1
|
González‐Melo A, Salgado‐Negret B, Norden N, González‐M R, Benavides JP, Cely JM, Abad Ferrer J, Idárraga Á, Moreno E, Pizano C, Puentes‐Marín J, Pulido N, Rivera K, Rojas‐Bautista F, Solorzano JF, Umaña MN. Linking seedling wood anatomical trade-offs with drought and seedling growth and survival in tropical dry forests. THE NEW PHYTOLOGIST 2025; 245:117-129. [PMID: 39473120 PMCID: PMC11617663 DOI: 10.1111/nph.20222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/02/2024] [Indexed: 12/06/2024]
Abstract
Wood anatomy plays a key role in plants' ability to persist under drought and should therefore predict demography. Plants balance their resource allocation among wood cell types responsible for different functions. However, it remains unclear how these anatomical trade-offs vary with water availability, and the extent to which they influence demographic rates. We investigated how wood anatomical trade-offs were related to drought and demographic rates, for seedling communities in four tropical dry forests differing in their aridity indexes (AIs). We measured wood density, as well as vessel, fiber and parenchyma traits of 65 species, and we monitored growth and survival for a 1-yr period. Two axes defined wood anatomical structure: a fiber-parenchyma axis and a vessel-wood density axis. Seedlings in drier sites had larger fiber but lower parenchyma fractions, while in less dry forests, seedlings had the opposite allocation pattern. The fiber-parenchyma trade-off was unrelated to growth but was positively related to survival, and this later relationship was mediated by the AI. These findings expand our knowledge about the wood anatomical trade-offs that mediate responses to drought conditions and influence demographic rates, in the seedling layer. This information is needed to anticipate future responses of forests to changing drought conditions.
Collapse
Affiliation(s)
- Andrés González‐Melo
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMI48104USA
| | | | - Natalia Norden
- Instituto de Investigación de Recursos Biológicos Alexander von HumboldtBogotá111061Colombia
| | - Roy González‐M
- Departamento de Ciencias ForestalesUniversidad del TolimaIbagué730010Colombia
| | | | - Juan Manuel Cely
- Departamento de BiologíaUniversidad NacionalBogotá111321Colombia
| | - Julio Abad Ferrer
- Dirección Territorial Caribe, Parques Nacionales Naturales de ColombiaSanta Marta110221Colombia
| | - Álvaro Idárraga
- Fundación Jardín Botánico de MedellínHerbario “Joaquín Antonio Uribe” (JAUM)Medellín050010Colombia
| | - Esteban Moreno
- Facultad del Medio Ambiente y Recursos NaturalesUniversidad Distrital Francisco José de CaldasBogotá111611Colombia
| | - Camila Pizano
- Departamento de BiologíaUniversidad IcesiCali760031Colombia
| | | | - Nancy Pulido
- Facultad del Medio Ambiente y Recursos NaturalesUniversidad Distrital Francisco José de CaldasBogotá111611Colombia
| | - Katherine Rivera
- Facultad del Medio Ambiente y Recursos NaturalesUniversidad Distrital Francisco José de CaldasBogotá111611Colombia
| | | | - Juan Felipe Solorzano
- Facultad del Medio Ambiente y Recursos NaturalesUniversidad Distrital Francisco José de CaldasBogotá111611Colombia
| | - María Natalia Umaña
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMI48104USA
| |
Collapse
|
2
|
González-Melo A, Posada JM, Beauchêne J, Lehnebach R, Levionnois S, Derroire G, Clair B. The links between wood traits and species demography change during tree development in a lowland tropical rainforest. AOB PLANTS 2024; 16:plad090. [PMID: 38249523 PMCID: PMC10799319 DOI: 10.1093/aobpla/plad090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
