1
|
Shu F, Wang D, Sarsaiya S, Jin L, Liu K, Zhao M, Wang X, Yao Z, Chen G, Chen J. Bulbil initiation: a comprehensive review on resources, development, and utilisation, with emphasis on molecular mechanisms, advanced technologies, and future prospects. FRONTIERS IN PLANT SCIENCE 2024; 15:1343222. [PMID: 38650701 PMCID: PMC11033377 DOI: 10.3389/fpls.2024.1343222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/14/2024] [Indexed: 04/25/2024]
Abstract
Bulbil is an important asexual reproductive structure of bulbil plants. It mainly grows in leaf axils, leaf forks, tubers and the upper and near ground ends of flower stems of plants. They play a significant role in the reproduction of numerous herbaceous plant species by serving as agents of plant propagation, energy reserves, and survival mechanisms in adverse environmental conditions. Despite extensive research on bulbil-plants regarding their resources, development mechanisms, and utilisation, a comprehensive review of bulbil is lacking, hindering progress in exploiting bulbil resources. This paper provides a systematic overview of bulbil research, including bulbil-plant resources, identification of development stages and maturity of bulbils, cellular and molecular mechanisms of bulbil development, factors influencing bulbil development, gene research related to bulbil development, multi-bulbil phenomenon and its significance, medicinal value of bulbils, breeding value of bulbils, and the application of plant tissue culture technology in bulbil production. The application value of the Temporary Immersion Bioreactor System (TIBS) and Terahertz (THz) in bulbil breeding is also discussed, offering a comprehensive blueprint for further bulbil resource development. Additionally, additive, seven areas that require attention are proposed: (1) Utilization of modern network technologies, such as plant recognition apps or websites, to collect and identify bulbous plant resources efficiently and extensively; (2) Further research on cell and tissue structures that influence bulb cell development; (3) Investigation of the network regulatory relationship between genes, proteins, metabolites, and epigenetics in bulbil development; (4) Exploration of the potential utilization value of multiple sprouts, including medicinal, ecological, and horticultural applications; (5) Innovation and optimization of the plant tissue culture system for bulbils; (6) Comprehensive application research of TIBS for large-scale expansion of bulbil production; (7) To find out the common share genetics between bulbils and flowers.
Collapse
Affiliation(s)
- Fuxing Shu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu, China
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, Guizhou, China
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Dongdong Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Surendra Sarsaiya
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, Guizhou, China
| | - Leilei Jin
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Kai Liu
- Bozhou Xinghe Agricultural Development Co., Ltd., Bozhou, Anhui, China
- Joint Research Center for Chinese Herbal Medicine of Anhui of Institution of Health and Medicine, Bozhou, Anhui Provence, China
| | - Mengru Zhao
- Bozhou Xinghe Agricultural Development Co., Ltd., Bozhou, Anhui, China
| | - Xin Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Zhaoxu Yao
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, Guizhou, China
| | - Guoguang Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu, China
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Jishuang Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu, China
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, Guizhou, China
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Xu W, Fan H, Pei X, Hua X, Xu T, He Q. mRNA-Seq and miRNA-Seq Analyses Provide Insights into the Mechanism of Pinellia ternata Bulbil Initiation Induced by Phytohormones. Genes (Basel) 2023; 14:1727. [PMID: 37761867 PMCID: PMC10531394 DOI: 10.3390/genes14091727] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Pinellia ternata (Thunb.) Breit (abbreviated as P. ternata) is a plant with an important medicinal value whose yield is restricted by many factors, such as low reproductive efficiency and continuous cropping obstacles. As an essential breeding material for P. ternata growth and production, the bulbils have significant advantages such as a high survival rate and short breeding cycles. However, the location effect, influencing factors, and molecular mechanism of bulbil occurrence and formation have not been fully explored. In this study, exogenously applied phytohormones were used to induce in vitro petiole of P. ternata to produce bulbil structure. Transcriptome sequencing of mRNA and miRNA were performed in the induced petiole (TCp) and the induced bulbil (TCb). Gene Ontology (GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed for the identification of key genes and pathways involved in bulbil development. A total of 58,019 differentially expressed genes (DEGs) were identified. The GO and KEGG analysis indicated that DEGs were mainly enriched in plant hormone signal transduction and the starch and sucrose metabolism pathway. The expression profiles of miR167a, miR171a, and miR156a during bulbil induction were verified by qRT-PCR, indicating that these three miRNAs and their target genes may be involved in the process of bulbil induction and play an important role. However, further molecular biological experiments are required to confirm the functions of the identified bulbil development-related miRNAs and targets.
