1
|
Thosteman HE, Eisen K, Petrén H, Boutsi S, Pace L, Halley JM, De Moraes CM, Mescher MC, Buckley J, Friberg M. Integration of attractive and defensive phytochemicals is unlikely to constrain chemical diversification in a perennial herb. THE NEW PHYTOLOGIST 2024; 244:249-264. [PMID: 39081013 DOI: 10.1111/nph.20006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/08/2024] [Indexed: 09/17/2024]
Abstract
Diversification of plant chemical phenotypes is typically associated with spatially and temporally variable plant-insect interactions. Floral scent is often assumed to be the target of pollinator-mediated selection, whereas foliar compounds are considered targets of antagonist-mediated selection. However, floral and vegetative phytochemicals can be biosynthetically linked and may thus evolve as integrated phenotypes. Utilizing a common garden of 28 populations of the perennial herb Arabis alpina (Brassicaceae), we investigated integration within and among floral scent compounds and foliar defense compounds (both volatile compounds and tissue-bound glucosinolates). Within floral scent volatiles, foliar volatile compounds, and glucosinolates, phytochemicals were often positively correlated, and correlations were stronger within these groups than between them. Thus, we found no evidence of integration between compound groups indicating that these are free to evolve independently. Relative to self-compatible populations, self-incompatible populations experienced stronger correlations between floral scent compounds, and a trend toward lower integration between floral scent and foliar volatiles. Our study serves as a rare test of integration of multiple, physiologically related plant traits that each are potential targets of insect-mediated selection. Our results suggest that independent evolutionary forces are likely to diversify different axes of plant chemistry without major constraints.
Collapse
Affiliation(s)
| | - Katherine Eisen
- Department of Biology, Lund University, Sölvegatan 37, Lund, 22362, Sweden
- Department of Biology, Loyola Marymount University, Los Angeles, CA, 90045, USA
| | - Hampus Petrén
- Department of Biology, Lund University, Sölvegatan 37, Lund, 22362, Sweden
| | - Sotiria Boutsi
- Department of Biology, Lund University, Sölvegatan 37, Lund, 22362, Sweden
- Department of Agriculture and Environment, Harper Adams University, Newport, TF10 8NB, UK
| | - Loretta Pace
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, 67100, Italy
| | - John M Halley
- Department of Biological Applications and Technology, University of Ioannina, Thessaloniki, 45110, Greece
| | - Consuelo M De Moraes
- Biocommunication Group, Institute of Agricultural Sciences, ETH Zürich, Zürich, 8092, Switzerland
| | - Mark C Mescher
- Plant Ecology Group, Institute of Integrative Biology, ETH Zürich, Zürich, 8092, Switzerland
| | - James Buckley
- Biocommunication Group, Institute of Agricultural Sciences, ETH Zürich, Zürich, 8092, Switzerland
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Magne Friberg
- Department of Biology, Lund University, Sölvegatan 37, Lund, 22362, Sweden
| |
Collapse
|
2
|
Restrepo-Montoya D, Hulse-Kemp AM, Scheffler JA, Haigler CH, Hinze LL, Love J, Percy RG, Jones DC, Frelichowski J. Leveraging National Germplasm Collections to Determine Significantly Associated Categorical Traits in Crops: Upland and Pima Cotton as a Case Study. FRONTIERS IN PLANT SCIENCE 2022; 13:837038. [PMID: 35557715 PMCID: PMC9087864 DOI: 10.3389/fpls.2022.837038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
Observable qualitative traits are relatively stable across environments and are commonly used to evaluate crop genetic diversity. Recently, molecular markers have largely superseded describing phenotypes in diversity surveys. However, qualitative descriptors are useful in cataloging germplasm collections and for describing new germplasm in patents, publications, and/or the Plant Variety Protection (PVP) system. This research focused on the comparative analysis of standardized cotton traits as represented within the National Cotton Germplasm Collection (NCGC). The cotton traits are named by 'descriptors' that have non-numerical sub-categories (descriptor states) reflecting the details of how each trait manifests or is absent in the plant. We statistically assessed selected accessions from three major groups of Gossypium as defined