1
|
Zhao C, Liu X, Liu L, Li J, Liu X, Tao W, Wang D, Wei J. Smoothened mediates medaka spermatogonia proliferation via Gli1-Rgcc-Cdk1 axis†. Biol Reprod 2023; 109:772-784. [PMID: 37552059 DOI: 10.1093/biolre/ioad090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/21/2023] [Accepted: 08/05/2023] [Indexed: 08/09/2023] Open
Abstract
The proliferation of spermatogonia directly affects spermatogenesis and male fertility, but its underlying molecular mechanisms are poorly understood. In this study, Smoothened (Smo), the central transducer of Hedgehog signaling pathway, was characterized in medaka (Oryzias latipes), and its role and underlying mechanisms in the proliferation of spermatogonia were investigated. Smo was highly expressed in spermatogonia. In ex vivo testicular organ culture and a spermatogonial cell line (SG3) derived from medaka mature testis, Smo activation promoted spermatogonia proliferation, while its inhibition induced apoptosis. The expression of glioma-associated oncogene homolog 1 (gli1) and regulator of cell cycle (rgcc) was significantly upregulated in SG3 after Smo activation. Furthermore, Gli1 transcriptionally upregulated the expression of rgcc, and Rgcc overexpression rescued cell apoptosis caused by Smo or Gli1 inhibition. Co-immunoprecipitation assay indicated that Rgcc could interact with cyclin-dependent kinase 1 (Cdk1) to regulate the cell cycle of spermatogonia. Collectively, our study firstly reveals that Smo mediates the proliferation of spermatogonia through Gli1-Rgcc-Cdk1 axis. In addition, Smo and Gli1 are necessary of the survival of spermatogonia. This study deepens our understanding of spermatogonia proliferation and survival at the molecular level, and provides insights into male fertility control and reproductive disease treatment.
Collapse
Affiliation(s)
- Changle Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Xiang Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Lei Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Jianeng Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Xingyong Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Wenjing Tao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Deshou Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Jing Wei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Elizaldi SR, Hawes CE, Verma A, Dinasarapu AR, Lakshmanappa YS, Schlegel BT, Rajasundaram D, Li J, Durbin-Johnson BP, Ma ZM, Beckman D, Ott S, Lifson J, Morrison JH, Iyer SS. CCR7+ CD4 T Cell Immunosurveillance Disrupted in Chronic SIV-Induced Neuroinflammation in Rhesus Brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555037. [PMID: 37693567 PMCID: PMC10491118 DOI: 10.1101/2023.08.28.555037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
CD4 T cells survey and maintain immune homeostasis in the brain, yet their differentiation states and functional capabilities remain unclear. Our approach, combining single-cell transcriptomic analysis, ATAC-seq, spatial transcriptomics, and flow cytometry, revealed a distinct subset of CCR7+ CD4 T cells resembling lymph node central memory (T CM ) cells. We observed chromatin accessibility at the CCR7, CD28, and BCL-6 loci, defining molecular features of T CM . Brain CCR7+ CD4 T cells exhibited recall proliferation and interleukin-2 production ex vivo, showcasing their functional competence. We identified the skull bone marrow as a local niche for these cells alongside other CNS border tissues. Sequestering T CM cells in lymph nodes using FTY720 led to reduced CCR7+ CD4 T cell frequencies in the cerebrospinal fluid, accompanied by increased monocyte levels and soluble markers indicating immune activation. In macaques chronically infected with SIVCL57 and experiencing viral rebound due to cessation of antiretroviral therapy, a decrease in brain CCR7+ CD4 T cells was observed, along with increased microglial activation and initiation of neurodegenerative pathways. Our findings highlight a role for CCR7+ CD4 T cells in CNS immune surveillance and their decline during chronic SIV-induced neuroinflammation highlights their responsiveness to neuroinflammatory processes. GRAPHICAL ABSTRACT In Brief Utilizing single-cell and spatial transcriptomics on adult rhesus brain, we uncover a unique CCR7+ CD4 T cell subset resembling central memory T cells (T CM ) within brain and border tissues, including skull bone marrow. Our findings show decreased frequencies of this subset during SIV- induced chronic neuroinflammation, emphasizing responsiveness of CCR7+ CD4 T cells to CNS disruptions. Highlights CCR7+ CD4 T cells survey border and parenchymal CNS compartments during homeostasis; reduced presence of CCR7+ CD4 T cells in cerebrospinal fluid leads to immune activation, implying a role in neuroimmune homeostasis. CNS CCR7+ CD4 T cells exhibit phenotypic and functional features of central memory T cells (T CM ) including production of interleukin 2 and the capacity for rapid recall proliferation. Furthermore, CCR7+ CD4 T cells reside in the skull bone marrow. CCR7+ CD4 T cells are markedly decreased within the brain parenchyma during chronic viral neuroinflammation.
Collapse
|
3
|
Murtaj V, Butti E, Martino G, Panina-Bordignon P. Endogenous neural stem cells characterization using omics approaches: Current knowledge in health and disease. Front Cell Neurosci 2023; 17:1125785. [PMID: 37091923 PMCID: PMC10113633 DOI: 10.3389/fncel.2023.1125785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/03/2023] [Indexed: 04/08/2023] Open
Abstract
Neural stem cells (NSCs), an invaluable source of neuronal and glial progeny, have been widely interrogated in the last twenty years, mainly to understand their therapeutic potential. Most of the studies were performed with cells derived from pluripotent stem cells of either rodents or humans, and have mainly focused on their potential in regenerative medicine. High-throughput omics technologies, such as transcriptomics, epigenetics, proteomics, and metabolomics, which exploded in the past decade, represent a powerful tool to investigate the molecular mechanisms characterizing the heterogeneity of endogenous NSCs. The transition from bulk studies to single cell approaches brought significant insights by revealing complex system phenotypes, from the molecular to the organism level. Here, we will discuss the current literature that has been greatly enriched in the “omics era”, successfully exploring the nature and function of endogenous NSCs and the process of neurogenesis. Overall, the information obtained from omics studies of endogenous NSCs provides a sharper picture of NSCs function during neurodevelopment in healthy and in perturbed environments.
Collapse
Affiliation(s)
- Valentina Murtaj
- Division of Neuroscience, San Raffaele Vita-Salute University, Milan, Italy
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Erica Butti
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Gianvito Martino
- Division of Neuroscience, San Raffaele Vita-Salute University, Milan, Italy
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paola Panina-Bordignon
- Division of Neuroscience, San Raffaele Vita-Salute University, Milan, Italy
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
- *Correspondence: Paola Panina-Bordignon
| |
Collapse
|
4
|
Mareco EA, de la Serrana DG, de Paula TG, Zanella BTT, da Silva Duran BO, Salomão RAS, de Almeida Fantinatti BE, de Oliveira VHG, Dos Santos VB, Carvalho RF, Dal-Pai-Silva M. Transcriptomic insight into the hybridization mechanism of the Tambacu, a hybrid from Colossoma macropomum (Tambaqui) and Piaractus mesopotamicus (Pacu). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101041. [PMID: 36442404 DOI: 10.1016/j.cbd.2022.101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 11/02/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
Interspecific hybrids are highly complex organisms, especially considering aspects related to the organization of genetic material. The diversity of possibilities created by the genetic combination between different species makes it difficult to establish a large-scale analysis methodology. An example of this complexity is Tambacu, an interspecific hybrid of Colossoma macropomum (Tambaqui) and Piaractus mesopotamicus (Pacu). Either genotype represents an essential role in South American aquaculture. However, despite this importance, the genetic information for these genotypes is still highly scarce in specialized databases. Using RNA-Seq analysis, we characterized the transcriptome of white muscle from Pacu, Tambaqui, and their interspecific hybrid (Tambacu). The sequencing process allowed us to obtain a significant number of reads (approximately 53 billion short reads). A total of annotated contigs were 37,285, 96,738, and 158,709 for Pacu, Tambaqui, and Tambacu. After that, we performed a comparative analysis of the transcriptome of the three genotypes, where we evaluated the differential expression (Tambacu vs Pacu = 11,156, and Tambacu vs Tambaqui = 876) profile of the transcript and the degree of similarity between the nucleotide sequences between the genotypes. We assessed the intensity and pattern of expression across genotypes using differential expression information. Clusterization analysis showed a closer relationship between Tambaqui and Tambacu. Furthermore, digital differential expression analysis selected some target genes related to essential cellular processes to evaluate and validate the expression through the RT-qPCR. The RT-qPCR analysis demonstrated significantly (p < 0.05) elevated expression of the mafbx, foxo1a, and rgcc genes in the hybrid compared to the parents. Likewise, we can observe genes significantly more expressed in Pacu (mtco1 and mylpfa) and mtco2 in Tambaqui. Our results showed that the phenotype presented by Tambacu might be associated with changes in the gene expression profile and not necessarily with an increase in gene variability. Thus, the molecular mechanisms underlying these "hybrid effects" may be related to additive and, in some cases, dominant regulatory interactions between parental alleles that act directly on gene regulation in the hybrid transcripts.