Collapse
Affiliation(s)
- Wenxin Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (W.X.); (H.F.); (X.P.); (X.H.)
| | - Haoyu Fan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (W.X.); (H.F.); (X.P.); (X.H.)
| | - Xiaomin Pei
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (W.X.); (H.F.); (X.P.); (X.H.)
| | - Xuejun Hua
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (W.X.); (H.F.); (X.P.); (X.H.)
| | - Tao Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (W.X.); (H.F.); (X.P.); (X.H.)
| | - Qiuling He
- Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Hangzhou 310018, China
| |
Collapse
|
3
|
He G, Cao Y, Wang J, Song M, Bi M, Tang Y, Xu L, Ming J, Yang P. WUSCHEL-related homeobox genes cooperate with cytokinin to promote bulbil formation in Lilium lancifolium. PLANT PHYSIOLOGY 2022; 190:387-402. [PMID: 35670734 PMCID: PMC9773970 DOI: 10.1093/plphys/kiac259] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/01/2022] [Indexed: 06/09/2023]
Abstract
The bulbil is an important vegetative reproductive organ in triploid tiger lily (Lilium lancifolium). Based on our previously obtained transcriptome data, we screened two WUSCHEL-related homeobox (WOX) genes closely related to bulbil formation, LlWOX9 and LlWOX11. However, the biological functions and regulatory mechanisms of LlWOX9 and LlWOX11 are unclear. In this study, we cloned the full-length coding sequences of LlWOX9 and LlWOX11. Transgenic Arabidopsis (Arabidopsis thaliana) showed increased branch numbers, and the overexpression of LlWOX9 and LlWOX11 in stem segments promoted bulbil formation, while the silencing of LlWOX9 and LlWOX11 inhibited bulbil formation, indicating that LlWOX9 and LlWOX11 are positive regulators of bulbil formation. Cytokinin type-B response regulators could bind to the promoters of LlWOX9 and LlWOX11 and promote their transcription. LlWOX11 could enhance cytokinin pathway signaling by inhibiting the transcription of type-A LlRR9. Our study enriches the understanding of the regulation of plant development by the WOX gene family and lays a foundation for further research on the molecular mechanism of bulbil formation in lily.
Collapse
Affiliation(s)
- Guoren He
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yuwei Cao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meng Song
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mengmeng Bi
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuchao Tang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Leifeng Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Ming
- Authors for correspondence: (P.P.Y.); (J.M.)
| | - Panpan Yang
- Authors for correspondence: (P.P.Y.); (J.M.)
| |
Collapse
|
4
|
Li J, Sun M, Li H, Ling Z, Wang D, Zhang J, Shi L. Full-length transcriptome-referenced analysis reveals crucial roles of hormone and wounding during induction of aerial bulbils in lily. BMC PLANT BIOLOGY 2022; 22:415. [PMID: 36030206 PMCID: PMC9419401 DOI: 10.1186/s12870-022-03801-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/08/2022] [Indexed: 06/09/2023]
Abstract
Aerial bulbils are important vegetative reproductive organs in Lilium. They are often perpetually dormant in most Lilium species, and little is known about the induction of these vegetative structures. The world-famous Oriental hybrid lily cultivar 'Sorbonne', which blooms naturally devoid of aerial bulbils, is known for its lovely appearance and sweet fragrance. We found that decapitation stimulated the outgrowth of aerial bulbils at lower stems (LSs) and then application of low and high concentrations of IAA promoted aerial bulbils emergence around the wound at upper stems (USs) of 'Sorbonne'. However, the genetic basis of aerial bulbil induction is still unclear. Herein, 'Sorbonne' transcriptome has been sequenced for the first time using the combination of third-generation long-read and next-generation short-read technology. A total of 46,557 high-quality non-redundant full-length transcripts were generated. Transcriptomic profiling was performed on seven tissues and stems with treatments of decapitation and application of low and high concentrations of IAA, respectively. Functional annotation of 1918 DEGs within stem samples of different treatments showed that hormone signaling, sugar metabolism and wound-induced genes were crucial to bulbils outgrowth. The expression pattern of auxin-, shoot branching hormone-, plant defense hormone- and wound-inducing-related genes indicated their crucial roles in bulbil induction. Then we established five hormone- and wounding-regulated co-expression modules and identified some candidate transcriptional factors, such as MYB, bZIP, and bHLH, that may function in inducing bulbils. High connectivity was observed among hormone signaling genes, wound-induced genes, and some transcriptional factors, suggesting wound- and hormone-invoked signals exhibit extensive cross-talk and regulate bulbil initiation-associated genes via multilayered regulatory cascades. We propose that the induction of aerial bulbils at LSs after decapitation can be explained as the release of apical dominance. In contrast, the induction of aerial bulbils at the cut surface of USs after IAA application occurs via a process similar to callus formation. This study provides abundant candidate genes that will deepen our understanding of the regulation of bulbil outgrowth, paving the way for further molecular breeding of lily.