by the NCGC curator: (1) "Stoneville accessions (SA)," containing mainly Upland cotton (Gossypium hirsutum) cultivars; (2) "Texas accessions (TEX)," containing mainly G. hirsutum landraces; and (3) Gossypium barbadense (Gb), containing cultivars or landraces of Pima cotton (Gossypium barbadense). For 33 cotton descriptors we: (a) revealed distributions of character states for each descriptor within each group; (b) analyzed bivariate associations between paired descriptors; and (c) clustered accessions based on their descriptors. The fewest significant associations between descriptors occurred in the SA dataset, likely reflecting extensive breeding for cultivar development. In contrast, the TEX and Gb datasets showed a higher number of significant associations between descriptors, likely correlating with less impact from breeding efforts. Three significant bivariate associations were identified for all three groups, bract nectaries:boll nectaries, leaf hair:stem hair, and lint color:seed fuzz color. Unsupervised clustering analysis recapitulated the species labels for about 97% of the accessions. Unexpected clustering results indicated accessions that may benefit from potential further investigation. In the future, the significant associations between standardized descriptors can be used by curators to determine whether new exotic/unusual accessions most closely resemble Upland or Pima cotton. In addition, the study shows how existing descriptors for large germplasm datasets can be useful to inform downstream goals in breeding and research, such as identifying rare individuals with specific trait combinations and targeting breakdown of remaining trait associations through breeding, thus demonstrating the utility of the analytical methods employed in categorizing germplasm diversity within the collection.
Collapse
Affiliation(s)
- Daniel Restrepo-Montoya
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, United States
| | - Amanda M. Hulse-Kemp
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, United States
- Genomics and Bioinformatics Research Unit, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Raleigh, NC, United States
| | - Jodi A. Scheffler
- Crop Genetics Research Unit, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Stoneville, MS, United States
| | - Candace H. Haigler
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, United States
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Lori L. Hinze
- Crop Germplasm Research Unit, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), College Station, TX, United States
| | - Janna Love
- Crop Germplasm Research Unit, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), College Station, TX, United States
| | - Richard G. Percy
- Crop Germplasm Research Unit, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), College Station, TX, United States
| | | | - James Frelichowski
- Crop Germplasm Research Unit, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), College Station, TX, United States
| |
Collapse
|
3
|
Grover CE, Yuan D, Arick MA, Miller ER, Hu G, Peterson DG, Wendel JF, Udall JA. The Gossypium stocksii genome as a novel resource for cotton improvement. G3-GENES GENOMES GENETICS 2021; 11:6237488. [DOI: 10.1093/g3journal/jkab125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/07/2021] [Indexed: 12/17/2022]
Abstract
Abstract
Cotton is an important textile crop whose gains in production over the last century have been challenged by various diseases. Because many modern cultivars are susceptible to several pests and pathogens, breeding efforts have included attempts to introgress wild, naturally resistant germplasm into elite lines. Gossypium stocksii is a wild cotton species native to Africa, which is part of a clade of vastly understudied species. Most of what is known about this species comes from pest resistance surveys and/or breeding efforts, which suggests that G. stocksii could be a valuable reservoir of natural pest resistance. Here, we present a high-quality de novo genome sequence for G. stocksii. We compare the G. stocksii genome with resequencing data from a closely related, understudied species (Gossypium somalense) to generate insight into the relatedness of these cotton species. Finally, we discuss the utility of the G. stocksii genome for understanding pest resistance in cotton, particularly resistance to cotton leaf curl virus.