Collapse
Affiliation(s)
- Edson Assunção Mareco
- Environment and Regional Development Graduate Program, University of Western São Paulo, Presidente Prudente, São Paulo, Brazil; Biology Department, University of Western São Paulo, Presidente Prudente, São Paulo, Brazil.
| | - Daniel Garcia de la Serrana
- Cell Biology, Physiology, and Immunology Department, School of Biology, University of Barcelona, 643 08028 Barcelona, Catalonia, Spain
| | - Tassiana Gutierrez de Paula
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Bruna Tereza Thomazini Zanella
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Bruno Oliveira da Silva Duran
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | | | | | - Victor Hugo Garcia de Oliveira
- Environment and Regional Development Graduate Program, University of Western São Paulo, Presidente Prudente, São Paulo, Brazil
| | | | - Robson Francisco Carvalho
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| |
Collapse
|
5
|
Vishal K, Bhuiyan P, Qi J, Chen Y, Zhang J, Yang F, Li J. Unraveling the Mechanism of Immunity and Inflammation Related to Molecular Signatures Crosstalk Among Obesity, T2D, and AD: Insights From Bioinformatics Approaches. Bioinform Biol Insights 2023; 17:11779322231167977. [PMID: 37124128 PMCID: PMC10134115 DOI: 10.1177/11779322231167977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/17/2023] [Indexed: 05/02/2023] Open
Abstract
Individuals with type 2 diabetes (T2D) and obesity have a higher risk of developing Alzheimer disease (AD), and increasing evidence indicates a link between impaired immune signaling pathways and the development of AD. However, the shared cellular mechanisms and molecular signatures among these 3 diseases remain unknown. The purpose of this study was to uncover similar molecular markers and pathways involved in obesity, T2D, and AD using bioinformatics and a network biology approach. First, we investigated the 3 RNA sequencing (RNA-seq) gene expression data sets and determined 224 commonly shared differentially expressed genes (DEGs) from obesity, T2D, and AD diseases. Gene ontology and pathway enrichment analyses revealed that mutual DEGs were mainly enriched with immune and inflammatory signaling pathways. In addition, we constructed a protein-protein interactions network for finding hub genes, which have not previously been identified as playing a critical role in these 3 diseases. Furthermore, the transcriptional factors and protein kinases regulating commonly shared DEGs among obesity, T2D, and AD were also identified. Finally, we suggested potential drug candidates as possible therapeutic interventions for 3 diseases. The results of this bioinformatics analysis provided a new understanding of the potential links between obesity, T2D, and AD pathologies.
Collapse
Affiliation(s)
- Kumar Vishal
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Piplu Bhuiyan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Junxia Qi
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yang Chen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Jubiao Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Fen Yang
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Juxue Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Fen Yang, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu, China.
| |
Collapse
|
6
|
Bai R, Li Z, Lv S, Hua W, Dai L, Wu H. Exploring the biological function of immune cell-related genes in human immunodeficiency virus (HIV)-1 infection based on weighted gene co-expression network analysis (WGCNA). BMC Med Genomics 2022; 15:200. [PMID: 36123690 PMCID: PMC9484082 DOI: 10.1186/s12920-022-01357-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/15/2022] [Indexed: 12/04/2022] Open
Abstract
Background Acquired immunodeficiency syndrome (AIDS) is a chronic infectious disease characterized by consistent immune dysfunction. The objective of this study is to determine whether immune cell-related genes can be used as biomarkers for the occurrence of AIDS and potential molecular mechanisms. Methods A weighted gene co-expression network analysis was performed using the GSE6740 dataset from the Gene Expression Synthesis Database to identify the Hub gene, which contained microarray data from HIV-1 positive (HIV-1+) and HIV-1 negative (HIV-1−) individuals. The HIV-1+-related differentially expressed genes were then identified using the limma package. Subsequently, the characteristic immune cell-related genes were identified as diagnostic biomarkers for HIV-1+ using the random forest model (RF), support vector machine model, and generalized linear model. Results MEdarkgreen exhibited the strongest correlation with HIV clinical features of any of these modules. As the best model for diagnosing HIV-1±, RF was used to select four critical immune cell-related genes, namely, ARRB1, DPEP2, LTBP3, and RGCC, and a nomogram model was created to predict the occurrence of HIV-1 infection based on four key immune cell-related genes. Diagnostic genes were shown to be engaged in immune-related pathways, suggesting that immunological molecules, immune cells, and immune pathways all have a role in HIV-1 infection. The CTD database was explored for prospective medications or molecular compounds that might be utilized to treat HIV-1+ patients. = Moreover, in HIV-1+ individuals, the ceRNA network revealed that ARRB1, DPEP2, LTBP3, and RGCC could be regulated by lncRNAs through the corresponding miRNAs. Ultimately, RT-PCR results from clinical blood samples demonstrated that the four diagnostic genes were significantly downregulated in HIV-1+ patients. Conclusion We screened four immune cell-related genes, ARRB1, DPEP2, LTBP3, and RGCC, which may be considered as the diagnostic markers for HIV-1/AIDS. Our findings reveal that immune related genes and pathways involved in HIV-1 pathogenesis were regulated on both genetic and epigenetic levels by constructing a ceRNA network associated with lncRNA. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01357-y.
Collapse
Affiliation(s)
- Ruojing Bai
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research On Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Zhen Li
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research On Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Shiyun Lv
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research On Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Wei Hua
- Travel Clinic, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Lili Dai
- Travel Clinic, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research On Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Novel effective small-molecule inhibitors of protein kinases related to tau pathology in Alzheimer's disease. Future Med Chem 2022; 14:1175-1186. [PMID: 35920260 DOI: 10.4155/fmc-2022-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Alzheimer's disease (AD) drugs in therapy are limited to acetylcholine esterase inhibitors and memantine. Newly developed drugs against a single target structure have an insufficient effect on symptomatic AD patients. Results: Novel aromatically anellated pyridofuranes have been evaluated for inhibition of AD-relevant protein kinases cdk1, cdk2, gsk-3b and Fyn. Best activities have been found for naphthopyridofuranes with a hydroxyl function as part of the 5-substituent and a hydrogen or halogen substituent in the 8-position. Best results in nanomolar ranges were found for benzopyridofuranes with a 6-hydroxy and a 3-alkoxy substitution or an exclusive 6-alkoxy substituent. Conclusion: First lead compounds were identified inhibiting two to three kinases in nanomolar ranges to be qualified as an innovative approach for AD multitargeting.
Collapse
|
8
|
Sadick JS, O'Dea MR, Hasel P, Dykstra T, Faustin A, Liddelow SA. Astrocytes and oligodendrocytes undergo subtype-specific transcriptional changes in Alzheimer's disease. Neuron 2022; 110:1788-1805.e10. [PMID: 35381189 PMCID: PMC9167747 DOI: 10.1016/j.neuron.2022.03.008] [Citation(s) in RCA: 209] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 01/24/2022] [Accepted: 03/08/2022] [Indexed: 12/13/2022]
Abstract
Resolving glial contributions to Alzheimer's disease (AD) is necessary because changes in neuronal function, such as reduced synaptic density, altered electrophysiological properties, and degeneration, are not entirely cell autonomous. To improve understanding of transcriptomic heterogeneity in glia during AD, we used single-nuclei RNA sequencing (snRNA-seq) to characterize astrocytes and oligodendrocytes from apolipoprotein (APOE) Ɛ2/3 human AD and age- and genotype-matched non-symptomatic (NS) brains. We enriched astrocytes before sequencing and characterized pathology from the same location as the sequenced material. We characterized baseline heterogeneity in both astrocytes and oligodendrocytes and identified global and subtype-specific transcriptomic changes between AD and NS astrocytes and oligodendrocytes. We also took advantage of recent human and mouse spatial transcriptomics resources to localize heterogeneous astrocyte subtypes to specific regions in the healthy and inflamed brain. Finally, we integrated our data with published AD snRNA-seq datasets, highlighting the power of combining datasets to resolve previously unidentifiable astrocyte subpopulations.
