1
|
Xia L, Yang M, Zang N, Song J, Chen J, Hu H, Wang K, Xiang Y, Yang J, Wang L, Zou Y, Lv X, Hou X, Chen L. PEGylated β-Cell-Targeting Exosomes from Mesenchymal Stem Cells Improve β Cell Function and Quantity by Suppressing NRF2-Mediated Ferroptosis. Int J Nanomedicine 2024; 19:9575-9596. [PMID: 39296939 PMCID: PMC11410040 DOI: 10.2147/ijn.s459077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024] Open
Abstract
Background The depletion of β cell mass is widely recognized as a significant contributor to the progression of type 2 diabetes mellitus (T2DM). Exosomes derived from mesenchymal stem cells (MSC-EXOs) hold promise as cell-free therapies for treating T2DM. However, the precise effects and mechanisms through which MSC-EXO affects β cell function remain incompletely understood, and the limited ability of MSC-EXO to target β cells and the short blood circulation time hampers its therapeutic effectiveness. Methods The effects of MSC-EXO were investigated in T2DM mice induced by a high-fat diet combined with STZ. Additionally, the high glucose-stimulated INS-1 cell line was used to investigate the potential mechanism of MSC-EXO. Michael addition reaction-mediated chemical coupling was used to modify the surface of the exosome membrane with a β-cell-targeting aptamer and polyethylene glycol (PEG). The β-cell targeting and blood circulation time were evaluated, and whether this modification enhanced the islet-protective effect of MSC-EXO was further analyzed. Results We observed that the therapeutic effects of MSC-EXO on T2DM manifested through the reduction of random blood glucose levels, enhancement of glucose and insulin tolerance, and increased insulin secretion. These effects were achieved by augmenting β cell mass via inhibiting nuclear factor erythroid 2-related factor 2 (NRF2)-mediated ferroptosis. Mechanistically, MSC-EXOs play a role in the NRF2-mediated anti-ferroptosis mechanism by transporting active proteins that are abundant in the AKT and ERK pathways. Moreover, compared to MSC-EXOs, aptamer- and PEG-modified exosomes (Apt-EXOs) were more effective in islet protection through PEG-mediated cycle prolongation and aptamer-mediated β-cell targeting. Conclusion MSC-EXO suppresses NRF2-mediated ferroptosis by delivering bioactive proteins to regulate the AKT/ERK signaling pathway, thereby improving the function and quantity of β cells. Additionally, Apt-EXO may serve as a novel drug carrier for islet-targeted therapy.
Collapse
Affiliation(s)
- Longqing Xia
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Mengmeng Yang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Nan Zang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, People's Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, People's Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, 250012, People's Republic of China
| | - Jia Song
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, People's Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, People's Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, 250012, People's Republic of China
| | - Jun Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, People's Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, People's Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, 250012, People's Republic of China
| | - Huiqing Hu
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Kewei Wang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Yingyue Xiang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Jingwen Yang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Liming Wang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Ying Zou
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Xiaoyu Lv
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Xinguo Hou
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, People's Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, People's Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, 250012, People's Republic of China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, People's Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, People's Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, 250012, People's Republic of China
| |
Collapse
|
2
|
Wei B, Zhang X, Qian J, Tang Z, Zhang B. Nrf2: Therapeutic target of islet function protection in diabetes and islet transplantation. Biomed Pharmacother 2023; 167:115463. [PMID: 37703659 DOI: 10.1016/j.biopha.2023.115463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
Nuclear factor-erythroid 2-related factor 2 (Nrf2) has been reported as a major intracellular regulator of antioxidant stress, notably in islet β cells with low antioxidant enzyme content. Nrf2 is capable of regulating antioxidant function, while it can also regulate insulin secretion, proliferation, and differentiation of β cells, ER stress, as well as mitochondrial function. Thus, Nrf2 pharmacological activators have been employed in the laboratory for the treatment of diabetic mice. Islet cells are exposed to oxidative environment when islet is being transplanted. Accordingly, less than 50% of islet cells are well transplanted, and their normal function is maintained. The pharmacological activation of Nrf2 has been confirmed to protect islet cells at different stages of transplantation stages during experiments for islet transplantation.
Collapse
Affiliation(s)
- Butian Wei
- Department of general Surgery, The Fourth affiliated Hospital, Zhejiang university School of Medicine, Yiwu 322000, China
| | - Xin Zhang
- Department of general Surgery, The Fourth affiliated Hospital, Zhejiang university School of Medicine, Yiwu 322000, China
| | - Jiwei Qian
- Department of general Surgery, The Fourth affiliated Hospital, Zhejiang university School of Medicine, Yiwu 322000, China
| | - Zhe Tang
- Department of general Surgery, The Fourth affiliated Hospital, Zhejiang university School of Medicine, Yiwu 322000, China
| | - Bo Zhang
- Department of general Surgery, The Second affiliated Hospital, Zhejiang university School of Medicine, Hangzhou 310000, China.
| |
Collapse
|
3
|
Takasu C, Chen S, Gao L, Saito Y, Morine Y, Ikemoto T, Yamada S, Shimad M. Role of Nrf2 signaling in development of hepatocyte-like cells. THE JOURNAL OF MEDICAL INVESTIGATION 2023; 70:343-349. [PMID: 37940517 DOI: 10.2152/jmi.70.343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Generation of hepatocytes from human adipose-derived mesenchymal stem cells (hADSCs) could be a promising alternative source of human hepatocytes. However, mechanisms to differentiate hepatocytes from hADSCs are not fully elucidated. We have previously demonstrated that our three-step differentiation protocol with glycogen synthase kinase (GSK) 3 inhibitor was effective to improve hepatocyte functions. In this study, we investigated the activation of the nuclear factor erythroid-2 related factor 2 (Nrf2) on hADSCs undergoing differentiation to HLC (hepatocyte-like cells). Our three-step differentiation protocol was applied for 21 days (Step 1:day 1-6, Step2:day 6-11, Step3:day 11-21). Our results show that significant nuclear translocation of Nrf2 occurred from day 11 until the end of HLC differentiation. Nuclear translocation of Nrf2 and CYP3A4 activity in the GSK3 inhibitor-treated group was obviously higher than that in Activin A-treated groups at day 11. The maturation of HLCs was delayed in Nrf2-siRNA group compared to control group. Furthermore, CYP3A4 activity in Nrf2-siRNA group was decreased at the almost same level in Activin A-treated group. Nrf2 translocation might enhance the function of HLC and be a target for developing highly functional HLC. J. Med. Invest. 70 : 343-349, August, 2023.
