1
|
Fan P, Huang YJ, Xie XY, Wang LH, Liu B, Wang DR. ALKBH5 knockdown suppresses gastric cancer progression by reducing the expression of long non-coding RNA TUG1. Toxicol Res (Camb) 2025; 14:tfae209. [PMID: 39830887 PMCID: PMC11741680 DOI: 10.1093/toxres/tfae209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/29/2024] [Indexed: 01/22/2025] Open
Abstract
Purpose This study aimed to explore the relationship between m6A demethylase ALKBH5 and long noncoding RNA TUG1 (TUG1), as well as their effects on proliferation, migration, and angiogenesis in gastric cancer (GC) cells. Methods The Cancer Genome Atlas (TCGA) database was utilized to analyze the relative expression levels of ALKBH5, TUG1, and vascular endothelial growth factor A (VEGFA). Survival analyses of TUG1, ALKBH5, and VEGFA were performed using the Gene Expression Profiling Interactive Analysis (GEPIA) and Kaplan-Meier databases. The binding sites of TUG1 and ALKBH5 were predicted using the Annolnc2 database. The correlation between ALKBH5 and TUG1 expression was analyzed using the GEPIA database. Subsequently, small interfering RNA (siRNA) targeting ALKBH5 and TUG1 was transfected into SGC-7901 cells, and functional studies were conducted using quantitative real-time polymerase chain reaction (qRT-PCR), CCK-8 assays, colony formation assays, transwell assays, and angiogenesis assays. Results Bioinformatics analysis indicated that ALKBH5, TUG1, and VEGFA were highly expressed in gastric cancer tissues and exhibited a positive correlation. Survival analysis revealed that high expression levels of ALKBH5, TUG1, and VEGFA were significantly associated with poor prognosis in gastric cancer patients. Binding sites for TUG1 and ALKBH5 were identified. Functional experiments demonstrated that the knockdown of ALKBH5 resulted in the downregulation of TUG1, which subsequently reduced the proliferation, invasion, migration, and angiogenesis of gastric cancer cells. Conclusion The m6A demethylase ALKBH5 promotes gastric cancer progression by erasing the methylation modification of TUG1 and increasing TUG1 expression. This finding provides a new perspective for the treatment and prognosis assessment of gastric cancer.
Collapse
Affiliation(s)
- Peng Fan
- Gastrointestinal Center, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No. 98, West Nantong Road, Yangzhou, Jiangsu 225001, China
- Gastrointestinal Surgery, Huaian Cancer Hospital, No. 6, Beijing RD West, Huaiyin District, Huai’an, Jiangsu 223200, China
- General Surgery Institute of Yangzhou, Yangzhou University, 88 South Daxue Road, Yangzhou, Jiangsu 225001, China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No. 98, West Nantong Road, Yangzhou, Jiangsu 225001, China
| | - Yu-jie Huang
- Department of Endocrinology, Huaian Cancer Hospital, No. 6, Beijing RD West, Huaiyin District, Huai’an, Jiangsu 223200, China
| | - Xiang-yu Xie
- Gastrointestinal Surgery, Huaian Cancer Hospital, No. 6, Beijing RD West, Huaiyin District, Huai’an, Jiangsu 223200, China
| | - Liu-hua Wang
- Gastrointestinal Center, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No. 98, West Nantong Road, Yangzhou, Jiangsu 225001, China
- General Surgery Institute of Yangzhou, Yangzhou University, 88 South Daxue Road, Yangzhou, Jiangsu 225001, China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No. 98, West Nantong Road, Yangzhou, Jiangsu 225001, China
| | - Bin Liu
- Gastrointestinal Center, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No. 98, West Nantong Road, Yangzhou, Jiangsu 225001, China
- General Surgery Institute of Yangzhou, Yangzhou University, 88 South Daxue Road, Yangzhou, Jiangsu 225001, China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No. 98, West Nantong Road, Yangzhou, Jiangsu 225001, China
| | - Dao-rong Wang
- Gastrointestinal Center, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No. 98, West Nantong Road, Yangzhou, Jiangsu 225001, China
- General Surgery Institute of Yangzhou, Yangzhou University, 88 South Daxue Road, Yangzhou, Jiangsu 225001, China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No. 98, West Nantong Road, Yangzhou, Jiangsu 225001, China
| |
Collapse
|
2
|
Roshani M, Molavizadeh D, Sadeghi S, Jafari A, Dashti F, Mirazimi SMA, Ahmadi Asouri S, Rajabi A, Hamblin MR, Anoushirvani AA, Mirzaei H. Emerging roles of miR-145 in gastrointestinal cancers: A new paradigm. Biomed Pharmacother 2023; 166:115264. [PMID: 37619484 DOI: 10.1016/j.biopha.2023.115264] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Gastrointestinal (GI) carcinomas are a group of cancers affecting the GI tract and digestive organs, such as the gastric, liver, bile ducts, pancreas, small intestine, esophagus, colon, and rectum. MicroRNAs (miRNAs) are small functional non-coding RNAs (ncRNAs) which are involved in regulating the expression of multiple target genes; mainly at the post-transcriptional level, via complementary binding to their 3'-untranslated region (3'-UTR). Increasing evidence has shown that miRNAs have critical roles in modulating of various physiological and pathological cellular processes and regulating the occurrence and development of human malignancies. Among them, miR-145 is recognized for its anti-oncogenic properties in various cancers, including GI cancers. MiR-145 has been implicated in diverse biological processes of cancers through the regulation of target genes or signaling, including, proliferation, differentiation, tumorigenesis, angiogenesis, apoptosis, metastasis, and therapy resistance. In this review, we have summarized the role of miR-145 in selected GI cancers and also its downstream molecules and cellular processes targets, which could lead to a better understanding of the miR-145 in these cancers. In conclusion, we reveal the potential diagnostic, prognostic, and therapeutic value of miR-145 in GI cancer, and hope to provide new ideas for its application as a biomarker as well as a therapeutic target for the treatment of these cancer.
Collapse
Affiliation(s)
- Mohammad Roshani
- Internal Medicine and Gastroenterology, Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Danial Molavizadeh
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Sadeghi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ameneh Jafari
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for BasicSciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Ali Arash Anoushirvani
- Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Hamed Mirzaei
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Lima APB, da Silva GN. Long Non-Coding RNA and Chemoresistance in Bladder Cancer - A Mini Review. Cancer Invest 2023; 41:164-172. [PMID: 36373675 DOI: 10.1080/07357907.2022.2146703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bladder cancer is the 10th most common cancer worldwide. It is a heterogeneous disease, comprising several tumor subtypes with differences in histology, genomic aberrations, prognosis and sensitivity to anti-cancer treatments. Although the treatment of bladder cancer is based tumor classifications and gradings, patients have different clinical response. In recent years, long non-coding RNAs (lncRNAs) were associated with bladder cancer chemoresistance. Thus, lncRNAs seem to be promising targets in treatment of bladder cancer. This review highlights the recent findings concerning lncRNAs and their relevance to the chemoresistance of bladder cancer. This may provide a basis for exploiting more robust therapeutic approaches in the future.
Collapse
Affiliation(s)
- Ana Paula Braga Lima
- Programa de Pós-graduação em Ciências Farmacêuticas (CIPHARMA), Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Glenda Nicioli da Silva
- Programa de Pós-graduação em Ciências Farmacêuticas (CIPHARMA), Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil.,Programa de Pós-graduação em Ciência Biológicas (CBIOL), Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil.,Departamento de Análises Clínicas (DEACL), Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| |
Collapse
|
4
|
Fu L, Wang Z, Jiang F, Wei G, Sun L, Guo C, Wu J, Zhu J. High Expression of EIF4G2 Mediated by the TUG1/Hsa-miR-26a-5p Axis Is Associated with Poor Prognosis and Immune Infiltration of Gastric Cancer. JOURNAL OF ONCOLOGY 2022; 2022:9342283. [PMID: 36157241 PMCID: PMC9507702 DOI: 10.1155/2022/9342283] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/22/2022] [Indexed: 12/24/2022]
Abstract
Objective Eukaryotic translation initiation factor 4 gamma 2 (EIF4G2) is involved in the occurrence and development of various tumors. However, the effect of EIF4G2 in gastric cancer (GC) has not been fully explored. The purpose of this study was to explore the function and mechanism of EIF4G2 in GC. Methods The Tumor Immune Estimation Resource 2.0 database was used to analyze EIF4G2 expression in various cancers and the relationship between EIF4G2 expression and tumor-infiltrating immune cells. Gene Expression Profiling Interactive Analysis was utilized to assess the EIF4G2 expression level and its effect on survival in GC. UALCAN was conducted to analyze EIF4G2 expression in various subgroups of GC. The Kaplan-Meier plotter was employed for survival analysis. Receiver operator characteristic (ROC) curve analysis was applied to evaluate the diagnostic role of EIF4G2 in GC. LinkedOmics was used to identify the co-expressed genes and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways. The Tumor-Immune System Interaction database was employed to analyze the correlation between EIF4G2 expression and tumor-infiltrating lymphocytes. The starBase web platform was used to predict the upstream microRNAs and long noncoding RNAs. Results EIF4G2 expression was upregulated in GC tissues compared to normal controls. High expression of EIF4G2 indicated poor prognosis in GC. ROC analysis revealed that EIF4G2 had good diagnostic ability to distinguish GC from normal tissues. Immune infiltration analysis indicated that EIF4G2 expression may be involved in the modulation of tumor immune infiltration in GC. Finally, we determined that the Taurine Upregulated 1 (TUG1)/hsa-miR-26a-5p/EIF4G2 axis was the most likely regulatory pathway involved in GC development. Conclusions EIF4G2 was upregulated in GC and elevated expression of EIF4G2 indicated unfavorable prognosis. Moreover, EIF4G2 expression may be involved in the regulation of tumor immune cell infiltration. The TUG1/hsa-miR-26a-5p axis is a likely upstream regulatory mechanism of EIF4G2 in GC. EIF4G2 may thus serve as a prognosis biomarker and present a new therapeutic target.