One foundational assumption of trait-based ecology is that traits can predict species demography. However, the links between traits and demographic rates are, in general, not as strong as expected. These weak associations may be due to the use of traits that are distantly related to performance, and/or the lack of consideration of size-related variations in both traits and demographic rates. Here, we examined how wood traits were related to demographic rates in 19 tree species from a lowland forest in eastern Amazonia. We measured 11 wood traits (i.e. structural, anatomical and chemical traits) in sapling, juvenile and adult wood; and related them to growth and mortality rates (MR) at different ontogenetic stages. The links between wood traits and demographic rates changed during tree development. At the sapling stage, relative growth rates (RGR) were negatively related to wood specific gravity (WSG) and total parenchyma fractions, while MR decreased with radial parenchyma fractions, but increased with vessel lumen area (VA). Juvenile RGR were unrelated to wood traits, whereas juvenile MR were negatively related to WSG and axial parenchyma fractions. At the adult stage, RGR scaled with VA and wood potassium concentrations. Adult MR were not predicted by any trait. Overall, the strength of the trait-demography associations decreased at later ontogenetic stages. Our results indicate that the associations between traits and demographic rates can change as trees age. Also, wood chemical or anatomical traits may be better predictors of growth and MR than WSG. Our findings are important to expand our knowledge on tree life-history variations and community dynamics in tropical forests, by broadening our understanding on the links between wood traits and demography during tree development.
Collapse
Affiliation(s)
- Andrés González-Melo
- Biology Department, Faculty of Natural Sciences, Universidad del Rosario, Avenida carrera 24 # 63C-69. Bogotá, Colombia
| | - Juan Manuel Posada
- Biology Department, Faculty of Natural Sciences, Universidad del Rosario, Avenida carrera 24 # 63C-69. Bogotá, Colombia
| | - Jacques Beauchêne
- CIRAD, UMR Ecologie des Forêts de Guyane (EcoFoG), AgroParisTech, CNRS, INRAE, Université des Antilles, Université de Guyane, 97337, France
| | - Romain Lehnebach
- CNRS, Laboratory of Botany and Modeling of Plant Architecture and Vegetation (UMR AMAP), 34398 Montpellier, France
| | - Sébastian Levionnois
- CNRS, UMR Ecologie des Forêts de Guyane (EcoFoG), AgroParisTech, CIRAD, INRAE, Université des Antilles, Universite de Guyane, Kourou, 97310France
| | - Géraldine Derroire
- CIRAD, UMR Ecologie des Forêts de Guyane (EcoFoG), AgroParisTech, CNRS, INRAE, Université des Antilles, Université de Guyane, 97337, France
| | - Bruno Clair
- CNRS, UMR Ecologie des Forêts de Guyane (EcoFoG), AgroParisTech, CIRAD, INRAE, Université des Antilles, Universite de Guyane, Kourou, 97310France
- Laboratoire de Mécanique de Génie Civil (LMGC), CNRS, Université de Montpellier, 34000, France
| |
Collapse
|
3
|
Schmitt S, Hérault B, Derroire G. High intraspecific growth variability despite strong evolutionary legacy in an Amazonian forest. Ecol Lett 2023; 26:2135-2146. [PMID: 37819108 DOI: 10.1111/ele.14318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/08/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023]
Abstract
Tree growth is key to species performance. However, individual growth variability within species remains underexplored for a whole community, and the role of species evolutionary legacy and local environments remains unquantified. Based on 36 years of diameter records for 7961 trees from 138 species, we assessed individual growth across an Amazonian forest. We related individual growth to taxonomy, topography and neighbourhood, before exploring species growth link to functional traits and distribution along the phylogeny. We found most variation in growth among individuals within species, even though taxonomy explained a third of the variation. Species growth was phylogenetically conserved up to the genus. Traits of roots, wood and leaves were good predictors of growth, suggesting their joint selection during convergent evolutions. Neighbourhood crowding significantly decreased individual growth, although much of inter-individual variation remains unexplained. The high intraspecific variation observed could allow individuals to respond to the heterogeneous environments of Amazonian forests.
