1
|
Ren H, Hong H, Zha B, Lamlom SF, Qiu H, Cao Y, Sun R, Wang H, Ma J, Zhang H, Sun L, Yang Q, Zhou C, Liu X, Wang X, Zhang C, Zhang F, Zhao K, Yuan R, Abdelghany AM, Zhang B, Zheng Y, Wang J, Lu W. Soybean productivity can be enhanced by understanding rhizosphere microbiota: evidence from metagenomics analysis from diverse agroecosystems. MICROBIOME 2025; 13:105. [PMID: 40287775 PMCID: PMC12034204 DOI: 10.1186/s40168-025-02104-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 04/02/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Microbial communities associated with roots play a crucial role in the growth and health of plants and are constantly influenced by plant development and alterations in the soil environment. Despite extensive rhizosphere microbiome research, studies examining multi-kingdom microbial variation across large-scale agricultural gradients remain limited. RESULTS This study investigates the rhizosphere microbial communities associated with soybean across 13 diverse geographical locations in China. Using high-throughput shotgun metagenomic sequencing on the BGISEQ T7 platform with 10 GB per sample, we identified a total of 43,337 microbial species encompassing bacteria, archaea, fungi, and viruses. Our analysis revealed significant site-specific variations in microbial diversity and community composition, underscoring the influence of local environmental factors on microbial ecology. Principal coordinate analysis (PCoA) indicated distinct clustering patterns of microbial communities, reflecting the unique environmental conditions and agricultural practices of each location. Network analysis identified 556 hub microbial taxa significantly correlated with soybean yield traits, with bacteria showing the strongest associations. These key microorganisms were found to be involved in critical nutrient cycling pathways, particularly in carbon oxidation, nitrogen fixation, phosphorus solubilization, and sulfur metabolism. Our findings demonstrate the pivotal roles of specific microbial taxa in enhancing nutrient cycling, promoting plant health, and improving soybean yield, with significant positive correlations (r = 0.5, p = 0.039) between microbial diversity and seed yield. CONCLUSION This study provides a comprehensive understanding of the diversity and functional potential of rhizosphere microbiota in enhancing soybean productivity. The findings underscore the importance of integrating microbial community dynamics into crop management strategies to optimize nutrient cycling, plant health, and yield. While this study identifies key microbial taxa with potential functional roles, future research should focus on isolating and validating these microorganisms for their bioremediation and biofertilization activities under field conditions. This will provide actionable insights for developing microbial-based agricultural interventions to improve crop resilience and sustainability. Video Abstract.
Collapse
Affiliation(s)
- Honglei Ren
- Soybean Research Institute of Heilongjiang Academy of Agriculture Sciences, Harbin, 150086, China.
| | - Huilong Hong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Bire Zha
- Soybean Research Institute of Heilongjiang Academy of Agriculture Sciences, Harbin, 150086, China
- College of Modern Agriculture and Ecological Environmentofaq , Heilongjiang University, Harbin, 150006, China
| | - Sobhi F Lamlom
- Plant Production Department, Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Hongmei Qiu
- Jilin Academy of Agriculture Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, China
| | - Yongqiang Cao
- Crop Research Institute of Liaoning Academy of Agriculture Sciences, Shenyang, 110161, China
| | - Rujian Sun
- Hulunbuir Institute of Agriculture and Animal Husbandry, Hulunbuir, 021000, China
| | - Haorang Wang
- Jiangsu Xuhuai Regional Institute of Agricultural Sciences, Xuzhou, 221131, China
| | - Junkui Ma
- Shanxi Agricultural University/ Shanxi Academy of Agricultural Sciences, the Industrial Crop Institute, Taiyuan, 030031, China
| | - Hengbin Zhang
- Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, China
| | - Liping Sun
- Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Qing Yang
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035, China
| | - Changjun Zhou
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing, 163316, China
| | - Xiulin Liu
- Soybean Research Institute of Heilongjiang Academy of Agriculture Sciences, Harbin, 150086, China
| | - Xueyang Wang
- Soybean Research Institute of Heilongjiang Academy of Agriculture Sciences, Harbin, 150086, China
| | - Chunlei Zhang
- Soybean Research Institute of Heilongjiang Academy of Agriculture Sciences, Harbin, 150086, China
| | - Fengyi Zhang
- Soybean Research Institute of Heilongjiang Academy of Agriculture Sciences, Harbin, 150086, China
| | - Kezhen Zhao
- Soybean Research Institute of Heilongjiang Academy of Agriculture Sciences, Harbin, 150086, China
| | - Rongqiang Yuan
- Soybean Research Institute of Heilongjiang Academy of Agriculture Sciences, Harbin, 150086, China
| | - Ahmed M Abdelghany
- Crop Science Department, Faculty of Agriculture, Damanhour University, Damanhur, 22516, Egypt
| | - Bixian Zhang
- Institute of Biotechnology of Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China.
| | - Yuhong Zheng
- Jilin Academy of Agriculture Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, China.
| | - Jiajun Wang
- Soybean Research Institute of Heilongjiang Academy of Agriculture Sciences, Harbin, 150086, China.
| | - Wencheng Lu
- Heihe Branch Institute of Heilongjiang Academy of Agricultural Sciences, Heihe, 164300, China.
| |
Collapse
|
2
|
Yun YB, Park M, Lee Y, Um Y. Investigation of Growth and Ginsenoside Content of Wild-Simulated Ginseng Cultivated in Different Vegetation Environments for Establishing a Plant Growth Model. PLANTS (BASEL, SWITZERLAND) 2025; 14:906. [PMID: 40265833 PMCID: PMC11944855 DOI: 10.3390/plants14060906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 04/24/2025]
Abstract
Wild-simulated ginseng (WSG, Panax ginseng C.A. Meyer) is one of the most valuable medicinal plants in the world. This study aimed to investigate the correlation between growth and ginsenoside content of WSG in two different cultivation environments: coniferous and mixed forests. The results showed that air temperature, soil moisture content, and solar radiation were higher in mixed forest than in coniferous forest. Regarding soil properties, electrical conductivity, organic matter, total nitrogen, exchangeable potassium, and magnesium were higher in mixed forest than in coniferous forest. However, exchangeable sodium was lower in mixed forest than in coniferous forest. The analysis of growth characteristics revealed that the number of leaflets was significantly higher in WSG cultivated in mixed forest than in WSG cultivated in coniferous forest, whereas rhizome length, root diameter, root weight, and dry weight were significantly higher in coniferous forest. In contrast, total ginsenoside content and the content of each ginsenoside were much higher in WSG cultivated in mixed forest than in WSG cultivated in coniferous forest. The growth of WSG showed significantly positive correlations with electrical conductivity, organic matter, total nitrogen, exchangeable cations (K+, Mg2+, Na+), and cation exchange capacity. The number of leaflets per stem showed significantly positive correlations with six ginsenosides, whereas petiole length showed significantly negative correlations with mRb1, mRc, and Rb1. In conclusion, growth characteristics of WSG were higher in coniferous forest, but ginsenoside contents were higher in mixed forest. These results might be helpful for establishing the most optimal growth model of WSG, which is affected by various environmental factors.
Collapse
Affiliation(s)
- Yeong-Bae Yun
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju 36040, Republic of Korea; (Y.-B.Y.); (M.P.)
| | - Myeongbin Park
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju 36040, Republic of Korea; (Y.-B.Y.); (M.P.)
| | - Yi Lee
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju 28644, Republic of Korea;
| | - Yurry Um
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju 36040, Republic of Korea; (Y.-B.Y.); (M.P.)
| |
Collapse
|
3
|
Bai K, Ouyang Y, Qi J, Zhan Y, Wang J. Niches and Genotypes Determine the Diversity and Composition of Microbiomes After Herbicide Treatment in Beckmannia syzigachne. PLANTS (BASEL, SWITZERLAND) 2025; 14:876. [PMID: 40265757 PMCID: PMC11946788 DOI: 10.3390/plants14060876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 04/24/2025]
Abstract
Plant-associated microbes play a crucial role in plant adaptability by facilitating nutrient acquisition, growth, and stress resistance. However, the effects of herbicides on microbial communities in different root-associated niches and their impact on weed-microbe interactions are not well understood. Beckmannia syzigachne, a problematic weed, reduces crop yield and quality. In this study, we investigated bacterial and fungal community diversity in B. syzigachne using 16S and internal transcribed spacer (ITS) rRNA sequencing. Significant differences were observed in bacterial community structure across four root-associated niches, with diversity decreasing from bulk soil to endosphere. The sensitive genotype exhibited higher bacterial diversity compared to the resistant biotype, indicating that sample type is the primary factor influencing microbial community composition, with genotype playing a secondary role. Additionally, we examined fungal communities in sensitive and resistant populations, identifying 271 fungal operational taxonomic units (OTUs). Ascomycota, Basidiomycota, and Rozellomycota were dominant in the sensitive population, while the resistant population contained two unique OTUs, Saccharomyces sp. and Apiotrichum montevideense, which were absent in the sensitive population. This study provides insights into how bacterial and fungal communities in B. syzigachne populations respond to herbicide exposure, contributing to a deeper understanding of weed-microbe interactions.
Collapse
Affiliation(s)
- Kehan Bai
- Hunan Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China;
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (Y.O.); (J.Q.); (Y.Z.)
| | - Yulan Ouyang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (Y.O.); (J.Q.); (Y.Z.)
| | - Jiale Qi
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (Y.O.); (J.Q.); (Y.Z.)
| | - You Zhan
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (Y.O.); (J.Q.); (Y.Z.)
| | - Junzhi Wang
- Hunan Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China;
| |
Collapse
|
4
|
Paweer MMZ, Namikoye ES, Nchore SB, Akutse KS. Can fungal endophytes suppress Trialeurodes vaporariorum and the transmission of tomato infectious chlorosis and chlorosis viruses in field conditions? Front Cell Infect Microbiol 2025; 15:1470821. [PMID: 39967792 PMCID: PMC11832475 DOI: 10.3389/fcimb.2025.1470821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/16/2025] [Indexed: 02/20/2025] Open
Abstract
Field trials were conducted for two seasons in two experimental sites (Mwea in Kirinyaga and Ngoliba in Kiambu counties of Kenya) to assess the efficacy of fungal endophytes Hypocrea lixii F3ST1 and Trichoderma asperellum M2RT4 in the control of Trialeurodes vaporariorum vector of tomato infectious chlorosis virus (TICV) and tomato chlorosis virus (ToCV) through seeds inoculation. TICV and ToCV's disease incidence, severity and the yield were also evaluated. All the fungal endophytes successfully colonized all the tomato plant parts, but the highest root colonization was observed in H. lixii F3ST1 compared to the T. asperellum M2RT4 in both seasons. The number of nymphs was significantly lower in the endophytically colonized tomato plants than the control treatments in all the seasons and at both sites. However, the lowest number of nymphs was recorded in H. lixii F3ST1 compared to T. asperellum M2RT4. On the other hand, the TICV and ToCV disease incidence and severity rates were lower in endophytically colonized tomato crops compared to the control plots. This could be attributed to the reduction in the virus replication and lower feeding ability of T. vaporariorum that was characterized by less excretion of honeydew causing sooty mold. However, no significant difference was observed in ToCV disease severity rates among the treatments and across the seasons. The yield was significantly higher in endophyte plots than the control treatments in both sites and across the two seasons. This study demonstrates that H. lixii F3ST1 and T. asperellum M2RT4 endophytically colonized tomato plants and conferred systemic resistance against T. vaporariorum vector, and significantly reduced the transmission of TICV and ToCV, contributing to high reduction of both diseases' incidence and severity in the field. However, further studies are warranted to confirm these results at large scale trials.
Collapse
Affiliation(s)
- Marial Makur Zechariah Paweer
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Agricultural Science and Technology, Kenyatta University, Nairobi, Kenya
| | | | - Shem Bonuke Nchore
- Department of Agricultural Science and Technology, Kenyatta University, Nairobi, Kenya
| | - Komivi Senyo Akutse
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Unit of Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
5
|
Zhang J, Liao S, Gao W, Qubie A, He D, Wang H, Yan Z. Diversity, characterization, and biotechnological potential of plant growth-promoting bacteria from Bryophyllum pinnatum (Lam.) (Crassulaceae) roots and rhizosphere soil. Int Microbiol 2025:10.1007/s10123-025-00633-y. [PMID: 39841335 DOI: 10.1007/s10123-025-00633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/28/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025]
Abstract
Cultivable microbial communities associated with plants inhabiting extreme environments have great potential in biotechnological applications. However, there is a lack of knowledge about these microorganisms from Bryophyllum pinnatum (which survives in severely barren soil) and their ability to promote plant growth. The present study focused on the isolation, identification, biochemical characterization, and potential applications of root endophytic bacteria and rhizosphere bacteria. A total of 73 bacterial isolates were obtained, with 50 derived from rhizospheric soil and 23 from root tissue. The identified strains were categorized into 16 genera, with Bacillus, Priestia, Pseudarthrobacter, Neobacillus, Mesobacillus, and Arthrobacter being the most species-rich genera. Heat stress experiments indicated that almost half (50.7%) of the selected isolates were tolerant to heat stress. Furthermore, most strains present diverse capabilities for biotechnological applications, including the potential for indole-3-acetic acid (IAA) production, organic phosphorus solubilization, inorganic phosphorus solubilization, and nitrogen fixation. Some isolates (21.92%) exhibited broad-spectrum antagonistic activity against various phytopathogenic fungi, including Fusarium spp. Agar plate assays revealed that the Cellulomonas hominis strain LS43 and Bacillus inaquosorum strain LS77 significantly increased the total fresh weight of Arabidopsis (P < 0.05), yet these strains did not significantly affect the primary root length or the number of leaves. Notably, a subset of the strains tested did not significantly increase the growth of Arabidopsis and, in fact, had inhibitory effects on certain growth parameters. This is the first investigation highlighting the potential of root endophytic bacteria and rhizosphere bacteria in association with B. pinnatum in barren soils. Thus, these isolated strains positively influence plant nutrient uptake, stress resilience, and biocontrol to reduce chemical inputs in conventional agricultural practices, highlighting the importance of their development as biofertilizers for improving the quality of barren soil.