Collapse
Affiliation(s)
- Liu Fu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai 200060, China
| | - Zhe Wang
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Fengxiang Jiang
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai 200060, China
| | - Guohua Wei
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai 200060, China
| | - Longe Sun
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai 200060, China
| | - Chuanyong Guo
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai 200060, China
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai 200060, China
| | - Jianhuan Zhu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai 200060, China
| |
Collapse
|
5
|
Deng J, Li Y, Song J, Zhu F. Regulation of the TUG1/miR‑145‑5p/SOX2 axis on the migratory and invasive capabilities of melanoma cells. Exp Ther Med 2022; 24:599. [PMID: 35949341 PMCID: PMC9353493 DOI: 10.3892/etm.2022.11535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 03/01/2021] [Indexed: 11/16/2022] Open
Abstract
Melanoma is the most prevalent malignancy of cutaneous carcinomas. Taurine-upregulated gene 1 (TUG1), a lncRNA, is a pivotal regulator of cutaneous malignancies. The present study aimed to investigate the impact and possible mechanisms of action of TUG1 behind the progression of melanomas. Reverse transcription-quantitative PCR was conducted to detect the expression levels of TUG1, microRNA (miR)-145-5p and SOX2 in melanoma tissues and cell lines. Cell Counting Kit-8 (CCK-8) assays were performed to measure the proliferative ability of melanoma cells and transwell assays were used to examine the migration and invasion of melanoma cells. Dual luciferase reporter and RNA immunoprecipitation (RIP) assays were utilized to identify the interactions among TUG1, miR-145-5p and SOX2. Western blotting and immunohistochemical assays were performed to determine the expression profile of SOX2. The impact of TUG1 on melanoma tumorigenesis was assessed using tumorigenicity assays. TUG1 expression levels were elevated in melanoma tumor tissues and cell lines. Reduced TUG1 expression levels significantly inhibited the proliferative, migratory and invasive abilities of melanoma cells. The expression levels of miR-145-5p were decreased in melanoma tumor tissues and cell lines. TUG1 directly targeted miR-145-5p and downregulated miR-145-5p. Upregulation of TUG1 counteracted the promotion of the proliferative, migratory and invasive abilities of melanoma cells induced by the overexpression of miR-145-5p. SOX2 was a target of miR-145-5p and its expression was negatively regulated by miR-145-5p, while positively regulated by TUG1. TUG1 regulated SOX2 expression through sponging miR-145-5p. Silencing of TUG1 also inhibited melanoma tumorigenesis in mice. In conclusion, the TUG1/miR-145-5p/SOX2 axis regulated the migration and invasion of melanoma cells.
Collapse
Affiliation(s)
- Jiabin Deng
- Department of Burn and Plastic Surgery, The Third People's Hospital of Bengbu, Bengbu, Anhui 233000, P.R. China
| | - Yinqiu Li
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Jiaqian Song
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Fei Zhu
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
6
|
Han Y, Zhao G, Shi X, Wang Y, Wen X, Zhang L, Guo X. The Emerging Role of Long Non-Coding RNAs in Esophageal Cancer: Functions in Tumorigenesis and Clinical Implications. Front Pharmacol 2022; 13:885075. [PMID: 35645836 PMCID: PMC9137892 DOI: 10.3389/fphar.2022.885075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/12/2022] [Indexed: 11/17/2022] Open
Abstract
Esophageal cancer (EC) is one of the most common malignancies of digestive tracts with poor five-year survival rate. Hence, it is very significant to further investigate the occurrence and development mechanism of esophageal cancer, find more effective biomarkers and promote early diagnosis and effective treatment. Long non-coding RNAs (lncRNAs) are generally defined as non-protein-coding RNAs with more than 200 nucleotides in length. Existing researches have shown that lncRNAs could act as sponges, guides, scaffolds, and signal molecules to influence the oncogene or tumor suppressor expressions at transcriptional, post-transcriptional, and protein levels in crucial cellular processes. Currently, the dysregulated lncRNAs are reported to involve in the pathogenesis and progression of EC. Importantly, targeting EC-related lncRNAs through genome editing, RNA interference and molecule drugs may be one of the most potential therapeutic methods for the future EC treatment. In this review, we summarized the biological functions and molecular mechanisms of lncRNAs, including oncogenic lncRNAs and tumor suppressor lncRNAs in EC. In addition, we generalized the excellent potential lncRNA candidates for diagnosis, prognosis and therapy in EC. Finally, we discussed the current challenges and opportunities of lncRNAs for EC.
Collapse
Affiliation(s)
- Yali Han
- Departments of Physiology, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Guo Zhao
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Xinhang Shi
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Yushan Wang
- Departments of Physiology, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Xin Wen
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Lu Zhang
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Xiangqian Guo
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
- *Correspondence: Xiangqian Guo,
| |
Collapse
|
7
|
Function of miRNA-145-5p in the pathogenesis of human disorders. Pathol Res Pract 2022; 231:153780. [DOI: 10.1016/j.prp.2022.153780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/08/2022] [Accepted: 01/22/2022] [Indexed: 01/09/2023]
|
8
|
Jin Y, Cao J, Hu X, Cheng H. Long noncoding RNA TUG1 upregulates VEGFA to enhance malignant behaviors in stomach adenocarcinoma by sponging miR-29c-3p. J Clin Lab Anal 2021; 35:e24106. [PMID: 34762771 PMCID: PMC8649340 DOI: 10.1002/jcla.24106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/12/2021] [Accepted: 10/25/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Long noncoding RNA (lncRNA) TUG1 has been reported to display a pivotal role in the tumorigenesis and malignant progression of various types of cancers, including stomach adenocarcinoma (STAD). However, the contribution of aberrant expression of TUG1 and the mechanism by which it serves as a competing endogenous RNA (ceRNA) in STAD remains largely obscure. METHODS The human STAD cell lines (MGC-803 and AGS), human normal gastric epithelial cell line (GES-1), human umbilical vein endothelial cells (HUVECs), and human embryonic kidney cells (HEK293T) were purchased and cultured to investigate the roles of TUG1 in STAD. Twenty BALB/c nude mice were purchased to establish a xenograft model to explore the roles of TUG1 in vivo. RESULTS Bioinformatics analysis revealed that TUG1 was upregulated in STAD, of which expression was negatively and positively correlated with miR-29c-3p and VEGFA, respectively. Functional analyses indicated that TUG1 functioned as an oncogene to promote malignant behaviors (proliferation, migration, and angiogenesis) of STAD cells; whereas miR-29c-3p exerted the opposite role. Mechanistically, the interaction between miR-29c-3p with TUG1 and VEGFA was demonstrated. It was observed that miR-29c-3p could reverse the TUG1-induced promotion effect on cell proliferation, migration, and angiogenesis in STAD. Furthermore, TUG1 overexpression promoted STAD cell proliferation, metastasis, and angiogenesis, whereas VEGFA silence restored these effects, both in vitro and in vivo. CONCLUSION This finding confirmed that lncRNA TUG1 acts as a ceRNA for miR-29c-3p to promote tumor progression and angiogenesis by upregulating VEGFA, indicating TUG1 as a therapeutic target in STAD management.
Collapse
Affiliation(s)
- Yanzhao Jin
- Department of General SurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Jiaqing Cao
- Department of General SurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Xiaoyun Hu
- Department of General SurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Hua Cheng
- Department of General SurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| |
Collapse
|
9
|
Huang X, Pan J, Wang G, Huang T, Li C, Wang Y, Li X. UNC5B-AS1 promotes the proliferation, migration and EMT of hepatocellular carcinoma cells via regulating miR-4306/KDM2A axis. Cell Cycle 2021; 20:2114-2124. [PMID: 34612138 DOI: 10.1080/15384101.2021.1962632] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Being one of the most prevalent malignancies, hepatocellular carcinoma (HCC) threatens the health of population all over the world. Numerous researches have confirmed that long noncoding RNAs (lncRNAs) play an important role in tumor progression. Nonetheless, the mechanisms of unc-5 netrin receptor B antisense RNA 1 (UNC5B-AS1) in HCC remain obscure. Thus, this study aims to investigate the regulatory role and mechanism of UNC5B-AS1 in HCC cells. In our research, UNC5B-AS1 was subjected to gene expression analysis by RT-qPCR. Biological functions of UNC5B-AS1 in HCC cells were measured by MTT, colony formation, EdU and transwell assays. The combination between UNC5B-AS1, lysine demethylase 2A (KDM2A) and miR-4306 was validated by mechanism assays. Result showed UNC5B-AS1 was upregulated in HCC tissues and cells, contributing to the development of cancer staging and survival rate of HCC patients. Moreover, UNC5B-AS1 deficiency inhibited the proliferation, migration and epithelial-mesenchymal transition (EMT) of HCC cells. Furthermore, UNC5B-AS1 could interact with miR-4306 in HCC cells. Similarly, KDM2A was proved as the target gene of miR-4306. Finally, miR-4306 downregulation or KDM2A overexpression reversed the prohibitive role of UNC5B-AS1 knockdown in HCC progression. In short, UNC5B-AS1 accelerates the proliferation, migration and EMT of HCC cells via the regulation of miR-4306/KDM2A axis.
Collapse
Affiliation(s)
- Xiyin Huang
- Department Of Hepatobiliary And Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Juanyong Pan
- Department Of Hepatobiliary And Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Gaoxiong Wang
- Department Of Hepatobiliary And Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China.,Department of Hepatobiliary and Pancreatic Surgery, QuanZhou Women's and Children's Hospital, Quanzhou, Fujian, China
| | - Tiancong Huang
- Department Of Hepatobiliary And Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Chengzong Li
- Department Of Hepatobiliary And Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Yanjun Wang
- Department Of Hepatobiliary And Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Xinfeng Li
- Department Of Hepatobiliary And Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
10
|
Hu N, Ji H. N6-methyladenosine (m6A)-mediated up-regulation of long noncoding RNA LINC01320 promotes the proliferation, migration, and invasion of gastric cancer via miR495-5p/RAB19 axis. Bioengineered 2021; 12:4081-4091. [PMID: 34288797 PMCID: PMC8806595 DOI: 10.1080/21655979.2021.1953210] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Gastric cancer is one of the most common malignant tumors. Long non-coding RNAs play crucial roles in gastric cancer progression. This study investigated the effect of LINC01320 on malignant behaviors of gastric cancer cells and explored its possible molecular mechanism. LINC01320 expression in gastric cancer tissues and cell lines was measured by qRT-PCR. Cell proliferation, transwell, and cell cloning assays were used to detect the effect of LINC01320 on the proliferation, migration, and invasion abilities, respectively, of gastric cancer cells. Bioinformatics analysis was used to predict the binding of miR-495-5p with LINC01320 and RAB19. A luciferase reporter assay was performed to verify their interactions. Finally, the N6-methyladenosine (m6A) modification of LINC01320 by METTL14 was identified through RIP experiments. LINC01320 was highly expressed in gastric cancer tissues and cells. LINC01320 overexpression promoted the proliferation, migration, and invasion of gastric cancer cells, while LINC01320 knockdown exerted the opposite effects. Moreover, miR-495-5p was predicted and demonstrated to target LINC01320 and RAB19. LINC01320 sponged miR-495-5p to regulate the expression of RAB19. Additionally, LINC01320-induced increases in cell viability, migration, and invasion of gastric cancer were alleviated by miR-495-5p and silenced RAB19. Furthermore, epigenetic studies showed that METTL14-mediated m6A modification led to LINC01320 up-regulation. METTL14 regulated the m6A modification of LINC01320. Overexpressed LINC01320 contributed to the aggressive phenotype of gastric cancer cells via regulating the miR-495-5p/RAB19 axis. This finding may provide new potential targets for treating gastric cancer.