Collapse
Affiliation(s)
- Jingrui Li
- Key Laboratory of Plant Resources and China National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, Xiangshan, 100093, China
| | - Meiyu Sun
- Key Laboratory of Plant Resources and China National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, Xiangshan, 100093, China
| | - Hui Li
- Key Laboratory of Plant Resources and China National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, Xiangshan, 100093, China
| | - Zhengyi Ling
- Key Laboratory of Plant Resources and China National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, Xiangshan, 100093, China
| | - Di Wang
- Key Laboratory of Plant Resources and China National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, Xiangshan, 100093, China
| | - Jinzheng Zhang
- Key Laboratory of Plant Resources and China National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, Xiangshan, 100093, China
| | - Lei Shi
- Key Laboratory of Plant Resources and China National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, Xiangshan, 100093, China.
| |
Collapse
|
5
|
He G, Yang P, Cao Y, Tang Y, Wang L, Song M, Wang J, Xu L, Ming J. Cytokinin Type-B Response Regulators Promote Bulbil Initiation in Lilium lancifolium. Int J Mol Sci 2021; 22:ijms22073320. [PMID: 33805045 PMCID: PMC8037933 DOI: 10.3390/ijms22073320] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 11/24/2022] Open
Abstract
The bulbil is an important vegetative reproductive organ in triploid Lilium lancifolium whose development is promoted by cytokinins. Type-B response regulators (RRs) are critical regulators that mediate primary cytokinin responses and promote cytokinin-induced gene expression. However, the function of cytokinin type-B Arabidopsis RRs (ARRs) in regulating bulbil formation is unclear. In this study, we identified five type-B LlRRs, LlRR1, LlRR2, LlRR10, LlRR11 and LlRR12, in L. lancifolium for the first time. The five LlRRs encode proteins of 715, 675, 573, 582 and 647 amino acids. All of the regulators belong to the B-I subfamily, whose members typically contain a conserved CheY-homologous receiver (REC) domain and an Myb DNA-binding (MYB) domain at the N-terminus. As transcription factors, all five type-B LlRRs localize at the nucleus and are widely expressed in plant tissues, especially during axillary meristem (AM) formation. Functional analysis showed that type-B LlRRs are involved in bulbil formation in a functionally redundant manner and can activate LlRR9 expression. In summary, our study elucidates the process by which cytokinins regulate bulbil initiation in L. lancifolium through type-B LlRRs and lays a foundation for research on the molecular mechanism of bulbil formation in the lily.
Collapse
Affiliation(s)
- Guoren He
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (G.H.); (Y.C.); (Y.T.); (M.S.); (J.W.); (L.X.)
| | - Panpan Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (G.H.); (Y.C.); (Y.T.); (M.S.); (J.W.); (L.X.)
- Correspondence: (P.Y.); (J.M.)
| | - Yuwei Cao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (G.H.); (Y.C.); (Y.T.); (M.S.); (J.W.); (L.X.)
| | - Yuchao Tang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (G.H.); (Y.C.); (Y.T.); (M.S.); (J.W.); (L.X.)
| | - Ling Wang
- School of Foresty and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China;
| | - Meng Song
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (G.H.); (Y.C.); (Y.T.); (M.S.); (J.W.); (L.X.)
| | - Jing Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (G.H.); (Y.C.); (Y.T.); (M.S.); (J.W.); (L.X.)
| | - Leifeng Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (G.H.); (Y.C.); (Y.T.); (M.S.); (J.W.); (L.X.)
| | - Jun Ming
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (G.H.); (Y.C.); (Y.T.); (M.S.); (J.W.); (L.X.)
- Correspondence: (P.Y.); (J.M.)
| |
Collapse
|
6
|
Tan K, Lu T, Ren MX. Biogeography and evolution of Asian Gesneriaceae based on updated taxonomy. PHYTOKEYS 2020; 157:7-26. [PMID: 32934445 PMCID: PMC7467973 DOI: 10.3897/phytokeys.157.34032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/08/2019] [Indexed: 06/02/2023]
Abstract
Based on an updated taxonomy of Gesneriaceae, the biogeography and evolution of the Asian Gesneriaceae are outlined and discussed. Most of the Asian Gesneriaceae belongs to Didymocarpoideae, except Titanotrichum was recently moved into Gesnerioideae. Most basal taxa of the Asian Gesneriaceae are found in the Indian subcontinent and Indo-China Peninsula, suggesting Didymocarpoideae might originate in these regions. Four species diversification centers were recognized, i.e. Sino-Vietnam regions, Malay Peninsula, North Borneo and Northwest Yunnan (Hengduan Mountains). The first three regions are dominated by limestone landscapes, while the Northwest Yunnan is well-known for its numerous deep gorges and high mountains. The places with at least 25% species are neoendemics (newly evolved and narrowly endemic) which were determined as evolutionary hotspots, including Hengduan Mountains, boundary areas of Yunnan-Guizhou-Guangxi in Southwest China, North Borneo, Pahang and Terengganu in Malay Peninsula, and mountainous areas in North Thailand, North Sulawesi Island. Finally, the underlying mechanisms for biogeographical patterns and species diversification of the Asian Gesneriaceae are discussed.