Collapse
Affiliation(s)
- Sylvain Schmitt
- CNRS, UMR EcoFoG (Agroparistech, Cirad, INRAE, Université des Antilles, Université de la Guyane), Kourou, French Guiana
- CIRAD, UPR Forêts et Sociétés, Montpellier, France
- Forêts et Sociétés, Univ Montpellier, CIRAD, Montpellier, France
| | - Bruno Hérault
- Forêts et Sociétés, Univ Montpellier, CIRAD, Montpellier, France
- CIRAD, UPR Forêts et Sociétés, Yamoussoukro, Côte d'Ivoire
- Institut National Polytechnique Félix Houphouët-Boigny, INP-HB, Yamoussoukro, Côte d'Ivoire
| | - Géraldine Derroire
- Cirad, UMR EcoFoG (Agroparistech, CNRS, INRAE, Université des Antilles, Université de la Guyane), Kourou, French Guiana
| |
Collapse
|
4
|
Schönauer M, Hietz P, Schuldt B, Rewald B. Root and branch hydraulic functioning and trait coordination across organs in drought-deciduous and evergreen tree species of a subtropical highland forest. FRONTIERS IN PLANT SCIENCE 2023; 14:1127292. [PMID: 37377798 PMCID: PMC10291250 DOI: 10.3389/fpls.2023.1127292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/26/2023] [Indexed: 06/29/2023]
Abstract
Vessel traits are key in understanding trees' hydraulic efficiency, and related characteristics like growth performance and drought tolerance. While most plant hydraulic studies have focused on aboveground organs, our understanding of root hydraulic functioning and trait coordination across organs remains limited. Furthermore, studies from seasonally dry (sub-)tropical ecosystems and mountain forests are virtually lacking and uncertainties remain regarding potentially different hydraulic strategies of plants differing in leaf habit. Here, we compared wood anatomical traits and specific hydraulic conductivities between coarse roots and small branches of five drought-deciduous and eight evergreen angiosperm tree species in a seasonally dry subtropical Afromontane forest in Ethiopia. We hypothesized that largest vessels and highest hydraulic conductivities are found in roots, with greater vessel tapering between roots and equally-sized branches in evergreen angiosperms due to their drought-tolerating strategy. We further hypothesized that the hydraulic efficiencies of root and branches cannot be predicted from wood density, but that wood densities across organs are generally related. Root-to-branch ratios of conduit diameters varied between 0.8 and 2.8, indicating considerable differences in tapering from coarse roots to small branches. While deciduous trees showed larger branch xylem vessels compared to evergreen angiosperms, root-to-branch ratios were highly variable within both leaf habit types, and evergreen species did not show a more pronounced degree of tapering. Empirically determined hydraulic conductivity and corresponding root-to-branch ratios were similar between both leaf habit types. Wood density of angiosperm roots was negatively related to hydraulic efficiency and vessel dimensions; weaker relationships were found in branches. Wood density of small branches was neither related to stem nor coarse root wood densities. We conclude that in seasonally dry subtropical forests, similar-sized coarse roots hold larger xylem vessels than small branches, but the degree of tapering from roots to branches is highly variable. Our results indicate that leaf habit does not necessarily influence the relationship between coarse root and branch hydraulic traits. However, larger conduits in branches and a low carbon investment in less dense wood may be a prerequisite for high growth rates of drought-deciduous trees during their shortened growing season. The correlation of stem and root wood densities with root hydraulic traits but not branch wood points toward large trade-offs in branch xylem towards mechanical properties.