Collapse
Affiliation(s)
- Naijun Hu
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Hong Ji
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
11
|
Xie G, Zhu Y, Lin Z, Sun Y, Gu G, Wang W, Chen H. HOPMCLDA: predicting lncRNA-disease associations based on high-order proximity and matrix completion. Mol Omics 2021; 17:760-768. [PMID: 34251001 DOI: 10.1039/d1mo00138h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, emerging evidence has shown that long noncoding RNAs (lncRNAs) have important roles in the biological processes of complex diseases. However, experiments to determine the associations between diseases and lncRNAs are time consuming and costly. Therefore, there is a need to develop effective computational methods for exploring potential lncRNA-disease associations. In this study, we present a computational prediction method based on high-order proximity and matrix completion to predict lncRNA-disease associations (HOPMCLDA). HOPMCLDA integrates explicit similarity and high-order proximity information on lncRNAs and diseases and constructs a heterogeneous disease-lncRNA network to utilize similarity information. Finally, nuclear norm regularization is carried out on the heterogeneous network for the recovery of a lncRNA-disease association matrix. By implementing leave-one-out cross validation (LOOCV) and five-fold cross validation (5-fold CV), we compare HOPMCLDA with five other methods. HOPMCLDA outperforms the other methods, with area under the receiver operating characteristic curve values of 0.8755 and 0.8353 ± 0.0045 using LOOCV and 5-fold CV, respectively. Furthermore, case studies of three human diseases (gastric cancer, osteosarcoma, and hepatocellular carcinoma) confirm the reliable predictive performance of HOPMCLDA.
Collapse
Affiliation(s)
- Guobo Xie
- School of Computers, Guangdong University of Technology, Guangzhou, China.
| | - Yinting Zhu
- School of Computers, Guangdong University of Technology, Guangzhou, China.
| | - Zhiyi Lin
- School of Computers, Guangdong University of Technology, Guangzhou, China.
| | - Yuping Sun
- School of Computers, Guangdong University of Technology, Guangzhou, China.
| | - Guosheng Gu
- School of Computers, Guangdong University of Technology, Guangzhou, China.
| | - Weiming Wang
- School of Computers, Guangdong University of Technology, Guangzhou, China.
| | - Hui Chen
- School of Computers, Guangdong University of Technology, Guangzhou, China.
| |
Collapse
|
12
|
Da M, Zhuang J, Zhou Y, Qi Q, Han S. Role of long noncoding RNA taurine-upregulated gene 1 in cancers. Mol Med 2021; 27:51. [PMID: 34039257 PMCID: PMC8157665 DOI: 10.1186/s10020-021-00312-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/11/2021] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a group of non-protein coding RNAs with a length of more than 200 bp. The lncRNA taurine up-regulated gene 1 (TUG1) is abnormally expressed in many human malignant cancers, where it acts as a competitive endogenous RNA (ceRNA), regulating gene expression by specifically sponging its corresponding microRNAs. In the present review, we summarised the current understanding of the role of lncRNA TUG1 in cancer cell proliferation, metastasis, angiogenesis, chemotherapeutic drug resistance, radiosensitivity, cell regulation, and cell glycolysis, as well as highlighting its potential application as a clinical biomarker or therapeutic target for malignant cancer. This review provides the basis for new research directions for lncRNA TUG1 in cancer prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Miao Da
- Department of Nursing, Huzhou Third Municipal Hospital, 2088 East Tiaoxi Rd, Huzhou, Zhejiang, People's Republic of China
| | - Jing Zhuang
- Medical College of Nursing, Huzhou University, No. 759 Erhuan East Road, Huzhou, 313000, Zhejiang, China
| | - Yani Zhou
- Graduate School of Medicine Faculty, Zhejiang University, No. 866 Yuhangtang Road, Xihu, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Quan Qi
- Department of Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing, Huzhou, 313000, Zhejiang, China
| | - Shuwen Han
- Department of Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing, Huzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
13
|
Xie S, Chang Y, Jin H, Yang F, Xu Y, Yan X, Lin A, Shu Q, Zhou T. Non-coding RNAs in gastric cancer. Cancer Lett 2020; 493:55-70. [PMID: 32712234 DOI: 10.1016/j.canlet.2020.06.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/19/2020] [Accepted: 06/28/2020] [Indexed: 12/11/2022]
Abstract
Non-coding RNAs (ncRNAs) are functional RNA molecules that play crucial regulatory roles in many fundamental biological processes. The dysregulation of ncRNAs is significantly associated with the progression of human cancers, including gastric cancer. In this review, we have summarized the oncogenic or tumor-suppressive roles and the regulatory mechanisms of lncRNAs, miRNAs, circRNAs and piRNAs, and have discussed their potential as biomarkers or therapeutic targets in gastric cancer.
Collapse
Affiliation(s)
- Shanshan Xie
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China; Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yongxia Chang
- Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Hao Jin
- Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Feng Yang
- Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Yanjun Xu
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Xiaoyi Yan
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Aifu Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Qiang Shu
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| | - Tianhua Zhou
- Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
14
|
Non coding RNAs as the critical factors in chemo resistance of bladder tumor cells. Diagn Pathol 2020; 15:136. [PMID: 33183321 PMCID: PMC7659041 DOI: 10.1186/s13000-020-01054-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/05/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Bladder cancer (BCa) is the ninth frequent and 13th leading cause of cancer related deaths in the world which is mainly observed among men. There is a declining mortality rates in developed countries. Although, the majority of BCa patients present Non-Muscle-Invasive Bladder Cancer (NMIBC) tumors, only 30% of patients suffer from muscle invasion and distant metastases. Radical cystoprostatectomy, radiation, and chemotherapy have proven to be efficient in metastatic tumors. However, tumor relapse is observed in a noticeable ratio of patients following the chemotherapeutic treatment. Non-coding RNAs (ncRNAs) are important factors during tumor progression and chemo resistance which can be used as diagnostic and prognostic biomarkers of BCa. MAIN BODY In present review we summarized all of the lncRNAs and miRNAs associated with chemotherapeutic resistance in bladder tumor cells. CONCLUSIONS This review paves the way of introducing a prognostic panel of ncRNAs for the BCa patients which can be useful to select a proper drug based on the lncRNA profiles of patients to reduce the cytotoxic effects of chemotherapy in such patients.
Collapse
|
15
|
Guo C, Qi Y, Qu J, Gai L, Shi Y, Yuan C. Pathophysiological Functions of the lncRNA TUG1. Curr Pharm Des 2020; 26:688-700. [PMID: 31880241 DOI: 10.2174/1381612826666191227154009] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 12/23/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) with little or no coding capacity are associated with a plethora of cellular functions, participating in various biological processes. Cumulative study of lncRNA provides explanations to the physiological and pathological processes and new perspectives to the diagnosis, prevention, and treatment of some clinical diseases. Long non-coding RNA taurine-upregulated gene 1(TUG1) is one of the first identified lncRNAs associated with human disease, which actively involved in various physiological processes, including regulating genes at epigenetics, transcription, post-transcription, translation, and posttranslation. The aim of this review was to explore the molecular mechanism of TUG1 in various types of human diseases. METHODS In this review, we summarized and analyzed the latest findings related to the physiologic and pathophysiological processes of TUG1 in human diseases. The related studies were retrieved and selected the last six years of research articles in PubMed with lncRNA and TUG1 as keywords. RESULTS TUG1 is a valuable lncRNA that its dysregulated expression and regulating the biological processes were found in a variety of human diseases. TUG1 is found to exhibit aberrant expression in a variety of malignancies. Dysregulation of TUG1 has been shown to contribute to proliferation, migration, cell cycle changes, inhibited apoptosis, and drug resistance of cancer cells, which revealed an oncogenic role for this lncRNA, but some reports have shown downregulation of TUG1 in lung cancer samples compared with noncancerous samples. In addition, the molecular and biological functions of TUG1 in physiology and disease (relevant to endocrinology, metabolism, immunology, neurobiology) have also been highlighted. Finally, we discuss the limitations and tremendous diagnostic/therapeutic potential of TUG1 in cancer and other diseases. CONCLUSION Long non-coding RNA-TUG1 likely served as useful disease biomarkers or therapy targets and effectively applied in different kinds of diseases, such as human cancer and cardiovascular diseases.