Collapse
Affiliation(s)
- Corrinne E Grover
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50010, USA
| | - Daojun Yuan
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mark A Arick
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Emma R Miller
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50010, USA
| | - Guanjing Hu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Daniel G Peterson
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Jonathan F Wendel
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50010, USA
| | - Joshua A Udall
- Crop Germplasm Research Unit, USDA/Agricultural Research Service, College Station, TX 77845, USA
| |
Collapse
|
4
|
Holeski LM, Keefover-Ring K, Sobel JM, Kooyers NJ. Evolutionary history and ecology shape the diversity and abundance of phytochemical arsenals across monkeyflowers. J Evol Biol 2021; 34:571-583. [PMID: 33484000 DOI: 10.1111/jeb.13760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/30/2020] [Indexed: 11/29/2022]
Abstract
We examine the extent to which phylogenetic effects and ecology are associated with macroevolutionary patterns of phytochemical defence production across the Mimulus phylogeny. We grew plants from 21 species representing the five major sections of the Mimulus phylogeny in a common garden to assess how the arsenals (NMDS groupings) and abundances (concentrations) of a phytochemical defence, phenylpropanoid glycosides (PPGs), vary across the phylogeny. Very few PPGs are widespread across the genus, but many are common to multiple sections of the genus. Phytochemical arsenals cluster among sections in an NMDS and are not associated with total concentration of PPGs. There is a strong phylogenetic signal for phytochemical arsenal composition across the Mimulus genus, whereas ecological variables such as growing season length, latitude, and elevation do not significantly influence arsenal. In contrast, there is little phylogenetic signal for total PPG concentration, and this trait is significantly influenced by several ecological factors. Phytochemical arsenals and abundances are influenced by plant life history form. Both phylogenetic effects and ecology are related to phytochemical patterns across species, albeit in different ways. The independence of phytochemical defence concentrations from arsenal compositions indicates that these aspects of defence may continue to evolve independently of one another.
Collapse
Affiliation(s)
- Liza M Holeski
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Ken Keefover-Ring
- Departments of Botany and Geography, University of Wisconsin-Madison, Madison, WI, USA
| | - James M Sobel
- Department of Biological Sciences, Binghamton University (SUNY), Binghamton, NY, USA
| | | |
Collapse
|
5
|
Vázquez-Barrios V, Boege K, Sosa-Fuentes TG, Rojas P, Wegier A. Ongoing ecological and evolutionary consequences by the presence of transgenes in a wild cotton population. Sci Rep 2021; 11:1959. [PMID: 33479296 PMCID: PMC7820435 DOI: 10.1038/s41598-021-81567-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/31/2020] [Indexed: 01/29/2023] Open
Abstract
After 25 years of genetically modified cotton cultivation in Mexico, gene flow between transgenic individuals and their wild relatives represents an opportunity for analysing the impacts of the presence of novel genes in ecological and evolutionary processes in natural conditions. We show comprehensive empirical evidence on the physiological, metabolic, and ecological effects of transgene introgression in wild cotton, Gossypium hirsutum. We report that the expression of both the cry and cp4-epsps genes in wild cotton under natural conditions altered extrafloral nectar inducibility and thus, its association with different ant species: the dominance of the defensive species Camponotus planatus in Bt plants, the presence of cp4-epsps without defence role of Monomorium ebeninum ants, and of the invasive species Paratrechina longicornis in wild plants without transgenes. Moreover, we found an increase in herbivore damage to cp4-epsps plants. Our results reveal the influence of transgene expression on native ecological interactions. These findings can be useful in the design of risk assessment methodologies for genetically modified organisms and the in situ conservation of G. hirsutum metapopulations.