Collapse
Affiliation(s)
- Marian Schönauer
- Department of Forest and Soil Sciences, Institute of Forest Ecology, University of Natural Resources and Life Sciences, Vienna, Austria
- Department of Forest Work Science and Engineering, Department of Forest Sciences and Forest Ecology, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Peter Hietz
- Department of Integrative Biology and Biodiversity Research, Institute of Botany, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Bernhard Schuldt
- Chair of Forest Botany, Institute of Forest Botany and Forest Zoology, Technical University of Dresden, Tharandt, Germany
| | - Boris Rewald
- Department of Forest and Soil Sciences, Institute of Forest Ecology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
5
|
Zhang G, Mao Z, Fortunel C, Martínez-Vilalta J, Viennois G, Maillard P, Stokes A. Parenchyma fractions drive the storage capacity of nonstructural carbohydrates across a broad range of tree species. AMERICAN JOURNAL OF BOTANY 2022; 109:535-549. [PMID: 35266560 DOI: 10.1002/ajb2.1838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
PREMISE Nonstructural carbohydrates (NSCs) play a key role in tree performance and functioning and are stored in radial and axial parenchyma (RAP) cells. Whether this relationship is altered among species and climates or is linked to functional traits describing xylem structure (wood density) and tree stature is not known. METHODS In a systematic review, we collated data for NSC content and the proportion of RAP in stems for 68 tree species. To examine the relationships of NSCs and RAP with climatic factors and other functional traits, we also collected climatic data at each tree's location, as well as wood density and maximum height. A phylogenetic tree was constructed to examine the influence of species' evolutionary relationships on the associations among NSCs, RAP, and functional traits. RESULTS Across all 68 tree species, NSCs were positively correlated with RAP and mean annual temperature, but relationships were only weakly significant in temperate species and angiosperms. When separating RAP into radial parenchyma (RP) and axial parenchyma (AP), both NSCs and wood density were positively correlated with RP but not with AP. Wood in taller trees was less dense and had lower RAP than in shorter trees, but height was not related to NSCs. CONCLUSIONS In trees, NSCs are stored mostly in the RP fraction, which has a larger surface area in warmer climates. Additionally, NSCs were only weakly linked to wood density and tree height. Our analysis of evolutionary relationships demonstrated that RAP fractions and NSC content were always closely related across all 68 tree species, suggesting that RAP can act as a reliable proxy for potential NSC storage capacity in tree stems.
Collapse
Affiliation(s)
- Guangqi Zhang
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France
| | - Zhun Mao
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France
| | - Claire Fortunel
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France
| | - Jordi Martínez-Vilalta
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Universitat Autònoma Barcelona, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - Gaëlle Viennois
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France
| | - Pascale Maillard
- SILVA, INRAE, Université de Lorraine, Agroparistech, Centre de Recherche Grand-Est Nancy, 54280 Champenoux, France
| | - Alexia Stokes
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France
| |
Collapse
|
6
|
Piovesan G, Biondi F. On tree longevity. THE NEW PHYTOLOGIST 2021; 231:1318-1337. [PMID: 33305422 DOI: 10.1111/nph.17148] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 11/25/2020] [Indexed: 05/03/2023]
Abstract
Large, majestic trees are iconic symbols of great age among living organisms. Published evidence suggests that trees do not die because of genetically programmed senescence in their meristems, but rather are killed by an external agent or a disturbance event. Long tree lifespans are therefore allowed by specific combinations of life history traits within realized niches that support resistance to, or avoidance of, extrinsic mortality. Another requirement for trees to achieve their maximum longevity is either sustained growth over extended periods of time or at least the capacity to increase their growth rates when conditions allow it. The growth plasticity and modularity of trees can then be viewed as an evolutionary advantage that allows them to survive and reproduce for centuries and millennia. As more and more scientific information is systematically collected on tree ages under various ecological settings, it is becoming clear that tree longevity is a key trait for global syntheses of life history strategies, especially in connection with disturbance regimes and their possible future modifications. In addition, we challenge the long-held notion that shade-tolerant, late-successional species have longer lifespans than early-successional species by pointing out that tree species with extreme longevity do not fit this paradigm. Identifying extremely old trees is therefore the groundwork not only for protecting and/or restoring entire landscapes, but also to revisit and update classic ecological theories that shape our understanding of environmental change.