Collapse
Affiliation(s)
- Ke Tan
- Center for Terrestrial Biodiversity of the South China Sea, College of Ecology and Environment, Hainan University, Haikou 570228, ChinaHainan UniversityHaikouChina
| | - Tao Lu
- Center for Terrestrial Biodiversity of the South China Sea, College of Ecology and Environment, Hainan University, Haikou 570228, ChinaHainan UniversityHaikouChina
| | - Ming-Xun Ren
- Center for Terrestrial Biodiversity of the South China Sea, College of Ecology and Environment, Hainan University, Haikou 570228, ChinaHainan UniversityHaikouChina
| |
Collapse
|
7
|
He G, Yang P, Tang Y, Cao Y, Qi X, Xu L, Ming J. Mechanism of exogenous cytokinins inducing bulbil formation in Lilium lancifolium in vitro. PLANT CELL REPORTS 2020; 39:861-872. [PMID: 32270280 DOI: 10.1007/s00299-020-02535-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
The cytokinin pathway promotes the initiation of bulbil formation, and iPA may an important type of cytokinin during bulbil formation in Lilium lancifolium. Bulbils are important vegetative reproductive organs in triploid Lilium lancifolium. We previously showed that cytokinins are involved in bulbil formation, but how cytokinins participate in bulbil formation is not clear. In this study, bulbil formation was divided into three stages on the basis of anatomical and histological observations: the bulbil initiation stage, bulbil primordium-formation stage and bulbil structure-formation stage. The results indicated that iPA was the most critical cytokinin during the bulbil initiation. qRT-PCR revealed that increased iPA content during bulbil initiation was mainly due to increased expression of cytokinin synthesis genes (IPT1/5) and cytokinin activation genes (LOG1/3/5/7) and significantly decreased expression of the cytokinin degradation gene CKX4. Exogenous 6-BA and lovastatin affected the cytokinin pathway and promoted or inhibited bulbil initiation by increasing or decreasing the content of endogenous iPA, respectively. In summary, we demonstrate that cytokinins positively regulate bulbil formation and provide preliminary insight into the regulatory mechanisms by which the cytokinin pathway promotes bulbil initiation.
Collapse
Affiliation(s)
- Guoren He
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Panpan Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuchao Tang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuwei Cao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xianyu Qi
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Leifeng Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jun Ming
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
8
|
Wu ZG, Jiang W, Tao ZM, Pan XJ, Yu WH, Huang HL. Morphological and stage-specific transcriptome analyses reveal distinct regulatory programs underlying yam (Dioscorea alata L.) bulbil growth. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1899-1914. [PMID: 31832647 PMCID: PMC7242083 DOI: 10.1093/jxb/erz552] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/12/2019] [Indexed: 06/09/2023]
Abstract
In yam (Dioscorea spp) species, bulbils at leaf axils are the most striking species-specific axillary structure and exhibit important ecological niches. Genetic regulation underlying bulbil growth remains largely unclear so far. Here, we characterize yam (Dioscorea alata L.) bulbil development using histological analysis, and perform full transcriptional profiling on key developmental stages together with phytohormone analyses. Using the stage-specific scoring algorithm, we have identified 3451 stage-specifically expressed genes that exhibit a tight link between major transcriptional changes and stages. Co-expressed gene clusters revealed an obvious over-representation of genes associated with cell division and expansion at the initiation stage of bulbils (T1). Transcriptional changes of hormone-related genes highly coincided with hormone levels, indicating that bulbil initiation and growth are coordinately controlled by multiple phytohormones. In particular, localized auxin is transiently required to trigger bulbil initiation, and be further depleted or exported from bulbils to promote growth by up-regulation of genes involved in auxinconjugation and efflux. The sharp increase in supply of sucrose and an enhanced trehalose-6-phophate pathway at T1 were observed, suggesting that sucrose probably functions as a key signal and promotes bulbil initiation. Analysis of the expression of transcription factors (TFs) predicated 149 TFs as stage-specifically expressed; several T1-specific TFs (from Aux/IAA, E2F, MYB, and bHLH families) have been shown to play key roles in triggering bulbil formation. Together, our work provides a crucial angle for in-depth understanding of the molecular programs underlying yam's unique bulbil development processes. Stage-specific gene sets can be queried to obtain key candidates regulating bulbil growth, serving as valuable resources for further functional research.