Collapse
Affiliation(s)
- Valeria Vázquez-Barrios
- grid.9486.30000 0001 2159 0001Posgrado en Ciencias Biológicas, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico ,grid.9486.30000 0001 2159 0001Laboratorio de Genética de la Conservación, Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Karina Boege
- grid.9486.30000 0001 2159 0001Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Tania Gabriela Sosa-Fuentes
- grid.9486.30000 0001 2159 0001Laboratorio de Genética de la Conservación, Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Patricia Rojas
- grid.452507.10000 0004 1798 0367Red de Biodiversidad y Sistemática, Instituto de Ecología A.C., Xalapa, Veracruz Mexico
| | - Ana Wegier
- grid.9486.30000 0001 2159 0001Laboratorio de Genética de la Conservación, Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
6
|
Xiao JL, Sun JG, Pang B, Zhou X, Gong Y, Jiang L, Zhang L, Ding X, Yin J. Isolation and screening of stress-resistant endophytic fungus strains from wild and cultivated soybeans in cold region of China. Appl Microbiol Biotechnol 2021; 105:755-768. [PMID: 33409608 DOI: 10.1007/s00253-020-11048-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/12/2020] [Accepted: 12/09/2020] [Indexed: 10/22/2022]
Abstract
In this study, we firstly reported the large-scale screening and isolation of endophytic fungi from nine wild and six cultivated soybeans in the cold regions of China. We totally isolated 302 endophytic fungal strains, of which 215 strains are isolated from the wild soybeans and 87 are identified from cultivated soybeans. Among these endophytic fungal strains, in the roots, stems, and leaves, 24.17% were isolated from roots, 28.8% were isolated from stems, and 47.01% were isolated from leaves, respectively. Most endophytic fungal strains isolated from the wild soybean roots were the species of Fusarium genus, and the fungal strains in the stems were the species of ascomycetes and Fusarium fungi, whereas most strains in the leaves were Alternaria fungi. To analyze the taxonomy of the obtained samples, we sequenced and compared their rDNA internal transcribed spacer (ITS) sequences. The data showed that 6 strains are putatively novel strains exhibiting ≤ 97% homology with the known strains. We next measured the secondary metabolites produced by the different strains and we found 11 strains exhibited high-performance synthesis of triterpenoids, phenols, and polysaccharides. Furthermore, we characterized their tolerance to abiotic stresses. The results indicated that 4 strains exhibited high tolerance to cadmium, and some strains exhibited resistance to acid, and alkali. The results of the study could facilitate the further exploration of the diversity of plant endophytic fungi and the potential applications of the fungi to practical agriculture and medicine industries. KEY POINTS: • 302 endophytic fungal strains isolated from wild soybean and cultivated soybean • 11 strains had high contents of triterpenoids, phenols, and polysaccharides • 4 strains exhibited high Cd tolerance, and a few strains with strong tolerance to acid and alkali solution.
Collapse
Affiliation(s)
- Jia-Lei Xiao
- College of Life Science, Northeast Agriculture University, Harbin, 150030, China
| | - Jian-Guang Sun
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education (Northeast Forestry University), Harbin, 150040, China
| | - Bo Pang
- College of Life Science, Northeast Agriculture University, Harbin, 150030, China
| | - Xin Zhou
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education (Northeast Forestry University), Harbin, 150040, China
| | - Yuan Gong
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education (Northeast Forestry University), Harbin, 150040, China
| | - Lichao Jiang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education (Northeast Forestry University), Harbin, 150040, China
| | - Luan Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education (Northeast Forestry University), Harbin, 150040, China
| | - Xiaodong Ding
- College of Life Science, Northeast Agriculture University, Harbin, 150030, China.
| | - Jing Yin
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education (Northeast Forestry University), Harbin, 150040, China.
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
7
|
Krey KL, Nabity PD, Blubaugh CK, Fu Z, Van Leuven JT, Reganold JP, Berim A, Gang DR, Jensen AS, Snyder WE. Organic Farming Sharpens Plant Defenses in the Field. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020; 4. [PMID: 33073178 DOI: 10.3389/fsufs.2020.00097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Plants deploy a variety of chemical and physical defenses to protect themselves against herbivores and pathogens. Organic farming seeks to enhance these responses by improving soil quality, ultimately altering bottom up regulation of plant defenses. While laboratory studies suggest this approach is effective, it remains unclear whether organic agriculture encourages more-active plant defenses under real-world conditions. Working on the farms of cooperating growers, we examined gene expression in the leaves of two potato (Solanum tuberosum) varieties, grown on organic vs. conventional farms. For one variety, Norkotah, we found significantly heightened initiation of genes associated with plant-defense pathways in plants grown in organic vs. conventional fields. Organic Norkotah fields exhibited lower levels of nitrate in soil and of nitrogen in plant foliage, alongside differences in communities of soil bacteria, suggesting possible links between soil management and observed differences in plant defenses. Additionally, numbers of predatory and phloem-feeding insects were higher in organic than conventional fields. A second potato variety, Alturas, which is generally grown using fewer inputs and in poorer-quality soils, exhibited lower overall herbivore and predator numbers, few differences in soil ecology, and no differences in gene-activity in organic and conventional farming systems. Altogether, our results suggest that organic farming has the potential to increase plants' resistance to herbivores, possibly facilitating reduced need for insecticide applications. These benefits appear to be mediated by plant variety and/or farming context.