Collapse
Affiliation(s)
- Chie Takasu
- Department of Surgery, Institute of Health Biosciences, Tokushima University, Tokushima, Japan
| | - Shuhai Chen
- Department of Surgery, Institute of Health Biosciences, Tokushima University, Tokushima, Japan
| | - Luping Gao
- Department of Surgery, Institute of Health Biosciences, Tokushima University, Tokushima, Japan
| | - Yu Saito
- Department of Surgery, Institute of Health Biosciences, Tokushima University, Tokushima, Japan
| | - Yuji Morine
- Department of Surgery, Institute of Health Biosciences, Tokushima University, Tokushima, Japan
| | - Tetsuya Ikemoto
- Department of Surgery, Institute of Health Biosciences, Tokushima University, Tokushima, Japan
| | - Shinichiro Yamada
- Department of Surgery, Institute of Health Biosciences, Tokushima University, Tokushima, Japan
| | - Mitsu Shimad
- Department of Surgery, Institute of Health Biosciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
4
|
Dodson M, Shakya A, Anandhan A, Chen J, Garcia JG, Zhang DD. NRF2 and Diabetes: The Good, the Bad, and the Complex. Diabetes 2022; 71:2463-2476. [PMID: 36409792 PMCID: PMC9750950 DOI: 10.2337/db22-0623] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/06/2022] [Indexed: 11/22/2022]
Abstract
Despite decades of scientific effort, diabetes continues to represent an incredibly complex and difficult disease to treat. This is due in large part to the multifactorial nature of disease onset and progression and the multiple organ systems affected. An increasing body of scientific evidence indicates that a key mediator of diabetes progression is NRF2, a critical transcription factor that regulates redox, protein, and metabolic homeostasis. Importantly, while experimental studies have confirmed the critical nature of proper NRF2 function in preventing the onset of diabetic outcomes, we have only just begun to scratch the surface of understanding the mechanisms by which NRF2 modulates diabetes progression, particularly across different causative contexts. One reason for this is the contradictory nature of the current literature, which can often be accredited to model discrepancies, as well as whether NRF2 is activated in an acute or chronic manner. Furthermore, despite therapeutic promise, there are no current NRF2 activators in clinical trials for the treatment of patients with diabetes. In this review, we briefly introduce the transcriptional programs regulated by NRF2 as well as how NRF2 itself is regulated. We also review the current literature regarding NRF2 modulation of diabetic phenotypes across the different diabetes subtypes, including a brief discussion of contradictory results, as well as what is needed to progress the NRF2 diabetes field forward.
Collapse
Affiliation(s)
- Matthew Dodson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ
| | - Aryatara Shakya
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ
| | - Annadurai Anandhan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ
| | - Jinjing Chen
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ
| | - Joe G.N. Garcia
- Department of Medicine, University of Arizona Health Sciences, University of Arizona, Tucson, AZ
| | - Donna D. Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ
- Arizona Cancer Center, University of Arizona, Tucson, AZ
| |
Collapse
|
5
|
Eguchi N, Damyar K, Alexander M, Dafoe D, Lakey JRT, Ichii H. Anti-Oxidative Therapy in Islet Cell Transplantation. Antioxidants (Basel) 2022; 11:1038. [PMID: 35739935 PMCID: PMC9219662 DOI: 10.3390/antiox11061038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 01/27/2023] Open
Abstract
Islet cell transplantation has become a favorable therapeutic approach in the treatment of Type 1 Diabetes due to the lower surgical risks and potential complications compared to conventional pancreas transplantation. Despite significant improvements in islet cell transplantation outcomes, several limitations hamper long-term graft survival due to tremendous damage and loss of islet cells during the islet cell transplantation process. Oxidative stress has been identified as an omnipresent stressor that negatively affects both the viability and function of isolated islets. Furthermore, it has been established that at baseline, pancreatic β cells exhibit reduced antioxidative capacity, rendering them even more susceptible to oxidative stress during metabolic stress. Thus, identifying antioxidants capable of conferring protection against oxidative stressors present throughout the islet transplantation process is a valuable approach to improving the overall outcomes of islet cell transplantation. In this review we discuss the potential application of antioxidative therapy during each step of islet cell transplantation.
Collapse
Affiliation(s)
- Natsuki Eguchi
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (K.D.); (M.A.); (D.D.); (J.R.T.L.)
| | - Kimia Damyar
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (K.D.); (M.A.); (D.D.); (J.R.T.L.)
| | - Michael Alexander
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (K.D.); (M.A.); (D.D.); (J.R.T.L.)
| | - Donald Dafoe
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (K.D.); (M.A.); (D.D.); (J.R.T.L.)
| | - Jonathan R. T. Lakey
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (K.D.); (M.A.); (D.D.); (J.R.T.L.)
- Department of Biomedical Engineering, University of California, Irvine, CA 92686, USA
| | - Hirohito Ichii
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (K.D.); (M.A.); (D.D.); (J.R.T.L.)
