, Florida
- Diabetes Research Institute, University of Miami, Miami, Florida
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, Florida
- Department of Surgery, University of Miami, Miami, Florida
| |
Collapse
|
29
|
Hårdstedt M, Lindblom S, Karlsson-Parra A, Nilsson B, Korsgren O. Characterization of Innate Immunity in an Extended Whole Blood Model of Human Islet Allotransplantation. Cell Transplant 2015; 25:503-15. [PMID: 26084381 DOI: 10.3727/096368915x688461] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The instant blood-mediated inflammatory reaction (IBMIR) has been studied in whole blood models of human allo-islet transplantation for short periods (<6 h). Beyond this time frame the innate response to intraportally transplanted islets is less well described. A novel whole blood model was applied to study blood-islet-graft interactions up to 48 h. Heparinized polyvinyl chloride tubing was sealed into small bags containing venous blood together with allogeneic human islets and exocrine tissue, respectively. The bags were attached to a rotating wheel (37°C). Concentrated glucose and sodium hydrogen carbonate were added every 12 h to maintain physiological limits for sustained immune cell functions. Plasma was collected at repeated time points for analyses of coagulation/complement activation and chemokine/cytokine production. Immune cell infiltration was analyzed using immunohistochemistry. Coagulation and platelet activation markers, thrombin-antithrombin complex (TAT) and soluble CD40 ligand (sCD40L) showed early high concentrations (at 6-12 h). sC5b-9 steadily increased over 48 h. At 6 h neutrophils and monocytes surrounded the clotted cellular grafts with a following massive infiltration of neutrophils. High and increasing concentrations of CXCR1/2 ligands [IL-8 and growth-regulated oncogene α/β/γ (Gro-α/β/γ)] and IL-6 were produced in response to human islets and exocrine tissue. The CCR2 ligand monocyte chemoattractant protein 1 (MCP-1) exhibited increasing concentrations in response to exocrine tissue. The CXCR3 ligand interferon-inducible T cell α chemoattractant (I-TAC) was produced in response to both human islets and exocrine tissue from 6 h. Monokine induced by γ interferon (Mig) and interferon γ-induced protein 10 (IP-10) showed a later response, preferentially to exocrine tissue and with larger variations among preparations. An extended blood model of clinical islet transplantation allowed characterization of early immune activation in response to human islets and exocrine tissue. Increased production of chemokines targeting CXCR1/2, CCR2, and CXCR3 was observed, accompanied by massive intraislet neutrophil infiltration over 48 h. The model proved to be useful in exploring early blood-mediated reactions to cellular transplants and has relevance for evaluation of pharmacological interventions to prevent graft loss.
Collapse
Affiliation(s)
- Maria Hårdstedt
- Department of Immunology, Genetics and Pathology, Clinical Immunology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
30
|
Ahearn AJ, Parekh JR, Posselt AM. Islet transplantation for Type 1 diabetes: where are we now? Expert Rev Clin Immunol 2014; 11:59-68. [DOI: 10.1586/1744666x.2015.978291] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|