Collapse
Affiliation(s)
- Jianyun Zhang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Siyu Liao
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Weiping Gao
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Axing Qubie
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dongmei He
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hai Wang
- School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Zhuyun Yan
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
6
|
Kamal N, Qian C, Hao H, Wu J, Liu Z, Zhong X, Ghanem OM, Salem A, Orban Z, Elwakeel AE, Mahmoud SF, Said AF. Hybrid Pennisetum colonization by Bacillus megaterium BM18-2 labeled with green fluorescent protein (GFP) under Cd stress. Arch Microbiol 2025; 207:30. [PMID: 39786545 PMCID: PMC11717813 DOI: 10.1007/s00203-024-04228-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025]
Abstract
Researchers have reported that Bacillus megaterium BM18-2 reduces Cd toxicity in Hybrid Pennisetum, but understanding the interaction between plants and associated endophytes is crucial for understanding phytoremediation strategies under heavy metal stress. The current study aims to monitor the colonization patterns of GFP-labeled endophytic bacteria BM18-2 on Hybrid Pennisetum grass. Additionally, it will monitor Cd's effect on plant bacterial colonization. Confocal laser scanning microscopy of plant roots infected with gfp tagged BM18-2 revealed that the bacterium colonised root hairs and epidermal cells at the early stage of colonization, and over time, the bacteria penetrated to the internal tissues following their colonization of the stem and leaf. The roots, stems, and leaves of H. Pennisetum grown in Cd-contaminated soil contained a higher number of bacteria than those grown in normal soil. The result of Cd translocation indicated the condensation of heavy metals in the root cells and stem, while no Cd was found in the leaf. The study will also look for the enzymatic activity of bacteria BM18-2 and use Leadmium Green AM dye to track how Cd is taken up and moved through the plant. The enzymatic activity results showed that BM18-2 can produce catalase and amylase, but did not record any cellulase or lipase activity. As a result, the pattern of useful endophytic BM18-2 colonization through H. Pennisetum grass will aid in the application and maintenance of these bacteria in farming, and it presents new opportunities for the development of innovative strategies in the fields of agriculture and biotechnology.
Collapse
Affiliation(s)
- Nehal Kamal
- National Forage Breeding Innovation Base (JAAS), Nanjing, 210014, People's Republic of China.
- Department of Botany and Microbiology, Faculty of Science, Suez University, P.O. Box: 43221, Suez, Egypt.
| | - Chen Qian
- National Forage Breeding Innovation Base (JAAS), Nanjing, 210014, People's Republic of China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
- Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Nanjing, 210014, People's Republic of China
| | - Huanhuan Hao
- College of Agro-grassland Science, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Juanzi Wu
- National Forage Breeding Innovation Base (JAAS), Nanjing, 210014, People's Republic of China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
- Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Nanjing, 210014, People's Republic of China
| | - Zhiwei Liu
- National Forage Breeding Innovation Base (JAAS), Nanjing, 210014, People's Republic of China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
- Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Nanjing, 210014, People's Republic of China
| | - Xiaoxian Zhong
- National Forage Breeding Innovation Base (JAAS), Nanjing, 210014, People's Republic of China.
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China.
- Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Nanjing, 210014, People's Republic of China.
| | - Osama M Ghanem
- Soil and Water Department, Faculty of Agriculture, Suez Canal University, 41522, Ismailia, Egypt
| | - Ali Salem
- Civil Engineering Department, Faculty of Engineering, Minia University, Minya, Egypt.
- Structural Diagnostics and Analysis Research Group, Faculty of Engineering and Information Technology, University of Pécs, Pécs, Hungary.
| | - Zoltan Orban
- Structural Diagnostics and Analysis Research Group, Faculty of Engineering and Information Technology, University of Pécs, Pécs, Hungary
| | - Abdallah Elshawadfy Elwakeel
- Agricultural Engineering Department, Faculty of Agriculture and Natural Resources, Aswan University, Aswan, Egypt
| | - Samy F Mahmoud
- Department of Biotechnology, College of Science, Taif University, Taif city, Saudi Arabia
| | - Alaa F Said
- Agricultural Botany Department, Faculty of Agriculture, Suez Canal University, 41522, Ismailia, Egypt
| |
Collapse
|
7
|
Meng P, Xin K, Lu Z, Chen J, Tang X, Meng G, He F, Liu L, Wang H, Wang C. Intercropping with Robinia pseudoacacia reduces soft rot incidence in konjac by modulating the root bacterial community. PEST MANAGEMENT SCIENCE 2025; 81:55-68. [PMID: 39263914 DOI: 10.1002/ps.8405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/22/2024] [Accepted: 08/25/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Soft rot (Pectobacterium aroidearum and Dickeya) is a devastating soil-borne bacterial disease that threatens konjac production. Intercropping with false acacia has been shown to significantly reduce soft rot incidence in konjac by shifting the microbial community. However, how intercropping shapes the root bacterial community and affects soft rot incidence remains unclear. To address this, we investigated three konjac intercropping systems (false acacia, paulownia, and maize) to explore the relationships among intercropping, soft rot incidence, root bacterial community, soil enzyme activity, and soil properties. RESULTS Konjac intercropped with false acacia exhibited the lowest soft rot incidence and the lowest abundance of pathogenic taxa. Soft rot incidence was negatively correlated with total soil nitrogen and potassium but positively correlated with total and available soil phosphorus. The bacterial community structure and function in konjac roots differed among intercropping types, mainly driven by available soil phosphorus. Beneficial microorganisms such as Bradyrhizobium and Variovorax were enriched under a false acacia intercropping system and were negatively correlated with soil-available phosphorus. Additionally, the stable bacterial community in healthy konjac roots under false acacia may make konjac less susceptible to pathogen invasion. CONCLUSION The study showed that intercropping reduced the soft rot incidence by regulating the structure and stability of the konjac root bacterial community, and soil-available phosphorus was the main factor affecting the difference in the konjac root bacterial community, which provided a basis for the management of soil fertilization in konjac cultivation. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Panpan Meng
- College of Forestry, Northwest A&F University, Yangling, China
| | - Kexu Xin
- College of Forestry, Northwest A&F University, Yangling, China
| | - Zhoumin Lu
- College of Forestry, Northwest A&F University, Yangling, China
| | - Juan Chen
- Yachang Forest Farm, Guangxi Zhuang Autonomous Region, Baise, China
| | - Xiaan Tang
- College of Forestry, Northwest A&F University, Yangling, China
| | - Guihua Meng
- College of Forestry, Northwest A&F University, Yangling, China
| | - Fei He
- College of Modern Agriculture and Biotechnology, Ankang University, Ankang, China
| | | | - Haihua Wang
- North Florida Research and Education Center, University of Florida, Quincy, Florida, USA
| | - Chunyan Wang
- College of Forestry, Northwest A&F University, Yangling, China
| |
Collapse
|
8
|
Tamošiūnė I, Hakim MF, Buzaitė O, Stanys V, Vinskienė J, Andriūnaitė E, Baniulis D. Diversity and Plant Growth-Promoting Properties of Rhodiola rosea Root Endophytic Bacteria. Microorganisms 2024; 13:13. [PMID: 39858781 PMCID: PMC11767865 DOI: 10.3390/microorganisms13010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Plants inhabiting environments with suboptimal growth conditions often have a more pronounced capacity to attract and sustain microbial communities that improve nutrient absorption and expand abiotic stress tolerance. Rhodiola rosea L. is a succulent plant of the Crassulaceae family adapted to survive in sandy or rocky soils or dry tundra. The aim of the present study was to investigate the diversity and plant growth-stimulating potential of R. rosea endophytic microbiota. Metataxonomic analysis of the bacterial diversity in the rhizome of R. rosea revealed 108 families. Among these, three families were found exclusively in the core microbiome of 1-year-old plants, while nine families were unique to the core microbiome of mature plants grown in the field for more than 4 years. Seventy-three endophytic bacteria isolates were obtained from the rhizome of R. rosea plants and were assigned into 14 distinct bacterial genera of Firmicutes (26%) or Proteobacteria (74%) phyla. Screening for functional genes related to the nitrogen cycle, phosphorus mineralisation or dissolution, and traits associated with nitrogen fixation (56% of isolates), siderophore production (40%), inorganic phosphorus solubilisation (30%), and production of indole-related compounds (51%) led to the classification of the isolates into 16 distinct clusters. Co-cultivation of 45 selected isolates with germinating Arabidopsis seedlings revealed 18 and 5 isolates that resulted in more than a 20% increase in root or shoot growth, respectively. The study results established the complexity of the succulent R. rosea endophytic microbiome and identified isolates for potential plant growth-stimulating applications.
Collapse
Affiliation(s)
- Inga Tamošiūnė
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas Str. 30, 54333 Babtai, Kaunas reg., Lithuania; (I.T.); (M.F.H.); (V.S.); (J.V.); (E.A.)
| | - Muhammad Fahad Hakim
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas Str. 30, 54333 Babtai, Kaunas reg., Lithuania; (I.T.); (M.F.H.); (V.S.); (J.V.); (E.A.)
| | - Odeta Buzaitė
- Department of Biochemistry, Vytautas Magnus University, Universiteto Str. 10, 53361 Akademija, Kaunas reg., Lithuania;
| | - Vidmantas Stanys
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas Str. 30, 54333 Babtai, Kaunas reg., Lithuania; (I.T.); (M.F.H.); (V.S.); (J.V.); (E.A.)
| | - Jurgita Vinskienė
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas Str. 30, 54333 Babtai, Kaunas reg., Lithuania; (I.T.); (M.F.H.); (V.S.); (J.V.); (E.A.)
| | - Elena Andriūnaitė
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas Str. 30, 54333 Babtai, Kaunas reg., Lithuania; (I.T.); (M.F.H.); (V.S.); (J.V.); (E.A.)
| | - Danas Baniulis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas Str. 30, 54333 Babtai, Kaunas reg., Lithuania; (I.T.); (M.F.H.); (V.S.); (J.V.); (E.A.)
| |
Collapse
|
9
|
Bakhoum N, Humm E, Khan N, Hirsch AM. Soil microbiomes from the groundnut basin of Senegal contain plant growth-promoting bacteria with potential for crop improvement in arid soils. Can J Microbiol 2024; 70:538-550. [PMID: 39167827 DOI: 10.1139/cjm-2024-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The principal methods to maintain soil fertility in Sahel soils are largely allowing fields to go fallow and manure addition. These methods are not currently sufficient to improve soil fertility. To promote biological amendments, we aimed to understand the plant-growth promoting traits of various soil microbial isolates. The soils collected in different areas in Senegal exhibited a similar eDNA profile of bacteria; the dominant microbes were Firmicutes, followed by Proteobacteria and Actinobacteria. Of 17 isolates identified and tested, the vast majority solubilized rock phosphate and a large number grew on culture medium containing 6% salt, but very few degraded starches or hydrolysed carboxymethyl cellulose or produced siderophores. Upon single inoculation, Peribacillus asahii RC16 and Dietzia cinnamea 55 significantly increased pearl millet growth and yield parameters. For cowpea, plant shoot length was significantly increased by Pseudarthrobacter phenanthrenivorans MKAG7 co-inoculated with Bradyrhizobium elkanii 20TpCR5, and nearly all rhizobacteria tested significantly improved cowpea dry weight and pod weight. Additionally, the double inoculation of Dietzia cinnamea 55 and MKAG7 significantly increased shoot length, dry weight, and seed head weight of pearl millet. These isolates are promising inoculants because they are ecologically-friendly, cost-effective, sustainable, and have fewer negative effects on the soil and its inhabitants.
Collapse
Affiliation(s)
- Niokhor Bakhoum
- Université Sine-Saloum El Hadj Ibrahima NIASS, UFR Sciences Sociales et Environnementales (2SE), Département Environnement Biodiversité Développement Durable (EB2D), Kaolack/Laboratoire Commun de Microbiologie (IRD/ISRA/UCAD), Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux (LAPSE), BP 1386 Dakar, Senegal
| | - Ethan Humm
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Noor Khan
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ann M Hirsch
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
10
|
Alattas H, Glick BR, Murphy DV, Scott C. Harnessing Pseudomonas spp. for sustainable plant crop protection. Front Microbiol 2024; 15:1485197. [PMID: 39640850 PMCID: PMC11617545 DOI: 10.3389/fmicb.2024.1485197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
This review examines the role of Pseudomonas spp. bacteria as biocontrol agents against crop diseases, focusing on their mechanisms of action, efficacy, and potential applications in sustainable agriculture. Pseudomonas spp., ubiquitous in soil ecosystems and root microbiomes, have attracted attention for their ability to suppress phytopathogens and enhance plant health through various mechanisms. These include direct competition for nutrients, production of antimicrobial compounds and volatile organic compounds, competition using type VI secretion systems, and indirect induction of systemic resistance. Our review shows that Pseudomonas strains effectively control a wide range of diseases across diverse plant species, with some strains demonstrating efficacy comparable to chemical fungicides. However, the review also highlights challenges in achieving consistent performance when using Pseudomonas inoculants under field conditions due to various biotic and abiotic factors. Strategies to optimize biocontrol potential, such as formulation techniques, application methods, and integration with other management practices, are discussed. The advantages of Pseudomonas-based biocontrol for sustainable agriculture include reduced reliance on chemical pesticides, enhanced crop productivity, and improved environmental sustainability. Future research directions should focus on understanding the complex interactions within the plant microbiome, optimizing delivery systems, and addressing regulatory hurdles for commercial deployment. This review underscores the significant potential of Pseudomonas spp. in sustainable crop protection while acknowledging the need for further research to fully harness their capabilities in agricultural systems.
Collapse
Affiliation(s)
- Hussain Alattas
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
- School of Medical, Molecular, and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Daniel V. Murphy
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
- SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Colin Scott
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
- CSIRO Environment, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| |
Collapse
|
11
|
Qadir M, Iqbal A, Hussain A, Hussain A, Shah F, Yun BW, Mun BG. Exploring Plant-Bacterial Symbiosis for Eco-Friendly Agriculture and Enhanced Resilience. Int J Mol Sci 2024; 25:12198. [PMID: 39596264 PMCID: PMC11594960 DOI: 10.3390/ijms252212198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
This review explores the intricate relationship between plants and bacterial endophytes, revealing their multifaceted roles in promoting plant growth, resilience, and defense mechanisms. By selectively shaping their microbiome, plants harness diverse endophytic bacterial strains to enhance nutrient absorption, regulate hormones, mitigate damage, and contribute to overall plant health. The review underscores the potential of bacterial endophytes in self-sustaining agricultural systems, offering solutions to reduce reliance on fertilizers and pesticides. Additionally, the review highlights the importance of endophytes in enhancing plant tolerance to various environmental stresses, such as drought, salinity, extreme temperatures, and heavy metal toxicity. The review emphasizes the significance of understanding and harnessing the mutualistic relationship between plants and endophytes for maximizing agricultural yields and promoting sustainable farming practices.
Collapse
Affiliation(s)
- Muhammad Qadir
- Department of Botany, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan; (M.Q.)