| |
Collapse
|
6
|
Gao J, Xia L, Wei Y. Oxymatrine inhibits the pyroptosis in rat insulinoma cells by affecting nuclear factor kappa B and nuclear factor (erythroid-derived 2)-like 2 protein/heme oxygenase-1 pathways. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2022; 26:165-174. [PMID: 35477544 PMCID: PMC9046894 DOI: 10.4196/kjpp.2022.26.3.165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 01/11/2022] [Accepted: 02/04/2022] [Indexed: 11/15/2022]
Abstract
As the mechanism underlying glucose metabolism regulation by oxymatrine is unclear, this study investigated the effects of oxymatrine on pyroptosis in INS-1 cells. Flow cytometry was employed to examine cell pyroptosis and reactive oxygen species (ROS) production. Cell pyroptosis was also investigated via transmission electron microscopy and lactate dehydrogenase (LDH) release. Protein levels were detected using western blotting and interleukin (IL)-1β and IL-18 secretion by enzyme-linked immunosorbent assay. The caspase-1 activity and DNA-binding activity of nuclear factor kappa B (NF-κB) and nuclear factor (erythroid-derived 2)-like 2 protein (Nrf2) were also assessed. In the high glucose and high fat-treated INS-1 cells (HG + PA), the caspase-1 activity and LDH content, as well as Nod-like receptor family pyrin domain containing 3, Gsdmd-N, caspase-1, apoptosis-associated speck-like protein containing a CARD, IL-1β, and IL-18 levels were increased. Moreover, P65 protein levels increased in the nucleus but decreased in the cytoplasm. Oxymatrine attenuated these effects and suppressed high glucose and high fat-induced ROS production. The increased levels of nuclear Nrf2 and heme oxygenase-1 (HO-1) in the HG + PA cells were further elevated after oxymatrine treatment, whereas cytoplasmic Nrf2 and Keleh-like ECH-associated protein levels decreased. Additionally, the elevated transcriptional activity of p65 in HG + PA cells was reduced by oxymatrine, whereas that of Nrf2 increased. The results indicate that the inhibition of pyroptosis in INS-1 cells by oxymatrine, a key factor in its glucose metabolism regulation, involves the suppression of the NF-κB pathway and activation of the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Jingying Gao
- Department of Pediatrics, Shanxi Medical University, Taiyuan 030001, China.,Pediatric Internal Medicine, Children's Hospital of Shanxi Province, Shanxi Medical University, Taiyuan 030001, China
| | - Lixia Xia
- Department of Pediatrics, Shanxi Medical University, Taiyuan 030001, China
| | - Yuanyuan Wei
- Department of Pediatrics, Shanxi Medical University, Taiyuan 030001, China.,Pediatric Internal Medicine, Children's Hospital of Shanxi Province, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
7
|
Baumel-Alterzon S, Katz LS, Brill G, Jean-Pierre C, Li Y, Tse I, Biswal S, Garcia-Ocaña A, Scott DK. Nrf2 Regulates β-Cell Mass by Suppressing β-Cell Death and Promoting β-Cell Proliferation. Diabetes 2022; 71:989-1011. [PMID: 35192689 PMCID: PMC9044139 DOI: 10.2337/db21-0581] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 02/15/2022] [Indexed: 01/05/2023]
Abstract
Finding therapies that can protect and expand functional β-cell mass is a major goal of diabetes research. Here, we generated β-cell-specific conditional knockout and gain-of-function mouse models and used human islet transplant experiments to examine how manipulating Nrf2 levels affects β-cell survival, proliferation, and mass. Depletion of Nrf2 in β-cells results in decreased glucose-stimulated β-cell proliferation ex vivo and decreased adaptive β-cell proliferation and β-cell mass expansion after a high-fat diet in vivo. Nrf2 protects β-cells from apoptosis after a high-fat diet. Nrf2 loss of function decreases Pdx1 abundance and insulin content. Activating Nrf2 in a β-cell-specific manner increases β-cell proliferation and mass and improves glucose tolerance. Human islets transplanted under the kidney capsule of immunocompromised mice and treated systemically with bardoxolone methyl, an Nrf2 activator, display increased β-cell proliferation. Thus, by managing reactive oxygen species levels, Nrf2 regulates β-cell mass and is an exciting therapeutic target for expanding and protecting β-cell mass in diabetes.
Collapse
Affiliation(s)
- Sharon Baumel-Alterzon
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Liora S. Katz
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Gabriel Brill
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Clairete Jean-Pierre
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yansui Li
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Isabelle Tse
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Shyam Biswal
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD
| | - Adolfo Garcia-Ocaña
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Donald K. Scott
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
8
|
Baumel-Alterzon S, Scott DK. Regulation of Pdx1 by oxidative stress and Nrf2 in pancreatic beta-cells. Front Endocrinol (Lausanne) 2022; 13:1011187. [PMID: 36187092 PMCID: PMC9521308 DOI: 10.3389/fendo.2022.1011187] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/26/2022] [Indexed: 01/05/2023] Open
Abstract
The beta-cell identity gene, pancreatic duodenal homeobox 1 (Pdx1), plays critical roles in many aspects of the life of beta-cells including differentiation, maturation, function, survival and proliferation. High levels of reactive oxygen species (ROS) are extremely toxic to cells and especially to beta-cells due to their relatively low expression of antioxidant enzymes. One of the major mechanisms for beta-cell dysfunction in type-2 diabetes results from oxidative stress-dependent inhibition of PDX1 levels and function. ROS inhibits Pdx1 by reducing Pdx1 mRNA and protein levels, inhibiting PDX1 nuclear localization, and suppressing PDX1 coactivator complexes. The nuclear factor erythroid 2-related factor (Nrf2) antioxidant pathway controls the redox balance and allows the maintenance of high Pdx1 levels. Therefore, pharmacological activation of the Nrf2 pathway may alleviate diabetes by preserving Pdx1 levels.
Collapse
Affiliation(s)
- Sharon Baumel-Alterzon
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- *Correspondence: Sharon Baumel-Alterzon,
| | - Donald K. Scott
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
9
|
Antioxidative Potentials of Incretin-Based Medications: A Review of Molecular Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9959320. [PMID: 34007411 PMCID: PMC8099522 DOI: 10.1155/2021/9959320] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/11/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022]
Abstract
Glucagon-like peptide 1 receptor agonists and dipeptidyl-peptidase 4 inhibitors are medications used for managing diabetes, mimicking the metabolic effects of incretin hormones. Recent evidence suggests that these medications have antioxidative potentials in the diabetic milieu. The pathophysiology of most diabetic complications involves oxidative stress. Therefore, if incretin-based antidiabetic medications can alleviate the free radicals involved in oxidative stress, they can potentially provide further therapeutic effects against diabetic complications. However, the molecular mechanisms by which these medications protect against oxidative stress are not fully understood. In the current review, we discuss the potential molecular mechanisms behind these pharmacologic agents' antioxidative properties.
Collapse
|
10
|
Swentek L, Chung D, Ichii H. Antioxidant Therapy in Pancreatitis. Antioxidants (Basel) 2021; 10:657. [PMID: 33922756 PMCID: PMC8144986 DOI: 10.3390/antiox10050657] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatitis is pathologic inflammation of the pancreas characterized by acinar cell destruction and oxidative stress. Repeated pancreatic insults can result in the development of chronic pancreatitis, characterized by irreversible fibrosis of the pancreas and many secondary sequelae, ultimately leading to the loss of this important organ. We review acute pancreatitis, chronic pancreatitis, and pancreatitis-related complications. We take a close look at the pathophysiology with a focus on oxidative stress and how it contributes to the complications of the disease. We also take a deep dive into the evolution and current status of advanced therapies for management including dietary modification, antioxidant supplementation, and nuclear factor erythroid-2-related factor 2-Kelch-like ECH-associated protein 1(Nrf2-keap1) pathway activation. In addition, we discuss the surgeries aimed at managing pain and preventing further endocrine dysfunction, such as total pancreatectomy with islet auto-transplantation.