Collapse
Affiliation(s)
- Zhi-Gang Wu
- Key Laboratory for Plant Genetic Improvement, Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Wu Jiang
- Key Laboratory for Plant Genetic Improvement, Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Zheng-Ming Tao
- Key Laboratory for Plant Genetic Improvement, Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Xiao-Jun Pan
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Wen-Hui Yu
- Quzhou Academy of Agricultural Sciences, Quzhou, China
| | - Hui-Lian Huang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
9
|
Levitis DA, Zimmerman K, Pringle A. Is meiosis a fundamental cause of inviability among sexual and asexual plants and animals? Proc Biol Sci 2017; 284:20170939. [PMID: 28768890 PMCID: PMC5563809 DOI: 10.1098/rspb.2017.0939] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 06/23/2017] [Indexed: 11/12/2022] Open
Abstract
Differences in viability between asexually and sexually generated offspring strongly influence the selective advantage and therefore the prevalence of sexual reproduction (sex). However, no general principle predicts when sexual offspring will be more viable than asexual offspring. We hypothesize that when any kind of reproduction is based on a more complex cellular process, it will encompass more potential failure points, and therefore lower offspring viability. Asexual reproduction (asex) can be simpler than sex, when offspring are generated using only mitosis. However, when asex includes meiosis and meiotic restitution, gamete production is more complex than in sex. We test our hypothesis by comparing the viability of asexual and closely related sexual offspring across a wide range of plants and animals, and demonstrate that meiotic asex does result in lower viability than sex; without meiosis, asex is mechanistically simple and provides higher viability than sex. This phylogenetically robust pattern is supported in 42 of 44 comparisons drawn from diverse plants and animals, and is not explained by the other variables included in our model. Other mechanisms may impact viability, such as effects of reproductive mode on heterozygosity and subsequent viability, but we propose the complexity of cellular processes of reproduction, particularly meiosis, as a fundamental cause of early developmental failure and mortality. Meiosis, the leading cause of inviability in humans, emerges as a likely explanation of offspring inviability among diverse eukaryotes.
Collapse
Affiliation(s)
- Daniel A Levitis
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Biology, Bates College, Lewiston, ME 04240, USA
| | - Kolea Zimmerman
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Ginkgo Bioworks, 25-27 Drydock Avenue 8th Floor, Boston, MA 02210, USA
| | - Anne Pringle
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
10
|
Yang P, Xu L, Xu H, Tang Y, He G, Cao Y, Feng Y, Yuan S, Ming J. Histological and Transcriptomic Analysis during Bulbil Formation in Lilium lancifolium. FRONTIERS IN PLANT SCIENCE 2017; 8:1508. [PMID: 28912794 PMCID: PMC5582597 DOI: 10.3389/fpls.2017.01508] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 08/15/2017] [Indexed: 05/14/2023]
Abstract
Aerial bulbils are an important propagative organ, playing an important role in population expansion. However, the detailed gene regulatory patterns and molecular mechanism underlying bulbil formation remain unclear. Triploid Lilium lancifolium, which develops many aerial bulbils on the leaf axils of middle-upper stem, is a useful species for investigating bulbil formation. To investigate the mechanism of bulbil formation in triploid L. lancifolium, we performed histological and transcriptomic analyses using samples of leaf axils located in the upper and lower stem of triploid L. lancifolium during bulbil formation. Histological results indicated that the bulbils of triploid L. lancifolium are derived from axillary meristems that initiate de novo from cells on the adaxial side of the petiole base. Transcriptomic analysis generated ~650 million high-quality reads and 11,871 differentially expressed genes (DEGs). Functional analysis showed that the DEGs were significantly enriched in starch and sucrose metabolism and plant hormone signal transduction. Starch synthesis and accumulation likely promoted the initiation of upper bulbils in triploid L. lancifolium. Hormone-associated pathways exhibited distinct patterns of change in each sample. Auxin likely promoted the initiation of bulbils and then inhibited further bulbil formation. High biosynthesis and low degradation of cytokinin might have led to bulbil formation in the upper leaf axil. The present study achieved a global transcriptomic analysis focused on gene expression changes and pathways' enrichment during upper bulbil formation in triploid L. lancifolium, laying a solid foundation for future molecular studies on bulbil formation.