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Amjad Iqbal
- Department of Food Science & Technology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Anwar Hussain
- Department of Botany, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan; (M.Q.)
| | - Adil Hussain
- Department of Entomology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Farooq Shah
- Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Byung-Wook Yun
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Bong-Gyu Mun
- Department of Environmental Biochemistry, Chungbuk National University, Chungbuk 28644, Republic of Korea
| |
Collapse
|
12
|
Kracmarova-Farren M, Alexova E, Kodatova A, Mercl F, Szakova J, Tlustos P, Demnerova K, Stiborova H. Biochar-induced changes in soil microbial communities: a comparison of two feedstocks and pyrolysis temperatures. ENVIRONMENTAL MICROBIOME 2024; 19:87. [PMID: 39516989 PMCID: PMC11549753 DOI: 10.1186/s40793-024-00631-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The application of a biochar in agronomical soil offers a dual benefit of improving soil quality and sustainable waste recycling. However, utilizing new organic waste sources requires exploring the biochar's production conditions and application parameters. Woodchips (W) and bone-meat residues (BM) after mechanical deboning from a poultry slaughterhouse were subjected to pyrolysis at 300 °C and 500 °C and applied to cambisol and luvisol soils at ratios of 2% and 5% (w/w). RESULTS Initially, the impact of these biochar amendments on soil prokaryotes was studied over the course of one year. The influence of biochar variants was further studied on prokaryotes and fungi living in the soil, rhizosphere, and roots of Triticum aestivum L., as well as on soil enzymatic activity. Feedstock type, pyrolysis temperature, application dose, and soil type all played significant roles in shaping both soil and endophytic microbial communities. BM treated at a lower pyrolysis temperature of 300 °C increased the relative abundance of Pseudomonadota while causing a substantial decrease in soil microbial diversity. Conversely, BM prepared at 500 °C favored the growth of microbes known for their involvement in various nutrient cycles. The W biochar, especially when pyrolysed at 500 °C, notably affected microbial communities, particularly in acidic cambisol compared to luvisol. In cambisol, biochar treatments had a significant impact on prokaryotic root endophytes of T. aestivum L. Additionally, variations in prokaryotic community structure of the rhizosphere depended on the increasing distance from the root system (2, 4, and 6 mm). The BM biochar enhanced the activity of acid phosphatase, whereas the W biochar increased the activity of enzymes involved in the carbon cycle (β-glucosidase, β-xylosidase, and β-N-acetylglucosaminidase). CONCLUSIONS These results collectively suggest, that under appropriate production conditions, biochar can exert a positive influence on soil microorganisms, with their response closely tied to the biochar feedstock composition. Such insights are crucial for optimizing biochar application in agricultural practices to enhance soil health.
Collapse
Affiliation(s)
- Martina Kracmarova-Farren
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, Prague 6, 166 28, Czech Republic
| | - Eliska Alexova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, Prague 6, 166 28, Czech Republic
| | - Anezka Kodatova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, Prague 6, 166 28, Czech Republic
| | - Filip Mercl
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague - Suchdol, 165 21, Czech Republic
| | - Jirina Szakova
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague - Suchdol, 165 21, Czech Republic
| | - Pavel Tlustos
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague - Suchdol, 165 21, Czech Republic
| | - Katerina Demnerova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, Prague 6, 166 28, Czech Republic
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague - Suchdol, 165 21, Czech Republic
| | - Hana Stiborova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, Prague 6, 166 28, Czech Republic.
| |
Collapse
|
13
|
Duflos R, Vailleau F, Roux F. Toward Ecologically Relevant Genetics of Interactions Between Host Plants and Plant Growth-Promoting Bacteria. ADVANCED GENETICS (HOBOKEN, N.J.) 2024; 5:2300210. [PMID: 39552649 PMCID: PMC11561803 DOI: 10.1002/ggn2.202300210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/24/2024] [Indexed: 11/19/2024]
Abstract
The social movement to reduce reliance on pesticides and synthesized fertilizers and the growing global demand for sustainable food supplies require the development of eco-friendly and sustainable agricultural practices. In line, plant growth-promoting bacteria (PGPB) can participate in creating innovative agroecological systems. While the effectiveness of PGPB is highly influenced by abiotic conditions and microbe-microbe interactions, beneficial plant-PGPB interactions can also highly depend on both host and PGPB genotype. Here, the state of the art on the extent of natural genetic variation of plant-PGPB interactions and the underlying genetic architecture, in particular in Arabidopsis thaliana is reviewed. Extensive natural plant genetic variation in response to PGPB is associated with a polygenic architecture and genetic pathways rarely mentioned as being involved in the response to PGPB. To date, natural genetic variation within PGPB is little explored, which may in turn allow the identification of new genetic pathways underlying benefits to plants. Accordingly, several avenues to better understand the genomic and molecular landscape of plant-PGPB interactions are introduced. Finally, the need for establishing thorough functional studies of candidate genes underlying Quantitative Trait Loci and estimating the extent of genotype-by-genotype-by-environment interactions within the context of realistic (agro-)ecological conditions is advocated.
Collapse
Affiliation(s)
- Rémi Duflos
- LIPMEINRAECNRSUniversité de ToulouseCastanet‐Tolosan31326France
| | | | - Fabrice Roux
- LIPMEINRAECNRSUniversité de ToulouseCastanet‐Tolosan31326France
| |
Collapse
|
14
|
Lv PL, Jia C, Wei CH, Zhao HP, Chen R. Biochar modulates intracellular electron transfer for nitrate reduction in denitrifying anaerobic methane oxidizing archaea. BIORESOURCE TECHNOLOGY 2024; 406:130998. [PMID: 38885730 DOI: 10.1016/j.biortech.2024.130998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Denitrifying anaerobic methane oxidizing (DAMO) archaea plays a significant role in simultaneously nitrogen removal and methane mitigation, yet its limited metabolic activity hinders engineering applications. This study employed biochar to explore its potential for enhancing the metabolic activity and nitrate reduction capacity of DAMO microorganisms. Sawdust biochar (7 g/L) was found to increase the nitrate reduction rate by 2.85 times, although it did not affect the nitrite reduction rate individually. Scanning electron microscopy (SEM) and fluorescence excitation-emission matrix (EEM) analyses revealed that biochar promoted microbial aggregation, and stimulated the secretion of extracellular polymeric substances (EPS). Moreover, biochar bolstered the redox capacity and conductivity of the biofilm, notably enhancing the activity of the electron transfer system by 1.65 times. Key genes involved in intracellular electron transport (Hdr, MHC, Rnf) and membrane transport proteins (BBP, ABC, NDH) of archaea were significantly up-regulated. These findings suggest that biochar regulates electrons generated by reverse methanogenesis to the membrane for nitrate reduction.
Collapse
Affiliation(s)
- Pan-Long Lv
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China
| | - Chuan Jia
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China
| | - Chi-Hang Wei
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China
| | - He-Ping Zhao
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - Rong Chen
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China.
| |
Collapse
|
15
|
Al-Tarshi M, Dobretsov S, Al-Belushi M. Bacterial Communities across Multiple Ecological Niches (Water, Sediment, Plastic, and Snail Gut) in Mangrove Habitats. Microorganisms 2024; 12:1561. [PMID: 39203403 PMCID: PMC11356523 DOI: 10.3390/microorganisms12081561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/29/2024] [Accepted: 07/18/2024] [Indexed: 09/03/2024] Open
Abstract
Microbial composition across substrates in mangroves, particularly in the Middle East, remains unclear. This study characterized bacterial communities in sediment, water, Terebralia palustris snail guts, and plastic associated with Avicennia marina mangrove forests in two coastal lagoons in the Sea of Oman using 16S rDNA gene MiSeq sequencing. The genus Vibrio dominated all substrates except water. In the gut of snails, Vibrio is composed of 80-99% of all bacterial genera. The water samples showed a different pattern, with the genus Sunxiuqinia being dominant in both Sawadi (50.80%) and Qurum (49.29%) lagoons. There were significant differences in bacterial communities on different substrata, in particular plastic. Snail guts harbored the highest number of unique Operational Taxonomic Units (OTUs) in both lagoons, accounting for 30.97% OTUs in Sawadi and 28.91% OTUs in Qurum, compared to other substrates. Plastic in the polluted Sawadi lagoon with low salinity harbored distinct genera such as Vibrio, Aestuariibacter, Zunongwangia, and Jeotgalibacillus, which were absent in the Qurum lagoon with higher salinity and lower pollution. Sawadi lagoon exhibited higher species diversity in sediment and plastic substrates, while Qurum lagoon demonstrated lower species diversity. The principal component analysis (PCA) indicates that environmental factors such as salinity, pH, and nutrient levels significantly influence bacterial community composition across substrates. Variations in organic matter and potential anthropogenic influences, particularly from plastics, further shape bacterial communities. This study highlights the complex microbial communities in mangrove ecosystems, emphasizing the importance of considering multiple substrates in mangrove microbial ecology studies. The understanding of microbial dynamics and anthropogenic impacts is crucial for shaping effective conservation and management strategies in mangrove ecosystems, particularly in the face of environmental changes.
Collapse
Affiliation(s)
- Muna Al-Tarshi
- Marine Conservation Department, DG of Nature Conservation, Environment Authority, P.O. Box 323, Muscat 100, Oman
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoud 123 P.O. Box 34, Muscat 123, Oman;
| | - Sergey Dobretsov
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoud 123 P.O. Box 34, Muscat 123, Oman;
- UNESCO Chair in Marine Biotechnology, Sultan Qaboos University, Al Khoud 123 P.O. Box 50, Muscat 123, Oman
| | - Mohammed Al-Belushi
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoud 123 P.O. Box 34, Muscat 123, Oman;
- Central Laboratory for Food Safety, Food Safety and Quality Center, Ministry of Agricultural, Fisheries Wealth & Water Resources, P.O. Box 3094, Airport Central Post, Muscat 111, Oman
| |
Collapse
|
16
|
Cordero-Elvia J, Galindo-González L, Fredua-Agyeman R, Hwang SF, Strelkov SE. Clubroot-Induced Changes in the Root and Rhizosphere Microbiome of Susceptible and Resistant Canola. PLANTS (BASEL, SWITZERLAND) 2024; 13:1880. [PMID: 38999720 PMCID: PMC11244039 DOI: 10.3390/plants13131880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
Clubroot is a soilborne disease of canola (Brassica napus) and other crucifers caused by the obligate parasite Plasmodiophora brassicae. In western Canada, clubroot is usually managed by planting-resistant cultivars, but the emergence of resistance-breaking pathotypes of P. brassicae represents a major threat to sustainable canola production. The rhizosphere and root contain beneficial microorganisms that can improve plant health. In this study, we evaluated the effect of two P. brassicae isolates (termed A and B) with different levels of virulence on the root and rhizosphere microbiomes of clubroot-resistant and clubroot-susceptible canola. Additionally, potential biocontrol microorganisms were identified based on taxa antagonistic to clubroot. Although both P. brassicae isolates were classified as pathotype 3A, isolate A caused a higher disease severity index in the resistant canola genotype compared with isolate B. Metabarcoding analysis indicated a shift in the bacterial and fungal communities in response to inoculation with either field isolate. Root endophytic bacterial and fungal communities responded to changes in inoculation, isolate type, sampling time, and canola genotype. In contrast, fungal communities associated with the rhizosphere exhibited significant differences between sampling times, while bacterial communities associated with the rhizosphere exhibited low variability.
Collapse
Affiliation(s)
- Jorge Cordero-Elvia
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB T6G2P5, Canada
| | - Leonardo Galindo-González
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB T6G2P5, Canada
- Ottawa Plant Laboratory, Science Branch, Canadian Food Inspection Agency, 3851 Fallowfield Road, Ottawa, ON K2H8P9, Canada
| | - Rudolph Fredua-Agyeman
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB T6G2P5, Canada
| | - Sheau-Fang Hwang
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB T6G2P5, Canada
| | - Stephen E Strelkov
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB T6G2P5, Canada
| |
Collapse
|
17
|
Barajas González JA, de la Rosa YEK, Carrillo-González R, González-Chávez MDCÁ, Hidalgo Lara ME, Soto Hernández RM, Herrera Cabrera BE. NaCl Modifies Biochemical Traits in Bacterial Endophytes Isolated from Halophytes: Towards Salinity Stress Mitigation Using Consortia. PLANTS (BASEL, SWITZERLAND) 2024; 13:1626. [PMID: 38931058 PMCID: PMC11207235 DOI: 10.3390/plants13121626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/25/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Bacterial endophytes (120) were isolated from six halophytes (Distichlis spicata, Cynodon dactylon, Eragrostis obtusiflora, Suaeda torreyana, Kochia scoparia, and Baccharis salicifolia). These halophiles were molecularly identified and characterized with or without NaCl conditions. Characterization was based on tests such as indole acetic acid (IAA), exopolysaccharides (EPS), and siderophores (SID) production; solubilization of phosphate (P), potassium (K), zinc (Zn), and manganese (Mn); mineralization of phytate; enzymatic activity (acid and alkaline phosphatase, phytases, xylanases, and chitinases) and the mineralization/solubilization mechanisms involved (organic acids and sugars). Moreover, compatibility among bacteria was assessed. Eleven halophiles were characterized as highly tolerant to NaCl (2.5 M). The bacteria isolated were all different from each other. Two belonged to Bacillus velezensis and one to B. pumilus while the rest of bacteria were identified up to the genus level as belonging to Bacillus, Halobacillus, Halomonas, Pseudomonas, Nesterenkonia, and three strains of Oceanobacillus. The biochemical responses of nutrient solubilization and enzymatic activity were different between bacteria and were influenced by the presence of NaCl. Organic acids were involved in P mineralization and nutrient solubilization. Tartaric acid was common in the solubilization of P, Zn, and K. Maleic and vanillic acid were only detected in Zn and K solubilization, respectively. Furthermore, sugars appeared to be involved in the solubilization of nutrients; fructose was detected in the solubilization tests. Therefore, these biochemical bacterial characteristics should be corroborated in vivo and tested as a consortium to mitigate saline stress in glycophytes under a global climate change scheme that threatens to exacerbate soil salinity.