Collapse
Affiliation(s)
- Gianluca Piovesan
- Dendrology Lab, Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Viterbo, 01100, Italy
| | - Franco Biondi
- DendroLab, Department of Natural Resources and Environmental Science, University of Nevada, Reno, NV, 89557, USA
| |
Collapse
|
7
|
Liebsch D, Marcilio‐Silva V, Marcon AK, GalvÃo F, Mikich SB, Marques MÁCM. How do trees survive a cyclone? The relative role of individual and site characteristics over mortality. AUSTRAL ECOL 2021. [DOI: 10.1111/aec.13088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
| | | | | | - Franklin GalvÃo
- Department of Forest Science Universidade Federal do Parana Curitiba Brazil
| | | | | |
Collapse
|
8
|
Herrera-Ramírez D, Sierra CA, Römermann C, Muhr J, Trumbore S, Silvério D, Brando PM, Hartmann H. Starch and lipid storage strategies in tropical trees relate to growth and mortality. THE NEW PHYTOLOGIST 2021; 230:139-154. [PMID: 33507548 DOI: 10.1111/nph.17239] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Non-structural carbon (NSC) storage (i.e. starch, soluble sugras and lipids) in tree stems play important roles in metabolism and growth. Their spatial distribution in wood may explain species-specific differences in carbon storage dynamics, growth and survival. However, quantitative information on the spatial distribution of starch and lipids in wood is sparse due to methodological limitations. Here we assessed differences in wood NSC and lipid storage between tropical tree species with different growth and mortality rates and contrasting functional types. We measured starch and soluble sugars in wood cores up to 4 cm deep into the stem using standard chemical quantification methods and histological slices stained with Lugol's iodine. We also detected neutral lipids using histological slices stained with Oil-Red-O. The histological method allowed us to group individuals into two categories according to their starch storage strategy: fiber-storing trees and parenchyma-storing trees. The first group had a bigger starch pool, slower growth and lower mortality rates than the second group. Lipid storage was found in wood parenchyma in five species and was related to low mortality rates. The quantification of the spatial distribution of starch and lipids in wood improves our understanding of NSC dynamics in trees and reveals additional dimensions of tree growth and survival strategies.
Collapse
Affiliation(s)
| | - Carlos A Sierra
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str 10, Jena, 07745, Germany
| | - Christine Römermann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, D-04103, Germany
- Department of Bioclimatology, Georg August University Göttingen, Büsgenweg 2, Göttingen, 37077, Germany
| | - Jan Muhr
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str 10, Jena, 07745, Germany
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, Philosophenweg 16, Jena, 07743, Germany
| | - Susan Trumbore
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str 10, Jena, 07745, Germany
| | - Divino Silvério
- Department of Biology, Universidade Federal Rural da Amazônia - UFRA, Capitão Poço, Pará, 68650-000, Brazil
| | - Paulo M Brando
- Department of Earth System Science, University of California, Irvine, CA, 92697, USA
- Instituto de Pesquisa Ambiental da Amazônia, Brasília, DF, 70863-520, Brazil
- Woodwell Climate Research Center, Falmouth, MA, 02540, USA
| | - Henrik Hartmann
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str 10, Jena, 07745, Germany
| |
Collapse
|
9
|
Kunert N, Zailaa J, Herrmann V, Muller‐Landau HC, Wright SJ, Pérez R, McMahon SM, Condit RC, Hubbell SP, Sack L, Davies SJ, Anderson‐Teixeira KJ. Leaf turgor loss point shapes local and regional distributions of evergreen but not deciduous tropical trees. THE NEW PHYTOLOGIST 2021; 230:485-496. [PMID: 33449384 PMCID: PMC8048579 DOI: 10.1111/nph.17187] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/23/2020] [Indexed: 05/25/2023]
Abstract
The effects of climate change on tropical forests will depend on how diverse tropical tree species respond to drought. Current distributions of evergreen and deciduous tree species across local and regional moisture gradients reflect their ability to tolerate drought stress, and might be explained by functional traits. We measured leaf water potential at turgor loss (i.e. 'wilting point'; πtlp ), wood density (WD) and leaf mass per area (LMA) on 50 of the most abundant tree species in central Panama. We then tested their ability to explain distributions of evergreen and deciduous species within a 50 ha plot on Barro Colorado Island and across a 70 km rainfall gradient spanning the Isthmus of Panama. Among evergreen trees, species with lower πtlp were associated with drier habitats, with πtlp explaining 28% and 32% of habitat association on local and regional scales, respectively, greatly exceeding the predictive power of WD and LMA. In contrast, πtlp did not predict habitat associations among deciduous species. Across spatial scales, πtlp is a useful indicator of habitat preference for tropical tree species that retain their leaves during periods of water stress, and holds the potential to predict vegetation responses to climate change.