Collapse
Affiliation(s)
- Jessica S Sadick
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Michael R O'Dea
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Philip Hasel
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Taitea Dykstra
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Arline Faustin
- Center for Cognitive Neurology, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Pathology, NYU Langone Health, New York, NY 10016, USA
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY 10016, USA; Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
9
|
Rodrigues D, Coyle L, Füzi B, Ferreira S, Jo H, Herpers B, Chung SW, Fisher C, Kleinjans JCS, Jennen D, de Kok TM. Unravelling Mechanisms of Doxorubicin-Induced Toxicity in 3D Human Intestinal Organoids. Int J Mol Sci 2022; 23:ijms23031286. [PMID: 35163210 PMCID: PMC8836276 DOI: 10.3390/ijms23031286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Doxorubicin is widely used in the treatment of different cancers, and its side effects can be severe in many tissues, including the intestines. Symptoms such as diarrhoea and abdominal pain caused by intestinal inflammation lead to the interruption of chemotherapy. Nevertheless, the molecular mechanisms associated with doxorubicin intestinal toxicity have been poorly explored. This study aims to investigate such mechanisms by exposing 3D small intestine and colon organoids to doxorubicin and to evaluate transcriptomic responses in relation to viability and apoptosis as physiological endpoints. The in vitro concentrations and dosing regimens of doxorubicin were selected based on physiologically based pharmacokinetic model simulations of treatment regimens recommended for cancer patients. Cytotoxicity and cell morphology were evaluated as well as gene expression and biological pathways affected by doxorubicin. In both types of organoids, cell cycle, the p53 signalling pathway, and oxidative stress were the most affected pathways. However, significant differences between colon and SI organoids were evident, particularly in essential metabolic pathways. Short time-series expression miner was used to further explore temporal changes in gene profiles, which identified distinct tissue responses. Finally, in silico proteomics revealed important proteins involved in doxorubicin metabolism and cellular processes that were in line with the transcriptomic responses, including cell cycle and senescence, transport of molecules, and mitochondria impairment. This study provides new insight into doxorubicin-induced effects on the gene expression levels in the intestines. Currently, we are exploring the potential use of these data in establishing quantitative systems toxicology models for the prediction of drug-induced gastrointestinal toxicity.
Collapse
Affiliation(s)
- Daniela Rodrigues
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, 6229 ER Maastricht, The Netherlands; (J.C.S.K.); (D.J.); (T.M.d.K.)
- Correspondence:
| | - Luke Coyle
- Boehringer Ingelheim International GmbH, Pharmaceuticals Inc., Ridgefield, CT 06877, USA; (L.C.); (S.-W.C.)
| | - Barbara Füzi
- Department of Pharmaceutical Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria;
| | - Sofia Ferreira
- Certara UK Limited, Simcyp Division, Sheffield S1 2BJ, UK; (S.F.); (H.J.); (C.F.)
| | - Heeseung Jo
- Certara UK Limited, Simcyp Division, Sheffield S1 2BJ, UK; (S.F.); (H.J.); (C.F.)
| | - Bram Herpers
- Crown Bioscience Netherlands B.V., J.H. Oortweg 21, 2333 CH Leiden, The Netherlands;
| | - Seung-Wook Chung
- Boehringer Ingelheim International GmbH, Pharmaceuticals Inc., Ridgefield, CT 06877, USA; (L.C.); (S.-W.C.)
| | - Ciarán Fisher
- Certara UK Limited, Simcyp Division, Sheffield S1 2BJ, UK; (S.F.); (H.J.); (C.F.)
| | - Jos C. S. Kleinjans
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, 6229 ER Maastricht, The Netherlands; (J.C.S.K.); (D.J.); (T.M.d.K.)
| | - Danyel Jennen
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, 6229 ER Maastricht, The Netherlands; (J.C.S.K.); (D.J.); (T.M.d.K.)
| | - Theo M. de Kok
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, 6229 ER Maastricht, The Netherlands; (J.C.S.K.); (D.J.); (T.M.d.K.)
| |
Collapse
|
10
|
Yuen SC, Lee SMY, Leung SW. Putative Factors Interfering Cell Cycle Re-Entry in Alzheimer's Disease: An Omics Study with Differential Expression Meta-Analytics and Co-Expression Profiling. J Alzheimers Dis 2021; 85:1373-1398. [PMID: 34924393 DOI: 10.3233/jad-215349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Neuronal cell cycle re-entry (CCR) is a mechanism, along with amyloid-β (Aβ) oligomers and hyperphosphorylated tau proteins, contributing to toxicity in Alzheimer's disease (AD). OBJECTIVE This study aimed to examine the putative factors in CCR based on evidence corroboration by combining meta-analysis and co-expression analysis of omic data. METHODS The differentially expressed genes (DEGs) and CCR-related modules were obtained through the differential analysis and co-expression of transcriptomic data, respectively. Differentially expressed microRNAs (DEmiRNAs) were extracted from the differential miRNA expression studies. The dysregulations of DEGs and DEmiRNAs as binary outcomes were independently analyzed by meta-analysis based on a random-effects model. The CCR-related modules were mapped to human protein-protein interaction databases to construct a network. The importance score of each node within the network was determined by the PageRank algorithm, and nodes that fit the pre-defined criteria were treated as putative CCR-related factors. RESULTS The meta-analysis identified 18,261 DEGs and 36 DEmiRNAs, including genes in the ubiquitination proteasome system, mitochondrial homeostasis, and CCR, and miRNAs associated with AD pathologies. The co-expression analysis identified 156 CCR-related modules to construct a protein-protein interaction network. Five genes, UBC, ESR1, EGFR, CUL3, and KRAS, were selected as putative CCR-related factors. Their functions suggested that the combined effects of cellular dyshomeostasis and receptors mediating Aβ toxicity from impaired ubiquitination proteasome system are involved in CCR. CONCLUSION This study identified five genes as putative factors and revealed the significance of cellular dyshomeostasis in the CCR of AD.
Collapse
Affiliation(s)
- Sze Chung Yuen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Siu-Wai Leung
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, China.,Edinburgh Bayes Centre for AI Research in Shenzhen, College of Science and Engineering, University of Edinburgh, Scotland, United Kingdom
| |
Collapse
|
11
|
Adhikari UK, Sakiz E, Habiba U, Mikhael M, Senesi M, David MA, Guillemin GJ, Ooi L, Karl T, Collins S, Tayebi M. Treatment of microglia with Anti-PrP monoclonal antibodies induces neuronal apoptosis in vitro. Heliyon 2021; 7:e08644. [PMID: 35005289 PMCID: PMC8715334 DOI: 10.1016/j.heliyon.2021.e08644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/23/2021] [Accepted: 12/16/2021] [Indexed: 11/04/2022] Open
Abstract
Previous reports highlighted the neurotoxic effects caused by some motif-specific anti-PrPC antibodies in vivo and in vitro. In the current study, we investigated the detailed alterations of the proteome with liquid chromatography–mass spectrometry following direct application of anti-PrPC antibodies on mouse neuroblastoma cells (N2a) and mouse primary neuronal (MPN) cells or by cross-linking microglial PrPC with anti-PrPC antibodies prior to co-culture with the N2a/MPN cells. Here, we identified 4 (3 upregulated and 1 downregulated) and 17 (11 upregulated and 6 downregulated) neuronal apoptosis-related proteins following treatment of the N2a and N11 cell lines respectively when compared with untreated cells. In contrast, we identified 1 (upregulated) and 4 (2 upregulated and 2 downregulated) neuronal apoptosis-related proteins following treatment of MPN cells and N11 when compared with untreated cells. Furthermore, we also identified 3 (2 upregulated and 1 downregulated) and 2 (1 upregulated and 1 downregulated) neuronal apoptosis-related related proteins following treatment of MPN cells and N11 when compared to treatment with an anti-PrP antibody that lacks binding specificity for mouse PrP. The apoptotic effect of the anti-PrP antibodies was confirmed with flow cytometry following labelling of Annexin V-FITC. The toxic effects of the anti-PrP antibodies was more intense when antibody-treated N11 were co-cultured with the N2a and the identified apoptosis proteome was shown to be part of the PrPC-interactome. Our observations provide a new insight into the prominent role played by microglia in causing neurotoxic effects following treatment with anti-PrPC antibodies and might be relevant to explain the antibody mediated toxicity observed in other related neurodegenerative diseases such as Alzheimer. Antibody cross-linking neuronal PrPC induces apoptosis. Antibody cross-linking microglial PrPC induces neuronal apoptosis. Different apoptotic pathways were triggered by specific anti-PrP antibody treatments.