Collapse
Affiliation(s)
- Karol L Krey
- Department of Entomology, Washington State University, Pullman, WA, United States
| | - Paul D Nabity
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Carmen K Blubaugh
- Plant and Environmental Sciences Department, Clemson University, Clemson, SC, United States
| | - Zhen Fu
- Department of Entomology, Washington State University, Pullman, WA, United States.,Department of Entomology, Texas A&M University, College Station, TX, United States
| | - James T Van Leuven
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - John P Reganold
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Anna Berim
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - David R Gang
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Andrew S Jensen
- Northwest Potato Research Consortium, Lakeview, OR, United States
| | - William E Snyder
- Department of Entomology, University of Georgia, Athens, GA, United States
| |
Collapse
|
8
|
Hu W, Qin W, Jin Y, Wang P, Yan Q, Li F, Yang Z. Genetic and evolution analysis of extrafloral nectary in cotton. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2081-2095. [PMID: 32096298 PMCID: PMC7540171 DOI: 10.1111/pbi.13366] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/31/2020] [Accepted: 02/16/2020] [Indexed: 05/24/2023]
Abstract
Extrafloral nectaries are a defence trait that plays important roles in plant-animal interactions. Gossypium species are characterized by cellular grooves in leaf midribs that secret large amounts of nectar. Here, with a panel of 215 G. arboreum accessions, we compared extrafloral nectaries to nectariless accessions to identify a region of Chr12 that showed strong differentiation and overlapped with signals from GWAS of nectaries. Fine mapping of an F2 population identified GaNEC1, encoding a PB1 domain-containing protein, as a positive regulator of nectary formation. An InDel, encoding a five amino acid deletion, together with a nonsynonymous substitution, was predicted to cause 3D structural changes in GaNEC1 protein that could confer the nectariless phenotype. mRNA-Seq analysis showed that JA-related genes are up-regulated and cell wall-related genes are down-regulated in the nectary. Silencing of GaNEC1 led to a smaller size of foliar nectary phenotype. Metabolomics analysis identified more than 400 metabolites in nectar, including expected saccharides and amino acids. The identification of GaNEC1 helps establish the network regulating nectary formation and nectar secretion, and has implications for understanding the production of secondary metabolites in nectar. Our results will deepen our understanding of plant-mutualism co-evolution and interactions, and will enable utilization of a plant defence trait in cotton breeding efforts.