Collapse
Affiliation(s)
| | | | - Hirohito Ichii
- Department of Surgery, University of California, Irvine, CA 92868, USA; (L.S.); (D.C.)
| |
Collapse
|
11
|
Li S, Vaziri ND, Swentek L, Takasu C, Vo K, Stamos MJ, Ricordi C, Ichii H. Prevention of Autoimmune Diabetes in NOD Mice by Dimethyl Fumarate. Antioxidants (Basel) 2021; 10:antiox10020193. [PMID: 33572792 PMCID: PMC7912218 DOI: 10.3390/antiox10020193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress plays critical roles in the pathogenesis of diabetes. This study tested the hypothesis that by protecting β-cells against oxidative stress and inflammation, an Nrf2 activator, dimethyl fumarate (DMF), may prevent or delay the onset of type 1 diabetes in non-obese diabetic (NOD) mice. Firstly, islet isolation was conducted to confirm the antioxidative effects of DMF oral administration on islet cells. Secondly, in a spontaneous diabetes model, DMF (25 mg/kg) was fed to mice once daily starting at the age of 8 weeks up to the age of 22 weeks. In a cyclophosphamide-induced accelerated diabetes model, DMF (25 mg/kg) was fed to mice twice daily for 2 weeks. In the islet isolation study, DMF administration improved the isolation yield, attenuated oxidative stress and enhanced GCLC and NQO1 expression in the islets. In the spontaneous model, DMF significantly reduced the onset of diabetes compared to the control group (25% vs. 54.2%). In the accelerated model, DMF reduced the onset of diabetes from 58.3% to 16.7%. The insulitis score in the islets of the DMF treatment group (1.6 ± 0.32) was significantly lower than in the control group (3.47 ± 0.21). The serum IL-1α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-9, IL-12p70, IFN-γ, TNF-α, MCP-1 and CXCL16 levels in the DMF-treated group were lower than in the control group. In conclusion, DMF may protect islet cells and reduce the incidence of autoimmune diabetes in NOD mice by attenuating insulitis and proinflammatory cytokine production.
Collapse
Affiliation(s)
- Shiri Li
- Department of Surgery, University of California, Irvine, CA 92868, USA; (L.S.); (C.T.); (K.V.); (M.J.S.)
- Correspondence: (S.L.); (H.I.); Tel.: +1-714-456-5160 (S.L.); +1-714-456-8698 (H.I.)
| | | | - Lourdes Swentek
- Department of Surgery, University of California, Irvine, CA 92868, USA; (L.S.); (C.T.); (K.V.); (M.J.S.)
| | - Chie Takasu
- Department of Surgery, University of California, Irvine, CA 92868, USA; (L.S.); (C.T.); (K.V.); (M.J.S.)
| | - Kelly Vo
- Department of Surgery, University of California, Irvine, CA 92868, USA; (L.S.); (C.T.); (K.V.); (M.J.S.)
| | - Michael J. Stamos
- Department of Surgery, University of California, Irvine, CA 92868, USA; (L.S.); (C.T.); (K.V.); (M.J.S.)
| | - Camillo Ricordi
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, FL 33136, USA;
| | - Hirohito Ichii
- Department of Surgery, University of California, Irvine, CA 92868, USA; (L.S.); (C.T.); (K.V.); (M.J.S.)
- Correspondence: (S.L.); (H.I.); Tel.: +1-714-456-5160 (S.L.); +1-714-456-8698 (H.I.)
| |
Collapse
|
12
|
Baumel-Alterzon S, Katz LS, Brill G, Garcia-Ocaña A, Scott DK. Nrf2: The Master and Captain of Beta Cell Fate. Trends Endocrinol Metab 2021; 32:7-19. [PMID: 33243626 PMCID: PMC7746592 DOI: 10.1016/j.tem.2020.11.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 02/07/2023]
Abstract
Prolonged hyperglycemia is toxic to pancreatic β cells, generating excessive reactive oxygen species, defective glucose-stimulated insulin secretion, decreased insulin production, and eventually β cell death and diabetes. Nrf2 is a master regulator of cellular responses to counteract dangerous levels of oxidative stress. Maintenance of β cell mass depends on Nrf2 to promote the survival, function, and proliferation of β cells. Indeed, Nrf2 activation decreases inflammation, increases insulin sensitivity, reduces body weight, and preserves β cell mass. Therefore, numerous pharmacological activators of Nrf2 are being tested in clinical trials for the treatment of diabetes and diabetic complications. Modulating Nrf2 activity in β cells is a promising therapeutic approach for the treatment of diabetes.
Collapse
Affiliation(s)
- Sharon Baumel-Alterzon
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Liora S Katz
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gabriel Brill
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adolfo Garcia-Ocaña
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Donald K Scott
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
13
|
Menger MM, Nalbach L, Wrublewsky S, Glanemann M, Gu Y, Laschke MW, Menger MD, Ampofo E. Darbepoetin-α increases the blood volume flow in transplanted pancreatic islets in mice. Acta Diabetol 2020; 57:1009-1018. [PMID: 32221724 PMCID: PMC8318962 DOI: 10.1007/s00592-020-01512-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/04/2020] [Indexed: 11/30/2022]
Abstract
AIMS The minimal-invasive transplantation of pancreatic islets is a promising approach to treat diabetes mellitus type 1. However, islet transplantation is still hampered by the insufficient process of graft revascularization, leading to a poor clinical outcome. Accordingly, the identification of novel compounds, which accelerate and improve the revascularization of transplanted islets, is of great clinical interest. Previous studies have shown that darbepoetin (DPO)-α, a long lasting analogue of erythropoietin, is capable of promoting angiogenesis. Hence, we investigated in this study whether DPO improves the revascularization of transplanted islets. METHODS Islets were isolated from green fluorescent protein-positive FVB/N donor mice and transplanted into dorsal skinfold chambers of FVB/N wild-type animals, which were treated with DPO low dose (2.5 µg/kg), DPO high dose (10 µg/kg) or vehicle (control). The revascularization was assessed by repetitive intravital fluorescence microscopy over an observation period of 14 days. Subsequently, the cellular composition of the grafts was analyzed by immunohistochemistry. RESULTS The present study shows that neither low- nor high-dose DPO treatment accelerates the revascularization of free pancreatic islet grafts. However, high-dose DPO treatment increased the blood volume flow of the transplanted islet. CONCLUSIONS These findings demonstrated that DPO treatment does not affect the revascularization of transplanted islets. However, the glycoprotein increases the blood volume flow of the grafts, which results in an improved microvascular function and may facilitate successful transplantation.