Collapse
Affiliation(s)
- Chong Guo
- Department of Biochemistry, China Three Gorges University, Yichang City Hubei Province, China
| | - Yuying Qi
- Department of Biochemistry, China Three Gorges University, Yichang City Hubei Province, China
| | - Jiayuan Qu
- Department of Biochemistry, China Three Gorges University, Yichang City Hubei Province, China
| | - Liyue Gai
- Department of Biochemistry, China Three Gorges University, Yichang City Hubei Province, China
| | - Yue Shi
- Department of Biochemistry, China Three Gorges University, Yichang City Hubei Province, China
| | - Chengfu Yuan
- Department of Biochemistry, China Three Gorges University, Yichang City Hubei Province, China.,Tumor Microenvironment and Immunotherapy Key Laboratory of Hubei province in China, Yichang City, China
| |
Collapse
|
16
|
Wu D, Li H, Wang J, Li H, Xiao Q, Zhao X, Huo Z. LncRNA NEAT1 promotes gastric cancer progression via miR-1294/AKT1 axis. Open Med (Wars) 2020; 15:1028-1038. [PMID: 33336058 PMCID: PMC7718639 DOI: 10.1515/med-2020-0218] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/17/2020] [Accepted: 07/08/2020] [Indexed: 12/22/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) were reported to promote the development of gastric cancer (GC). Nuclear-enriched abundant transcript 1 (NEAT1) played a great role in diverse cancers, but the mechanism of NEAT1 in GC remains indistinct. NEAT1 and AKT1 were distinctly up-regulated and miR-1294 was down-regulated in GC tissues and cells. Cell proliferation and metastasis were refrained but apoptosis was promoted in GC cells after knockdown of NEAT1. NEAT1 negatively regulated miR-1294 expression, and the miR-1294 inhibitor reverted the si-NEAT1-induced effect on GC cells. NEAT1 modulated AKT1 expression through miR-1294, and the si-NEAT1-induced effect was relieved by AKT1. NEAT1 affected phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway via regulating miR-1294 and AKT1. NEAT1 could modulate cell proliferation, apoptosis, and metastasis in GC cells by regulating the PI3K/AKT/mTOR signaling pathway via the miR-1294/AKT1 axis, showing the great potential for NEAT1 as a valid biomarker in the progression and treatment of GC.
Collapse
Affiliation(s)
- Dianchao Wu
- Department of Surgical Oncology, Xingtai People’s Hospital, No.16, Hongxing Street, Xingtai, 054031, Hebei, China
| | - Hui Li
- Department of Surgical Oncology, Xingtai People’s Hospital, No.16, Hongxing Street, Xingtai, 054031, Hebei, China
| | - Junfeng Wang
- Department of Colorectal Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hua Li
- Department of Surgical Oncology, Xingtai People’s Hospital, No.16, Hongxing Street, Xingtai, 054031, Hebei, China
| | - Qihai Xiao
- Department of Surgical Oncology, Xingtai People’s Hospital, No.16, Hongxing Street, Xingtai, 054031, Hebei, China
| | - Xiaofeng Zhao
- Department of Surgical Oncology, Xingtai People’s Hospital, No.16, Hongxing Street, Xingtai, 054031, Hebei, China
| | - Zhibin Huo
- Department of Surgical Oncology, Xingtai People’s Hospital, No.16, Hongxing Street, Xingtai, 054031, Hebei, China
| |
Collapse
|
17
|
Wang F, Yang Q. Long Non-Coding RNA LINC01089 Enhances the Development of Gastric Cancer by Sponging miR-145-5p to Mediate SOX9 Expression. Onco Targets Ther 2020; 13:9213-9224. [PMID: 32982308 PMCID: PMC7508032 DOI: 10.2147/ott.s249392] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/01/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) have potential regulatory effects in oncogenesis. Previous studies showed that several lncRNAs could participate in the progression of gastric cancer (GC). However, the specific biological mechanisms in GC are still unclear. We analyzed an lncRNA microarray of GC and selected LINC01089 for study. METHODS LINC01089 expression in GC was tested by qRT-PCR. GC cell proliferation was assessed using CCK-8 and EdU assays. Cell invasion was assessed using the Transwell assay. A dual-luciferase reporter gene assay and bioinformatics assay were performed to detect potential targets of LINC01089. Additionally, RNA immunoprecipitation and Western blot assays were performed to clarify their interactions and roles in the regulation of GC progression. RESULTS High LINC01089 expression was observed in GC cells. LINC01089 overexpression notably expedited cell migration, proliferation, and invasion. LINC01089 positively regulated SOX9 expression by competitively binding to microRNA (miR-145-5p). CONCLUSION LINC01089 competitively binds to miR-145-5p to mediate SOX9 expression. LINC01089 may participate in the progression of GC.
Collapse
Affiliation(s)
- Fengyong Wang
- Department of General Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Qiong Yang
- Department of Gastroenteropancreatic Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
18
|
Baliou S, Kyriakopoulos AM, Spandidos DA, Zoumpourlis V. Role of taurine, its haloamines and its lncRNA TUG1 in both inflammation and cancer progression. On the road to therapeutics? (Review). Int J Oncol 2020; 57:631-664. [PMID: 32705269 PMCID: PMC7384849 DOI: 10.3892/ijo.2020.5100] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
For one century, taurine is considered as an end product of sulfur metabolism. In this review, we discuss the beneficial effect of taurine, its haloamines and taurine upregulated gene 1 (TUG1) long non‑coding RNA (lncRNA) in both cancer and inflammation. We outline how taurine or its haloamines (N‑Bromotaurine or N‑Chlorotaurine) can induce robust and efficient responses against inflammatory diseases, providing insight into their molecular mechanisms. We also provide information about the use of taurine as a therapeutic approach to cancer. Taurine can be combined with other chemotherapeutic drugs, not only mediating durable responses in various malignancies, but also circumventing the limitations met from chemotherapeutic drugs, thus improving the therapeutic outcome. Interestingly, the lncRNA TUG1 is regarded as a promising therapeutic approach, which can overcome acquired resistance of cancer cells to selected strategies. In this regard, we can translate basic knowledge about taurine and its TUG1 lncRNA into potential therapeutic options directed against specific oncogenic signaling targets, thereby bridging the gap between bench and bedside.
Collapse
Affiliation(s)
| | | | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion 71003, Greece
| | | |
Collapse
|
19
|
Pei Y, Li K, Lou X, Wu Y, Dong X, Wang W, Li N, Zhang D, Cui W. miR‑1299/NOTCH3/TUG1 feedback loop contributes to the malignant proliferation of ovarian cancer. Oncol Rep 2020; 44:438-448. [PMID: 32468036 PMCID: PMC7336509 DOI: 10.3892/or.2020.7623] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/29/2020] [Indexed: 12/22/2022] Open
Abstract
Recent studies have revealed the oncogenic role of notch reporter 3 (NOTCH3) in ovarian cancer (OC). However, the possible regulators and mechanisms underlying notch receptor 3 (NOTCH3)‑mediated behaviors in OC remain to be completely investigated. In the present study, we aimed to identify regulators of NOTCH3 and their interactions underlying the pathogenesis of OC. Bioinformatics analysis and luciferase reporter assay were used to identify potential regulatory miRNAs and lncRNAs of NOTCH3 in OC. Several in vivo and in vitro assays were performed to evaluate their effects on the proliferative ability mediated by NOTCH3. We identified microRNA‑1299 (miR‑1299) as a novel negative regulator of NOTCH3. miR‑1299 was downregulated in OC and was found to be considerably correlated with tumor differentiation. Upregulation of miR‑1299 inhibited cell proliferation, colony formation, and 5‑ethynyl‑2'‑deoxyuridine (EdU) incorporation, as well as induced cell cycle arrest in the G0G1 phase in OC cells. Overexpression of miR‑1299 in xenograft mouse models suppressed tumor growth in vivo. The lncRNA taurine upregulated gene 1 (TUG1), acting as a sponge of miR‑1299, was found to upregulate NOTCH3 expression and promote cell proliferation in OC through the competing endogenous RNA mechanism. In addition, TUG1 was found to be a potential downstream target of NOTCH3, forming a miR‑1299/NOTCH3/TUG1 feedback loop in the development of OC. Collectively, our findings improve the understanding of NOTCH3‑mediated regulation in OC pathogenesis and facilitate the development of miRNA‑ and lncRNA‑directed diagnostics and therapeutics against this disease.