Collapse
Affiliation(s)
- Jesús Adrián Barajas González
- Programa en Edafología, Colegio de Postgraduados, Campus Montecillo, Carr. México-Texcoco km 36.5, Montecillo 56230, Mexico; (J.A.B.G.); (R.C.-G.)
| | - Yersaín Ely Keller de la Rosa
- Departamento de Biotecnología y Bioingeniería, CINVESTAV, Av. IPN 2508, Ciudad de México 07360, Mexico; (Y.E.K.d.l.R.); (M.E.H.L.)
| | - Rogelio Carrillo-González
- Programa en Edafología, Colegio de Postgraduados, Campus Montecillo, Carr. México-Texcoco km 36.5, Montecillo 56230, Mexico; (J.A.B.G.); (R.C.-G.)
| | | | - María Eugenia Hidalgo Lara
- Departamento de Biotecnología y Bioingeniería, CINVESTAV, Av. IPN 2508, Ciudad de México 07360, Mexico; (Y.E.K.d.l.R.); (M.E.H.L.)
| | - Ramón Marcos Soto Hernández
- Programa en Botánica, Colegio de Postgraduados, Campus Montecillo, Carr. México-Texcoco km 36.5, Montecillo 56230, Mexico;
| | - Braulio Edgar Herrera Cabrera
- Programa en Estrategias de Desarrollo Agrícola Regional, Colegio de Postgraduados, Campus Puebla, Carr. Fed. Mex-Pue, Puebla 72130, Mexico;
| |
Collapse
|
18
|
Juby S, Soumya P, Jayachandran K, Radhakrishnan EK. Morphological, Metabolomic and Genomic Evidences on Drought Stress Protective Functioning of the Endophyte Bacillus safensis Ni7. Curr Microbiol 2024; 81:209. [PMID: 38834921 DOI: 10.1007/s00284-024-03720-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/26/2024] [Indexed: 06/06/2024]
Abstract
The metabolomic and genomic characterization of an endophytic Bacillus safensis Ni7 was carried out in this study. This strain has previously been isolated from the xerophytic plant Nerium indicum L. and reported to enhance the drought tolerance in Capsicum annuum L. seedlings. The effects of drought stress on the morphology, biofilm production, and metabolite production of B. safensis Ni7 are analyzed in the current study. From the results obtained, the organism was found to have multiple strategies such as aggregation and clumping, robust biofilm production, and increased production of surfactin homologues under the drought induced condition when compared to non-stressed condition. Further the whole genome sequencing (WGS) based analysis has demonstrated B. safensis Ni7 to have a genome size of 3,671,999 bp, N50 value of 3,527,239, and a mean G+C content of 41.58%. Interestingly the organism was observed to have the presence of various stress-responsive genes (13, 20U, 16U,160, 39, 17M, 18, 26, and ctc) and genes responsible for surfactin production (srfAA, srfAB, srfAC, and srfAD), biofilm production (epsD, epsE, epsF, epsG, epsH, epsI, epsK, epsL, epsM, epsN, and pel), chemotaxis (cheB_1, cheB_2, cheB_3, cheW_1, cheW_2 cheR, cheD, cheC, cheA, cheY, cheV, and cheB_4), flagella synthesis (flgG_1, flgG_2, flgG_3, flgC, and flgB) as supportive to the drought tolerance. Besides these, the genes responsible for plant growth promotion (PGP), including the genes for nitrogen (nasA, nasB, nasC, nasD, and nasE) and sulfur assimilation (cysL_1&L_2, cysI) and genes for phosphate solubilization (phoA, phoP_1& phoP_2, and phoR) could also be predicted. Along with the same, the genes for catalase, superoxide dismutase, protein homeostasis, cellular fitness, osmoprotectants production, and protein folding could also be predicted from its WGS data. Further pan-genome analysis with plant associated B. safensis strains available in the public databases revealed B. safensis Ni7 to have the presence of a total of 5391 gene clusters. Among these, 3207 genes were identified as core genes, 954 as shell genes and 1230 as cloud genes. This variation in gene content could be taken as an indication of evolution of strains of Bacillus safensis as per specific conditions and hence in the case of B. safensis Ni7 its role in habitat adaptation of plant is well expected. This diversity in endophytic bacterial genes may attribute its role to support the plant system to cope up with stress conditions. Overall, the study provides genomic evidence on Bacillus safensis Ni7 as a stress alleviating microbial partner in plants.
Collapse
Affiliation(s)
- Silju Juby
- School of Biosciences, Mahatma Gandhi University, Kottayam, India
| | - P Soumya
- School of Biosciences, Mahatma Gandhi University, Kottayam, India
| | - K Jayachandran
- School of Biosciences, Mahatma Gandhi University, Kottayam, India
| | | |
Collapse
|
19
|
Hnamte L, Vanlallawmzuali, Kumar A, Yadav MK, Zothanpuia, Singh PK. An updated view of bacterial endophytes as antimicrobial agents against plant and human pathogens. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100241. [PMID: 39091295 PMCID: PMC11292266 DOI: 10.1016/j.crmicr.2024.100241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Bacterial endophytes are a crucial component of the phytomicrobiome, playing an essential role in agriculture and industries. Endophytes are a rich source of bioactive compounds, serving as natural antibiotics that can be effective in combating antibiotic resistance in pathogens. These bacteria interact with host plants through various processes such as quorum sensing, chemotaxis, antibiosis, and enzymatic activity. The current paper focuses on how plants benefit extensively from endophytic bacteria and their symbiotic relationship in which the microbes enhance plant growth, nitrogen fixation, increase nutrient uptake, improve defense mechanisms, and act as antimicrobial agents against pathogens. Moreover, it highlights some of the bioactive compounds produced by endophytes.
Collapse
Affiliation(s)
- Lalhmangaihmawia Hnamte
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl-796001, Mizoram, India
| | - Vanlallawmzuali
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl-796001, Mizoram, India
| | - Ajay Kumar
- Amity institute of Biotechnology, Amity University, Noida-201313, India
| | - Mukesh Kumar Yadav
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
| | - Zothanpuia
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl-796001, Mizoram, India
| | - Prashant Kumar Singh
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl-796001, Mizoram, India
| |
Collapse
|
20
|
Tlou M, Ndou B, Mabona N, Khwathisi A, Ateba C, Madala N, Serepa-Dlamini MH. Next generation sequencing-aided screening, isolation, molecular identification, and antimicrobial potential for bacterial endophytes from the medicinal plant, Elephantorrhiza elephantina. Front Microbiol 2024; 15:1383854. [PMID: 38855763 PMCID: PMC11160484 DOI: 10.3389/fmicb.2024.1383854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/06/2024] [Indexed: 06/11/2024] Open
Abstract
Elephantorrhiza elephantina, a wild plant in southern Africa, is utilized in traditional medicine for various ailments, leading to its endangerment and listing on the Red List of South African Plants. To date, there have been no reports on bacterial endophytes from this plant, their classes of secondary metabolites, and potential medicinal properties. This study presents (i) taxonomic characterization of bacterial endophytes in leaf and root tissues using 16S rRNA, (ii) bacterial isolation, morphological, and phylogenetic characterization, (iii) bacterial growth, metabolite extraction, and LC-MS-based metabolite fingerprinting, and (iv) antimicrobial testing of bacterial crude extracts. Next-generation sequencing yielded 693 and 2,459 DNA read counts for the rhizomes and leaves, respectively, detecting phyla including Proteobacteria, Bacteroidota, Gemmatimonadota, Actinobacteriota, Verrucomicrobiota, Dependentiae, Firmicutes, and Armatimonodata. At the genus level, Novosphingobium, Mesorhizobium, Methylobacterium, and Ralstonia were the most dominant in both leaves and rhizomes. From root tissues, four bacterial isolates were selected, and 16S rRNA-based phylogenetic characterization identified two closely related Pseudomonas sp. (strain BNWU4 and 5), Microbacterium oxydans BNWU2, and Stenotrophomonas maltophilia BNWU1. The ethyl acetate:chloroform (1:1 v/v) organic extract from each isolate exhibited antimicrobial activity against all selected bacterial pathogens. Strain BNWU5 displayed the highest activity, with minimum inhibitory concentrations ranging from 62.5 μg/mL to 250 μg/mL against diarrhoeagenic Escherichia coli, Escherichia coli O157:H7, Salmonella enterica, antibiotic-resistant Vibrio cholerae, Staphylococcus aureus, Bacillus cereus, and Enterococcus durans. LC-MS analysis of the crude extract revealed common antimicrobial metabolites produced by all isolates, including Phenoxomethylpenicilloyl (penicilloyl V), cis-11-Eicosenamide, 3-Hydroxy-3-phenacyloxindole, and 9-Octadecenamide.
Collapse
Affiliation(s)
- Matsobane Tlou
- Department of Biochemistry, School of Physical and Chemical Sciences, North-West University, Mmabatho, South Africa
| | - Benedict Ndou
- Department of Biochemistry, School of Physical and Chemical Sciences, North-West University, Mmabatho, South Africa
| | - Nokufa Mabona
- Department of Biochemistry, School of Physical and Chemical Sciences, North-West University, Mmabatho, South Africa
| | - Adivhaho Khwathisi
- Department of Biochemistry and Microbiology, University of Venda, Thohoyandou, South Africa
| | - Collins Ateba
- Department of Microbiology, Faculty of Natural and Agricultural Sciences, School of Biological Sciences, North-West University, Mmabatho, South Africa
| | - Ntakadzeni Madala
- Department of Biochemistry and Microbiology, University of Venda, Thohoyandou, South Africa
| | - Mahloro Hope Serepa-Dlamini
- Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| |
Collapse
|
21
|
Xiong Z, Zhang Y, Chen X, Sha A, Xiao W, Luo Y, Peng L, Zou L, Li Q. Impact of Vanadium-Titanium-Magnetite Mining Activities on Endophytic Bacterial Communities and Functions in the Root Systems of Local Plants. Genes (Basel) 2024; 15:526. [PMID: 38790155 PMCID: PMC11121153 DOI: 10.3390/genes15050526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/11/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
This study utilized 16S rRNA high-throughput sequencing technology to analyze the community structure and function of endophytic bacteria within the roots of three plant species in the vanadium-titanium-magnetite (VTM) mining area. The findings indicated that mining activities of VTM led to a notable decrease in both the biodiversity and abundance of endophytic bacteria within the root systems of Eleusine indica and Carex (p < 0.05). Significant reductions were observed in the populations of Nocardioides, concurrently with substantial increments in the populations of Pseudomonas (p < 0.05), indicating that Pseudomonas has a strong adaptability to this environmental stress. In addition, β diversity analysis revealed divergence in the endophytic bacterial communities within the roots of E. indica and Carex from the VTM mining area, which had diverged to adapt to the environmental stress caused by mining activity. Functional enrichment analysis revealed that VTM mining led to an increase in polymyxin resistance, nicotinate degradation I, and glucose degradation (oxidative) (p < 0.05). Interestingly, we found that VTM mining did not notably alter the endophytic bacterial communities or functions in the root systems of Dodonaea viscosa, indicating that this plant can adapt well to environmental stress. This study represents the primary investigation into the influence of VTM mining activities on endophytic bacterial communities and the functions of nearby plant roots, providing further insight into the impact of VTM mining activities on the ecological environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Z.X.); (Y.Z.); (X.C.); (A.S.); (W.X.); (Y.L.); (L.P.); (L.Z.)
| |
Collapse
|
22
|
Chamard J, Faticov M, Blanchet FG, Chagnon PL, Laforest-Lapointe I. Interplay of biotic and abiotic factors shapes tree seedling growth and root-associated microbial communities. Commun Biol 2024; 7:360. [PMID: 38519711 PMCID: PMC10960049 DOI: 10.1038/s42003-024-06042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
Root-associated microbes can alleviate plant abiotic stresses, thus potentially supporting adaptation to a changing climate or to novel environments during range expansion. While climate change is extending plant species fundamental niches northward, the distribution and colonization of mutualists (e.g., arbuscular mycorrhizal fungi) and pathogens may constrain plant growth and regeneration. Yet, the degree to which biotic and abiotic factors impact plant performance and associated microbial communities at the edge of their distribution remains unclear. Here, we use root microscopy, coupled with amplicon sequencing, to study bacterial, fungal, and mycorrhizal root-associated microbial communities from sugar maple seedlings distributed across two temperate-to-boreal elevational gradients in southern Québec, Canada. Our findings demonstrate that soil pH, soil Ca, and distance to sugar maple trees are key drivers of root-associated microbial communities, overshadowing the influence of elevation. Interestingly, changes in root fungal community composition mediate an indirect effect of soil pH on seedling growth, a pattern consistent at both sites. Overall, our findings highlight a complex role of biotic and abiotic factors in shaping tree-microbe interactions, which are in turn correlated with seedling growth. These findings have important ramifications for tree range expansion in response to shifting climatic niches.
Collapse
Affiliation(s)
- Joey Chamard
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre Sève, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre d'Étude de la Forêt, Université du Québec à Montréal, Montréal, QC, Canada
| | - Maria Faticov
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Centre Sève, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Centre d'Étude de la Forêt, Université du Québec à Montréal, Montréal, QC, Canada.
| | - F Guillaume Blanchet
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
- Département de mathématiques, Université de Sherbrooke, Sherbrooke, QC, Canada
- Département des sciences de la santé communautaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pierre-Luc Chagnon
- Agriculture and Agri-food Canada, Saint-Jean-sur-Richelieu, QC, Canada
- Département des Sciences Biologiques, Université de Montréal, Montréal, QC, Canada
| | - Isabelle Laforest-Lapointe
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Centre Sève, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Centre d'Étude de la Forêt, Université du Québec à Montréal, Montréal, QC, Canada.
| |
Collapse
|
23
|
Cao H, Xu L, Song J, Xun M, Zhang W, Yang H. Bacterial community structure and co-occurrence networks in the rhizosphere and root endosphere of the grafted apple. BMC Microbiol 2024; 24:53. [PMID: 38341527 PMCID: PMC10858598 DOI: 10.1186/s12866-024-03210-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Compared with aerial plant tissues (such as leaf, stem, and flower), root-associated microbiomes play an indisputable role in promoting plant health and productivity. We thus explored the similarities and differences between rhizosphere and root endosphere bacterial community in the grafted apple system. RESULTS Using pot experiments, three microhabitats (bulk soil, rhizosphere and root endosphere) samples were obtained from two-year-old apple trees grafted on the four different rootstocks. We then investigated the bacterial community composition, diversity, and co-occurrence network in three microhabitats using the Illumina sequencing methods. Only 63 amplicon sequence variants (ASVs) out of a total of 24,485 were shared in the rhizosphere and root endosphere of apple grafted on the four different rootstocks (M9T337, Malus hupehensis Rehd., Malus robusta Rehd., and Malus baccata Borkh.). The core microbiome contained 8 phyla and 25 families. From the bulk soil to the rhizosphere to the root endosphere, the members of the phylum and class levels demonstrated a significant enrichment and depletion pattern. Co-occurrence network analysis showed the network complexity of the rhizosphere was higher than the root endosphere. Most of the keystone nodes in both networks were classified as Proteobacteria, Actinobacteriota and Bacteroidetes and were low abundance species. CONCLUSION The hierarchical filtration pattern existed not only in the assembly of root endosphere bacteria, but also in the core microbiome. Moreover, most of the core ASVs were high-abundance species, while the keystone ASVs of the network were low-abundance species.
Collapse
Affiliation(s)
- Hui Cao
- College of Life Sciences, Zaozhuang University, Zaozhuang, 277000, Shandong Province, China.