Collapse
Affiliation(s)
- Maximilian M Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany
| | - Lisa Nalbach
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany
| | - Selina Wrublewsky
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany
| | - Matthias Glanemann
- Department for General, Visceral, Vascular and Pediatric Surgery, Saarland University, 66421, Homburg, Saar, Germany
| | - Yuan Gu
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany.
| |
Collapse
|
14
|
Bilirubin Improves the Quality and Function of Hypothermic Preserved Islets by Its Antioxidative and Anti-inflammatory Effect. Transplantation 2020; 103:2486-2496. [PMID: 31365475 DOI: 10.1097/tp.0000000000002882] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Islet transplantation is a promising option for the treatment of type 1 diabetes. However, the current lack of practical techniques for the isolated islets preservation still hampers the advancement of life-saving islet transplantation. Islet suffers from internal or external stimuli-induced oxidative stress and subsequent inflammation during preservation, which leads to disappointing outcomes regarding islet yield, survival, and function. Reactive oxygen species (ROS) overproduction is the primary cause of oxidative stress that induces islet loss and dysfunction. Thus, in this article, we hypothesized that an endogenous antioxidant, bilirubin, that could efficiently scavenge ROS and inhibit inflammatory reactions could be beneficial for islet preservation. METHODS Herein, we studied the effect of bilirubin on the hypothermic preserved (4°C) islets and evaluate the islets viability, insulin secretory function, oxidative stress levels, and in vivo transplantation performance. RESULTS Bilirubin could prevent cellular damages during short-term preservation and maintain the cocultured islets viability and function. The protective role of bilirubin is associated with its antioxidative ability, which dramatically increased the activities of antioxidant enzymes (superoxide dismutase and glutathione peroxidase) and decreased the levels of ROS and malondialdehyde. Diabetic mice transplanted with bilirubin preserved islets were normoglycemic for 28 days, even overmatched the diabetic mouse transplanted with fresh islets. Mice receiving bilirubin cocultured islets required the least time to achieve normoglycemia among all groups and exhibited minimum inflammatory responses during the early transplantation stage. CONCLUSIONS By utilizing bilirubin, we achieved highly viable and functional islets after hypothermic preservation to reverse diabetes in mice.
Collapse
|
15
|
Potential Benefits of Nrf2/Keap1 Targeting in Pancreatic Islet Cell Transplantation. Antioxidants (Basel) 2020; 9:antiox9040321. [PMID: 32316115 PMCID: PMC7222398 DOI: 10.3390/antiox9040321] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 12/26/2022] Open
Abstract
Permanent pancreatic islet cell destruction occurs in type 1 diabetes mellitus (T1DM) through the infiltration of inflammatory cells and cytokines. Loss of β-cell integrity secondary to oxidation leads to an inability to appropriately synthesize and secrete insulin. Allogenic islet cell transplantation (ICT) has risen as a therapeutic option to mitigate problematic hypoglycemia. Nevertheless, during the process of transplantation, islet cells are exposed to oxidatively caustic conditions that severely decrease the islet cell yield. Islet cells are at a baseline disadvantage to sustain themselves during times of metabolic stress as they lack a robust anti-oxidant defense system, glycogen stores, and vascularity. The Nrf2/Keap1 system is a master regulator of antioxidant genes that has garnered attention as pharmacologic activators have shown a protective response and a low side effect profile. Herein, we present the most recently studied Nrf2/Keap1 activators in pancreas for application in ICT: Dh404, dimethyl fumarate (DMF), and epigallocatechin gallate (EGCG). Furthermore, we discuss that Nrf2/Keap1 is a potential target to ameliorate oxidative stress at every step of the Edmonton Protocol.
Collapse
|
16
|
Đurašević S, Stojković M, Bogdanović L, Pavlović S, Borković-Mitić S, Grigorov I, Bogojević D, Jasnić N, Tosti T, Đurović S, Đorđević J, Todorović Z. The Effects of Meldonium on the Renal Acute Ischemia/Reperfusion Injury in Rats. Int J Mol Sci 2019; 20:ijms20225747. [PMID: 31731785 PMCID: PMC6888683 DOI: 10.3390/ijms20225747] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/01/2019] [Accepted: 11/08/2019] [Indexed: 12/12/2022] Open
Abstract
Acute renal ischemia/reperfusion (I/R) injury is a clinical condition that is challenging to treat. Meldonium is an anti-ischemic agent that shifts energy production from fatty acid oxidation to less oxygen-consuming glycolysis. Thus, in this study we investigated the effects of a four-week meldonium pre-treatment (300 mg/kg b.m./day) on acute renal I/R in male rats (Wistar strain). Our results showed that meldonium decreased animal body mass gain, food and water intake, and carnitine, glucose, and lactic acid kidney content. In kidneys of animals subjected to I/R, meldonium increased phosphorylation of mitogen-activated protein kinase p38 and protein kinase B, and increased the expression of nuclear factor erythroid 2-related factor 2 and haeme oxygenase 1, causing manganese superoxide dismutase expression and activity to increase, as well as lipid peroxidation, cooper-zinc superoxide dismutase, glutathione peroxidase, and glutathione reductase activities to decrease. By decreasing the kidney Bax/Bcl2 expression ratio and kidney and serum high mobility group box 1 protein content, meldonium reduced apoptotic and necrotic events in I/R, as confirmed by kidney histology. Meldonium increased adrenal noradrenaline content and serum, adrenal, hepatic, and renal ascorbic/dehydroascorbic acid ratio, which caused complex changes in renal lipidomics. Taken together, our results have confirmed that meldonium pre-treatment protects against I/R-induced oxidative stress and apoptosis/necrosis.
Collapse
Affiliation(s)
- Siniša Đurašević
- Faculty of Biology, University of Belgrade, 11158 Belgrade, Serbia; (N.J.); (J.Đ.)