Collapse
Affiliation(s)
- Yuqing Pei
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Kexin Li
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Xiaoying Lou
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Yue Wu
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Xin Dong
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Wenpeng Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Ning Li
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Donghong Zhang
- Center for Molecular and Translational Medicine, Research Science Center, Georgia State University, Atlanta, GA 30303, USA
| | - Wei Cui
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
- Correspondence to: Professor Wei Cui, State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuannanli Road, Chaoyang, Beijing 100021, P.R. China, E-mail:
| |
Collapse
|
20
|
Zhou J, Zhang X, Li W, Chen Y. MicroRNA-145-5p regulates the proliferation of epithelial ovarian cancer cells via targeting SMAD4. J Ovarian Res 2020; 13:54. [PMID: 32366274 PMCID: PMC7199349 DOI: 10.1186/s13048-020-00656-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/24/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) is one of the most prevalent malignancies affecting females worldwide; however, its etiology mechanism remains unclear. In various malignancies, miR-145-5p is a widely accepted and versatile miRNA. Therefore, our research focused on exploring the activity and etiology of miR-145-5p in the modulation of metastasis, migration, and proliferation of EOC cells. The direct reactions between the 3'UTRs of SMAD4 mRNA and miR-145-5p were verified using dual luciferase reporter test. SKOV-3 cells were subsequently transfected using miR-145-5p mimics. Cell migration, death, and proliferation were evaluated using MTT, flow cytometry, and Transwell test. In addition, SMAD4 transcription and translation were evaluated using qRT-PCR and Western blot. RESULTS We found that miR-145-5p expression was repressed prevalently in EOC tissues, apart from SMAD4 upregulation. Excessive miR-145-5p expression remarkably reinforced EOC cell death and repressed EOC cell proliferation. Furthermore, upregulated miR-145-5p expression noticeably repressed migration via MMP-2 and MMP-9 downregulation. Moreover, SMAD4 was downregulated via miR-145-5p transfection. The dual luciferase test revealed that miR-145-5p directly targeted SMAD4. CONCLUSIONS Our research suggests that miR-145-5p serves as a malignancy repressor and exerts an essential impact on inhibiting malignancy generation and reinforcing EOC death via targeting SMAD4. MiR-145-5p application could serve as a promising strategy to treat EOC.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Obstetrics and Gynecology, Xi’an Gaoxin Hospital, No. 16 Tuanjie South Road, Xi’an, 710075 Shaanxi China
| | - Xiyi Zhang
- Department of Obstetrics and Gynecology, Xi’an Gaoxin Hospital, No. 16 Tuanjie South Road, Xi’an, 710075 Shaanxi China
| | - Weiling Li
- Department of Obstetrics and Gynecology, Xi’an Gaoxin Hospital, No. 16 Tuanjie South Road, Xi’an, 710075 Shaanxi China
| | - Yuanyuan Chen
- Department of Obstetrics and Gynecology, Xi’an Gaoxin Hospital, No. 16 Tuanjie South Road, Xi’an, 710075 Shaanxi China
| |
Collapse
|
21
|
Pentenero M, Bowers L, Jayasinghe R, Cheong SC, Farah CS, Kerr AR, Alevizos I. World Workshop on Oral Medicine VII: Functional pathways involving differentially expressed lncRNAs in oral squamous cell carcinoma. Oral Dis 2020; 25 Suppl 1:79-87. [PMID: 31140691 DOI: 10.1111/odi.13051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 01/27/2019] [Indexed: 12/14/2022]
Abstract
Long non-coding RNAs (lncRNA) modulate gene expression at the epigenetic, transcriptional and post-transcriptional levels and are involved in tumorigenesis. They can form complex secondary and tertiary structures and have been shown to act as precursors, enhancers, reservoirs and decoys in the complex endogenous RNA network. They were first reported in relation to oral squamous cell carcinoma (OSCC) in 2013. Here, we summarise the functional roles and pathways of the most commonly studied lncRNAs in OSCC. Existing research demonstrates the involvement of lncRNA within pivotal pathways leading to the development and spread of OSCC, including interactions with key cancer-associated microRNAs such as miR-21. The number of studies on lncRNA and OSCC remains limited in this new field. As evidence grows, the tissue-specific expression patterns of lncRNAs should further advance our understanding of the altered regulatory networks in OSCC and possibly reveal new biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Monica Pentenero
- Department of Oncology, Oral Medicine and Oral Oncology Unit, University of Turin, Turin, Italy
| | - Leah Bowers
- Department of Stomatology, Division of Oral Medicine, Medical University of South Carolina, Charleston, Charleston, SC, USA
| | - Ruwan Jayasinghe
- Department of Oral Medicine and Periodontology, Faculty of Dental Sciences, University of Peradeniya, Peradeniya, Sri Lanka
| | - Sok Ching Cheong
- Head and Neck Cancer Research Team, Cancer Research Malaysia, Subang Jaya,, Selangor, Malaysia
| | - Camile S Farah
- Australian Centre for Oral Oncology Research & Education, UWA Dental School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | | | - Ilias Alevizos
- Sjogren's Syndrome and Salivary Gland Dysfunction Unit, NIDCR/NIH, Bethesda, MD, USA
| |
Collapse
|
22
|
Ghafouri-Fard S, Taheri M. Long non-coding RNA signature in gastric cancer. Exp Mol Pathol 2019; 113:104365. [PMID: 31899194 DOI: 10.1016/j.yexmp.2019.104365] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/18/2019] [Accepted: 12/28/2019] [Indexed: 02/07/2023]
Abstract
Gastric cancer as a common human malignancy has been associated with aberrant expressions of several coding and non-coding genes. Long non-coding RNAs (lncRNAs) as regulators of gene expressions at different genomic, transcriptomic and post-transcriptomic levels are among putative biomarkers and therapeutic targets in gastric cancer. In the present study, we have searched available literature and listed lncRNAs that are involved in the pathogenesis of gastric cancer. In addition, we discuss associations between expressions of these lncRNAs and tumoral features or risk factors for gastric cancer. Based on the established role of lncRNAs in regulation of genomic stability, cell cycle, apoptosis, angiogenesis and other aspects of cell physiology, the potential of these transcripts as therapeutic targets in gastric cancer should be evaluated in future studies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Wang B, Dong W, Li X. miR-145-5p Acts as a Novel Tumor Suppressor in Hepatocellular Carcinoma Through Targeting RAB18. Technol Cancer Res Treat 2019; 18:1533033819850189. [PMID: 31106707 PMCID: PMC6535696 DOI: 10.1177/1533033819850189] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Micro-RNAs play critical roles in initiation and progression of hepatocellular
carcinoma. However, the biological role of microRNA-145-5p in hepatocellular
carcinoma and how it works are still not clearly understood. Expression levels
of microRNA-145-5p in hepatocellular carcinoma cell lines were examined by
reverse transcription quantitative polymerase chain reaction. Cell counting
kit-8, wound-healing assay, and flow cytometry assay were conducted to
investigate the role of microRNA-145-5p von proliferation, migration, and
apoptosis. Luciferase reporter assay and Western blot were performed to
investigate the correlation between microRNA-145-5p and RAB18. We found
microRNA-145-5p was downregulated in hepatocellular carcinoma cell lines
compared to the normal cell line. Overexpression of microRNA-145-5p inhibited
the proliferation and migration but promoted apoptosis of hepatocellular
carcinoma cells in vitro. RAB18 was validated a target of
microRNA-145-5p and ectopic expression of RAB18 can promote the proliferation
and migration but inhibit apoptosis of hepatocellular carcinoma cells. These
findings indicate that microRNA-145-5p functions as a novel tumor suppressor
through targeting RAB18, suggesting that microRNA-145-5p might be a potential
new therapeutic molecule for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Baoying Wang
- 1 Urology Department, Jiaozhou People's Hospital, Jiaozhou, People's Republic of China
| | - Wenjing Dong
- 2 Department of Traditional Chinese Medicine, Qingdao No. 6 People's Hospital, Qingdao, People's Republic of China
| | - Xiaojie Li
- 2 Department of Traditional Chinese Medicine, Qingdao No. 6 People's Hospital, Qingdao, People's Republic of China
| |
Collapse
|
24
|
Li G, Zheng P, Wang H, Ai Y, Mao X. Long Non-Coding RNA TUG1 Modulates Proliferation, Migration, And Invasion Of Acute Myeloid Leukemia Cells Via Regulating miR-370-3p/MAPK1/ERK. Onco Targets Ther 2019; 12:10375-10388. [PMID: 31819520 PMCID: PMC6890183 DOI: 10.2147/ott.s217795] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/04/2019] [Indexed: 12/20/2022] Open
Abstract
Background Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults. Long non-coding RNA taurine-upregulated gene 1 (lncRNA TUG1) has been discovered to participate in multiple cancers including AML. However, the detailed mechanism of TUG1 in AML remains obscure. Materials and methods AML cell lines HL-60 and Kasumi-1 were taken as cell models. TUG1 knockdown or overexpression cell lines were generated. Then, the biological influence of TUG1 on cancer cells was studied using CCK-8 assay, transwell assay and Western blot in vitro. Interaction between TUG1 and miR-370-3p was determined by bioinformatics analysis, RT-PCR, and luciferase assay. Western blot, RT-PCR, and luciferase assay were carried out to validate the interaction between miR-370-3p and its target gene Mitogen-Activated Protein Kinase 1 (MAPK1). Results Knockdown of TUG1 markedly reduced viability and metastasis of AML cells, while its overexpression had the opposite effect. MAPK1 was verified as a target gene of miR-370-3p. TUG1 could reduce the level of functional miR-370-3p, facilitate MAPK1 expression, and in turn activate ERK1/2 signaling. Conclusion TUG1 could modulate malignant phenotypes of AML cells via miR-370-3p/MAPK1/ERK signaling. Our study would help to clarify the mechanism of AML tumorigenesis and progression.
Collapse
Affiliation(s)
- Gang Li
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, People's Republic of China
| | - Peiming Zheng
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, People's Republic of China
| | - Huiling Wang
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, People's Republic of China
| | - Yushu Ai
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, People's Republic of China
| | - Xiaohuan Mao
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, People's Republic of China
| |
Collapse
|
25
|
Xu WX, Liu Z, Deng F, Wang DD, Li XW, Tian T, Zhang J, Tang JH. MiR-145: a potential biomarker of cancer migration and invasion. Am J Transl Res 2019; 11:6739-6753. [PMID: 31814885 PMCID: PMC6895535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
MircoRNAs (miRNAs) are a diverse family of highly-conserved small non-coding RNAs, which range from approximately 18 to 25 nucleotides in size. They regulate gene expression transcriptionally or post-transcriptionally via binding to the 3'-untranslated region (3'-UTR) of target message RNAs (mRNAs). MiRNAs have emerged as molecular regulators that participate in physiological and pathological processes of diverse malignancies. Among them, miRNA-145 (miR-145) played a profound role in tumorigenesis and progression of various neoplasms. In this review, we summarized the recent findings regarding miR-145, to elucidate its functional roles in cell invasion and migration of diverse human malignancies, and considered it a potential biomarker for cancer diagnosis, screening, and prognosis.