Collapse
Affiliation(s)
- Norbert Kunert
- Conservation Ecology CenterSmithsonian Conservation Biology InstituteFront RoyalVA22630USA
- Forest Global Earth ObservatorySmithsonian Tropical Research InstitutePanamaRepublic of Panama
- Department of Integrative Biology and Biodiversity ResearchInstitute of BotanyUniversity of Natural Resources and Life SciencesGregor‐Mendel Str. 33ViennaA‐1190Austria
| | - Joseph Zailaa
- Department of Ecology and EvolutionUniversity of California Los Angeles621 Charles E. Young Drive SouthLos AngelesCA90095USA
| | - Valentine Herrmann
- Conservation Ecology CenterSmithsonian Conservation Biology InstituteFront RoyalVA22630USA
| | | | - S. Joseph Wright
- Smithsonian Tropical Research InstitutePO Box 084303092Balboa, AncónRepublic of Panama
| | - Rolando Pérez
- Smithsonian Tropical Research InstitutePO Box 084303092Balboa, AncónRepublic of Panama
| | - Sean M. McMahon
- Forest Global Earth ObservatorySmithsonian Tropical Research InstitutePanamaRepublic of Panama
- Smithsonian Environmental Research CenterEdgewaterMD21307USA
| | - Richard C. Condit
- Smithsonian Tropical Research InstitutePO Box 084303092Balboa, AncónRepublic of Panama
| | - Steven P. Hubbell
- Smithsonian Tropical Research InstitutePO Box 084303092Balboa, AncónRepublic of Panama
| | - Lawren Sack
- Department of Ecology and EvolutionUniversity of California Los Angeles621 Charles E. Young Drive SouthLos AngelesCA90095USA
| | - Stuart J. Davies
- Forest Global Earth ObservatorySmithsonian Tropical Research InstitutePO Box 37012WashingtonDC20013USA
| | - Kristina J. Anderson‐Teixeira
- Conservation Ecology CenterSmithsonian Conservation Biology InstituteFront RoyalVA22630USA
- Forest Global Earth ObservatorySmithsonian Tropical Research InstitutePanamaRepublic of Panama
| |
Collapse
|
10
|
Lee MR, Oberle B, Olivas W, Young DF, Zanne AE. Wood construction more strongly shapes deadwood microbial communities than spatial location over 5 years of decay. Environ Microbiol 2020; 22:4702-4717. [PMID: 32840945 DOI: 10.1111/1462-2920.15212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 07/12/2020] [Accepted: 07/30/2020] [Indexed: 01/18/2023]
Abstract
Diverse communities of fungi and bacteria in deadwood mediate wood decay. While rates of decomposition vary greatly among woody species and spatially distinct habitats, the relative importance of these factors in structuring microbial communities and whether these shift over time remains largely unknown. We characterized fungal and bacterial diversity within pieces of deadwood that experienced 6.3-98.8% mass loss while decaying in common garden 'rotplots' in a temperate oak-hickory forest in the Ozark Highlands, MO, USA. Communities were isolated from 21 woody species that had been decomposing for 1-5 years in spatially distinct habitats at the landscape scale (top and bottom of watersheds) and within stems (top and bottom of stems). Microbial community structure varied more strongly with wood traits than with spatial locations, mirroring the relative role of these factors on decay rates on the same pieces of wood even after 5 years. Co-occurring fungal and bacterial communities persistently influenced one another independently from their shared environmental conditions. However, the relative influence of wood construction versus spatial locations differed between fungi and bacteria, suggesting that life history characteristics of these clades structure diversity differently across space and time in decomposing wood.