- Correspondence: ; Tel.: +381-63-367108
| | - Maja Stojković
- School of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (M.S.); (L.B.); (Z.T.)
| | - Ljiljana Bogdanović
- School of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (M.S.); (L.B.); (Z.T.)
| | - Slađan Pavlović
- Institute for Biological Research “Siniša Stanković”–National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (S.P.); (S.B.-M.); (I.G.); (D.B.)
| | - Slavica Borković-Mitić
- Institute for Biological Research “Siniša Stanković”–National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (S.P.); (S.B.-M.); (I.G.); (D.B.)
| | - Ilijana Grigorov
- Institute for Biological Research “Siniša Stanković”–National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (S.P.); (S.B.-M.); (I.G.); (D.B.)
| | - Desanka Bogojević
- Institute for Biological Research “Siniša Stanković”–National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (S.P.); (S.B.-M.); (I.G.); (D.B.)
| | - Nebojša Jasnić
- Faculty of Biology, University of Belgrade, 11158 Belgrade, Serbia; (N.J.); (J.Đ.)
| | - Tomislav Tosti
- Faculty of Chemistry, University of Belgrade, 11158 Belgrade, Serbia;
| | - Saša Đurović
- Institute of General and Physical Chemistry, University of Belgrade, 11158 Belgrade, Serbia;
| | - Jelena Đorđević
- Faculty of Biology, University of Belgrade, 11158 Belgrade, Serbia; (N.J.); (J.Đ.)
| | - Zoran Todorović
- School of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (M.S.); (L.B.); (Z.T.)
- University Medical Centre “Bežanijska kosa”, University of Belgrade, 11080 Belgrade, Serbia
| |
Collapse
|
17
|
Khiatah B, Qi M, Du W, T-Chen K, van Megen KM, Perez RG, Isenberg JS, Kandeel F, Roep BO, Ku HT, Al-Abdullah IH. Intra-pancreatic tissue-derived mesenchymal stromal cells: a promising therapeutic potential with anti-inflammatory and pro-angiogenic profiles. Stem Cell Res Ther 2019; 10:322. [PMID: 31730488 PMCID: PMC6858763 DOI: 10.1186/s13287-019-1435-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Human pancreata contain many types of cells, such as endocrine islets, acinar, ductal, fat, and mesenchymal stromal cells (MSCs). MSCs are important and shown to have a promising therapeutic potential to treat various disease conditions. METHODS We investigated intra-pancreatic tissue-derived (IPTD) MSCs isolated from tissue fractions that are routinely discarded during pancreatic islet isolation of human cadaveric donors. Furthermore, whether pro-angiogenic and anti-inflammatory properties of these cells could be enhanced was investigated. RESULTS IPTD-MSCs were expanded in GMP-compatible CMRL-1066 medium supplemented with 5% human platelet lysate (hPL). IPTD-MSCs were found to be highly pure, with > 95% positive for CD90, CD105, and CD73, and negative for CD45, CD34, CD14, and HLA-DR. Immunofluorescence staining of pancreas tissue demonstrated the presence of CD105+ cells in the vicinity of islets. IPTD-MSCs were capable of differentiation into adipocytes, chondrocytes, and osteoblasts in vitro, underscoring their multipotent features. When these cells were cultured in the presence of a low dose of TNF-α, gene expression of tumor necrosis factor alpha-stimulated gene-6 (TSG-6) was significantly increased, compared to control. In contrast, treating cells with dimethyloxallyl glycine (DMOG) (a prolyl 4-hydroxylase inhibitor) enhanced mRNA levels of nuclear factor erythroid 2-related factor 2 (NRF2) and vascular endothelial growth factor (VEGF). Interestingly, a combination of TNF-α and DMOG stimulated the optimal expression of all three genes in IPTD-MSCs. Conditioned medium of IPTD-MSCs treated with a combination of DMOG and TNF-α contained higher levels of pro-angiogenic (VEGF, IL-6, and IL-8) compared to controls, promoting angiogenesis of human endothelial cells in vitro. In contrast, levels of MCP-1, a pro-inflammatory cytokine, were reduced in the conditioned medium of IPTD-MSCs treated with a combination of DMOG and TNF-α. CONCLUSIONS The results demonstrate that IPTD-MSCs reside within the pancreas and can be separated as part of a standard islet-isolation protocol. These IPTD-MSCs can be expanded and potentiated ex vivo to enhance their anti-inflammatory and pro-angiogenic profiles. The fact that IPTD-MSCs are generated in a GMP-compatible procedure implicates a direct clinical application.
Collapse
Affiliation(s)
- Bashar Khiatah
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010 USA
| | - Meirigeng Qi
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010 USA
| | - Weiting Du
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010 USA
| | - Kuan T-Chen
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010 USA
| | - Kayleigh M. van Megen
- Department of Diabetes Immunology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA USA
| | - Rachel G. Perez
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010 USA
| | - Jeffrey S. Isenberg
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010 USA
| | - Fouad Kandeel
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010 USA
| | - Bart O. Roep
- Department of Diabetes Immunology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA USA
| | - Hsun Teresa Ku
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010 USA
| | - Ismail H. Al-Abdullah
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010 USA
| |
Collapse
|
18
|
The protective effect of epigallocatechin 3-gallate on mouse pancreatic islets via the Nrf2 pathway. Surg Today 2019; 49:536-545. [PMID: 30730004 DOI: 10.1007/s00595-019-1761-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/20/2018] [Indexed: 12/30/2022]
Abstract
PURPOSE Epigallocatechin 3-gallate (EGCG), a green tea polyphenol, has been shown to have anti-oxidant and anti-inflammatory effects in vitro and in vivo. The aim of this study was to investigate the effects and mechanism of EGCG on isolated pancreatic islets as pre-conditioning for pancreatic islet transplantation. METHODS The pancreatic islets were divided into two groups: an islet culture medium group (control) and an islet culture medium with EGCG (100 µM) group. We investigated the islet viability, Nrf2 expression, reactive oxygen species (ROS) production, and heme oxygenase-1 (HO-1) mRNA. Five hundred islet equivalents after 12 h of culture for the EGCG 100 µM and control group were transplanted under the kidney capsule of streptozotocin-induced diabetic ICR mice. RESULTS The cell viability and insulin secretion ability in the EGCG group were preserved, and the nuclear translocation of Nrf2 was increased in the EGCG group (p < 0.01). While the HO-1 mRNA levels were also higher in the EGCG group than in the control group (p < 0.05), the ROS production was lower (p < 0.01). An in vivo functional assessment showed that the blood glucose level had decreased in the EGCG group after transplantation (p < 0.01). CONCLUSION EGCG protects the viability and function of islets by suppressing ROS production via the Nrf2 pathway.