Collapse
|
12
|
Penke LRK, Torres Matias G, Ballinger MN. Pumping the Brakes on Pulmonary Fibrosis: A New Role for Regulator of Cell Cycle. Am J Respir Cell Mol Biol 2021; 66:113-114. [PMID: 34758280 PMCID: PMC8845133 DOI: 10.1165/rcmb.2021-0399ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Loka Raghu Kumar Penke
- University of Michigan Michigan Medicine, 21614, Internal Medicine, Ann Arbor, Michigan, United States
| | - Gina Torres Matias
- The Ohio State University, Internal Medicine-Pulmonary, Critical Care and Sleep Medicine , Columbus, Ohio, United States
| | - Megan N Ballinger
- The Ohio State University, Internal Medicine-Pulmonary, Critical Care and Sleep Medicine , Columbus, Ohio, United States;
| |
Collapse
|
13
|
Zhao F, Xu Y, Gao S, Qin L, Austria Q, Siedlak SL, Pajdzik K, Dai Q, He C, Wang W, O’Donnell JM, Tang B, Zhu X. METTL3-dependent RNA m 6A dysregulation contributes to neurodegeneration in Alzheimer's disease through aberrant cell cycle events. Mol Neurodegener 2021; 16:70. [PMID: 34593014 PMCID: PMC8482683 DOI: 10.1186/s13024-021-00484-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) modification of RNA influences fundamental aspects of RNA metabolism and m6A dysregulation is implicated in various human diseases. In this study, we explored the potential role of RNA m6A modification in the pathogenesis of Alzheimer disease (AD). METHODS We investigated the m6A modification and the expression of m6A regulators in the brain tissues of AD patients and determined the impact and underlying mechanism of manipulated expression of m6A levels on AD-related deficits both in vitro and in vivo. RESULTS We found decreased neuronal m6A levels along with significantly reduced expression of m6A methyltransferase like 3 (METTL3) in AD brains. Interestingly, reduced neuronal m6A modification in the hippocampus caused by METTL3 knockdown led to significant memory deficits, accompanied by extensive synaptic loss and neuronal death along with multiple AD-related cellular alterations including oxidative stress and aberrant cell cycle events in vivo. Inhibition of oxidative stress or cell cycle alleviated shMettl3-induced apoptotic activation and neuronal damage in primary neurons. Restored m6A modification by inhibiting its demethylation in vitro rescued abnormal cell cycle events, neuronal deficits and death induced by METTL3 knockdown. Soluble Aβ oligomers caused reduced METTL3 expression and METTL3 knockdown exacerbated while METTL3 overexpression rescued Aβ-induced synaptic PSD95 loss in vitro. Importantly, METTL3 overexpression rescued Aβ-induced synaptic damage and cognitive impairment in vivo. CONCLUSIONS Collectively, these data suggested that METTL3 reduction-mediated m6A dysregulation likely contributes to neurodegeneration in AD which may be a therapeutic target for AD.
Collapse
Affiliation(s)
- Fanpeng Zhao
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106 USA
| | - Ying Xu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, the State University of New York, Buffalo, NY 14214 USA
| | - Shichao Gao
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, the State University of New York, Buffalo, NY 14214 USA
| | - Lixia Qin
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106 USA
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Quillan Austria
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106 USA
| | - Sandra L. Siedlak
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106 USA
| | - Kinga Pajdzik
- Department of Chemistry, The University of Chicago, Chicago, IL USA
| | - Qing Dai
- Department of Chemistry, The University of Chicago, Chicago, IL USA
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL USA
- Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL USA
| | - Wenzhang Wang
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106 USA
| | - James M. O’Donnell
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, the State University of New York, Buffalo, NY 14214 USA
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106 USA
| |
Collapse
|
14
|
Guo Z, Chen M, Chao Y, Cai C, Liu L, Zhao L, Li L, Bai QR, Xu Y, Niu W, Shi L, Bi Y, Ren D, Yuan F, Shi S, Zeng Q, Han K, Shi Y, Bian S, He G. RGCC balances self-renewal and neuronal differentiation of neural stem cells in the developing mammalian neocortex. EMBO Rep 2021; 22:e51781. [PMID: 34323349 DOI: 10.15252/embr.202051781] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 11/09/2022] Open
Abstract
During neocortical development, neural stem cells (NSCs) divide symmetrically to self-renew at the early stage and then divide asymmetrically to generate post-mitotic neurons. The molecular mechanisms regulating the balance between NSC self-renewal and neurogenesis are not fully understood. Using mouse in utero electroporation (IUE) technique and in vitro human NSC differentiation models including cerebral organoids (hCOs), we show here that regulator of cell cycle (RGCC) modulates NSC self-renewal and neuronal differentiation by affecting cell cycle regulation and spindle orientation. RGCC deficiency hampers normal cell cycle process and dysregulates the mitotic spindle, thus driving more cells to divide asymmetrically. These modulations diminish the NSC population and cause NSC pre-differentiation that eventually leads to brain developmental malformation in hCOs. We further show that RGCC might regulate NSC spindle orientation by affecting the organization of centrosome and microtubules. Our results demonstrate that RGCC is essential to maintain the NSC pool during cortical development and suggest that RGCC defects could have etiological roles in human brain malformations.
Collapse
Affiliation(s)
- Zhenming Guo
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Mengxia Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yiming Chao
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Chunhai Cai
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Liangjie Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Li Zhao
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Linbo Li
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Qing-Ran Bai
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yanxin Xu
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Weibo Niu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Bi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Decheng Ren
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Fan Yuan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Shuyue Shi
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Qian Zeng
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ke Han
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Shan Bian
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
15
|
Prendecki M, Kowalska M, Toton E, Kozubski W. Genetic Editing and Pharmacogenetics in Current And Future Therapy Of Neurocognitive Disorders. Curr Alzheimer Res 2021; 17:238-258. [PMID: 32321403 DOI: 10.2174/1567205017666200422152440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 02/05/2020] [Accepted: 03/25/2020] [Indexed: 12/11/2022]
Abstract
Dementia is an important issue in western societies, and in the following years, this problem will also rise in the developing regions, such as Africa and Asia. The most common types of dementia in adults are Alzheimer's Disease (AD), Dementia with Lewy Bodies (DLB), Frontotemporal Dementia (FTD) and Vascular Dementia (VaD), of which, AD accounts for more than half of the cases. The most prominent symptom of AD is cognitive impairment, currently treated with four drugs: Donepezil, rivastigmine, and galantamine, enhancing cholinergic transmission; as well as memantine, protecting neurons against glutamate excitotoxicity. Despite ongoing efforts, no new drugs in the treatment of AD have been registered for the last ten years, thus multiple studies have been conducted on genetic factors affecting the efficacy of antidementia pharmacotherapy. The researchers investigate the effects of variants in multiple genes, such as ABCB1, ACE, CHAT, CHRNA7, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, CYP3A7, NR1I2, NR1I3, POR, PPAR, RXR, SLC22A1/2/5, SLC47A1, UGT1A6, UGT1A9 and UGT2B7, associated with numerous pathways: the development of pathological proteins, formation and metabolism of acetylcholine, transport, metabolism and excretion of antidementia drugs and transcription factors regulating the expression of genes responsible for metabolism and transport of drugs. The most promising results have been demonstrated for APOE E4, dementia risk variant, BCHE-K, reduced butyrylcholinesterase activity variant, and CYP2D6 UM, ultrarapid hepatic metabolism. Further studies investigate the possibilities of the development of emerging drugs or genetic editing by CRISPR/Cas9 for causative treatment. In conclusion, the pharmacogenetic studies on dementia diseases may improve the efficacy of pharmacotherapy in some patients with beneficial genetic variants, at the same time, identifying the carriers of unfavorable alleles, the potential group of novel approaches to the treatment and prevention of dementia.
Collapse
Affiliation(s)
- Michal Prendecki
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Marta Kowalska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Ewa Toton
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Wojciech Kozubski
- Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| |
Collapse
|
16
|
Transcriptome profiling of different developmental stages of corpus luteum during the estrous cycle in pigs. Genomics 2020; 113:366-379. [PMID: 33309770 DOI: 10.1016/j.ygeno.2020.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/17/2020] [Accepted: 12/06/2020] [Indexed: 12/22/2022]
Abstract
To better understand the molecular basis of corpus luteum (CL) development and function RNA-Seq was utilized to identify differentially expressed genes (DEGs) in porcine CL during different physiological stages of the estrous cycle viz. early (EL), mid (ML), late (LL) and regressed (R) luteal. Stage wise comparisons obtained 717 (EL vs. ML), 568 (EL vs. LL), 527 (EL vs. R), 786 (ML vs. LL), 474 (ML vs. R) and 534 (LL vs. R) DEGs with log2(FC) ≥1 and p < 0.05. The process of angiogenesis, steroidogenesis, signal transduction, translation, cell proliferation and tissue remodelling were significantly (p < 0.05) enriched in EL, ML and LL stages, where as apoptosis was most active in regressed stage. Pathway analysis revealed that most annotated genes were associated with lipid metabolism, translation, immune and endocrine system pathways depicting intra-luteal control of diverse CL function. The network analysis identified genes AR, FOS, CDKN1A, which were likely the novel hub genes regulating CL physiology.