Collapse
Affiliation(s)
- Marissa R Lee
- Department of Plant and Microbial Biology, North Carolina State University, Campus Box 7612, Raleigh, NC, 27695, USA
| | - Brad Oberle
- Division of Natural Sciences, New College of Florida, 5800 Bay Shore Rd., Sarasota, FL, 34243, USA
| | - Wendy Olivas
- Department of Biology, University of Missouri, St Louis, MO, 63108, USA
| | - Darcy F Young
- Department of Biological Sciences, The George Washington University, 800 22nd St. NW Suite 6000, Washington, DC, 20052, USA
| | - Amy E Zanne
- Department of Biological Sciences, The George Washington University, 800 22nd St. NW Suite 6000, Washington, DC, 20052, USA
| |
Collapse
|
11
|
Janssen TAJ, Hölttä T, Fleischer K, Naudts K, Dolman H. Wood allocation trade-offs between fiber wall, fiber lumen, and axial parenchyma drive drought resistance in neotropical trees. PLANT, CELL & ENVIRONMENT 2020; 43:965-980. [PMID: 31760666 PMCID: PMC7155043 DOI: 10.1111/pce.13687] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 05/25/2023]
Abstract
Functional relationships between wood density and measures of xylem hydraulic safety and efficiency are ambiguous, especially in wet tropical forests. In this meta-analysis, we move beyond wood density per se and identify relationships between xylem allocated to fibers, parenchyma, and vessels and measures of hydraulic safety and efficiency. We analyzed published data of xylem traits, hydraulic properties and measures of drought resistance from neotropical tree species retrieved from 346 sources. We found that xylem volume allocation to fiber walls increases embolism resistance, but at the expense of specific conductivity and sapwood capacitance. Xylem volume investment in fiber lumen increases capacitance, while investment in axial parenchyma is associated with higher specific conductivity. Dominant tree taxa from wet forests prioritize xylem allocation to axial parenchyma at the expense of fiber walls, resulting in a low embolism resistance for a given wood density and a high vulnerability to drought-induced mortality. We conclude that strong trade-offs between xylem allocation to fiber walls, fiber lumen, and axial parenchyma drive drought resistance in neotropical trees. Moreover, the benefits of xylem allocation to axial parenchyma in wet tropical trees might not outweigh the consequential low embolism resistance under more frequent and severe droughts in a changing climate.
Collapse
Affiliation(s)
- Thomas A. J. Janssen
- Department of Earth Sciences, Cluster Earth and ClimateVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Teemu Hölttä
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and ForestryUniversity of HelsinkiHelsinkiFinland
| | - Katrin Fleischer
- Land Surface‐Atmosphere InteractionsTechnical University of MunichFreisingGermany
| | - Kim Naudts
- Department of Earth Sciences, Cluster Earth and ClimateVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Han Dolman
- Department of Earth Sciences, Cluster Earth and ClimateVrije Universiteit AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
12
|
Oberle B, Lee MR, Myers JA, Osazuwa-Peters OL, Spasojevic MJ, Walton ML, Young DF, Zanne AE. Accurate forest projections require long-term wood decay experiments because plant trait effects change through time. GLOBAL CHANGE BIOLOGY 2020; 26:864-875. [PMID: 31628697 DOI: 10.1111/gcb.14873] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Whether global change will drive changing forests from net carbon (C) sinks to sources relates to how quickly deadwood decomposes. Because complete wood mineralization takes years, most experiments focus on how traits, environments and decomposer communities interact as wood decay begins. Few experiments last long enough to test whether drivers change with decay rates through time, with unknown consequences for scaling short-term results up to long-term forest ecosystem projections. Using a 7 year experiment that captured complete mineralization among 21 temperate tree species, we demonstrate that trait effects fade with advancing decay. However, wood density and vessel diameter, which may influence permeability, control how decay rates change through time. Denser wood loses mass more slowly at first but more quickly with advancing decay, which resolves ambiguity about the after-life consequences of this key plant functional trait by demonstrating that its effect on decay depends on experiment duration and sampling frequency. Only long-term data and a time-varying model yielded accurate predictions of both mass loss in a concurrent experiment and naturally recruited deadwood structure in a 32-year-old forest plot. Given the importance of forests in the carbon cycle, and the pivotal role for wood decay, accurate ecosystem projections are critical and they require experiments that go beyond enumerating potential mechanisms by identifying the temporal scale for their effects.