Collapse
|
19
|
Mabhida SE, Dludla PV, Johnson R, Ndlovu M, Louw J, Opoku AR, Mosa RA. Protective effect of triterpenes against diabetes-induced β-cell damage: An overview of in vitro and in vivo studies. Pharmacol Res 2018; 137:179-192. [PMID: 30315968 DOI: 10.1016/j.phrs.2018.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/27/2018] [Accepted: 10/04/2018] [Indexed: 12/14/2022]
Abstract
Accumulative evidence shows that chronic hyperglycaemia is a major factor implicated in the development of pancreatic β-cell dysfunction in diabetic patients. Furthermore, most of these patients display impaired insulin signalling that is responsible for accelerated pancreatic β-cell damage. Indeed, prominent pathways involved in glucose metabolism such as phosphatidylinositol 3-kinase/ protein kinase B (PI3-K/AKT) and 5' AMP-activated protein kinase (AMPK) are impaired in an insulin resistant state. The impairment of this pathway is associated with over production of reactive oxygen species and pro-inflammatory factors that supersede pancreatic β-cell damage. Although several antidiabetic drugs can improve β-cell function by modulating key regulators such as PI3-K/AKT and AMPK, evidence of their β-cell regenerative and protective effect is scanty. As a result, there has been continued exploration of novel antidiabetic therapeutics with abundant antioxidant and antiinflammatory properties that are essential in protecting against β-cell damage. Such therapies include triterpenes, which have displayed robust effects to improve glycaemic tolerance, insulin secretion, and pancreatic β-cell function. This review summarises most relevant effects of various triterpenes on improving pancreatic β-cell function in both in vitro and in vivo experimental models. A special focus falls on studies reporting on the ameliorative properties of these compounds against insulin resistance, oxidative stress and inflammation, the well-known factors involved in hyperglycaemia associated tissue damage.
Collapse
Affiliation(s)
- Sihle E Mabhida
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa; Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, 7505, South Africa.
| | - Phiwayinkosi V Dludla
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, 60121, Italy; Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, 7505, South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, 7505, South Africa; Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, Stellenbosch, South Africa
| | - Musawenkosi Ndlovu
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa
| | - Johan Louw
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa; Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, 7505, South Africa
| | - Andy R Opoku
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa
| | - Rebamang A Mosa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa
| |
Collapse
|
20
|
Kumar A, Katz LS, Schulz AM, Kim M, Honig LB, Li L, Davenport B, Homann D, Garcia-Ocaña A, Herman MA, Haynes CM, Chipuk JE, Scott DK. Activation of Nrf2 Is Required for Normal and ChREBPα-Augmented Glucose-Stimulated β-Cell Proliferation. Diabetes 2018; 67:1561-1575. [PMID: 29764859 PMCID: PMC6054434 DOI: 10.2337/db17-0943] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 05/05/2018] [Indexed: 12/28/2022]
Abstract
Patients with both major forms of diabetes would benefit from therapies that increase β-cell mass. Glucose, a natural mitogen, drives adaptive expansion of β-cell mass by promoting β-cell proliferation. We previously demonstrated that a carbohydrate response element-binding protein (ChREBPα) is required for glucose-stimulated β-cell proliferation and that overexpression of ChREBPα amplifies the proliferative effect of glucose. Here we found that ChREBPα reprogrammed anabolic metabolism to promote proliferation. ChREBPα increased mitochondrial biogenesis, oxygen consumption rates, and ATP production. Proliferation augmentation by ChREBPα required the presence of ChREBPβ. ChREBPα increased the expression and activity of Nrf2, initiating antioxidant and mitochondrial biogenic programs. The induction of Nrf2 was required for ChREBPα-mediated mitochondrial biogenesis and for glucose-stimulated and ChREBPα-augmented β-cell proliferation. Overexpression of Nrf2 was sufficient to drive human β-cell proliferation in vitro; this confirms the importance of this pathway. Our results reveal a novel pathway necessary for β-cell proliferation that may be exploited for therapeutic β-cell regeneration.
Collapse
Affiliation(s)
- Anil Kumar
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Liora S Katz
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Anna M Schulz
- Departments of Oncological Sciences and Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Misung Kim
- Division of Endocrinology and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Lee B Honig
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Lucy Li
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Bennett Davenport
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Dirk Homann
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Adolfo Garcia-Ocaña
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mark A Herman
- Division of Endocrinology and Metabolism and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC
| | - Cole M Haynes
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jerry E Chipuk
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Departments of Oncological Sciences and Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Donald K Scott
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
21
|
Oh YS, Jun HS. Effects of Glucagon-Like Peptide-1 on Oxidative Stress and Nrf2 Signaling. Int J Mol Sci 2017; 19:ijms19010026. [PMID: 29271910 PMCID: PMC5795977 DOI: 10.3390/ijms19010026] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 12/16/2022] Open
Abstract
Oxidative cellular damage caused by free radicals is known to contribute to the pathogenesis of various diseases such as cancer, diabetes, and neurodegenerative diseases, as well as to aging. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and Kelch-like ECH-associated protein1 (Keap1) signaling pathways play an important role in preventing stresses including oxidative and inflammatory stresses. Nrf2 is a master regulator of cellular stress responses, induces the expression of antioxidant and detoxification enzymes, and protects against oxidative stress-induced cell damage. Glucagon-like peptide-1 (GLP-1) is an incretin hormone, which was originally found to increase insulin synthesis and secretion. It is now widely accepted that GLP-1 has multiple functions beyond glucose control in various tissues and organs including brain, kidney, and heart. GLP-1 and GLP-1 receptor agonists are known to be effective in many chronic diseases, including diabetes, via antioxidative mechanisms. In this review, we summarize the current knowledge regarding the role of GLP-1 in the protection against oxidative damage and the activation of the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Yoon Sin Oh
- Department of Food and Nutrition, Eulji University, Seongnam 13135, Korea.
| | - Hee-Sook Jun
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 21936, Korea.
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea.
- Gachon Medical Research Institute, Gil Hospital, Incheon 21565, Korea.