- College of Horticulture Science and Engineering, Shandong Agricultural University, State Key Laboratory of Crop Biology, Tai'an, 271018, Shandong Province, China.
| | - Longxiao Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, State Key Laboratory of Crop Biology, Tai'an, 271018, Shandong Province, China
| | - Jianfei Song
- College of Horticulture Science and Engineering, Shandong Agricultural University, State Key Laboratory of Crop Biology, Tai'an, 271018, Shandong Province, China
| | - Mi Xun
- College of Horticulture Science and Engineering, Shandong Agricultural University, State Key Laboratory of Crop Biology, Tai'an, 271018, Shandong Province, China
| | - Weiwei Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, State Key Laboratory of Crop Biology, Tai'an, 271018, Shandong Province, China
| | - Hongqiang Yang
- College of Horticulture Science and Engineering, Shandong Agricultural University, State Key Laboratory of Crop Biology, Tai'an, 271018, Shandong Province, China.
| |
Collapse
|
24
|
Zhang C, de Pasquale S, Hartman K, Stanley CE, Berendsen RL, van der Heijden MGA. The microbial contribution to litter decomposition and plant growth. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13205. [PMID: 38018445 PMCID: PMC10866077 DOI: 10.1111/1758-2229.13205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/06/2023] [Indexed: 11/30/2023]
Abstract
Soil and plant roots are colonized by highly complex and diverse communities of microbes. It has been proposed that bacteria and fungi have synergistic effects on litter decomposition, but experimental evidence supporting this claim is weak. In this study, we manipulated the composition of two microbial kingdoms (Bacteria and Fungi) in experimental microcosms. In microcosms that were inoculated with fungi, litter loss was 47% higher than in microcosms that were not inoculated or only inoculated with bacteria. Combined inoculation with both bacteria and fungi did not significantly enhance decomposition compared with the fungi-only treatments, and, as such, we found no evidence for complementary effects using our experimental setup. Inoculation with fungi also had a positive impact on plant growth after 4 and 8 weeks (480% and 710% growth stimulation, respectively). After 16 weeks, plant biomass was highest in microcosms where both bacteria and fungi were present pointing to fungal-bacterial complementarity in stimulating plant growth. Overall, this study suggests that fungi are the main decomposers of plant litter and that the inoculated fungi contribute to plant growth in our experimental system.
Collapse
Affiliation(s)
- Changfeng Zhang
- Plant‐Microbe Interactions, Department of Biology, Faculty of ScienceUtrecht UniversityUtrechtthe Netherlands
- Plant Soil InteractionsDivision Agroecology and Environment, AgroscopeZürichSwitzerland
| | - Simone de Pasquale
- Plant Soil InteractionsDivision Agroecology and Environment, AgroscopeZürichSwitzerland
| | - Kyle Hartman
- Plant Soil InteractionsDivision Agroecology and Environment, AgroscopeZürichSwitzerland
| | - Claire E. Stanley
- Plant Soil InteractionsDivision Agroecology and Environment, AgroscopeZürichSwitzerland
| | - Roeland L. Berendsen
- Plant‐Microbe Interactions, Department of Biology, Faculty of ScienceUtrecht UniversityUtrechtthe Netherlands
| | - Marcel G. A. van der Heijden
- Plant‐Microbe Interactions, Department of Biology, Faculty of ScienceUtrecht UniversityUtrechtthe Netherlands
- Plant Soil InteractionsDivision Agroecology and Environment, AgroscopeZürichSwitzerland
- Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
25
|
Zhang S, Han W, Liu T, Feng C, Jiang Q, Zhang B, Chen Y, Zhang Y. Tetracycline inhibits the nitrogen fixation ability of soybean (Glycine max (L.) Merr.) nodules in black soil by altering the root and rhizosphere bacterial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168047. [PMID: 37918730 DOI: 10.1016/j.scitotenv.2023.168047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/07/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Tetracycline is a widely used antibiotic and may thus also be an environmental contaminant with an influence on plant growth. The aim of this study was to investigate the inhibition mechanisms of tetracycline in relation to soybean growth and ecological networks in the roots and rhizosphere. To this end, we conducted a pot experiment in which soybean seedlings were grown in soil treated with 0, 10, or 25 mg/kg tetracycline. The effects of tetracycline pollution on growth, productivity, oxidative stress, and nitrogenase activity were evaluated. We further identified the changes in microbial taxa composition and structure at the genus and species levels by sequencing the 16S rRNA gene region. The results showed that tetracycline activates the antioxidant defense system in soybeans, which reduces the abundance of Bradyrhizobiaceae, inhibits the nitrogen-fixing ability, and decreases the nitrogen content in the root system. Tetracycline was also found to suppress the formation of the rhizospheric environment and decrease the complexity and stability of bacterial networks. Beta diversity analysis showed that the community structure of the root was markedly changed by the addition of tetracycline, which predominantly affected stochastic processes. These findings demonstrate that the influence of tetracycline on soybean roots could be attributed to the decreased stability of the bacterial community structure, which limits the number of rhizobium nodules and inhibits the nitrogen-fixing capacity. This exploration of the inhibitory mechanisms of tetracycline in relation to soybean root development emphasises the potential risks of tetracycline pollution to plant growth in an agricultural setting. Furthermore, this study provides a theoretical foundation from which to improve our understanding of the physiological toxicity of antibiotics in farmland.
Collapse
Affiliation(s)
- Shuo Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Wei Han
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Tianqi Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Chengcheng Feng
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Qun Jiang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Bo Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yukun Chen
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
26
|
Ramírez-Sánchez D, Gibelin-Viala C, Roux F, Vailleau F. Genetic architecture of the response of Arabidopsis thaliana to a native plant-growth-promoting bacterial strain. FRONTIERS IN PLANT SCIENCE 2023; 14:1266032. [PMID: 38023938 PMCID: PMC10665851 DOI: 10.3389/fpls.2023.1266032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
By improving plant nutrition and alleviating abiotic and biotic stresses, plant growth-promoting bacteria (PGPB) can help to develop eco-friendly and sustainable agricultural practices. Besides climatic conditions, soil conditions, and microbe-microbe interactions, the host genotype influences the effectiveness of PGPB. Yet, most GWAS conducted to characterize the genetic architecture of response to PGPB are based on non-native interactions between a host plant and PGPB strains isolated from the belowground compartment of other plants. In this study, a GWAS was set up under in vitro conditions to describe the genetic architecture of the response of Arabidopsis thaliana to the PGPB Pseudomonas siliginis, by inoculating seeds of 162 natural accessions from the southwest of France with one strain isolated from the leaf compartment in the same geographical region. Strong genetic variation of plant growth response to this native PGPB was observed at a regional scale, with the strain having a positive effect on the vegetative growth of small plants and a negative effect on the vegetative growth of large plants. The polygenic genetic architecture underlying this negative trade-off showed suggestive signatures of local adaptation. The main eco-evolutionary relevant candidate genes are involved in seed and root development.
Collapse
|
27
|
Lovecká P, Kroneislová G, Novotná Z, Röderová J, Demnerová K. Plant Growth-Promoting Endophytic Bacteria Isolated from Miscanthus giganteus and Their Antifungal Activity. Microorganisms 2023; 11:2710. [PMID: 38004722 PMCID: PMC10672898 DOI: 10.3390/microorganisms11112710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Modern technologies can satisfy human needs only with the use of large quantities of fertilizers and pesticides that are harmful to the environment. For this reason, it is possible to develop new technologies for sustainable agriculture. The process could be carried out by using endophytic microorganisms with a (possible) positive effect on plant vitality. Bacterial endophytes have been reported as plant growth promoters in several kinds of plants under normal and stressful conditions. In this study, isolates of bacterial endophytes from the roots and leaves of Miscanthus giganteus plants were tested for the presence of plant growth-promoting properties and their ability to inhibit pathogens of fungal origin. Selected bacterial isolates were able to solubilize inorganic phosphorus, fix nitrogen, and produce phytohormones, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, and siderophore. Leaf bacterial isolate Pantoea ananat is 50 OL 2 had high production of siderophores (zone ≥ 5 mm), and limited phytohormone production, and was the only one to show ACC deaminase activity. The root bacterial isolate of Pseudomonas libanensis 5 OK 7A showed the best results in phytohormone production (N6-(Δ2-isopentenyl)adenine and indole-3-acetic acid, 11.7 and 12.6 ng·mL-1, respectively). Four fungal cultures-Fusarium sporotrichioides DBM 4330, Sclerotinia sclerotiorum SS-1, Botrytis cinerea DS 90 and Sphaerodes fimicola DS 93-were used to test the antifungal activity of selected bacterial isolates. These fungal cultures represent pathogenic families, especially for crops. All selected root endophyte isolates inhibited the pathogenic growth of all tested fungi with inhibition percentages ranging from 30 to 60%. Antifungal activity was also tested in two forms of immobilization of selected bacterial isolates: one in agar and the other on dextrin-coated cellulose carriers. These results demonstrated that the endophytic Pseudomonas sp. could be used as biofertilizers for crops.
Collapse
Affiliation(s)
- Petra Lovecká
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Gabriela Kroneislová
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Zuzana Novotná
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Jana Röderová
- Institute of Microbiology of the CAS, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Kateřina Demnerová
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic
| |
Collapse
|
28
|
Wang YL, Zhang HB. Assembly and Function of Seed Endophytes in Response to Environmental Stress. J Microbiol Biotechnol 2023; 33:1119-1129. [PMID: 37311706 PMCID: PMC10580892 DOI: 10.4014/jmb.2303.03004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 06/15/2023]
Abstract
Seeds are colonized by diverse microorganisms that can improve the growth and stress resistance of host plants. Although understanding the mechanisms of plant endophyte-host plant interactions is increasing, much of this knowledge does not come from seed endophytes, particularly under environmental stress that the plant host grows to face, including biotic (e.g., pathogens, herbivores and insects) and abiotic factors (e.g., drought, heavy metals and salt). In this article, we first provided a framework for the assembly and function of seed endophytes and discussed the sources and assembly process of seed endophytes. Following that, we reviewed the impact of environmental factors on the assembly of seed endophytes. Lastly, we explored recent advances in the growth promotion and stress resistance enhancement of plants, functioning by seed endophytes under various biotic and abiotic stressors.
Collapse
Affiliation(s)
- Yong-Lan Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, P.R. China
| | - Han-Bo Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, P.R. China
| |
Collapse
|
29
|
Mandal S, Anand U, López-Bucio J, Radha, Kumar M, Lal MK, Tiwari RK, Dey A. Biostimulants and environmental stress mitigation in crops: A novel and emerging approach for agricultural sustainability under climate change. ENVIRONMENTAL RESEARCH 2023; 233:116357. [PMID: 37295582 DOI: 10.1016/j.envres.2023.116357] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/05/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Pesticide and fertilizer usage is at the center of agricultural production to meet the demands of an ever-increasing global population. However, rising levels of chemicals impose a serious threat to the health of humans, animals, plants, and even the entire biosphere because of their toxic effects. Biostimulants offer the opportunity to reduce the agricultural chemical footprint owing their multilevel, beneficial properties helping to make agriculture more sustainable and resilient. When applied to plants or to the soil an increased absorption and distribution of nutrients, tolerance to environmental stress, and improved quality of plant products explain the mechanisms by which these probiotics are useful. In recent years, the use of plant biostimulants has received widespread attention across the globe as an ecologically acceptable alternative to sustainable agricultural production. As a result, their worldwide market continues to grow, and further research will be conducted to broaden the range of the products now available. Through this review, we present a current understanding of biostimulants, their mode of action and their involvement in modulating abiotic stress responses, including omics research, which may provide a comprehensive assessment of the crop's response by correlating molecular changes to physiological pathways activated under stress conditions aggravated by climate change.
Collapse
Affiliation(s)
- Sayanti Mandal
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra, 411007, India; Department of Biotechnology, Dr. D. Y. Patil Arts, Commerce & Science College, Sant Tukaram Nagar, Pimpri, Pune, Maharashtra, 411018, India.
| | - Uttpal Anand
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, Mexico
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| | - Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India; ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India; ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India.
| |
Collapse
|
30
|
Dao J, Xing Y, Chen C, Chen M, Wang Z. Adaptation of rhizosphere bacterial communities of drought-resistant sugarcane varieties under different degrees of drought stress. Microbiol Spectr 2023; 11:e0118423. [PMID: 37698408 PMCID: PMC10580969 DOI: 10.1128/spectrum.01184-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/12/2023] [Indexed: 09/13/2023] Open
Abstract
Sugarcane is highly sensitive to changes in moisture, and increased drought severely restricts its growth and productivity. Recent studies have shown that plant growth-promoting microorganisms are essential to reduce the adverse effects of environmental stresses, especially drought. However, our knowledge about the dynamics of rhizosphere microbial community structure in sugarcane under varying degrees of drought stress is limited. We analyzed the effects of different degrees of drought stress on the rhizosphere microbial communities of Zhongzhe 1(ZZ1) and Zhongzhe 6(ZZ6) with differences in drought resistance, by combining soil enzyme activity, nutrient content, and physiological and morphological characteristics of sugarcane roots. The results showed that rhizosphere bacterial community began to change at a field capacity of 50%, enriching the sugarcane rhizosphere with drought-resistant bacteria. The core strains of ZZ1 and ZZ6 rhizosphere enrichment were mainly Streptomycetales, Sphingomonadales, and Rhizobiales. However, compared to ZZ1, the changes in rhizosphere bacterial abundance in ZZ6 were primarily associated with the abundance of Streptomycetales as drought levels increased. Rhizobiales and Streptomycetales, enriched in the rhizosphere of ZZ6 under drought, were positively correlated with root tip number and total root length (TRL), increasing the distribution area of roots and, thus, improving water and nutrient uptake by the roots thereby enhancing the resistance of sugarcane to drought stress. This research enhances our understanding of the composition of the rhizosphere microbial community in sugarcane under different levels of drought stress and its interaction with the roots, thereby providing valuable insights for enhancing drought resistance in sugarcane. IMPORTANCE Drought stress is expected to further increase in intensity, frequency, and duration, causing substantial losses in sugarcane yields. Here, we exposed sugarcane to varying degrees of drought treatment during growth and quantified the eventual composition of the resulting sugarcane rhizosphere bacterial community groups. We found that sugarcane rhizosphere under mild drought began to recruit specific bacterial communities to resist drought stress and used the interactions of root tip number, total root length, and drought-resistant strains to improve sugarcane survival under drought. This research provides a theoretical basis for the rhizosphere microbiome to help sugarcane improve its resistance under different levels of drought stress.