Collapse
Affiliation(s)
- Panpan Yang
- College of Landscape Architecture, Nanjing Forestry UniversityNanjing, Jiangsu, China
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Leifeng Xu
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Hua Xu
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yuchao Tang
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Guoren He
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yuwei Cao
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yayan Feng
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Suxia Yuan
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Jun Ming
- College of Landscape Architecture, Nanjing Forestry UniversityNanjing, Jiangsu, China
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
- *Correspondence: Jun Ming
| |
Collapse
|
11
|
Liu Y, Shen Z, Wang Q, Su X, Zhang W, Shrestha N, Xu X, Wang Z. Determinants of richness patterns differ between rare and common species: implications for Gesneriaceae conservation in China. DIVERS DISTRIB 2016. [DOI: 10.1111/ddi.12523] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Yunpeng Liu
- Department of Ecology; College of Urban and Environmental Sciences; Key Laboratory of Earth Surface Processes of Ministry of Education; Peking University; Beijing 100871 China
| | - Zehao Shen
- Department of Ecology; College of Urban and Environmental Sciences; Key Laboratory of Earth Surface Processes of Ministry of Education; Peking University; Beijing 100871 China
| | - Qinggang Wang
- Department of Ecology; College of Urban and Environmental Sciences; Key Laboratory of Earth Surface Processes of Ministry of Education; Peking University; Beijing 100871 China
| | - Xiangyan Su
- Department of Ecology; College of Urban and Environmental Sciences; Key Laboratory of Earth Surface Processes of Ministry of Education; Peking University; Beijing 100871 China
| | - Wanjun Zhang
- Department of Ecology; College of Urban and Environmental Sciences; Key Laboratory of Earth Surface Processes of Ministry of Education; Peking University; Beijing 100871 China
| | - Nawal Shrestha
- Department of Ecology; College of Urban and Environmental Sciences; Key Laboratory of Earth Surface Processes of Ministry of Education; Peking University; Beijing 100871 China
| | - Xiaoting Xu
- Department of Ecology; College of Urban and Environmental Sciences; Key Laboratory of Earth Surface Processes of Ministry of Education; Peking University; Beijing 100871 China
| | - Zhiheng Wang
- Department of Ecology; College of Urban and Environmental Sciences; Key Laboratory of Earth Surface Processes of Ministry of Education; Peking University; Beijing 100871 China
| |
Collapse
|
12
|
Abraham Juárez MJ, Hernández Cárdenas R, Santoyo Villa JN, O'Connor D, Sluis A, Hake S, Ordaz-Ortiz J, Terry L, Simpson J. Functionally different PIN proteins control auxin flux during bulbil development in Agave tequilana. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3893-905. [PMID: 25911746 PMCID: PMC4473989 DOI: 10.1093/jxb/erv191] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In Agave tequilana, reproductive failure or inadequate flower development stimulates the formation of vegetative bulbils at the bracteoles, ensuring survival in a hostile environment. Little is known about the signals that trigger this probably unique phenomenon in agave species. Here we report that auxin plays a central role in bulbil development and show that the localization of PIN1-related proteins is consistent with altered auxin transport during this process. Analysis of agave transcriptome data led to the identification of the A. tequilana orthologue of PIN1 (denoted AtqPIN1) and a second closely related gene from a distinct clade reported as 'Sister of PIN1' (denoted AtqSoPIN1). Quantitative real-time reverse transcription-PCR (RT-qPCR) analysis showed different patterns of expression for each gene during bulbil formation, and heterologous expression of the A. tequilana PIN1 and SoPIN1 genes in Arabidopsis thaliana confirmed functional differences between these genes. Although no free auxin was detected in induced pedicel samples, changes in the levels of auxin precursors were observed. Taken as a whole, the data support the model that AtqPIN1 and AtqSoPIN1 have co-ordinated but distinct functions in relation to auxin transport during the initial stages of bulbil formation.