Collapse
Affiliation(s)
- Wen-Xiu Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, P. R. China
- The First Clinical School of Nanjing Medical UniversityNanjing 210029, P. R. China
| | - Zhen Liu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, P. R. China
- The First Clinical School of Nanjing Medical UniversityNanjing 210029, P. R. China
| | - Fei Deng
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, P. R. China
- The First Clinical School of Nanjing Medical UniversityNanjing 210029, P. R. China
| | - Dan-Dan Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, P. R. China
| | - Xing-Wang Li
- School of Clinical Medicine, Xuzhou Medical University209 Tongshan Road, Xuzhou 221004, P. R. China
| | - Tian Tian
- School of Clinical Medicine, Xuzhou Medical University209 Tongshan Road, Xuzhou 221004, P. R. China
| | - Jian Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, P. R. China
| | - Jin-Hai Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, P. R. China
- The First Clinical School of Nanjing Medical UniversityNanjing 210029, P. R. China
| |
Collapse
|
26
|
Shi L, Tian C, Sun L, Cao F, Meng Z. The lncRNA TUG1/miR-145-5p/FGF10 regulates proliferation and migration in VSMCs of hypertension. Biochem Biophys Res Commun 2019; 501:688-695. [PMID: 29758198 DOI: 10.1016/j.bbrc.2018.05.049] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 05/08/2018] [Indexed: 10/16/2022]
Abstract
Vascular remodeling is a characteristic pathological feature of hypertension, it can cause of increasing vascular resistance and decrease of compliance. Vascular smooth muscle cell (VSMCs) dysfunction is the important foundation of vascular remodeling. Increasing evidences have revealed that lncRNA is an important regulatory factor of VSMC function. In this paper, we explored the function of lncRNA TUG1 in vascular remodeling of hypertension. Here, we found that lncRNA TUG1 was highly expressed in aorta of spontaneously hypertensive rats (SHR) rats and promoted the proliferation and migration of VSMCs (SHR-VSMCs). Bioinformatics analyze showed that lncRNA TUG1 sequence had miR-145-5p binding sites. Luciferase reporter test, RNA pulldown and qRT-PCR showed that lncRNA TUG1 could bind miR-145-5p. Similarly, bioinformatics analyze found that FGF10 3 'UTR contained miR-145-5p binding sites. Luciferase reporter test, qRT-PCR and Western blot were shown that miR-145-5p inhibited FGF10 expression by binding to its 3 'UTR. MTT showed that miR-145-5p inhibited and FGF10 promoted SHR-VMSCs proliferation and migration. Overexpression of miR-145-5p or knocking down of FGF10 after overexpresion of lncRNA TUG1 could rescue the proliferation and migration promoted by lncRNA TUG1. LncRNA TUG1 and FGF10 promoted and miR-145-5p suppressed the expression of β-catenin, TCF and LEF in SHR-VSMCs. Therefore, lncRNA TUG1/miR-145-5p/FGF10 promotes the proliferation and migration of VSMCs in hypertensive state by activating the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Lin Shi
- School of First Clinical Medical, Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Jinan, Shandong, 250011, China
| | - Caijun Tian
- School of First Clinical Medical, Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Jinan, Shandong, 250011, China
| | - Lingzhi Sun
- School of First Clinical Medical, Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Jinan, Shandong, 250011, China
| | - Feifei Cao
- School of First Clinical Medical, Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Jinan, Shandong, 250011, China
| | - Zhaoyang Meng
- School of First Clinical Medical, Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Jinan, Shandong, 250011, China.
| |
Collapse
|
27
|
Ghaforui-Fard S, Vafaee R, Taheri M. Taurine-upregulated gene 1: A functional long noncoding RNA in tumorigenesis. J Cell Physiol 2019; 234:17100-17112. [PMID: 30912122 DOI: 10.1002/jcp.28464] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/02/2019] [Accepted: 02/19/2019] [Indexed: 12/11/2022]
Abstract
Taurine-upregulated gene 1 (TUG1) is a 7.1 kb long noncoding RNA (lncRNA) first recognized in 2005 as an important element for retinal development in rodents. Subsequently, this lncRNA has been shown to participate in oncogenic processes through alteration in chromatin structure, sponging microRNAs, and affecting the expression of some cancer-related pathways. While most of the studies have revealed an oncogenic role for this lncRNA, some reports have shown downregulation of TUG1 in lung cancer samples compared with noncancerous samples. In triple negative breast cancer samples, the expression of this lncRNA has been decreased. Besides, its expression has been higher in HER2-enriched and basal-like subtypes compared with luminal A. In the current review, we discuss the latest literature about the expression pattern and functional roles of TUG1 in diverse cancer types. In addition, its role in epithelial-mesenchymal transition and activation of Wnt/β-catenin pathway in human malignancies will be explored.
Collapse
Affiliation(s)
- Soudeh Ghaforui-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Vafaee
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Zhou H, Gao Z, Wan F. Taurine-upregulated gene 1 contributes to cancers through sponging microRNA. Acta Biochim Biophys Sin (Shanghai) 2019; 51:123-130. [PMID: 30590378 DOI: 10.1093/abbs/gmy156] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/14/2018] [Accepted: 11/20/2018] [Indexed: 01/05/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are a class of RNAs whose transcripts are more than 200 nucleotides in length and lack protein-coding ability. Taurine-upregulated gene 1 (TUG1), a novel cancer-related lncRNA, has been documented to be abnormally expressed in various types of cancers and act as an oncogene or anti-oncogene. It has been considered previously that TUG1 is closely related to the cell proliferation, invasion, metastasis, and apoptosis of cancer. In recent years, it has been found that TUG1 acts as a microRNA (miRNA) sponge to indirectly regulate the expression of the miRNA target gene and dominates cancer progression in several types of cancers. However, TUG1 also binds to different miRNAs to produce diverse regulatory mechanisms in the same cancer. TUG1 is expected to be a biomarker and a new therapeutic target for the diagnosis and prognosis of certain cancers. In this review, we highlight the up-to-date original studies that focus on the role of TUG1 sponging miRNA in cancers and summarize the function of TUG1 in cancer progression. The novel TUG1-miRNA regulatory network is comprehensively and minutely included in this review. We hope that this review will help readers obtain a more detailed knowledge of the molecular mechanism by which TUG1 sponging miRNA plays its role in cancers, and provide some insights and directions for future cancer research.
Collapse
Affiliation(s)
- Hui Zhou
- The Second Clinical Medical College, Nanchang University, Nanchang, China
| | - Zixu Gao
- The Second Clinical Medical College, Nanchang University, Nanchang, China
| | - Fusheng Wan
- Department of Biochemistry and Molecular Biology, Medical College of Nanchang University, Nanchang, China
| |
Collapse
|
29
|
Xu L, Zhang Y, Tang J, Wang P, Li L, Yan X, Zheng X, Ren S, Zhang M, Xu M. The Prognostic Value and Regulatory Mechanisms of microRNA-145 in Various Tumors: A Systematic Review and Meta-analysis of 50 Studies. Cancer Epidemiol Biomarkers Prev 2019; 28:867-881. [PMID: 30602498 DOI: 10.1158/1055-9965.epi-18-0570] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/16/2018] [Accepted: 12/26/2018] [Indexed: 02/05/2023] Open
Abstract
Acting as an important tumor-related miRNA, the clinical significance and underlying mechanisms of miR-145 in various malignant tumors have been investigated by numerous studies. This study aimed to comprehensively estimate the prognostic value and systematically illustrate the regulatory mechanisms of miR-145 based on all eligible literature.Relevant studies were acquired from multiple online databases. Overall survival (OS) and progression-free survival (PFS) were used as primary endpoints. Detailed subgroup analyses were performed to decrease the heterogeneity among studies and recognize the prognostic value of miR-145. All statistical analyses were performed with RevMan software version 5.3 and STATA software version 14.1. A total of 48 articles containing 50 studies were included in the meta-analysis. For OS, the pooled results showed that low miR-145 expression in tumor tissues was significantly associated with worse OS in patients with various tumors [HR = 1.70; 95% confidence interval (CI), 1.46-1.99; P < 0.001). Subgroup analysis based on tumor type showed that the downregulation of miR-145 was associated with unfavorable OS in colorectal cancer (HR = 2.17; 95% CI, 1.52-3.08; P < 0.001), ovarian cancer (HR = 2.15; 95% CI, 1.29-3.59; P = 0.003), gastric cancer (HR = 1.78; 95% CI, 1.35-2.36; P < 0.001), glioma (HR = 1.65; 95% CI, 1.30-2.10; P < 0.001), and osteosarcoma (HR = 2.28; 95% CI, 1.50-3.47; P < 0.001). For PFS, the pooled results also showed that the downregulation of miR-145 was significantly associated with poor PFS in patients with multiple tumors (HR = 1.39; 95% CI, 1.16-1.67; P < 0.001), and the subgroup analyses further identified that the low miR-145 expression was associated with worse PFS in patients with lung cancer (HR = 1.97; 95% CI, 1.25-3.09; P = 0.003) and those of Asian descent (HR = 1.50; 95% CI, 1.23-1.82; P < 0.001). For the regulatory mechanisms, we observed that numerous tumor-related transcripts could be targeted by miR-145-5p or miR-145-3p, as well as the expression and function of miR-145-5p could be regulated by multiple molecules.This meta-analysis indicated that downregulated miR-145 in tumor tissues or peripheral blood predicted unfavorable prognostic outcomes for patients suffering from various malignant tumors. In addition, miR-145 was involved in multiple tumor-related pathways and the functioning of significant biological effects. miR-145 is a well-demonstrated tumor suppressor, and its expression level is significantly correlated with the prognosis of patients with multiple malignant tumors.
Collapse
Affiliation(s)
- Liangliang Xu
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yanfang Zhang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jianwei Tang
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Peng Wang
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Lian Li
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiaokai Yan
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiaobo Zheng
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Shengsheng Ren
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ming Zhang
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Mingqing Xu
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
30
|
Klinge CM. Non-Coding RNAs in Breast Cancer: Intracellular and Intercellular Communication. Noncoding RNA 2018; 4:E40. [PMID: 30545127 PMCID: PMC6316884 DOI: 10.3390/ncrna4040040] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 02/07/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are regulators of intracellular and intercellular signaling in breast cancer. ncRNAs modulate intracellular signaling to control diverse cellular processes, including levels and activity of estrogen receptor α (ERα), proliferation, invasion, migration, apoptosis, and stemness. In addition, ncRNAs can be packaged into exosomes to provide intercellular communication by the transmission of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) to cells locally or systemically. This review provides an overview of the biogenesis and roles of ncRNAs: small nucleolar RNA (snRNA), circular RNAs (circRNAs), PIWI-interacting RNAs (piRNAs), miRNAs, and lncRNAs in breast cancer. Since more is known about the miRNAs and lncRNAs that are expressed in breast tumors, their established targets as oncogenic drivers and tumor suppressors will be reviewed. The focus is on miRNAs and lncRNAs identified in breast tumors, since a number of ncRNAs identified in breast cancer cells are not dysregulated in breast tumors. The identity and putative function of selected lncRNAs increased: nuclear paraspeckle assembly transcript 1 (NEAT1), metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), steroid receptor RNA activator 1 (SRA1), colon cancer associated transcript 2 (CCAT2), colorectal neoplasia differentially expressed (CRNDE), myocardial infarction associated transcript (MIAT), and long intergenic non-protein coding RNA, Regulator of Reprogramming (LINC-ROR); and decreased levels of maternally-expressed 3 (MEG3) in breast tumors have been observed as well. miRNAs and lncRNAs are considered targets of therapeutic intervention in breast cancer, but further work is needed to bring the promise of regulating their activities to clinical use.