Collapse
Affiliation(s)
- Jicao Dao
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, Guangxi, China
- State Key Laboratory for Conservation & Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
- College of Agronomy, Guangxi University, Nanning, Guangxi, China
| | - Yuanjun Xing
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, Guangxi, China
- State Key Laboratory for Conservation & Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
- College of Agronomy, Guangxi University, Nanning, Guangxi, China
| | - Chunyi Chen
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, Guangxi, China
- State Key Laboratory for Conservation & Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
- College of Agronomy, Guangxi University, Nanning, Guangxi, China
| | - Mianhe Chen
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, Guangxi, China
- State Key Laboratory for Conservation & Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
- College of Agronomy, Guangxi University, Nanning, Guangxi, China
| | - Ziting Wang
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, Guangxi, China
- State Key Laboratory for Conservation & Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
- College of Agronomy, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
31
|
Liu X, Zhu X, Dong Y, Chen Y, Li M, Li C. Limited Impact of Soil Microorganisms on the Endophytic Bacteria of Tartary Buckwheat ( Fagopyrum tataricum). Microorganisms 2023; 11:2085. [PMID: 37630645 PMCID: PMC10458046 DOI: 10.3390/microorganisms11082085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Soil has been considered the main microbial reservoir for plants, but the robustness of the plant microbiome when the soil resource is removed has not been greatly considered. In the present study, we tested the robustness of the microbiota recruited by Tartary buckwheat (Fagopyrum tataricum Gaertn.), grown on sterile humus soil and irrigated with sterile water. Our results showed that the microbiomes of the leaf, stem, root and next-generation seeds were comparable between treated (grown in sterile soil) and control plants (grown in non-sterile soil), indicating that the plants had alternative robust ways to shape their microbiome. Seed microbiota contributed greatly to endophyte communities in the phyllosphere, rhizosphere and next-generation seeds. The microbiome originated from the seeds conferred clear benefits to seedling growth because seedling height and the number of leaves were significantly increased when grown in sterilized soil. The overall microbiome of the plant was affected very little by the removal of the soil microbial resource. The microbial co-occurrence network exhibited more interactions, and Proteobacteria was enriched in the root of Tartary buckwheat planted in sterilized soil. Our research broadens the understanding of the general principles governing microbiome assembly and is widely applicable to both microbiome modeling and sustainable agriculture.
Collapse
Affiliation(s)
- Xuyan Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (X.L.); (X.Z.); (Y.C.); (M.L.)
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Xishen Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (X.L.); (X.Z.); (Y.C.); (M.L.)
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Yumei Dong
- Yunnan-Taiwan Engineering Research Center for Characteristic Agriculture Industrialization of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China;
| | - Yan Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (X.L.); (X.Z.); (Y.C.); (M.L.)
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Meifang Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (X.L.); (X.Z.); (Y.C.); (M.L.)
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Chengyun Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (X.L.); (X.Z.); (Y.C.); (M.L.)
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
32
|
Enagbonma BJ, Fadiji AE, Ayangbenro AS, Babalola OO. Communication between Plants and Rhizosphere Microbiome: Exploring the Root Microbiome for Sustainable Agriculture. Microorganisms 2023; 11:2003. [PMID: 37630562 PMCID: PMC10458600 DOI: 10.3390/microorganisms11082003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Plant roots host numerous microorganisms around and inside their roots, forming a community known as the root microbiome. An increasing bulk of research is underlining the influences root-associated microbial communities can have on plant health and development. However, knowledge on how plant roots and their associated microbes interact to bring about crop growth and yield is limited. Here, we presented (i) the communication strategies between plant roots and root-associated microbes and (ii) the applications of plant root-associated microbes in enhancing plant growth and yield. This review has been divided into three main sections: communications between root microbiome and plant root; the mechanism employed by root-associated microbes; and the chemical communication mechanisms between plants and microbes and their application in plant growth and yield. Understanding how plant root and root-associated microbes communicate is vital in designing ecofriendly strategies for targeted disease suppression and improved plant growth that will help in sustainable agriculture. Ensuring that plants become healthy and productive entails keeping plants under surveillance around the roots to recognize disease-causing microbes and similarly exploit the services of beneficial microorganisms in nutrient acquisition, stress mitigation, and growth promotion.
Collapse
Affiliation(s)
| | | | | | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag X2046, Mmabatho 2735, South Africa
| |
Collapse
|
33
|
Gen-Jiménez A, Flores-Félix JD, Rincón-Molina CI, Manzano-Gomez LA, Rogel MA, Ruíz-Valdiviezo VM, Rincón-Molina FA, Rincón-Rosales R. Enhance of tomato production and induction of changes on the organic profile mediated by Rhizobium biofortification. Front Microbiol 2023; 14:1235930. [PMID: 37601341 PMCID: PMC10433389 DOI: 10.3389/fmicb.2023.1235930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction The extensive use of chemical fertilizers has served as a response to the increasing need for crop production in recent decades. While it addresses the demand for food, it has resulted in a decline in crop productivity and a heightened negative environmental impact. In contrast, plant probiotic bacteria (PPB) offer a promising alternative to mitigate the negative consequences of chemical fertilizers. PPB can enhance nutrient availability, promote plant growth, and improve nutrient uptake efficiency, thereby reducing the reliance on chemical fertilizers. Methods This study aimed to evaluate the impact of native Rhizobium strains, specifically Rhizobium calliandrae LBP2-1, Rhizobium mayense NSJP1-1, and Rhizobium jaguaris SJP1- 2, on the growth, quality, and rhizobacterial community of tomato crops. Various mechanisms promoting plant growth were investigated, including phosphate solubilization, siderophore production, indole acetic acid synthesis, and cellulose and cellulase production. Additionally, the study involved the assessment of biofilm formation and root colonization by GFP-tagged strains, conducted a microcosm experiment, and analyzed the microbial community using metagenomics of rhizospheric soil. Results The results showed that the rhizobial strains LBP2-1, NSJP1-1 and SJP1-2 had the ability to solubilize dicalcium phosphate, produce siderophores, synthesize indole acetic acid, cellulose production, biofilm production, and root colonization. Inoculation of tomato plants with native Rhizobium strains influenced growth, fruit quality, and plant microbiome composition. Metagenomic analysis showed increased Proteobacteria abundance and altered alpha diversity indices, indicating changes in rhizospheric bacterial community. Discussion Our findings demonstrate the potential that native Rhizobium strains have to be used as a plant probiotic in agricultural crops for the generation of safe food and high nutritional value.
Collapse
Affiliation(s)
- Adriana Gen-Jiménez
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez, Chiapas, Mexico
| | | | - Clara Ivette Rincón-Molina
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez, Chiapas, Mexico
| | - Luis Alberto Manzano-Gomez
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez, Chiapas, Mexico
- Departamento de Investigación y Desarrollo, 3R Biotec SA de CV, Tuxtla Gutiérrez, Chiapas, Mexico
| | - Marco Antonio Rogel
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Víctor Manuel Ruíz-Valdiviezo
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez, Chiapas, Mexico
| | - Francisco Alexander Rincón-Molina
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez, Chiapas, Mexico
| | - Reiner Rincón-Rosales
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez, Chiapas, Mexico
| |
Collapse
|
34
|
Gibson E, Zimmerman NB. Urban biogeography of fungal endophytes across San Francisco. PeerJ 2023; 11:e15454. [PMID: 37547726 PMCID: PMC10399560 DOI: 10.7717/peerj.15454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/03/2023] [Indexed: 08/08/2023] Open
Abstract
In natural and agricultural systems, the plant microbiome-the microbial organisms associated with plant tissues and rhizosphere soils-has been shown to have important effects on host physiology and ecology, yet we know little about how these plant-microbe relationships play out in urban environments. Here we characterize the composition of fungal communities associated with living leaves of one of the most common sidewalk trees in the city of San Francisco, California. We focus our efforts on endophytic fungi (asymptomatic microfungi that live inside healthy leaves), which have been shown in other systems to have large ecological effects on the health of their plant hosts. Specifically, we characterized the foliar fungal microbiome of Metrosideros excelsa (Myrtaceae) trees growing in a variety of urban environmental conditions. We used high-throughput culturing, PCR, and Sanger sequencing of the internal transcribed spacer nuclear ribosomal DNA (ITS nrDNA) region to quantify the composition and structure of fungal communities growing within healthy leaves of 30 M. excelsa trees from six distinct sites, which were selected to capture the range of environmental conditions found within city limits. Sequencing resulted in 854 high-quality ITS sequences. These sequences clustered into 85 Operational Taxonomic Units (97% OTUs). We found that these communities encompass relatively high alpha (within) and beta (between-site) diversity. Because the communities are all from the same host tree species, and located in relatively close geographical proximity to one another, these analyses suggest that urban environmental factors such as heat islands or differences in vegetation or traffic density (and associated air quality) may potentially be influencing the composition of these fungal communities. These biogeographic patterns provide evidence that plant microbiomes in urban environments can be as dynamic and complex as their natural counterparts. As human populations continue to transition out of rural areas and into cities, understanding the factors that shape environmental microbial communities in urban ecosystems stands to become increasingly important.
Collapse
Affiliation(s)
- Emma Gibson
- Department of Biology, University of San Francisco, San Francisco, CA, United States of America
| | - Naupaka B. Zimmerman
- Department of Biology, University of San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
35
|
Kumar M, Ansari WA, Zeyad MT, Singh A, Chakdar H, Kumar A, Farooqi MS, Sharma A, Srivastava S, Srivastava AK. Core microbiota of wheat rhizosphere under Upper Indo-Gangetic plains and their response to soil physicochemical properties. FRONTIERS IN PLANT SCIENCE 2023; 14:1186162. [PMID: 37255554 PMCID: PMC10226189 DOI: 10.3389/fpls.2023.1186162] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/21/2023] [Indexed: 06/01/2023]
Abstract
Wheat is widely cultivated in the Indo-Gangetic plains of India and forms the major staple food in the region. Understanding microbial community structure in wheat rhizosphere along the Indo-Gangetic plain and their association with soil properties can be an important base for developing strategies for microbial formulations. In the present study, an attempt was made to identify the core microbiota of wheat rhizosphere through a culture-independent approach. Rhizospheric soil samples were collected from 20 different sites along the upper Indo-Gangetic plains and their bacterial community composition was analyzed based on sequencing of the V3-V4 region of the 16S rRNA gene. Diversity analysis has shown significant variation in bacterial diversity among the sites. The taxonomic profile identified Proteobacteria, Chloroflexi, Actinobacteria, Bacteroidetes, Acidobacteria, Gemmatimonadetes, Planctomycetes, Verrucomicrobia, Firmicutes, and Cyanobacteria as the most dominant phyla in the wheat rhizosphere in the region. Core microbiota analysis revealed 188 taxa as core microbiota of wheat rhizosphere with eight genera recording more than 0.5% relative abundance. The order of most abundant genera in the core microbiota is Roseiflexus> Flavobacterium> Gemmatimonas> Haliangium> Iamia> Flavisolibacter> Ohtaekwangia> Herpetosiphon. Flavobacterium, Thermomonas, Massilia, Unclassified Rhizobiaceae, and Unclassified Crenarchaeota were identified as keystone taxa of the wheat rhizosphere. Correlation studies revealed, pH, organic carbon content, and contents of available nitrogen, phosphorus, and iron as the major factors driving bacterial diversity in the wheat rhizosphere. Redundancy analysis has shown the impact of different soil properties on the relative abundance of different genera of the core microbiota. The results of the present study can be used as a prelude to be developing microbial formulations based on core microbiota.
Collapse
Affiliation(s)
- Murugan Kumar
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| | - Waquar Akhter Ansari
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| | - Mohammad Tarique Zeyad
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| | - Arjun Singh
- ICAR-Central Soil Salinity Research Institute, Regional Research Station (RRS), Lucknow, Uttar Pradesh, India
| | - Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| | - Adarsh Kumar
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| | | | - Anu Sharma
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Sudhir Srivastava
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Alok Kumar Srivastava
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| |
Collapse
|
36
|
Watts D, Palombo EA, Jaimes Castillo A, Zaferanloo B. Endophytes in Agriculture: Potential to Improve Yields and Tolerances of Agricultural Crops. Microorganisms 2023; 11:1276. [PMID: 37317250 DOI: 10.3390/microorganisms11051276] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023] Open
Abstract
Endophytic fungi and bacteria live asymptomatically within plant tissues. In recent decades, research on endophytes has revealed that their significant role in promoting plants as endophytes has been shown to enhance nutrient uptake, stress tolerance, and disease resistance in the host plants, resulting in improved crop yields. Evidence shows that endophytes can provide improved tolerances to salinity, moisture, and drought conditions, highlighting the capacity to farm them in marginal land with the use of endophyte-based strategies. Furthermore, endophytes offer a sustainable alternative to traditional agricultural practices, reducing the need for synthetic fertilizers and pesticides, and in turn reducing the risks associated with chemical treatments. In this review, we summarise the current knowledge on endophytes in agriculture, highlighting their potential as a sustainable solution for improving crop productivity and general plant health. This review outlines key nutrient, environmental, and biotic stressors, providing examples of endophytes mitigating the effects of stress. We also discuss the challenges associated with the use of endophytes in agriculture and the need for further research to fully realise their potential.
Collapse
Affiliation(s)
- Declan Watts
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Enzo A Palombo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Alex Jaimes Castillo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Bita Zaferanloo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| |
Collapse
|
37
|
Wen Z, Liu Q, Yu C, Huang L, Liu Y, Xu S, Li Z, Liu C, Feng Y. The Difference between Rhizosphere and Endophytic Bacteria on the Safe Cultivation of Lettuce in Cr-Contaminated Farmland. TOXICS 2023; 11:371. [PMID: 37112598 PMCID: PMC10146757 DOI: 10.3390/toxics11040371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
Chromium (Cr) is a major pollutant affecting the environment and human health and microbial remediation is considered to be the most promising technology for the restoration of the heavily metal-polluted soil. However, the difference between rhizosphere and endophytic bacteria on the potential of crop safety production in Cr-contaminated farmland is not clearly elucidated. Therefore, eight Cr-tolerant endophytic strains of three species: Serratia (SR-1~2), Lysinebacillus (LB-1~5) and Pseudomonas (PA-1) were isolated from rice and maize. Additionally, one Cr-tolerant strain of Alcaligenes faecalis (AF-1) was isolated from the rhizosphere of maize. A randomized group pot experiment with heavily Cr-contaminated (a total Cr concentration of 1020.18 mg kg-1) paddy clay soil was conducted and the effects of different bacteria on plant growth, absorption and accumulation of Cr in lettuce (Lactuca sativa var. Hort) were compared. The results show that: (i) the addition of SR-2, PA-1 and LB-5 could promote the accumulation of plant fresh weight by 10.3%, 13.5% and 14.2%, respectively; (ii) most of the bacteria could significantly increase the activities of rhizosphere soil catalase and sucrase, among which LB-1 promotes catalase activity by 224.60% and PA-1 increases sucrase activity by 247%; (iii) AF-1, SR-1, LB-1, SR-2, LB-2, LB-3, LB-4 and LB-5 strains could significantly decrease shoot the Cr concentration by 19.2-83.6%. The results reveal that Cr-tolerant bacteria have good potential to reduce shoot Cr concentration at the heavily contaminated soil and endophytic bacteria have the same or even better effects than rhizosphere bacteria; this suggests that bacteria in plants are more ecological friendly than bacteria in soil, thus aiming to safely produce crops in Cr-polluted farmland and alleviate Cr contamination from the food chain.