Collapse
Affiliation(s)
- María Jazmín Abraham Juárez
- Department of Plant Genetic Engineering, Cinvestav Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, Apdo. Postal 629, 36821 Irapuato, Guanajuato, Mexico
| | - Rocío Hernández Cárdenas
- Department of Plant Genetic Engineering, Cinvestav Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, Apdo. Postal 629, 36821 Irapuato, Guanajuato, Mexico
| | - José Natzul Santoyo Villa
- Department of Plant Genetic Engineering, Cinvestav Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, Apdo. Postal 629, 36821 Irapuato, Guanajuato, Mexico
| | - Devin O'Connor
- Sainsbury Laboratory, Cambridge University, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Aaron Sluis
- Plant Gene Expression Center, US Department of Agriculture-Agricultural Research Service, Plant and Microbial Biology Department, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Sarah Hake
- Plant Gene Expression Center, US Department of Agriculture-Agricultural Research Service, Plant and Microbial Biology Department, University of California at Berkeley, Berkeley, CA 94720, USA
| | - José Ordaz-Ortiz
- Plant Science Laboratory, Cranfield University, Bedfordshire MK43 0AL, UK
| | - Leon Terry
- Plant Science Laboratory, Cranfield University, Bedfordshire MK43 0AL, UK
| | - June Simpson
- Department of Plant Genetic Engineering, Cinvestav Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, Apdo. Postal 629, 36821 Irapuato, Guanajuato, Mexico
| |
Collapse
|
13
|
Walck JL, Cofer MS, Hidayati SN. Understanding the germination of bulbils from an ecological perspective: a case study on Chinese yam (Dioscorea polystachya). ANNALS OF BOTANY 2010; 106:945-55. [PMID: 20880931 PMCID: PMC2990661 DOI: 10.1093/aob/mcq189] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 07/28/2010] [Accepted: 08/05/2010] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND AIMS Bulbils serve as a means of vegetative reproduction and of dispersal for many plants; this latter aspect making them analogous to seeds. However, germination of bulbils may differ considerably from seeds due to dissimilar anatomical structures and perhaps environmental cue perception. The few laboratory studies done on bulbils suggest that their germination is similar to that of seeds in the same habitats and to vegetative buds of winter-dormant plants. The present study is the first to examine how bulbil germination is controlled in nature in relation to dispersal (before vs. after winter of the same cohort) and to ambient temperatures. METHODS Under laboratory conditions, temperature and light requirements for root and shoot emergences from bulbils of Dioscorea polystachya collected in September, 2005, February, 2006 (produced in 2005) and July, 2006 were determined. Effects of cold stratification and dry storage for releasing dormancy were tested on September and July bulbils. The phenology of dormancy release and of root and shoot emergences and the persistence of bulbils in soil were followed over time under field conditions. KEY RESULTS Although a low percentage of bulbils collected in July or in September produced roots, but no shoots, in the laboratory and field, these roots died within approx. 1 month. Regardless of collection date, cold stratification markedly increased root and shoot emergences. Bulbils sown outdoors in October produced roots and shoots the following March and April, respectively. The soil bulbil bank is short lived. CONCLUSIONS Bulbils of D. polystachya are similar to seeds of many temperate plants being mostly dormant when dispersed in summer or autumn and overcoming dormancy with cold stratification during winter. Adaptively, bulbil germination primarily occurs in spring at the beginning of a favourable period for survivorship and growth.
Collapse
Affiliation(s)
- Jeffrey L Walck
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA.
| | | | | |
Collapse
|
14
|
Abraham-Juárez MJ, Martínez-Hernández A, Leyva-González MA, Herrera-Estrella L, Simpson J. Class I KNOX genes are associated with organogenesis during bulbil formation in Agave tequilana. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:4055-67. [PMID: 20627900 DOI: 10.1093/jxb/erq215] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Bulbil formation in Agave tequilana was analysed with the objective of understanding this phenomenon at the molecular and cellular levels. Bulbils formed 14-45 d after induction and were associated with rearrangements in tissue structure and accelerated cell multiplication. Changes at the cellular level during bulbil development were documented by histological analysis. In addition, several cDNA libraries produced from different stages of bulbil development were generated and partially sequenced. Sequence analysis led to the identification of candidate genes potentially involved in the initiation and development of bulbils in Agave, including two putative class I KNOX genes. Real-time reverse transcription-PCR and in situ hybridization revealed that expression of the putative Agave KNOXI genes occurs at bulbil initiation and specifically in tissue where meristems will develop. Functional analysis of Agave KNOXI genes in Arabidopsis thaliana showed the characteristic lobed phenotype of KNOXI ectopic expression in leaves, although a slightly different phenotype was observed for each of the two Agave genes. An Arabidopsis KNOXI (knat1) mutant line (CS30) was successfully complemented with one of the Agave KNOX genes and partially complemented by the other. Analysis of the expression of the endogenous Arabidopsis genes KNAT1, KNAT6, and AS1 in the transformed lines ectopically expressing or complemented by the Agave KNOX genes again showed different regulatory patterns for each Agave gene. These results show that Agave KNOX genes are functionally similar to class I KNOX genes and suggest that spatial and temporal control of their expression is essential during bulbil formation in A. tequilana.