Collapse
|
17
|
Morshed N, Ralvenius WT, Nott A, Watson LA, Rodriguez FH, Akay LA, Joughin BA, Pao P, Penney J, LaRocque L, Mastroeni D, Tsai L, White FM. Phosphoproteomics identifies microglial Siglec-F inflammatory response during neurodegeneration. Mol Syst Biol 2020; 16:e9819. [PMID: 33289969 PMCID: PMC7722784 DOI: 10.15252/msb.20209819] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by the appearance of amyloid-β plaques, neurofibrillary tangles, and inflammation in brain regions involved in memory. Using mass spectrometry, we have quantified the phosphoproteome of the CK-p25, 5XFAD, and Tau P301S mouse models of neurodegeneration. We identified a shared response involving Siglec-F which was upregulated on a subset of reactive microglia. The human paralog Siglec-8 was also upregulated on microglia in AD. Siglec-F and Siglec-8 were upregulated following microglial activation with interferon gamma (IFNγ) in BV-2 cell line and human stem cell-derived microglia models. Siglec-F overexpression activates an endocytic and pyroptotic inflammatory response in BV-2 cells, dependent on its sialic acid substrates and immunoreceptor tyrosine-based inhibition motif (ITIM) phosphorylation sites. Related human Siglecs induced a similar response in BV-2 cells. Collectively, our results point to an important role for mouse Siglec-F and human Siglec-8 in regulating microglial activation during neurodegeneration.
Collapse
Affiliation(s)
- Nader Morshed
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMAUSA
| | - William T Ralvenius
- Picower Institute for Learning and MemoryMassachusetts Institute of TechnologyCambridgeMAUSA
- Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Alexi Nott
- Picower Institute for Learning and MemoryMassachusetts Institute of TechnologyCambridgeMAUSA
- Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeMAUSA
- Department of Brain SciencesImperial College LondonUK
- UK Dementia Research Institute at Imperial College LondonLondonUK
| | - L Ashley Watson
- Picower Institute for Learning and MemoryMassachusetts Institute of TechnologyCambridgeMAUSA
- Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Felicia H Rodriguez
- Department of Chemical and Materials EngineeringNew Mexico State UniversityLas CrucesNMUSA
| | - Leyla A Akay
- Picower Institute for Learning and MemoryMassachusetts Institute of TechnologyCambridgeMAUSA
- Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Brian A Joughin
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Ping‐Chieh Pao
- Picower Institute for Learning and MemoryMassachusetts Institute of TechnologyCambridgeMAUSA
- Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Jay Penney
- Picower Institute for Learning and MemoryMassachusetts Institute of TechnologyCambridgeMAUSA
- Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Lauren LaRocque
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Diego Mastroeni
- ASU‐Banner Neurodegenerative Disease Research CenterTempeAZUSA
| | - Li‐Huei Tsai
- Picower Institute for Learning and MemoryMassachusetts Institute of TechnologyCambridgeMAUSA
- Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeMAUSA
- Broad Institute of MIT and HarvardCambridgeMAUSA
| | - Forest M White
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMAUSA
- Center for Precision Cancer MedicineMassachusetts Institute of TechnologyCambridgeMAUSA
| |
Collapse
|
18
|
Yuan Q, Zhang S, Li J, Xiao J, Li X, Yang J, Lu D, Wang Y. Comprehensive analysis of core genes and key pathways in Parkinson's disease. Am J Transl Res 2020; 12:5630-5639. [PMID: 33042444 PMCID: PMC7540129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease that occurs mostly in middle-aged and older adults. Its main pathological feature is the progressive death of substantia nigra dopaminergic neurons. As the world's population ages, the number of PD patients is increasing. In this study, we explored the relationship between PD and the cell cycle. In this study, we collected two independent PD transcriptomic datasets, GSE54536 and GSE6613, from the Gene Expression Omnibus (GEO) database. Gene set enrichment analysis (GSEA) was used to identify dysregulated pathways in PD samples. Gene expression was verified by qPCR in PD patients. Nineteen pathways were negatively enriched in both the GSE54536 and GSE6613 datasets. Seven of these 19 pathways were cell cycle-related pathways, including the M/G1 transition, S phase, G1/S transition, mitotic G1-G1/S phases, CDT1 association with the CDC6 ORC origin complex, cell cycle checkpoints and synthesis of DNA. Next, we found that eight genes (PSMA4, PSMB1, PSMC5, PSMD11, MCM4, RPA1, POLE, and PSME4) were mainly enriched in the GSE54536 and GSE6613 datasets. In GSE54536, PSMA4, PSMB1, PSMC5, and PSME4 could significantly predict the occurrence of PD, whereas, in GSE6613, RPA1 and PSME4 could significantly predict the occurrence of PD. Only PSME4 showed significant results in both datasets. Finally, we assessed blood samples from PD patients and controls. Compared with the control samples, the PD samples had lower mRNA levels of PSME4. In summary,these findings can significantly enhance our understanding of the causes and potential molecular mechanisms of PD; the cell cycle signaling pathways and PSME4 may be therapeutic targets for PD.
Collapse
Affiliation(s)
- Qian Yuan
- Department of Neurology, Wuhan Wuchang Hospital, Wuchang Hospital Affiliated to Wuhan University of Science and TechnologyWuhan 430063, China
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou UniversityZhengzhou 450014, China
| | - Simiao Zhang
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou UniversityZhengzhou 450014, China
| | - Jingna Li
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou UniversityZhengzhou 450014, China
| | - Jianhao Xiao
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical CenterShanghai 201399, China
| | - Xiaodong Li
- Department of Neurology, Zhengzhou Central HospitalZhengzhou 450014, China
| | - Jingmin Yang
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research InstitueChongqing 400020, China
| | - Daru Lu
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research InstitueChongqing 400020, China
| | - Yunliang Wang
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou UniversityZhengzhou 450014, China
- Department of Neurology, The 960th Hospital of Chinese PLAZibo 255300, China
| |
Collapse
|
19
|
Kim DW, Washington PW, Wang ZQ, Lin SH, Sun C, Ismail BT, Wang H, Jiang L, Blackshaw S. The cellular and molecular landscape of hypothalamic patterning and differentiation from embryonic to late postnatal development. Nat Commun 2020; 11:4360. [PMID: 32868762 PMCID: PMC7459115 DOI: 10.1038/s41467-020-18231-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/12/2020] [Indexed: 12/22/2022] Open
Abstract
The hypothalamus is a central regulator of many innate behaviors essential for survival, but the molecular mechanisms controlling hypothalamic patterning and cell fate specification are poorly understood. To identify genes that control hypothalamic development, we have used single-cell RNA sequencing (scRNA-Seq) to profile mouse hypothalamic gene expression across 12 developmental time points between embryonic day 10 and postnatal day 45. This identified genes that delineated clear developmental trajectories for all major hypothalamic cell types, and readily distinguished major regional subdivisions of the developing hypothalamus. By using our developmental dataset, we were able to rapidly annotate previously unidentified clusters from existing scRNA-Seq datasets collected during development and to identify the developmental origins of major neuronal populations of the ventromedial hypothalamus. We further show that our approach can rapidly and comprehensively characterize mutants that have altered hypothalamic patterning, identifying Nkx2.1 as a negative regulator of prethalamic identity. These data serve as a resource for further studies of hypothalamic development, physiology, and dysfunction.