Collapse
Affiliation(s)
- Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| |
Collapse
|
31
|
Long Noncoding RNA TUG1/miR-29c Axis Affects Cell Proliferation, Invasion, and Migration in Human Pancreatic Cancer. DISEASE MARKERS 2018; 2018:6857042. [PMID: 30595764 PMCID: PMC6282130 DOI: 10.1155/2018/6857042] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/10/2018] [Accepted: 08/18/2018] [Indexed: 12/15/2022]
Abstract
Given the low resection rate and chemoresistance of patients with pancreatic cancer (PC), their survival rates are typically poor. Long noncoding RNAs (lncRNAs) have recently been shown to play an important role in tumourigenesis and human cancer progression, including in PC. In this study, we aimed to investigate the role of taurine-upregulated gene 1 (TUG1) in PC. A quantitative polymerase chain reaction was used to analyse TUG1 expression in PC tissues and peritumoural normal tissues. TUG1 was overexpressed in PC tissues compared with that in peritumoural normal tissues, and the high expression of TUG1 was associated with the poor prognosis of patients with PC. Furthermore, TUG1 knockdown significantly inhibited the proliferation and invasion of PC cells both in vitro and in vivo, while overexpression TUG1 promoted tumour cell proliferation, migration, and invasion. TUG1 directly targeted miR-29c, a tumour suppressor in several cancers. TUG1 knockdown significantly increased the expression of miR-29c and subsequently induced the downregulation of integrin subunit beta 1 (ITGB1), matrix metalloproteinase-2 (MMP2), and matrix metalloproteinase-9 (MMP9). The downregulation of miR-29c abolished the TUG1 knockdown-mediated inhibition of tumour growth in vitro and in vivo, whereas the upregulation of miR-29c enhanced the effects of TUG1 knockdown on PC cells. In conclusion, we demonstrate for the first time the oncogenic role of TUG1 in PC. The downregulation of TUG1 significantly inhibited the growth and migratory ability of PC cells in vitro and in vivo by targeting miR-29c. Our study provides a novel potential diagnostic biomarker and therapeutic target for PC.
Collapse
|
32
|
Li L, Li Y, Huang Y, Ouyang Y, Zhu Y, Wang Y, Guo X, Yuan Y, Gong K. Long non-coding RNA MIF-AS1 promotes gastric cancer cell proliferation and reduces apoptosis to upregulate NDUFA4. Cancer Sci 2018; 109:3714-3725. [PMID: 30238562 PMCID: PMC6272088 DOI: 10.1111/cas.13801] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 09/02/2018] [Accepted: 09/16/2018] [Indexed: 12/11/2022] Open
Abstract
Long non‐coding RNA MIF‐AS1 (lncMIF‐AS1) has been found to be upregulated in the tumor tissues of gastric cancer; however, its importance for the progression of gastric cancer remains unknown. Thus, the present study was designed to determine the role of the lncMIF‐AS1‐based signal transduction pathway in mediating the proliferation and apoptosis of gastric cancer cells. Differentially expressed lncRNAs and mRNAs were screened out using microarray analysis, based on the published data (GSE63288), and validated using quantitative RT‐PCR. Target relationships between lncRNA‐micro RNA (miRNA) and miRNA‐mRNA were predicted by bioinformatics analysis and verified by dual‐luciferase reporter assay. Protein expression of NDUFA4, COX6C and COX5B was detected by western blot. Cell proliferation, cell cycle and apoptosis were determined using colony formation assay and flow cytometry analysis. Oxidative phosphorylation in gastric cancer cells was assessed by levels of oxygen consumption and ATP synthase activity. Expression of lncMIF‐AS1 and NDUFA4 were upregulated in gastric cancer tissues and cells as compared with non‐cancerous gastric tissues and cells (P < .05). MiR‐212‐5p was identified as the most important miRNA linker between lncMIF‐AS1 and NDUFA4, which was negatively regulated by lncMIF‐AS1 and its depletion is the main cause of NDUFA4 overexpression (P < .01). The upregulated expression of NDUFA4 then greatly promoted the proliferation and decreased the apoptosis of gastric cancer cells through activation of the oxidative phosphorylation pathway. Taken together, the present study implies that inhibition of lncMIF‐AS1/miR‐212‐5p/NDUFA4 signal transduction may provide a promising therapeutic target for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Linhai Li
- Department of General Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yuejin Li
- Department of General Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yingguang Huang
- Department of General Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yiming Ouyang
- Department of General Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yu Zhu
- Department of General Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yongzhi Wang
- Department of General Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiaodong Guo
- Department of General Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ying Yuan
- Department of Emergency Internal Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Kunmei Gong
- Department of General Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
33
|
Zhou T, Chen S, Mao X. miR-145-5p affects the differentiation of gastric cancer by targeting KLF5 directly. J Cell Physiol 2018; 234:7634-7644. [PMID: 30367481 DOI: 10.1002/jcp.27525] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/10/2018] [Indexed: 12/15/2022]
Abstract
Krüppel-like factor 5 (KLF5) takes part in the pathologic processes of many types of cancer; however, its expression and roles in the biological behavior of gastric cancer remain unknown. TargetScan suggested that miR-145-5p is the predicted effective and conserved microRNA (miRNA) that binds to KLF5 through its 3'-untranslated region (UTR). We investigated the expression of KLF5 and miR-145-5p messenger RNA (mRNA) in gastric cancer and then analyzed its role in the biological behavior of gastric cancer cells. Our results indicated that KLF5 expression was detected by immunohistochemistry in 39.7% of the gastric cancer cases and was increased compared with that of the corresponding noncancerous normal mucosa (0.01 < p < 0.05). The poorly differentiated subtype showed positive KLF5 expression, whereas the differentiated subtype showed negative KLF5 expression (p < 0.05). Dual-luciferase reporter assay suggested KLF5 3'-UTR was the direct target of miR-145-5p. Compared with the differentiated gastric cancer, miR-145-5p was downregulated in undifferentiated gastric cancer (p < 0.05). The downregulation of KLF5 expression and differentiation of MGC-803 and BGC-823 caused by siKLF5 or miR-145-5p mimic transfection. Our results indicated that miR-145-5p/KLF5 3'-UTR affected the differentiation of gastric cancer. miR-145-5p was able to promote gastric cancer differentiation by targeting KLF5 3'-UTR directly. Our data suggest a novel mechanism for cancer differentiation and a new facet to the role of miR-145-5p/KLF5 in gastric cancer.
Collapse
Affiliation(s)
- Taicheng Zhou
- Departments of Gastroenterological Surgery and Hernia Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuang Chen
- Departments of Gastroenterological Surgery and Hernia Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoyun Mao
- Department of Breast Surgery, Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
34
|
Screening for blood leukocyte microRNA biomarkers responsible for association between qi deficiency constitution and Pi-qi-deficiency syndrome of chronic superficial gastritis. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2018. [DOI: 10.1016/j.jtcms.2018.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
35
|
Zhang Z, Sun L, Zhang Y, Lu G, Li Y, Wei Z. Long non‐coding RNA FEZF1‐AS1 promotes breast cancer stemness and tumorigenesis via targeting miR‐30a/Nanog axis. J Cell Physiol 2018; 233:8630-8638. [DOI: 10.1002/jcp.26611] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/22/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Zhi Zhang
- Department of AnesthesiologyHuaihe HospitalHenan UniversityKaifengChina
| | - Liwei Sun
- Department of AnesthesiologyHuaihe HospitalHenan UniversityKaifengChina
| | - Yixuan Zhang
- Department of AnesthesiologyHuaihe HospitalHenan UniversityKaifengChina
| | - Guanming Lu
- Basic Medical SchoolHenan UniversityKaifengChina
| | - Yongqiang Li
- Basic Medical SchoolHenan UniversityKaifengChina
| | | |
Collapse
|
36
|
Luo Y, Ouyang J, Zhou D, Zhong S, Wen M, Ou W, Yu H, Jia L, Huang Y. Long Noncoding RNA GAPLINC Promotes Cells Migration and Invasion in Colorectal Cancer Cell by Regulating miR-34a/c-MET Signal Pathway. Dig Dis Sci 2018; 63:890-899. [PMID: 29427222 DOI: 10.1007/s10620-018-4915-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/03/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND Gastric adenocarcinoma predictive long intergenic noncoding RNA (GAPLINC) has been detected in colorectal cancer (CRC) cells and reportedly performs many functions related to tumor proliferation and metastasis. Aim The present study aimed to comprehensively explore the biological functions of GAPLINC and their underlying mechanism in CRC cell. METHODS The human cancer LncRNA PCR array was used to detect the differentially expressed long noncoding RNAs in human CRC samples. Real-time PCR, dual-luciferase assay, RNA pull-down assay, Transwell assay, and western blot analysis were performed to explore the molecular mechanism underlying GAPLINC functions related to migration and invasion of a human CRC cell line (HCT116). RESULTS Compared to the non-cancerous tissues, GAPLINC expression was obviously increased in CRC tissues. In HCT116, silencing of GAPLINC weakened cell migration and invasion, while overexpression of GAPLINC significantly promoted cell migration and invasion. Through dual-luciferase, RNA pull-down, and Transwell assays, we verified that miR-34a was the downstream molecule of GAPLINC and that miR-34a negatively regulated the migration and invasion of HCT116 cell. Furthermore, we found that GAPLINC positively regulated the miR-34a target gene c-MET in CRC tissues. CONCLUSIONS Our findings revealed that GAPLINC was up-regulated in CRC tissues and was involved in the migration and invasion of CRC cells by regulating miR-34a/c-MET signaling pathway.