| |
Collapse
|
22
|
Tong F, Zhou X. The Nrf2/HO-1 Pathway Mediates the Antagonist Effect of L-Arginine On Renal Ischemia/Reperfusion Injury in Rats. Kidney Blood Press Res 2017; 42:519-529. [PMID: 28854440 DOI: 10.1159/000480362] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/16/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Ischemia/reperfusion (I/R) is the most common cause of acute renal injury. I/R-induced oxidative stress is involved in the development of acute renal injury, which can be reversed by supplementation with L-arginine, a precursor of nitric oxide (NO). This study was conducted to evaluate alterations in the expression of transcription factors [nuclear factor kappa B (NF-κB), nuclear factor-E2-related factor-2 (Nrf2), and heme oxygenase 1 (HO-1)] and heat shock protein 70 (HSP70) in the kidney of I/R-induced injury rats. METHODS Sprague-Dawley (SD) rats were subjected to bilateral renal ischemia for 45 min followed by reperfusion for 24 h. Group 1, Sham; group 2, I/R; group 3, L-arginine; and group 4, L-arginine+zinc protoporphyrin (ZnPP). The levels of serum creatinine (Scr), blood urea nitrogen (BUN), serum nitric oxide (NO), histic malondialdehyde (MDA) and reactive oxygen species (ROS) and superoxide dismutase (SOD) activity were determined, and the expression levels of Nrf2, HO-1, NF-κB, and HSP70 were evaluated. RESULTS The treatment of rats with L-arginine produced a significant reduction in the levels of BUN, Scr, MDA and a significant enhancement in the level of NO and in the activity of SOD compared to renal I/R groups. The expression levels of Nrf2, HO-1, and HSP70 were strongly increased, and the expression of NF-κB and production of ROS were significantly decreased in the L-arginine group compared to that of the I/R group. ZnPP increased renal damage and displayed effects opposite to those of L-arginine. CONCLUSION These findings suggested that L-arginine/NO reduces renal dysfunction associated with I/R of the kidney and may act as a trigger to regulate the NF-κB, HSP70 and Nrf2/HO-1 signaling cascades.
Collapse
|
23
|
NAD(P)H-dependent quinone oxidoreductase 1 (NQO1) and cytochrome P450 oxidoreductase (CYP450OR) differentially regulate menadione-mediated alterations in redox status, survival and metabolism in pancreatic β-cells. Toxicol Lett 2016; 262:1-11. [PMID: 27558805 DOI: 10.1016/j.toxlet.2016.08.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/27/2016] [Accepted: 08/20/2016] [Indexed: 01/08/2023]
Abstract
NQO1 (NAD(P)H-quinone oxidoreductase 1) reduces quinones and xenobiotics to less-reactive compounds via 2-electron reduction, one feature responsible for the role of NQO1 in antioxidant defense in several tissues. In contrast, NADPH cytochrome P450 oxidoreductase (CYP450OR), catalyzes the 1-electron reduction of quinones and xenobiotics, resulting in enhanced superoxide formation. However, to date, the roles of NQO1 and CYP450OR in pancreatic β-cell metabolism under basal conditions and oxidant challenge have not been characterized. Using NQO1 inhibition, over-expression and knock out, we have demonstrated that, in addition to protection of β-cells from toxic concentrations of the redox cycling quinone menadione, NQO1 also regulates the basal level of reduced-to-oxidized nucleotides, suggesting other role(s) beside that of an antioxidant enzyme. In contrast, over-expression of NADPH cytochrome P450 oxidoreductase (CYP450OR) resulted in enhanced redox cycling activity and decreased cellular viability, consistent with the enhanced generation of superoxide and H2O2. Basal expression of NQO1 and CYP450OR was comparable in isolated islets and liver. However, NQO1, but not CYP450OR, was strongly induced in β-cells exposed to menadione. NQO1 and CYP450OR exhibited a reciprocal preference for reducing equivalents in β-cells: while CYP450OR preferentially utilized NADPH, NQO1 primarily utilized NADH. Together, these results demonstrate that NQO1 and CYP450OR reciprocally regulate oxidant metabolism in pancreatic β-cells.
Collapse
|
24
|
Masuda Y, Vaziri ND, Li S, Le A, Hajighasemi-Ossareh M, Robles L, Foster CE, Stamos MJ, Al-Abodullah I, Ricordi C, Ichii H. The effect of Nrf2 pathway activation on human pancreatic islet cells. PLoS One 2015; 10:e0131012. [PMID: 26110640 PMCID: PMC4482439 DOI: 10.1371/journal.pone.0131012] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/26/2015] [Indexed: 12/30/2022] Open
Abstract
Background Pancreatic islets are known to contain low level of antioxidants that renders them vulnerable to oxidative stress. Nrf2 is the master regulator of numerous genes, encoding antioxidant, detoxifying, and cytoprotective molecules. Activation of Nrf2 pathway induces up-regulation of numerous genes encoding antioxidant and phase II detoxifying enzymes and related proteins. However, little is known regarding the role of this pathway in human islet cells. The aim was to investigate the effect of Nrf2 activator (dh404, CDDO-9,11-dihydro-trifluoroethyl amide) on human islet cells. Methods Human islets were obtained from cadaveric donors. After dh404 treatment, Nrf2 translocation, mRNA expression, and protein abundance of its key target gene products were examined. The proportion of dh404-treated or non-treated viable islet beta cells was analyzed using flowcytemetry. The cytoprotective effects against oxidative stress and production of inflammatory mediators, and in vivo islet function after transplantation were determined. Results Nrf2 nuclear translocation was confirmed by con-focal microscope within 2 hours after treatment, which was associated with a dose-dependent increase in mRNA expression of anti-oxidants, including NQO1, HO-1, and GCLC. Enhanced HO-1 expression in dh404 treated islets was confirmed by Western Blot assay. Islet function after transplantation (2000 IEQ/mouse) to diabetic nude mice was not affected with or without dh404 treatment. After induction of oxidative stress with hydrogen peroxide (200 μM) the proportion of dh404-treated viable islet cells was significantly higher in the dh404-treated than untreated islets (74% vs.57%; P<0.05). Dh404 significantly decreased production of cytokines/chemokines including IL-1β, IL-6, IFN-γ and MCP-1. Conclusion Treatment of human pancreatic islets with the potent synthetic Nrf2 activator, dh404, significantly increased expression of the key anti-oxidants enzymes, decreased inflammatory mediators in islets and conferred protection against oxidative stress in beta cells.
Collapse
Affiliation(s)
- Yuichi Masuda
- Department of Surgery, University of California Irvine, Irvine, California, United States of America
| | - Nosratola D. Vaziri
- Medicine, University of California Irvine, Irvine, California, United States of America
| | - Shiri Li
- Department of Surgery, University of California Irvine, Irvine, California, United States of America
| | - Aimee Le
- Department of Surgery, University of California Irvine, Irvine, California, United States of America
| | | | - Lourdes Robles
- Department of Surgery, University of California Irvine, Irvine, California, United States of America
| | - Clarence E. Foster
- Department of Surgery, University of California Irvine, Irvine, California, United States of America
| | - Michael J. Stamos
- Department of Surgery, University of California Irvine, Irvine, California, United States of America
| | - Ismail Al-Abodullah
- Southern California Islet Cell Resources Center, Department of Diabetes, Endocrinology and Metabolism, City of Hope National Medical Center and Beckman Research Institute, Duarte, California, United States of America
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami, Miami, Florida, United States of America
| | - Hirohito Ichii
- Department of Surgery, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|