Collapse
Affiliation(s)
- Wei Hu
- Zhengzhou Research Base, State Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
| | - Wenqiang Qin
- Zhengzhou Research Base, State Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
| | - Yuying Jin
- Zhengzhou Research Base, State Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
| | | | | | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of the Chinese Academy of Agricultural SciencesAnyangChina
| | - Zhaoen Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of the Chinese Academy of Agricultural SciencesAnyangChina
| |
Collapse
|
9
|
Schmidt R, Auge H, Deising HB, Hensen I, Mangan SA, Schädler M, Stein C, Knight TM. Abundance, origin, and phylogeny of plants do not predict community-level patterns of pathogen diversity and infection. Ecol Evol 2020; 10:5506-5516. [PMID: 32607170 PMCID: PMC7319236 DOI: 10.1002/ece3.6292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/11/2020] [Accepted: 03/23/2020] [Indexed: 11/17/2022] Open
Abstract
Pathogens have the potential to shape plant community structure, and thus, it is important to understand the factors that determine pathogen diversity and infection in communities. The abundance, origin, and evolutionary relationships of plant hosts are all known to influence pathogen patterns and are typically studied separately. We present an observational study that examined the influence of all three factors and their interactions on the diversity of and infection of several broad taxonomic groups of foliar, floral, and stem pathogens across three sites in a temperate grassland in the central United States. Despite that pathogens are known to respond positively to increases in their host abundances in other systems, we found no relationship between host abundance and either pathogen diversity or infection. Native and exotic plants did not differ in their infection levels, but exotic plants hosted a more generalist pathogen community compared to native plants. There was no phylogenetic signal across plants in pathogen diversity or infection. The lack of evidence for a role of abundance, origin, and evolutionary relationships in shaping patterns of pathogens in our study might be explained by the high generalization and global distributions of our focal pathogen community, as well as the high diversity of our plant host community. In general, the community-level patterns of aboveground pathogen infections have received less attention than belowground pathogens, and our results suggest that their patterns might not be explained by the same drivers.
Collapse
Affiliation(s)
- Robin Schmidt
- Department of Community EcologyHelmholtz‐Centre for Environmental Research–UFZHalle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of Biology/Geobotany and Botanical GardenMartin Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Harald Auge
- Department of Community EcologyHelmholtz‐Centre for Environmental Research–UFZHalle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Holger B. Deising
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of Agricultural and Nutritional Sciences, Phytopathology and Plant ProtectionMartin Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Isabell Hensen
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of Biology/Geobotany and Botanical GardenMartin Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Scott A. Mangan
- Tyson Research Center & Department of BiologyWashington University in St. LouisSt. LouisMissouriUSA
| | - Martin Schädler
- Department of Community EcologyHelmholtz‐Centre for Environmental Research–UFZHalle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Claudia Stein
- Tyson Research Center & Department of BiologyWashington University in St. LouisSt. LouisMissouriUSA
- Department of Biology and Environmental SciencesAuburn University at MontgomeryMontgomeryALUSA
| | - Tiffany M. Knight
- Department of Community EcologyHelmholtz‐Centre for Environmental Research–UFZHalle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of Biology/Geobotany and Botanical GardenMartin Luther University Halle‐WittenbergHalle (Saale)Germany
| |
Collapse
|
10
|
Nell CS, Mooney KA. Plant structural complexity mediates trade‐off in direct and indirect plant defense by birds. Ecology 2019; 100:e02853. [DOI: 10.1002/ecy.2853] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Colleen S. Nell
- Department of Ecology & Evolutionary Biology UC Irvine 321 Steinhaus Hall Irvine California 92697 USA
| | - Kailen A. Mooney
- Department of Ecology & Evolutionary Biology UC Irvine 321 Steinhaus Hall Irvine California 92697 USA
- Center for Environmental Biology UC Irvine Irvine California 92697 USA
| |
Collapse
|
11
|
Abdala-Roberts L, Quijano-Medina T, Moreira X, Vázquez-González C, Parra-Tabla V, Berny Mier Y Terán JC, Grandi L, Glauser G, Turlings TCJ, Benrey B. Bottom-up control of geographic variation in insect herbivory on wild cotton (Gossypium hirsutum) by plant defenses and climate. AMERICAN JOURNAL OF BOTANY 2019; 106:1059-1067. [PMID: 31322738 DOI: 10.1002/ajb2.1330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 05/28/2019] [Indexed: 06/10/2023]
Abstract
PREMISE The occurrence and amount of herbivory are shaped by bottom-up forces, primarily plant traits (e.g., defenses), and by abiotic factors. Addressing these concurrent effects in a spatial context has been useful in efforts to understand the mechanisms governing variation in plant-herbivore interactions. Still, few studies have evaluated the simultaneous influence of multiple sources of bottom-up variation on spatial variation in herbivory. METHODS We tested to what extent chemical (phenolics, production of terpenoid glands) and physical (pubescence) defensive plant traits and climatic factors are associated with variation in herbivory by leaf-chewing insects across populations of wild cotton (Gossypium hirsutum). RESULTS We found substantial population variation in cotton leaf defenses and insect leaf herbivory. Leaf pubescence, but not gossypol gland density or phenolic content, was significantly negatively associated with herbivory by leaf-chewing insects. In addition, there were direct effects of climate on defenses and herbivory, with leaf pubescence increasing toward drier conditions and leaf damage increasing toward wetter and cooler conditions. There was no evidence, however, of indirect effects (via plant defenses) of climate on herbivory. CONCLUSIONS These results suggest that spatial variation in insect herbivory on wild G. hirsutum is predominantly driven by concurrent and independent influences of population variation in leaf pubescence and climatic factors.