Collapse
Affiliation(s)
- Dong Won Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Parris Whitney Washington
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Zoe Qianyi Wang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Sonia Hao Lin
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Changyu Sun
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Basma Taleb Ismail
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Hong Wang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Lizhi Jiang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Center for Human Systems Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
20
|
Yang ZH, Li J, Chen WZ, Kong FS. Oncogenic gene RGC-32 is a direct target of miR-26b and facilitates tongue squamous cell carcinoma aggressiveness through EMT and PI3K/AKT signalling. Cell Biochem Funct 2020; 38:943-954. [PMID: 32325539 DOI: 10.1002/cbf.3520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/08/2020] [Accepted: 02/12/2020] [Indexed: 11/12/2022]
Abstract
Growing data have recognized the significance of Response Gene to Complement (RGC)-32 in numerous tumour developments. Notwithstanding, the functional role and underlying mechanism of it in tongue squamous cell carcinoma (TSCC) remain enigmatic. Here, to identify the impact of RGC-32 in TSCC, its expression in multiple TSCC cells was measured and loss-of-function experiments in cell lines were performed to illuminate the function of it induced TSCC progression, via si-RNA knockdown, CCK-8, colony formation, wound-healing, transwell, flow cytometry and western blot assays. To clarify potential mechanism, expressions of hallmarks in epithelial-mesenchymal transition (EMT) process and PI3K/AKT signalling were assessed, and the upstream miR regulator of RGC-32 was predicted and verified by applying bioinformatic approaches and dual-luciferase reporter assay, respectively. Finally, the rescue experiments were applied to better elucidate the effect of miR-26b/RGC-32 axis in TSCC behaviours. As a result, RGC-32 was upregulated in TSCC cells and knocking down of it abrogated cell proliferation, trans-migration and invasion, whilst promoted apoptosis in TSCC, which was regulated through repressing EMT and inactivation of PI3K/AKT signalling. Subsequently, miR-26b was predicted and identified as an upstream regulator of RGC-32, and the pro-tumorigenic effect of RGC-32 was reversed by miR-26b overexpression. Collectively, our results demonstrated that RGC-32 facilitated TSCC progression, which was modulated by activations of PI3K/AKT pathway and EMT process, and reduction of its negative regulator of miR-26b. These findings highlight a novel role of miR-26b/RGC-32 axis in TSCC and underlying mechanism, encouraging a potent usage in TSCC treatment. SIGNIFICANCE OF THE STUDY: We first uncovered that Response Gene to Complement-32 played a significantly pro-tumorigenic role in tongue squamous cell carcinoma (TSCC), which was closely regulated by downregulation of miR-26b and activations of epithelial-mesenchymal transition process and PI3K/AKT signalling. These findings contribute to better understand the molecular mechanism in carcinogenesis of TSCC, and shed some light on promising strategy for TSCC therapeutics.
Collapse
Affiliation(s)
- Zhong-Heng Yang
- Department of Stomatology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Juan Li
- Department of Pathology, The Fourth Hospital of Jinan, Jinan, Shandong, China
| | - Wei-Zhi Chen
- Department of Radiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Fan-Shuang Kong
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
21
|
Jeon SG, Hong SB, Nam Y, Tae J, Yoo A, Song EJ, Kim KI, Lee D, Park J, Lee SM, Kim JI, Moon M. Ghrelin in Alzheimer's disease: Pathologic roles and therapeutic implications. Ageing Res Rev 2019; 55:100945. [PMID: 31434007 DOI: 10.1016/j.arr.2019.100945] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/25/2019] [Accepted: 08/16/2019] [Indexed: 12/11/2022]
Abstract
Ghrelin, which has many important physiological roles, such as stimulating food intake, regulating energy homeostasis, and releasing insulin, has recently been studied for its roles in a diverse range of neurological disorders. Despite the several functions of ghrelin in the central nervous system, whether it works as a therapeutic agent for neurological dysfunction has been unclear. Altered levels and various roles of ghrelin have been reported in Alzheimer's disease (AD), which is characterized by the accumulation of misfolded proteins resulting in synaptic loss and cognitive decline. Interestingly, treatment with ghrelin or with the agonist of ghrelin receptor showed attenuation in several cases of AD-related pathology. These findings suggest the potential therapeutic implications of ghrelin in the pathogenesis of AD. In the present review, we summarized the roles of ghrelin in AD pathogenesis, amyloid beta (Aβ) homeostasis, tau hyperphosphorylation, neuroinflammation, mitochondrial deficit, synaptic dysfunction and cognitive impairment. The findings from this review suggest that ghrelin has a novel therapeutic potential for AD treatment. Thus, rigorously designed studies are needed to establish an effective AD-modifying strategy.
Collapse
|
22
|
Vlaicu SI, Tatomir A, Anselmo F, Boodhoo D, Chira R, Rus V, Rus H. RGC-32 and diseases: the first 20 years. Immunol Res 2019; 67:267-279. [DOI: 10.1007/s12026-019-09080-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Hoffman WH, Cudrici CD, Boodhoo D, Tatomir A, Rus V, Rus H. Intracerebral matrix metalloproteinase 9 in fatal diabetic ketoacidosis. Exp Mol Pathol 2019; 108:97-104. [PMID: 30986397 PMCID: PMC6563901 DOI: 10.1016/j.yexmp.2019.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/22/2019] [Accepted: 04/11/2019] [Indexed: 02/08/2023]
Abstract
There is increasing awareness that in addition to the metabolic crisis of diabetic ketoacidosis (DKA) caused by severe insulin deficiency, the immune inflammatory response is likely an active multicomponent participant in both the acute and chronic insults of this medical crisis, with strong evidence of activation for both the cytokine and complement system. Recent studies report that the matrix metalloproteinase enzymes and their inhibitors are systemically activated in young Type 1 diabetes mellitus (T1D) patients during DKA and speculate on their involvement in blood-brain barrier (BBB) disruption. Based on our previous studies, we address the question if matrix metalloproteinase 9 (MMP9) is expressed in the brain in the fatal brain edema (BE) of DKA. Our data show significant expression of MMP9 on the cells present in brain intravascular areas. The presence of MMP9 in intravascular cells and that of MMP+ cells seen passing the BBB indicates a possible role in tight junction protein disruption of the BBB, possibly leading to neurological complications including BE. We have also shown that MMP9 is expressed on neurons in the hippocampal areas of both BE/DKA cases investigated, while expression of tissue inhibitor of metalloproteinases 1 (TIMP1) was reduced in the same areas. We can speculate that intraneuronal MMP9 can be a sign of neurodegeneration. Further studies are necessary to determine the role of MMP9 in the pathogenesis of the neurologic catastrophe of the brain edema of DKA. Inhibition of MMP9 expression might be helpful in preserving neuronal function and BBB integrity during DKA.
Collapse
Affiliation(s)
- William H Hoffman
- Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Cornelia D Cudrici
- Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, USA
| | - Dallas Boodhoo
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Alexandru Tatomir
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Violeta Rus
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Horea Rus
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
24
|
Majd S, Power J, Majd Z. Alzheimer's Disease and Cancer: When Two Monsters Cannot Be Together. Front Neurosci 2019; 13:155. [PMID: 30881282 PMCID: PMC6407038 DOI: 10.3389/fnins.2019.00155] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 02/11/2019] [Indexed: 12/29/2022] Open
Abstract
Alzheimer's disease (AD) and cancer are among the leading causes of human death around the world. While neurodegeneration is the main feature of AD, the most important characteristic of malignant tumors is cell proliferation, placing these two diseases in opposite sides of cell division spectrum. Interestingly, AD and cancer's pathologies consist of a remarkable common feature and that is the presence of active cell cycle in both conditions. In an in vitro model of primary adult neuronal culture, we previously showed that treating cell with beta amyloid forced neurons to start a cell cycle. Instead of cell division, however, neuronal cell cycle was aborted and a massive neurodegeneration was left behind as the consequence. A high level of cell cycle entry, which is a requirement for cancer pathogenesis, was reported in clinically diagnosed cases of AD, leading to neurodegeneration. The diverse clinical manifestation of a similar etiology, have puzzled researchers for many years. In fact, the evidence showed an inverse association between AD and cancer prevalence, suggesting that switching pathogenesis toward AD protects patients against cancer and vice versa. In this mini review, we discussed the possibility of involvement of cell proliferation and survival dysregulation as the underlying mechanism of neurodegeneration in AD, and the leading event to develop both disorders' pathology. As examples, the role of phosphoinositide 3 kinase/Akt/ mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway in cell cycle re-entry and blocking autophagy are discussed as potential common intracellular components between AD and cancer pathogenesis, with diverse clinical diagnosis.