Collapse
Affiliation(s)
- Zheyu Wen
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qizhen Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chao Yu
- Livestock Industrial Development Center of Shengzhou, Shaoxing 312400, China
| | - Lukuan Huang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yaru Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shun’an Xu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhesi Li
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chanjuan Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Feng
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
38
|
Kaur J, Harder CB, Sharma J. Congeneric temperate orchids recruit similar-yet differentially abundant-endophytic bacterial communities that are uncoupled from soil, but linked to host phenology and population size. AMERICAN JOURNAL OF BOTANY 2023; 110:e16168. [PMID: 37052191 DOI: 10.1002/ajb2.16168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 05/16/2023]
Abstract
PREMISE Besides the beneficial plant-fungus symbiosis in mycorrhizal plants, bacteria also enhance plant fitness via tripartite interactions. While bacterial associations are presumably just as important for the obligate mycorrhizal family Orchidaceae, little is known about orchid associating bacteria (OAB). METHODS We examined the OAB communities of two, congeneric, terrestrial orchids, Platanthera cooperi and Platanthera praeclara, which represent widely disparate North American ecosystems. We tested whether they recruit distinct OAB communities, and whether variability in OAB communities can be linked to phenology, population size, or habitat soil. Genomic DNAs from roots of seedling, vegetative, and reproductive plants and from soil were subjected to Illumina sequencing of V4 and V5 regions of the 16S rRNA gene. RESULTS We obtained 809 OAB Zero-radius Operational Taxonomic Units (ZOTUs). Despite an overlap of 209 ZOTUs that accounted for >75% relative abundances of their respective OAB communities, the overall community structures of the two orchids were distinct. Within each orchid, distinctions were detected in the OAB communities of large and small populations and the three phenological stages. The OAB ZOTUs were either absent or present with low abundances in soil associated with both orchids. CONCLUSIONS The two orchids exhibited preferential recruitment of known growth-promoting OAB communities from soil. Their OAB communities also showed considerable overlap despite the large environmental and geographical separation of the two host taxa. Our results lend further support to the emerging evidence that not only the fungi, but root-associated bacteria also have functional importance for orchid ecology.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA
- Department of Biology, University of Wisconsin-La Crosse, La Crosse, Wisconsin, USA
| | - Christoffer B Harder
- Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA
- Department of Biology, MEMEG, Lund University, Ekologihuset, Sölvegatan, Sweden
- Department of Biology, Section of Terrestrial Ecology, University of Copenhagen, Copenhagen, Denmark
| | - Jyotsna Sharma
- Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
39
|
Tiwari P, Bae H. Trends in Harnessing Plant Endophytic Microbiome for Heavy Metal Mitigation in Plants: A Perspective. PLANTS (BASEL, SWITZERLAND) 2023; 12:1515. [PMID: 37050141 PMCID: PMC10097340 DOI: 10.3390/plants12071515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/08/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Plant microbiomes represent dynamic entities, influenced by the environmental stimuli and stresses in the surrounding conditions. Studies have suggested the benefits of commensal microbes in improving the overall fitness of plants, besides beneficial effects on plant adaptability and survival in challenging environmental conditions. The concept of 'Defense biome' has been proposed to include the plant-associated microbes that increase in response to plant stress and which need to be further explored for their role in plant fitness. Plant-associated endophytes are the emerging candidates, playing a pivotal role in plant growth, adaptability to challenging environmental conditions, and productivity, as well as showing tolerance to biotic and abiotic stresses. In this article, efforts have been made to discuss and understand the implications of stress-induced changes in plant endophytic microbiome, providing key insights into the effects of heavy metals on plant endophytic dynamics and how these beneficial microbes provide a prospective solution in the tolerance and mitigation of heavy metal in contaminated sites.
Collapse
|
40
|
Dragojević M, Stankovic N, Djokic L, Raičević V, Jovičić-Petrović J. Endorhizosphere of indigenous succulent halophytes: a valuable resource of plant growth promoting bacteria. ENVIRONMENTAL MICROBIOME 2023; 18:20. [PMID: 36934265 PMCID: PMC10024849 DOI: 10.1186/s40793-023-00477-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
The adaptability of halophytes to increased soil salinity is related to complex rhizosphere interactions. In this study, an integrative approach, combining culture-independent and culture-dependent techniques was used to analyze the bacterial communities in the endorizosphere of indigenous succulent halophytes Salicornia europaea, Suaeda maritima, and Camphorosma annua from the natural salt marshes of Slano Kopovo (Serbia). The 16 S rDNA analyses gave, for the first time, an insight into the composition of the endophytic bacterial communities of S. maritima and C. annua. We have found that the composition of endophyte microbiomes in the same habitat is to some extent influenced by plant species. A cultivable portion of the halophyte microbiota was tested at different NaCl concentrations for the set of plant growth promoting (PGP) traits. Through the mining of indigenous halotolerant endophytes, we obtained a collection representing a core endophyte microbiome conferring desirable PGP traits. The majority (65%) of the selected strains belonged to the common halotolerant/halophilic genera Halomonas, Kushneria, and Halobacillus, with representatives exhibiting multiple PGP traits, and retaining beneficial traits in conditions of the increased salinity. The results suggest that the root endosphere of halophytes is a valuable source of PGP bacteria supporting plant growth and fitness in salt-affected soils.
Collapse
Affiliation(s)
- Milica Dragojević
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, Zemun, 11080 Serbia
| | - Nada Stankovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, Belgrade, Serbia
| | - Lidija Djokic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, Belgrade, Serbia
| | - Vera Raičević
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, Zemun, 11080 Serbia
| | | |
Collapse
|
41
|
López AC, Giorgio EM, Vereschuk ML, Zapata PD, Luna MF, Alvarenga AE. Ilex paraguariensis Hosts Root-Trichoderma spp. with Plant-Growth-Promoting Traits: Characterization as Biological Control Agents and Biofertilizers. Curr Microbiol 2023; 80:120. [PMID: 36856863 DOI: 10.1007/s00284-023-03231-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/14/2023] [Indexed: 03/02/2023]
Abstract
In this study, the effect of native plant-growth-promoting microorganisms (PGPM) as bio-inoculants was assessed as an alternative to improve Ilex paraguariensis Saint Hilaire growth in the nursery. Fourteen Trichoderma strains isolated from yerba mate roots were evaluated in vitro for their potential as biological control agents (BCA) and PGPM. The PGPM properties were evaluated through the strain's antagonistic activity against three fungal pathogens (Alternaria sp., F. oxysporum, and F. solani) plus the production of extracellular cell-wall-degrading enzymes such as chitinase, β-1,3-glucanase, and cellulase. These results were used to calculate different PGPM indices to select the strains with the optimal properties. Four Trichoderma strains: T. asperelloides LBM193, LBM204, LBM206, and Trichoderma sp. LBM202, were selected based on their indirect and direct PGPM properties used in an inoculation assay on yerba mate plants in greenhouse conditions. A highly significant positive effect of bio-inoculation with these Trichoderma strains was observed in one-year-old yerba mate seedlings. Inoculated plants exhibited a greater height, chlorophyll content, and dry weight than un-inoculated plants; those treated with LBM193 manifested the best results. Yerba mate plants treated with LBM202 exhibited a healthy appearance and were more vigorous, showing potential for biocontrol agent. In conclusion, yerba mate seedlings in the Misiones region were found to have a reservoir of Trichoderma species that increases the yield of this crop in the nursery and protects them from adverse biotic and abiotic agents.
Collapse
Affiliation(s)
- Ana C López
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas, Químicas y Naturales, Instituto de Biotecnología Misiones "Dra. María Ebe Reca", Laboratorio de Biotecnología Molecular, Ruta Nacional 12 Km 7, 5, Misiones, C.P. 3300, Argentina.
- CONICET, Godoy Cruz 2290, CABA, Argentina.
| | - Ernesto M Giorgio
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas, Químicas y Naturales, Instituto de Biotecnología Misiones "Dra. María Ebe Reca", Laboratorio de Biotecnología Molecular, Ruta Nacional 12 Km 7, 5, Misiones, C.P. 3300, Argentina
| | - Manuela L Vereschuk
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas, Químicas y Naturales, Instituto de Biotecnología Misiones "Dra. María Ebe Reca", Laboratorio de Biotecnología Molecular, Ruta Nacional 12 Km 7, 5, Misiones, C.P. 3300, Argentina
- CONICET, Godoy Cruz 2290, CABA, Argentina
| | - Pedro D Zapata
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas, Químicas y Naturales, Instituto de Biotecnología Misiones "Dra. María Ebe Reca", Laboratorio de Biotecnología Molecular, Ruta Nacional 12 Km 7, 5, Misiones, C.P. 3300, Argentina
- CONICET, Godoy Cruz 2290, CABA, Argentina
| | - María F Luna
- Centro de Investigación Y Desarrollo en Fermentaciones Industriales (CINDEFI), CCT-La Plata CONICET, CIC-PBA, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 115 Y 50 N° 227, C.P. 1900, Buenos Aires, Argentina
| | - Adriana E Alvarenga
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas, Químicas y Naturales, Instituto de Biotecnología Misiones "Dra. María Ebe Reca", Laboratorio de Biotecnología Molecular, Ruta Nacional 12 Km 7, 5, Misiones, C.P. 3300, Argentina
- CONICET, Godoy Cruz 2290, CABA, Argentina
| |
Collapse
|
42
|
Wang J, Qin S, Fan R, Peng Q, Hu X, Yang L, Liu Z, Baccelli I, Migheli Q, Berg G, Chen X, Cernava T. Plant Growth Promotion and Biocontrol of Leaf Blight Caused by Nigrospora sphaerica on Passion Fruit by Endophytic Bacillus subtilis Strain GUCC4. J Fungi (Basel) 2023; 9:132. [PMID: 36836247 PMCID: PMC9966402 DOI: 10.3390/jof9020132] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Passion fruit (Passiflora edulis Sims) is widely cultivated in tropic and sub-tropic regions for the production of fruit, flowers, cosmetics, and for pharmacological applications. Its high economic, nutritional, and medical values elicit the market demand, and the growing areas are rapidly increasing. Leaf blight caused by Nigrospora sphaerica is a new and emerging disease of passion fruit in Guizhou, in southwest China, where the unique karst mountainous landscape and climate conditions are considered potential areas of expansion for passion fruit production. Bacillus species are the most common biocontrol and plant-growth-promotion bacteria (PGPB) resources in agricultural systems. However, little is known about the endophytic existence of Bacillus spp. in the passion fruit phyllosphere as well as their potential as biocontrol agents and PGPB. In this study, 44 endophytic strains were isolated from 15 healthy passion fruit leaves, obtained from Guangxi province, China. Through purification and molecular identification, 42 of the isolates were ascribed to Bacillus species. Their inhibitory activity against N. sphaerica was tested in vitro. Eleven endophytic Bacillus spp. strains inhibited the pathogen by >65%. All of them produced biocontrol- and plant-growth-promotion-related metabolites, including indole-3-acetic acid (IAA), protease, cellulase, phosphatase, and solubilized phosphate. Furthermore, the plant growth promotion traits of the above 11 endophytic Bacillus strains were tested on passion fruit seedlings. One isolate, coded B. subtilis GUCC4, significantly increased passion fruit stem diameter, plant height, leaf length, leaf surface, fresh weight, and dry weight. In addition, B. subtilis GUCC4 reduced the proline content, which indicated its potential to positively regulate passion fruit biochemical properties and resulted in plant growth promotion effects. Finally, the biocontrol efficiencies of B. subtilis GUCC4 against N. sphaerica were determined in vivo under greenhouse conditions. Similarly to the fungicide mancozeb and to a commercial B. subtilis-based biofungicide, B. subtilis GUCC4 significantly reduced disease severity. These results suggest that B. subtilis GUCC4 has great potential as a biological control agent and as PGPB on passion fruit.
Collapse
Affiliation(s)
- Junrong Wang
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang 550025, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guizhou University, Guiyang 550025, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang 550025, China
- College of Ecology and Environment, Tibet University, Lhasa 850012, China
| | - Shun Qin
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang 550025, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guizhou University, Guiyang 550025, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang 550025, China
| | - Ruidong Fan
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang 550025, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guizhou University, Guiyang 550025, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang 550025, China
| | - Qiang Peng
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang 550025, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guizhou University, Guiyang 550025, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang 550025, China
| | - Xiaojing Hu
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang 550025, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guizhou University, Guiyang 550025, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang 550025, China
| | - Liu Yang
- Guangxi Crop Genetic Improvement Biotechnology Laboratory, Nanning 530007, China
| | - Zengliang Liu
- Microbiology Research Institute, Guangxi Agricultural Science Academy, Nanning 530007, China
| | - Ivan Baccelli
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), 50019 Sesto Fiorentino, Italy
| | - Quirico Migheli
- Dipartimento di Agraria and NRD–Nucleo di Ricerca sulla Desertificazione, Università degli Studi di Sassari, 07100 Sassari, Italy
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, 8010 Graz, Austria
| | - Xiaoyulong Chen
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang 550025, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guizhou University, Guiyang 550025, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang 550025, China
- College of Ecology and Environment, Tibet University, Lhasa 850012, China
| | - Tomislav Cernava
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang 550025, China
- Institute of Environmental Biotechnology, Graz University of Technology, 8010 Graz, Austria
| |
Collapse
|
43
|
Mushtaq S, Shafiq M, Tariq MR, Sami A, Nawaz-ul-Rehman MS, Bhatti MHT, Haider MS, Sadiq S, Abbas MT, Hussain M, Shahid MA. Interaction between bacterial endophytes and host plants. FRONTIERS IN PLANT SCIENCE 2023; 13:1092105. [PMID: 36743537 PMCID: PMC9890182 DOI: 10.3389/fpls.2022.1092105] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/22/2022] [Indexed: 05/14/2023]
Abstract
Endophytic bacteria are mainly present in the plant's root systems. Endophytic bacteria improve plant health and are sometimes necessary to fight against adverse conditions. There is an increasing trend for the use of bacterial endophytes as bio-fertilizers. However, new challenges are also arising regarding the management of these newly discovered bacterial endophytes. Plant growth-promoting bacterial endophytes exist in a wide host range as part of their microbiome, and are proven to exhibit positive effects on plant growth. Endophytic bacterial communities within plant hosts are dynamic and affected by abiotic/biotic factors such as soil conditions, geographical distribution, climate, plant species, and plant-microbe interaction at a large scale. Therefore, there is a need to evaluate the mechanism of bacterial endophytes' interaction with plants under field conditions before their application. Bacterial endophytes have both beneficial and harmful impacts on plants but the exact mechanism of interaction is poorly understood. A basic approach to exploit the potential genetic elements involved in an endophytic lifestyle is to compare the genomes of rhizospheric plant growth-promoting bacteria with endophytic bacteria. In this mini-review, we will be focused to characterize the genetic diversity and dynamics of endophyte interaction in different host plants.