Collapse
|
15
|
Fine-scale spatial structure of genets and sexes in the dioecious plant Dioscorea japonica, which disperses by both bulbils and seeds. Evol Ecol 2010. [DOI: 10.1007/s10682-010-9396-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Tooke F, Ordidge M, Chiurugwi T, Battey N. Mechanisms and function of flower and inflorescence reversion. JOURNAL OF EXPERIMENTAL BOTANY 2005; 56:2587-99. [PMID: 16131510 DOI: 10.1093/jxb/eri254] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Flower and inflorescence reversion involve a switch from floral development back to vegetative development, thus rendering flowering a phase in an ongoing growth pattern rather than a terminal act of the meristem. Although it can be considered an unusual event, reversion raises questions about the nature and function of flowering. It is linked to environmental conditions and is most often a response to conditions opposite to those that induce flowering. Research on molecular genetic mechanisms underlying plant development over the last 15 years has pinpointed some of the key genes involved in the transition to flowering and flower development. Such investigations have also uncovered mutations which reduce floral maintenance or alter the balance between vegetative and floral features of the plant. How this information contributes to an understanding of floral reversion is assessed here. One issue that arises is whether floral commitment (defined as the ability to continue flowering when inductive conditions no longer exist) is a developmental switch affecting the whole plant or is a mechanism which assigns autonomy to individual meristems. A related question is whether floral or vegetative development is the underlying default pathway of the plant. This review begins by considering how studies of flowering in Arabidopsis thaliana have aided understanding of mechanisms of floral maintenance. Arabidopsis has not been found to revert to leaf production in any of the conditions or genetic backgrounds analysed to date. A clear-cut reversion to leaf production has, however, been described in Impatiens balsamina. It is proposed that a single gene controls whether Impatiens reverts or can maintain flowering when inductive conditions are removed, and it is inferred that this gene functions to control the synthesis or transport of a leaf-generated signal. But it is also argued that the susceptibility of Impatiens to reversion is a consequence of the meristem-based mechanisms controlling development of the flower in this species. Thus, in Impatiens, a leaf-derived signal is critical for completion of flowering and can be considered to be the basis of a plant-wide floral commitment that is achieved without accompanying meristem autonomy. The evidence, derived from in vitro and other studies, that similar mechanisms operate in other species is assessed. It is concluded that most species (including Arabidopsis) are less prone to reversion because signals from the leaf are less ephemeral, and the pathways driving flower development have a high level of redundancy that generates meristem autonomy even when leaf-derived signals are weak. This gives stability to the flowering process, even where its initiation is dependent on environmental cues. On this interpretation, Impatiens reversion appears as an anomaly resulting from an unusual combination of leaf signalling and meristem regulation. Nevertheless, it is shown that the ability to revert can serve a function in the life history strategy (perenniality) or reproductive habit (pseudovivipary) of many plants. In these instances reversion has been assimilated into regular plant development and plays a crucial role there.
Collapse
Affiliation(s)
- Fiona Tooke
- Department of Plant Sciences, Cambridge University, Downing Street, Cambridge CB2 3EA, UK
| | | | | | | |
Collapse
|
17
|
Wang CN, Möller M, Cronk QCB. Altered expression of GFLO, the Gesneriaceae homologue of FLORICAULA/LEAFY, is associated with the transition to bulbil formation in Titanotrichum oldhamii. Dev Genes Evol 2004; 214:122-7. [PMID: 14963704 DOI: 10.1007/s00427-004-0388-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Accepted: 01/21/2004] [Indexed: 11/24/2022]
Abstract
Titanotrichum oldhamii inflorescences switch from flower to bulbil production at the end of the flowering season. The structure of the bulbiliferous shoots resembles the abnormal meristematic organization of the Antirrhinum mutant, floricaula. Gesneriaceae- FLORICAULA (GFLO) is thus a candidate gene in the regulation of bulbil formation. To investigate this hypothesis, part of the GFLO gene (between the second and third exon) was isolated using degenerate primers designed in regions conserved between Antirrhinum, Nicotiana and Arabidopsis, followed by genome walking to obtain the complete gene and flanking sequences. RT-PCR results showed that the GFLO homologue is strongly expressed in inflorescence apical meristems and young flowers. However, in meristems that had switched to bulbil formation, GFLO transcription was greatly reduced. The down-regulation of GFLO in bulbil primordia indicates that this gene is connected to, or part of, the bulbil-flower regulatory pathway. Phylogenetic analysis confirms the orthology of GFLO and FLO, and indicates that the gene may be useful for phylogenetic reconstruction at the genus or family level.
Collapse
Affiliation(s)
- Chun-Neng Wang
- Royal Botanic Garden, 20A Inverleith Row, Edinburgh, EH3 5LR, UK.
| | | | | |
Collapse
|