Collapse
Affiliation(s)
- Shohreh Majd
- Neuronal Injury and Repair Laboratory, Centre for Neuroscience, School of Medicine, Flinders University, Adelaide, SA, Australia
| | - John Power
- Neuronal Injury and Repair Laboratory, Centre for Neuroscience, School of Medicine, Flinders University, Adelaide, SA, Australia
| | - Zohreh Majd
- Psychosomatische Tagesklinik, Passau, Germany
| |
Collapse
|
25
|
Reinhardt S, Schuck F, Stoye N, Hartmann T, Grimm MOW, Pflugfelder G, Endres K. Transcriptional repression of the ectodomain sheddase ADAM10 by TBX2 and potential implication for Alzheimer's disease. Cell Mol Life Sci 2019; 76:1005-1025. [PMID: 30599067 PMCID: PMC11105458 DOI: 10.1007/s00018-018-2998-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND The ADAM10-mediated cleavage of transmembrane proteins regulates cellular processes such as proliferation or migration. Substrate cleavage by ADAM10 has also been implicated in pathological situations such as cancer or Morbus Alzheimer. Therefore, identifying endogenous molecules, which modulate the amount and consequently the activity of ADAM10, might contribute to a deeper understanding of the enzyme's role in both, physiology and pathology. METHOD To elucidate the underlying cellular mechanism of the TBX2-mediated repression of ADAM10 gene expression, we performed overexpression, RNAi-mediated knockdown and pharmacological inhibition studies in the human neuroblastoma cell line SH-SY5Y. Expression analysis was conducted by e.g. real-time RT-PCR or western blot techniques. To identify the binding region of TBX2 within the ADAM10 promoter, we used luciferase reporter assay on deletion constructs and EMSA/WEMSA experiments. In addition, we analyzed a TBX2 loss-of-function Drosophila model regarding the expression of ADAM10 orthologs by qPCR. Furthermore, we quantified the mRNA level of TBX2 in post-mortem brain tissue of AD patients. RESULTS Here, we report TBX2 as a transcriptional repressor of ADAM10 gene expression: both, the DNA-binding domain and the repression domain of TBX2 were necessary to effect transcriptional repression of ADAM10 in neuronal SH-SY5Y cells. This regulatory mechanism required HDAC1 as a co-factor of TBX2. Transcriptional repression was mediated by two functional TBX2 binding sites within the core promoter sequence (- 315 to - 286 bp). Analysis of a TBX2 loss-of-function Drosophila model revealed that kuzbanian and kuzbanian-like, orthologs of ADAM10, were derepressed compared to wild type. Vice versa, analysis of cortical brain samples of AD-patients, which showed reduced ADAM10 mRNA levels, revealed a 2.5-fold elevation of TBX2, while TBX3 and TBX21 levels were not affected. CONCLUSION Our results characterize TBX2 as a repressor of ADAM10 gene expression and suggest that this regulatory interaction is conserved across tissues and species.
Collapse
Affiliation(s)
- Sven Reinhardt
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, Untere Zahlbacher Strasse 8, 55131, Mainz, Germany
| | - Florian Schuck
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, Untere Zahlbacher Strasse 8, 55131, Mainz, Germany
| | - Nicolai Stoye
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, Untere Zahlbacher Strasse 8, 55131, Mainz, Germany
| | - Tobias Hartmann
- Deutsches Institut für Demenz Prävention (DIDP), Neurodegeneration and Neurobiology, Saarland University, Kirrbergerstrasse 1, 66421, Homburg, Saar, Germany
- Experimental Neurology, Saarland University, Kirrbergerstrasse 1, 66421, Homburg, Saar, Germany
| | - Marcus O W Grimm
- Deutsches Institut für Demenz Prävention (DIDP), Neurodegeneration and Neurobiology, Saarland University, Kirrbergerstrasse 1, 66421, Homburg, Saar, Germany
- Experimental Neurology, Saarland University, Kirrbergerstrasse 1, 66421, Homburg, Saar, Germany
| | - Gert Pflugfelder
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, Becherweg 32, 55128, Mainz, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, Untere Zahlbacher Strasse 8, 55131, Mainz, Germany.
| |
Collapse
|
26
|
Ho NTT, Kutzner A, Heese K. A Novel Divergent Gene Transcription Paradigm-the Decisive, Brain-Specific, Neural |-Srgap2-Fam72a-| Master Gene Paradigm. Mol Neurobiol 2019; 56:5891-5899. [PMID: 30685845 DOI: 10.1007/s12035-019-1486-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/10/2019] [Indexed: 01/22/2023]
Abstract
Brain development and repair largely depend on neural stem cells (NSCs). Here, we suggest that two genes, i.e., Srgap2 (SLIT-ROBO Rho GTPase-activating protein 2) and Fam72a (family with sequence similarity to 72, member A), constitute a single, NSC-specific, |-Srgap2-Fam72a-| master gene pair co-existing in reciprocal functional dependency. This gene pair has a dual, commonly used, intergenic region (IGR) promotor, which is a prerequisite in controlling human brain plasticity. We applied fluorescence cellular microscopy and fluorescence-activated cell sorting (FACS) to assess rat |-Srgap2-Fam72a-| master gene IGR promotor activity upon stimulation with two contrary growth factors: nerve growth factor (Ngf, a differentiation growth factor) and epidermal growth factor (Egf, a mitotic growth factor). We found that Ngf and Egf acted on the same IGR gene promotor element of the |-Srgap2-Fam72a-| master gene to mediate cell differentiation and proliferation, respectively. Ngf mediated Srgap2 expression and neuronal survival and differentiation while Egf activated Fam72a transcription and cell proliferation. Our data provide new insights into the specific regulation of the |-Srgap2-Fam72a-| master gene with its dual IGR promotor that controls two reverse-oriented functional-dependent genes located on opposite DNA strands. This structure represents a novel paradigm for controlling transcription of divergent genes in regulating NSC gene expression. This paradigm may allow for novel therapeutic approaches to restore or improve higher cognitive functions and cure cancers.
Collapse
Affiliation(s)
- Nguyen Thi Thanh Ho
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Arne Kutzner
- Department of Information Systems, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea.
| |
Collapse
|
27
|
Zhang X, Su J, Gao C, Ni W, Gao X, Li Y, Zhang J, Lei Y, Gu Y. Progression in Vascular Cognitive Impairment: Pathogenesis, Neuroimaging Evaluation, and Treatment. Cell Transplant 2019; 28:18-25. [PMID: 30488737 PMCID: PMC6322135 DOI: 10.1177/0963689718815820] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Vascular cognitive impairment (VCI) defines an entire spectrum of neurologic disorders from mild cognitive impairment to dementia caused by cerebral vascular disease. The pathogenesis of VCI includes ischemic factors (e.g., large vessel occlusion and small vessel dysfunction); hemorrhagic factors (e.g., intracerebral hemorrhage and subarachnoid hemorrhage); and other factors (combined with Alzheimer's disease). Clinical evaluations of VCI mainly refer to neuropsychological testing and imaging assessments, including structural and functional neuroimaging, with different advantages. At present, the main treatment for VCI focuses on neurological protection, cerebral blood flow reconstruction, and neurological rehabilitation, such as pharmacological treatment, revascularization, and cognitive training. In this review, we discuss the pathogenesis, neuroimaging evaluation, and treatment of VCI.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiabin Su
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Chao Gao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei Ni
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinjie Gao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxin Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu Lei
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- Yu Lei and Yuxiang Gu, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, No. 12 Middle Wulumuqi Road, Shanghai 200040, China. Emails: ;
| | - Yuxiang Gu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- Yu Lei and Yuxiang Gu, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, No. 12 Middle Wulumuqi Road, Shanghai 200040, China. Emails: ;
| |
Collapse
|
28
|
Ashok A, Naaz S, Kota LN, Sen S, Purushottam M, Faruq M, Kumari R, Yadav V, Kannan R, Jain S, Panicker MM, Viswanath B. Does retinoic acid reverse cell cycle dysregulation in Alzheimer's disease lymphocytes? Asian J Psychiatr 2019; 39:174-177. [PMID: 30139662 DOI: 10.1016/j.ajp.2018.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/13/2018] [Accepted: 08/13/2018] [Indexed: 12/27/2022]
Abstract
Aberrant re-entry of neurons into cell cycle appears to be an early event in Alzheimer's disease (AD) and targeting this dysregulation may have therapeutic potential. We have examined whether cell cycle dysregulation in AD can be detected using patient and control derived B-lymphocytes. Cell cycle analysis using flow cytometry demonstrated that cell cycle dysregulation occurs in AD lymphocytes, with a significant difference in the distribution of cells in G0/G1, S and G2/M phases of cell cycle as compared to control lymphocytes. Using global gene expression analysis by RNA sequencing and cell cycle analysis, we examined the role of Retinoic Acid (RA), a candidate molecule predicted to be of therapeutic potential in cell cycle dysregulation associated with AD. CCND1, CCNE2, E2F transcription factors which are known to be dysregulated in AD were among the 32 genes that showed differential expression in response to RA treatment thus suggesting a protective role of RA. However, the cell cycle analysis demonstrated that RA did not reverse the cellular phenotype in AD lymphocytes. This suggests that though RA might have a protective role by influencing the expression of cell cycle genes, it might not be able to arrest abnormal re-entry into cell cycle.