Collapse
Affiliation(s)
- Yuqi Luo
- Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Department of General Surgery, Nansha Hospital of Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 511457, China
| | - Jun Ouyang
- Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Donggen Zhou
- Ningbo international Travel Healthcare Center, Ningbo, 315000, China
| | - Shizhen Zhong
- Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Minjie Wen
- Department of General Surgery, Nansha Hospital of Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 511457, China
| | - Wentao Ou
- Department of General Surgery, Nansha Hospital of Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 511457, China
| | - Haitao Yu
- Department of General Surgery, Nansha Hospital of Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 511457, China
| | - Lin Jia
- Department of Gastroenterology, Nansha Hospital of Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 511457, China
| | - Yaoxin Huang
- Department of Gastroenterology, Nansha Hospital of Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 511457, China
| |
Collapse
|
37
|
Guo P, Zhang G, Meng J, He Q, Li Z, Guan Y. Upregulation of Long Noncoding RNA TUG1 Promotes Bladder Cancer Cell Proliferation, Migration, and Invasion by Inhibiting miR-29c. Oncol Res 2018; 26:1083-1091. [PMID: 29321088 PMCID: PMC7844683 DOI: 10.3727/096504018x15152085755247] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Bladder cancer (BC) is one of the leading causes of cancer-related deaths in the world. Long noncoding RNA (lncRNA) taurine-upregulated gene 1 (TUG1) plays an important role in the development and progression of numerous cancers, including BC. However, the exact role of TUG1 in modulating BC progression is still poorly known. In this study, we found that TUG1 was upregulated and microRNA-29c (miR-29c) was downregulated in BC tissues and cell lines. Overexpression of TUG1 promoted the cell proliferation of T24 and EJ cells, whereas TUG1 knockdown had the opposite effect. Upregulation of TUG1 obviously facilitated the migration and invasion of T24 and EJ cells. In contrast, TUG1 silencing repressed the migration and invasion of T24 and EJ cells. Furthermore, TUG1 knockdown markedly increased the expression of miR-29c in vitro. On the contrary, overexpression of TUG1 remarkably decreased the expression of miR-29c. Transfection with plasmids containing mutant TUG1 has no effect on the expression of miR-29c. There were direct interactions between miR-29c and the binding sites of TUG1. In addition, the inhibitory effects of small interfering RNA specific for TUG1 on BC cell proliferation, migration, and invasion were reversed by downregulation of miR-29c. Collectively, our study strongly demonstrates that TUG1 promotes BC cell proliferation, migration, and invasion by inhibiting miR-29c, suggesting that lncRNA TUG1 may be a promising target for BC gene therapy.
Collapse
Affiliation(s)
- Peng Guo
- Clinical Medical College, The Chinese People's Liberation Army General Hospital, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Guohui Zhang
- Clinical Medical College, The Chinese People's Liberation Army General Hospital, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Jialin Meng
- Department of Urologic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Qian He
- Clinical Medical College, The Chinese People's Liberation Army General Hospital, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Zhihui Li
- Department of Urologic Surgery, The Chinese People's Liberation Army General Hospital, Beijing, P.R. China
| | - Yawei Guan
- Department of Urologic Surgery, The Chinese People's Liberation Army General Hospital, Beijing, P.R. China
| |
Collapse
|
38
|
LncRNA TUG1 sponges miR-145 to promote cancer progression and regulate glutamine metabolism via Sirt3/GDH axis. Oncotarget 2017; 8:113650-113661. [PMID: 29371936 PMCID: PMC5768353 DOI: 10.18632/oncotarget.21922] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/08/2017] [Indexed: 01/17/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are important regulators in cancer progression. Deregulation of the lncRNA taurine upregulated gene 1 (TUG1) predicts poor prognosis and is implicated in the development of several cancers. In this study, we investigated the role of TUG1 in the pathogenesis of intrahepatic cholangiocarcinoma (ICC). We found that TUG1 is upregulated in ICC samples, which correlates with poor prognosis and adverse clinical pathological characteristics. Knockdown of TUG1 inhibited the proliferation, motility, and invasiveness of cultured ICC cells, and decreased tumor burden in a xenograft mouse model. When we explored the mechanisms underlying these effects, we found that TUG1 acts as an endogenous competing RNA (ceRNA) that ‘sponges’ miR-145, thereby preventing the degradation of Sirt3 mRNA and increasing expression of Sirt3 and GDH proteins. Accordingly, glutamine consumption, α-KG production, and ATP levels were dramatically decreased by TUG1 knockdown in ICC cells, and this effect was reversed by miR-145 inhibition. These findings indicate that the TUG1/miR-145/Sirt3/GDH regulatory network may provide a novel therapeutic strategy for treatment of ICC.
Collapse
|
39
|
Lu YB, Jiang Q, Yang MY, Zhou JX, Zhang Q. Long noncoding RNA NNT-AS1 promotes hepatocellular carcinoma progression and metastasis through miR-363/CDK6 axis. Oncotarget 2017; 8:88804-88814. [PMID: 29179477 PMCID: PMC5687647 DOI: 10.18632/oncotarget.21321] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/17/2017] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been tested to act as important regulator in liver cancer genesis and progression. LncRNA Nicotinamide Nucleotide Transhydrogenase-antisense RNA1 (NNT-AS1) has been reported to participate in the tumorigenesis. However, the exact molecular mechanism of NNT-AS1 in hepatocellular carcinoma (HCC) is still unknown. In present study, our team identified the up-regulated expression of NNT-AS1 in HCC tissue and cell lines compared with adjacent noncancerous tissue and normal cells. Moreover, HCC patients with high NNT-AS1 levels had poor prognosis than that with low NNT-AS1 level (p=0.0089). In vitro, gain- and loss-of-function experiments revealed that enhanced NNT-AS1 expression promoted the proliferation ability and alleviated the cycle arrest and apoptosis, while NNT-AS1 knockdown suppressed the proliferation and induced G0/G1 phase arrest and apoptosis. In vivo, NNT-AS1 knockdown inhibited the HCC neoplastic tumor volume and weight. Bioinformatics analysis and luciferase reporter assay validated that miR-363 targeted NNT-AS1 and CDK6 3’-UTR. MiR-363 was down-regulated in HCC tissue and cells. NNT-AS1 competed with CDK6 for miR-363 binding and could increase CDK6 expression. In summary, our results suggest the oncogenic role of NNT-AS1 in HCC tumorigenesis through miR-363/CDK6 axis, providing a novel therapeutic target for human HCC.
Collapse
Affiliation(s)
- Ye-Bin Lu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Qin Jiang
- Department of Ultrasonography, Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Man-Yi Yang
- National Hepatobiliary and Enteric Surgery Research Center, Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Ji-Xiang Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha, 410013, China
| |
Collapse
|
40
|
Xie D, Zhang H, Hu X, Shang C. Knockdown of long non-coding RNA Taurine Up-Regulated 1 inhibited doxorubicin resistance of bladder urothelial carcinoma via Wnt/β-catenin pathway. Oncotarget 2017; 8:88689-88696. [PMID: 29179467 PMCID: PMC5687637 DOI: 10.18632/oncotarget.20927] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/29/2017] [Indexed: 01/23/2023] Open
Abstract
In genitourinary system, bladder cancer (BC) is the most common and lethal malignant tumor, which most common type is bladder urothelial carcinoma (BUC). Long non-coding RNA (lncRNA) Taurine Up-Regulated 1 (TUG1) gene is high-expressed in several malignant tumors, including BC. In this study, over-expression of TUG1 was found in BUC tissues and cell line resistant to doxorubicin (Dox). Knockdown of TUG1 inhibited the Dox resistance and promoted the cytotoxicity induced by Dox in T24/Dox cells. TUG1 knockdown also depressed the Wnt/β-catenin pathway, and the activation the Wnt/β-catenin pathway partly reversed the inhibitory effects of TUG1 knockdown on Dox resistance in T24/Dox cells. In conclusion, up-regulation of lncRNA TUG1 was related with the poor response of BUC patients to Dox chemotherapy, knockdown of TUG1 inhibited the Dox resistance of BUC cells via Wnt/β-catenin pathway. These findings might assist in the discovery of novel potential diagnostic and therapeutic target for BUC, thereby improve the effects of clinical treatment in patients.
Collapse
Affiliation(s)
- Dalong Xie
- Department of Anatomy, College of Basic Medicine, China Medical University, Shenyang, 110001, China
| | - Hui Zhang
- Department of Urinary surgery, Shengjing Hospital, China Medical University, Shenyang, 110004, China
| | - Xuanhao Hu
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, 110001, China
| | - Chao Shang
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, 110001, China
| |
Collapse
|
41
|
Li N, Shi K, Kang X, Li W. Prognostic value of long non-coding RNA TUG1 in various tumors. Oncotarget 2017; 8:65659-65667. [PMID: 29029461 PMCID: PMC5630361 DOI: 10.18632/oncotarget.20025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 07/26/2017] [Indexed: 01/30/2023] Open
Abstract
Taurine up-regulated gene 1 (TUG1) is a long non-coding RNA (lncRNA), has been reported that be dysregulated in various tumors, involved in proliferation and apoptosis in a variety of tumor cells. To detect the clinical significance of TUG1 expression in tumor patients, we carried out current systematic review and meta-analysis investigating its relation with the prognosis and clinicopathological features of cancers. A total of 15 studies comprise 1560 patients were analyzed. The pooled results showed that no significant relationship between high TUG1 expression and overall survival (OS) (HR = 1.28, 95% CI: 0.96–1.69, P = 0.091) in various tumors. In the subgroup analysis by cancer type, elevated TUG1 expression was associated with poorer survival in cancer patients with high TUG1 expression subgroup but better survival in patients with low TUG1 expression subgroup. Over-expression of TUG1 associated with significantly unfavorable survival for bladder cancer (HR=2.67, 95% CI: 1.47–4.87, P = 0.001). Up-regulation of TUG1 correlated with distant metastasis (DM) (OR = 4.22, 95% CI: 2.66–6.70, P < 0.001) and tumor differentiation (OR = 2.45, 95% CI: 1.28–4.70, P = 0.007), but failed to show inline to gender (OR = 1.04, 95% CI: 0.77–1.42, P = 0.774), age (OR = 0.75, 95% CI: 0.51–1.10, P = 0.136), lymph node metastasis (LNM) (OR = 1.45, 95% CI: 0.85–2.50, P = 0.177), and TNM stage (OR = 0.55, 95% CI: 0.17–1.81, P = 0.326). The overall results suggest lncRNA TUG1 may be a useful prognostic biomarker in cancer patients.
Collapse
Affiliation(s)
- Na Li
- Department of Pathology, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, Hunan Province, People's Republic of China
| | - Ke Shi
- Department of Geriatrics, Clinical Laboratory, Xiangya Hospital of Central South University, Changsha, Hunan Province, People's Republic of China
| | - Xinmei Kang
- Department of Geriatrics, Clinical Laboratory, Xiangya Hospital of Central South University, Changsha, Hunan Province, People's Republic of China
| | - Wei Li
- Department of Geriatrics, Clinical Laboratory, Xiangya Hospital of Central South University, Changsha, Hunan Province, People's Republic of China
| |
Collapse
|