Collapse
Affiliation(s)
- Sehrish Mushtaq
- Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Shafiq
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Rizwan Tariq
- Department of Food Science, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Adnan Sami
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Shah Nawaz-ul-Rehman
- Virology Lab, Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad Pakistan, Faisalabad, Pakistan
| | | | | | - Saleha Sadiq
- Institute of Biochemistry, Biotechnology, and Bioinformatics (IBBB), The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Taqqi Abbas
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Mujahid Hussain
- Horticultural Science Department, North Florida Research and Education Center, University of Florida/IFAS, Quincy, FL, United States
| | - Muhammad Adnan Shahid
- Horticultural Science Department, North Florida Research and Education Center, University of Florida/IFAS, Quincy, FL, United States
| |
Collapse
|
44
|
Zheng H, Zhang P, Qin J, Guo J, Deng J. High-throughput sequencing-based analysis of the composition and diversity of endophytic bacteria community in tubers of Gastrodia elata f.glauca. Front Microbiol 2023; 13:1092552. [PMID: 36733772 PMCID: PMC9887035 DOI: 10.3389/fmicb.2022.1092552] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2023] Open
Abstract
Gastrodia elata f.glauca (G. elata) is a commonly used Chinese Medicinal Materials with great medicinal value. The medicinal plant and its endophytic bacteria are a symbiotic whole, and the endophytic bacteria are rich in species, and their metabolites are a treasure trove of natural compounds. However, there is a relative lack of analysis on the diversity, flora composition and network interactions of the endophytic bacteria of G. elata. In this study, high-throughput sequencing technology based on the Illumina Miseq platform was used to reveal the core microbiota by examining the diversity and community structures of tuber endophytic bacteria in G. elata grown under different regions and exploring the effect of region on its endophytic bacteria. Here, 1,265 endophytic ASVs were found to coexist with G. elata tuber in Guizhou and Hubei. At the phylum level, the dominant phyla were Proteobacteria, Actinobacteria and Acdobacteriota. At the family level, the dominant family were Comamonadaceae, Nocardicaece, Xanthobacteraceae, and Burkholderiaceae. At the genus level, Delftia and Rhodococcus were represented the core microbiota in G. elata tuber, which served as the dominant genera that coexisted in all samples tested. Moreover, we found that the beta diversity of endophytic bacteria in G. elata tuber was higher level in the Guizhou region than Hubei region. Overall, this study results to provide a reference for screening active strains and interaction between plants and endophytic bacteria.
Collapse
Affiliation(s)
- Heng Zheng
- Emergency Department of Hubei Third People's Hospital Affiliated to Jianghan University, Wuhan, Hubei Province, China,School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| | - Peng Zhang
- Research Center for Ecology, College of Science, Tibet University, Lhasa, China
| | - Jing Qin
- Wuchang District Shouyilu Street Community Health Service Center, Wuhan, Hubei Province, China
| | - Jiani Guo
- Research Center for Ecology, College of Science, Tibet University, Lhasa, China,*Correspondence: Jiani Guo, ; Jun Deng,
| | - Jun Deng
- Emergency Department of Hubei Third People's Hospital Affiliated to Jianghan University, Wuhan, Hubei Province, China,*Correspondence: Jiani Guo, ; Jun Deng,
| |
Collapse
|
45
|
Uniting the Role of Endophytic Fungi against Plant Pathogens and Their Interaction. J Fungi (Basel) 2023; 9:jof9010072. [PMID: 36675893 PMCID: PMC9860820 DOI: 10.3390/jof9010072] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 01/06/2023] Open
Abstract
Endophytic fungi are used as the most common microbial biological control agents (MBCAs) against phytopathogens and are ubiquitous in all plant parts. Most of the fungal species have roles against a variety of plant pathogens. Fungal endophytes provide different services to be used as pathogen control agents, using an important aspect in the form of enhanced plant growth and induced systemic resistance, produce a variety of antifungal secondary metabolites (lipopeptides, antibiotics and enzymes) through colonization, and compete with other pathogenic microorganisms for growth factors (space and nutrients). The purpose of this review is to highlight the biological control potential of fungal species with antifungal properties against different fungal plant pathogens. We focused on the introduction, biology, isolation, identification of endophytic fungi, and their antifungal activity against fungal plant pathogens. The endosymbionts have developed specific genes that exhibited endophytic behavior and demonstrated defensive responses against pathogens such as antibiosis, parasitism, lytic enzyme and competition, siderophore production, and indirect responses by induced systemic resistance (ISR) in the host plant. Finally, different microscopic detection techniques to study microbial interactions (endophytic and pathogenic fungal interactions) in host plants are briefly discussed.
Collapse
|
46
|
Wang Y, Zhao Q, Sun Z, Li Y, He H, Zhang Y, Yang X, Wang D, Dong B, Zhou H, Zhao M, Zheng H. Whole-genome analysis revealed the growth-promoting mechanism of endophytic bacterial strain Q2H1 in potato plants. Front Microbiol 2022; 13:1035901. [PMID: 36532474 PMCID: PMC9751815 DOI: 10.3389/fmicb.2022.1035901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/03/2022] [Indexed: 01/09/2024] Open
Abstract
INTRODUCTION Endophytes are non-pathogenic inhabitants of healthy plant tissues and have been found to promote plant growth and health. The endophytic bacterial strain Q2H1 was isolated from the roots of the potato and was identified to exhibit growth-promoting effects in potato plants. METHODS Whole-genome sequencing was performed to reveal the mechanism underlying its growth-promoting effect. The obtained sequencing data of approximately 5.65 MB encompassed 5,533 coding sequences. Of note, nine secondary metabolite gene clusters, including siderophore gene clusters, closely associated with plant growth promotion (PGP) were predicted by antiSMASH software. Comparative genomic analysis revealed that Q2H1 belongs to the genus Peribacillus. By gene function annotation, those genes related to plant growth-promoting activities, including indole-3-acetic acid (IAA) synthesis in tryptophan metabolism, siderophore biosynthetic activity, phosphate solubilization, nitrogen fixation, and related genes, were summarized. IAA (14.4 μg/ml) was presumptively produced by Q2H1 using the Salkowski colorimetric method. A total of five genes, namely, phoU, pstB, pstA1, pstC, and pstS, were annotated for phosphate solubilization, which is associated with the ability of the Q2H1 strain to solubilize phosphate under in vitro conditions. RESULTS It is revealed that genes in the Q2H1 genome associated with nitrogen fixation belonged to three groups, namely, nitrogen fixation (nifU, sufU, salA, and nifS), nitrogen metabolism (nirA, nrtB, and nasA), and glutamate synthesis (glnA, gltB, gltD, and gudB), supported by evidence that Q2H1 grew on medium without nitrogen. We have also identified a siderophore gene cluster located on the chromosome of Q2H1, including seven genes (viz., rbsR, rhbf, rhbE, rhbD, rhbC, rhbA, ddc, and an unknown gene). In the in vitro assay, a prominent brown circle around the colony was produced on the chrome azurol S medium at 48 and 72 h post-inoculation, indicating that the siderophore gene cluster in Q2H1 harbored the ability to produce siderophores. CONCLUSION In summary, these findings implied that identifying strain-specific genes for their metabolic pathways in bacterial endophytes may reveal a variety of significant functions of plant growth-promoting mechanisms.
Collapse
Affiliation(s)
- Yuhu Wang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Qianqian Zhao
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Zhenqi Sun
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Yahui Li
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Hongtao He
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Yuanyu Zhang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Xiangdong Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Dong Wang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Baozhu Dong
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Hongyou Zhou
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Mingmin Zhao
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Hongli Zheng
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
47
|
Evaluation of inorganic phosphate solubilizing efficiency and multiple plant growth promoting properties of endophytic bacteria isolated from root nodules Erythrina brucei. BMC Microbiol 2022; 22:276. [PMCID: PMC9675159 DOI: 10.1186/s12866-022-02688-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 11/02/2022] [Indexed: 11/21/2022] Open
Abstract
Background In soils, phosphorous (P) mostly exists in fixed/insoluble form and unavailable for plants use in soil solution, hence it is in scarcity. P is fixed in the form of aluminium, iron and manganese phosphates in acidic soils and calcium phosphate in alkaline soils. Phosphate solubilizing bacteria, the ecological engineers play a pivotal role in the mobilization of fixed forms of P by using different mechanisms. The objectives of this study were to evaluate inorganic phosphate solubilizing efficiency and other multiple plant growth promoting traits of Erythrina brucei root nodule endophytic bacteria and to investigate effects of the selected endophytic bacteria on the growth of wheat plant under phosphorous deficient sand culture at greenhouse conditions. Results Among a total of 304 passenger endophytic bacteria, 119 (39%) exhibited tricalcium phosphate (TCP) solubilization; however, none of them were formed clear halos on solid medium supplemented with aluminum phosphate (Al-P) or iron phosphate (Fe–P). Among 119 isolates, 40% exhibited IAA production. The selected nine potential isolates also exhibited potentials of IAA, HCN, NH3 and/or hydrolytic enzymes production. All the selected isolates were potential solubilizers of the three inorganic phosphates (Al-P, Fe–P and TCP) included in liquid medium. The highest values of solubilized TCP were recorded by isolates AU4 and RG6 (A. soli), 108.96 mg L−1 and 107.48 mg L−1, respectively at sampling day3 and 120.36 mg L−1 and 112.82 mg L−1, respectively at day 6. The highest values of solubilized Al-P and Fe–P were recorded by isolate RG6, 102.14 mg L−1 and 96.07 mg L−1, respectively at sampling days 3 and 6, respectively. The highest IAA, 313.61 µg mL−1 was recorded by isolate DM17 (Bacillus thuringiensis). Inoculation of wheat with AU4, RG6 and RG5 (Acinetobacter soli) increased shoot length by 11, 17.4 and 14.6%, respectively compared to the negative control. Similarly, 76.9, 69.2 and 53.8% increment in shoot dry weight is recorded by inoculation with RG6, AU4 and RG5, respectively. These nine potential endophytic isolates are identified to Gluconobacter cerinus (4), Acinetobacter soli (3), Achromobacter xylosoxidans (1) and Bacillus thuringiensis (1). Conclusion AU4, RG6 and RG5 can be potential bio-inoculants candidates as low cost agricultural inputs in acidic and/or alkaline soils for sustainable crop production. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02688-7.
Collapse
|
48
|
Li Y, Yang R, Häggblom MM, Li M, Guo L, Li B, Kolton M, Cao Z, Soleimani M, Chen Z, Xu Z, Gao W, Yan B, Sun W. Characterization of diazotrophic root endophytes in Chinese silvergrass (Miscanthus sinensis). MICROBIOME 2022; 10:186. [PMID: 36329505 PMCID: PMC9632085 DOI: 10.1186/s40168-022-01379-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/22/2022] [Indexed: 05/23/2023]
Abstract
BACKGROUND Phytoremediation is a potentially cost-effective way to remediate highly contaminated mine tailing sites. However, nutrient limitations, especially the deficiency of nitrogen (N), can hinder the growth of plants and impair the phytoremediation of mine tailings. Nevertheless, pioneer plants can successfully colonize mine tailings and exhibit potential for tailing phytoremediation. Diazotrophs, especially diazotrophic endophytes, can promote the growth of their host plants. This was tested in a mine-tailing habitat by a combination of field sampling, DNA-stable isotope probing (SIP) analysis, and pot experiments. RESULTS Bacteria belonging to the genera Herbaspirillum, Rhizobium, Devosia, Pseudomonas, Microbacterium, and Delftia are crucial endophytes for Chinese silvergrass (Miscanthus sinensis) grown in the tailing, the model pioneer plant selected in this study. Further, DNA-SIP using 15N2 identified Pseudomonas, Rhizobium, and Exiguobacterium as putative diazotrophic endophytes of M. sinensis. Metagenomic-binning suggested that these bacteria contained essential genes for nitrogen fixation and plant growth promotion. Finally, two diazotrophic endophytes Rhizobium sp. G-14 and Pseudomonas sp. Y-5 were isolated from M. sinensis. Inoculation of another pioneer plant in mine tailings, Bidens pilosa, with diazotrophic endophytes resulted in successful plant colonization, significantly increased nitrogen fixation activity, and promotion of plant growth. CONCLUSIONS This study indicated that diazotrophic endophytes have the potential to promote the growth of pioneer plant B. pilosa in mine tailings. Video Abstract.
Collapse
Affiliation(s)
- Yongbin Li
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou, 510650, China
- Joint Laboratory for Environmental Pollution and Control, Guangdong-Hong Kong-Macao, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Rui Yang
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Max M Häggblom
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Mengyan Li
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Lifang Guo
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Baoqin Li
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Max Kolton
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou, 510650, China
- Joint Laboratory for Environmental Pollution and Control, Guangdong-Hong Kong-Macao, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- French Associates Institute for Agriculture and Biotechnology of Drylands, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Zhiguo Cao
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China
| | - Mohsen Soleimani
- Department of Natural Resources, Isfahan University of Technology, Isfahan, Iran
| | - Zheng Chen
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Zhimin Xu
- Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Wenlong Gao
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou, 510650, China
- Joint Laboratory for Environmental Pollution and Control, Guangdong-Hong Kong-Macao, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Bei Yan
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou, 510650, China
- Joint Laboratory for Environmental Pollution and Control, Guangdong-Hong Kong-Macao, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Weimin Sun
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou, 510650, China.
- Joint Laboratory for Environmental Pollution and Control, Guangdong-Hong Kong-Macao, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| |
Collapse
|
49
|
Thoa NTK, Mai DTH, Hiu BL, Duong CA, Chau NNB, Nghiep NM, Van Minh N, Quoc NB. Roles of β-Indole Acetic Acid (IAA) Producing Endophytic Bacteria on the Recovery of Plant Growth and Survival Ability of Sugarcane Infected White Leaf Disease (SWLD). Curr Microbiol 2022; 79:389. [DOI: 10.1007/s00284-022-03091-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
|
50
|
Kandasamy GD, Kathirvel P. Insights into bacterial endophytic diversity and isolation with a focus on their potential applications –A review. Microbiol Res 2022; 266:127256. [DOI: 10.1016/j.micres.2022.127256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 11/14/2022]
|