Collapse
Affiliation(s)
- Aparna Ashok
- National Institute of Mental Health and Neurosciences, Bangalore, India.
| | - Safoora Naaz
- National Institute of Mental Health and Neurosciences, Bangalore, India.
| | | | - Somdatta Sen
- National Institute of Mental Health and Neurosciences, Bangalore, India.
| | - Meera Purushottam
- National Institute of Mental Health and Neurosciences, Bangalore, India.
| | - Mohammed Faruq
- Genomics and Molecular Medicine CSIR-IGIB, Mall road, New Delhi, India.
| | - Renu Kumari
- Genomics and Molecular Medicine CSIR-IGIB, Mall road, New Delhi, India.
| | - Vinod Yadav
- Genomics and Molecular Medicine CSIR-IGIB, Mall road, New Delhi, India; Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, Massachusetts, USA.
| | | | - Sanjeev Jain
- National Institute of Mental Health and Neurosciences, Bangalore, India; National Centre for Biological Sciences, Bangalore, India.
| | | | - Biju Viswanath
- National Institute of Mental Health and Neurosciences, Bangalore, India.
| |
Collapse
|
29
|
Marzi SJ, Leung SK, Ribarska T, Hannon E, Smith AR, Pishva E, Poschmann J, Moore K, Troakes C, Al-Sarraj S, Beck S, Newman S, Lunnon K, Schalkwyk LC, Mill J. A histone acetylome-wide association study of Alzheimer's disease identifies disease-associated H3K27ac differences in the entorhinal cortex. Nat Neurosci 2018; 21:1618-1627. [PMID: 30349106 DOI: 10.1038/s41593-018-0253-7] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/12/2018] [Indexed: 12/17/2022]
Abstract
We quantified genome-wide patterns of lysine H3K27 acetylation (H3K27ac) in entorhinal cortex samples from Alzheimer's disease (AD) cases and matched controls using chromatin immunoprecipitation and highly parallel sequencing. We observed widespread acetylomic variation associated with AD neuropathology, identifying 4,162 differential peaks (false discovery rate < 0.05) between AD cases and controls. Differentially acetylated peaks were enriched in disease-related biological pathways and included regions annotated to genes involved in the progression of amyloid-β and tau pathology (for example, APP, PSEN1, PSEN2, and MAPT), as well as regions containing variants associated with sporadic late-onset AD. Partitioned heritability analysis highlighted a highly significant enrichment of AD risk variants in entorhinal cortex H3K27ac peak regions. AD-associated variable H3K27ac was associated with transcriptional variation at proximal genes including CR1, GPR22, KMO, PIM3, PSEN1, and RGCC. In addition to identifying molecular pathways associated with AD neuropathology, we present a framework for genome-wide studies of histone modifications in complex disease.
Collapse
Affiliation(s)
- Sarah J Marzi
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- The Blizard Institute, Queen Mary University of London, London, UK
| | - Szi Kay Leung
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | | | - Eilis Hannon
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Adam R Smith
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Ehsan Pishva
- University of Exeter Medical School, University of Exeter, Exeter, UK
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jeremie Poschmann
- University of Exeter Medical School, University of Exeter, Exeter, UK
- Centre de Recherche en Transplantation et Immunologie, Inserm, Université de Nantes, Nantes, France
| | - Karen Moore
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Claire Troakes
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Safa Al-Sarraj
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Stephan Beck
- UCL Cancer Institute, University College London, London, UK
| | | | - Katie Lunnon
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | | | - Jonathan Mill
- University of Exeter Medical School, University of Exeter, Exeter, UK.
| |
Collapse
|
30
|
Chen YJ, Chang WA, Wu LY, Hsu YL, Chen CH, Kuo PL. Systematic Analysis of Differential Expression Profile in Rheumatoid Arthritis Chondrocytes Using Next-Generation Sequencing and Bioinformatics Approaches. Int J Med Sci 2018; 15:1129-1142. [PMID: 30123050 PMCID: PMC6097257 DOI: 10.7150/ijms.27056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/08/2018] [Indexed: 12/15/2022] Open
Abstract
Cartilage destruction in rheumatoid arthritis (RA) occurs primarily in the pannus-cartilage interface. The close contact of the synovium-cartilage interface implicates crosstalk between synovial fibroblasts and chondrocytes. The aim of this study is to explore the differentially expressed genes and novel microRNA regulations potentially implicated in the dysregulated cartilage homeostasis in joint destruction of RA. Total RNAs were extracted from human primary cultured normal and RA chondrocytes for RNA and small RNA expression profiling using next-generation sequencing. Using systematic bioinformatics analyses, we identified 463 differentially expressed genes in RA chondrocytes were enriched in biological functions related to altered cell cycle process, inflammatory response and hypoxic stimulation. Moreover, fibroblast growth factor 9 (FGF9), kynureninase (KYNU), and regulator of cell cycle (RGCC) were among the top dysregulated genes identified to be potentially affected in the RA joint microenvironment, having similar expression patterns observed in arrays of clinical RA synovial tissues from the Gene Expression Omnibus database. Additionally, among the 31 differentially expressed microRNAs and 10 candidate genes with potential microRNA-mRNA interactions in RA chondrocytes, the novel miR-140-3p-FGF9 interaction was validated in different microRNA prediction databases, and proposed to participate in the pathogenesis of joint destruction through dysregulated cell growth in RA. The findings provide new perspectives for target genes in the management of cartilage destruction in RA.
Collapse
Affiliation(s)
- Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Wei-An Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Ling-Yu Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chia-Hsin Chen
- Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
31
|
Bai B. U1 snRNP Alteration and Neuronal Cell Cycle Reentry in Alzheimer Disease. Front Aging Neurosci 2018; 10:75. [PMID: 29628886 PMCID: PMC5876301 DOI: 10.3389/fnagi.2018.00075 10.12075/j.issn.1004-4051.2018.08.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/06/2018] [Indexed: 06/29/2024] Open
Abstract
The aberrancy of U1 small nuclear ribonucleoprotein (snRNP) complex and RNA splicing has been demonstrated in Alzheimer's disease (AD). Importantly, the U1 proteopathy is AD-specific, widespread and early-occurring, thus providing a very unique clue to the AD pathogenesis. The prominent feature of U1 histopathology is its nuclear depletion and redistribution in the neuronal cytoplasm. According to the preliminary data, the initial U1 cytoplasmic distribution pattern is similar to the subcellular translocation of the spliceosome in cells undergoing mitosis. This implies that the U1 mislocalization might reflect the neuronal cell cycle-reentry (CCR) which has been extensively evidenced in AD brains. The CCR phenomenon explains the major molecular and cellular events in AD brains, such as Tau and amyloid precursor protein (APP) phosphorylation, and the possible neuronal death through mitotic catastrophe (MC). Furthermore, the CCR might be mechanistically linked to inflammation, a critical factor in the AD etiology according to the genetic evidence. Therefore, the discovery of U1 aberrancy might strengthen the involvement of CCR in the AD neuronal degeneration.
Collapse
Affiliation(s)
- Bing Bai
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| |
Collapse
|
32
|
Bai B. U1 snRNP Alteration and Neuronal Cell Cycle Reentry in Alzheimer Disease. Front Aging Neurosci 2018; 10:75. [PMID: 29628886 PMCID: PMC5876301 DOI: 10.3389/fnagi.2018.00075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/06/2018] [Indexed: 12/12/2022] Open
Abstract
The aberrancy of U1 small nuclear ribonucleoprotein (snRNP) complex and RNA splicing has been demonstrated in Alzheimer’s disease (AD). Importantly, the U1 proteopathy is AD-specific, widespread and early-occurring, thus providing a very unique clue to the AD pathogenesis. The prominent feature of U1 histopathology is its nuclear depletion and redistribution in the neuronal cytoplasm. According to the preliminary data, the initial U1 cytoplasmic distribution pattern is similar to the subcellular translocation of the spliceosome in cells undergoing mitosis. This implies that the U1 mislocalization might reflect the neuronal cell cycle-reentry (CCR) which has been extensively evidenced in AD brains. The CCR phenomenon explains the major molecular and cellular events in AD brains, such as Tau and amyloid precursor protein (APP) phosphorylation, and the possible neuronal death through mitotic catastrophe (MC). Furthermore, the CCR might be mechanistically linked to inflammation, a critical factor in the AD etiology according to the genetic evidence. Therefore, the discovery of U1 aberrancy might strengthen the involvement of CCR in the AD neuronal degeneration.
Collapse
Affiliation(s)
- Bing Bai
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| |
Collapse
|