Collapse
Affiliation(s)
- Brad Oberle
- Division of Natural Sciences, New College of Florida, Sarasota, FL, USA
- Center for Conservation and Sustainable Development, Missouri Botanical Garden, St. Louis, MO, USA
| | - Marissa R Lee
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Jonathan A Myers
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Marko J Spasojevic
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| | - Maranda L Walton
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Darcy F Young
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Amy E Zanne
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| |
Collapse
|
13
|
Wood Density Variations of Legume Trees in French Guiana along the Shade Tolerance Continuum: Heartwood Effects on Radial Patterns and Gradients. FORESTS 2019. [DOI: 10.3390/f10020080] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Increasing or decreasing wood density (WD) from pith to bark is commonly observed in tropical tree species. The different types of WD radial variations, long been considered to depict the diversity of growth and mechanical strategies among forest guilds (heliophilic vs. shade-tolerant), were never analyzed in the light of heartwood (HW) formation. Yet, the additional mass of chemical extractives associated to HW formation increases WD and might affect both WD radial gradient (i.e., the slope of the relation between WD and radial distance) and pattern (i.e., linear or nonlinear variation). We studied 16 legumes species from French Guiana representing a wide diversity of growth strategies and positions on the shade-tolerance continuum. Using WD measurements and available HW extractives content values, we computed WD corrected by the extractive content and analyzed the effect of HW on WD radial gradients and patterns. We also related WD variations to demographic variables, such as sapling growth and mortality rates. Regardless of the position along the shade-tolerance continuum, correcting WD gradients reveals only increasing gradients. We determined three types of corrected WD patterns: (1) the upward curvilinear pattern is a specific feature of heliophilic species, whereas (2) the linear and (3) the downward curvilinear patterns are observed in both mid- and late-successional species. In addition, we found that saplings growth and mortality rates are better correlated with the corrected WD at stem center than with the uncorrected value: taking into account the effect of HW extractives on WD radial variations provides unbiased interpretation of biomass accumulation and tree mechanical strategies. Rather than a specific feature of heliophilic species, the increasing WD gradient is a shared strategy regardless of the shade tolerance habit. Finally, our study stresses to consider the occurrence of HW when using WD.
Collapse
|
14
|
Dlouhá J, Alméras T, Beauchêne J, Clair B, Fournier M. Biophysical dependences among functional wood traits. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jana Dlouhá
- Université de LorraineAgroParisTech, Inra, Silva Nancy France
| | | | - Jacques Beauchêne
- CIRAD, UMR EcoFoG, AgroParisTech, CNRS, INRAUniversité des Antilles, Université de Guyane Kourou France
| | - Bruno Clair
- LMGC, CNRSUniversité de Montpellier Montpellier France
- CNRS, UMR EcoFoG, AgroParisTech, Cirad, INRAUniversité des Antilles, Université de Guyane Kourou France
| | - Meriem Fournier
- Université de LorraineAgroParisTech, Inra, Silva Nancy France
| |
Collapse
|