Collapse
Affiliation(s)
- Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116, Itzimná, 97000, Mérida, Yucatán, Mexico
| | - Teresa Quijano-Medina
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116, Itzimná, 97000, Mérida, Yucatán, Mexico
| | - Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Apdo. 28, 36080, Pontevedra, Spain
| | | | - Víctor Parra-Tabla
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116, Itzimná, 97000, Mérida, Yucatán, Mexico
| | | | - Luca Grandi
- Fundamental and Applied Research in Chemical Ecology (FARCE Lab), Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Rue Emile Argand 11, 2000, Neuchâtel, Switzerland
| | - Ted C J Turlings
- Fundamental and Applied Research in Chemical Ecology (FARCE Lab), Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Betty Benrey
- Laboratory of Evolutionary Entomology, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| |
Collapse
|
12
|
Seabloom EW, Borer ET, Kinkel LL. No evidence for trade-offs in plant responses to consumer food web manipulations. Ecology 2018; 99:1953-1963. [DOI: 10.1002/ecy.2389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/15/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Eric W. Seabloom
- Department of Ecology, Evolution, and Behavior; University of Minnesota; St. Paul Minnesota 55108 USA
| | - Elizabeth T. Borer
- Department of Ecology, Evolution, and Behavior; University of Minnesota; St. Paul Minnesota 55108 USA
| | - Linda L. Kinkel
- Department of Plant Pathology; University of Minnesota; St. Paul Minnesota 55108 USA
| |
Collapse
|
13
|
Fishbein M, Straub SCK, Boutte J, Hansen K, Cronn RC, Liston A. Evolution at the tips: Asclepias phylogenomics and new perspectives on leaf surfaces. AMERICAN JOURNAL OF BOTANY 2018; 105:514-524. [PMID: 29693728 DOI: 10.1002/ajb2.1062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/19/2017] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY Leaf surface traits, such as trichome density and wax production, mediate important ecological processes such as anti-herbivory defense and water-use efficiency. We present a phylogenetic analysis of Asclepias plastomes as a framework for analyzing the evolution of trichome density and presence of epicuticular waxes. METHODS We produced a maximum-likelihood phylogeny using plastomes of 103 species of Asclepias. We reconstructed ancestral states and used model comparisons in a likelihood framework to analyze character evolution across Asclepias. KEY RESULTS We resolved the backbone of Asclepias, placing the Sonoran Desert clade and Incarnatae clade as successive sisters to the remaining species. We present novel findings about leaf surface evolution of Asclepias-the ancestor is reconstructed as waxless and sparsely hairy, a macroevolutionary optimal trichome density is supported, and the rate of evolution of trichome density has accelerated. CONCLUSIONS Increased sampling and selection of best-fitting models of evolution provide more resolved and robust estimates of phylogeny and character evolution than obtained in previous studies. Evolutionary inferences are more sensitive to character coding than model selection.
Collapse
Affiliation(s)
- Mark Fishbein
- Department of Plant Biology, Ecology & Evolution, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Shannon C K Straub
- Department of Biology, Hobart and William Smith Colleges, Geneva, NY, 14456, USA
| | - Julien Boutte
- Department of Biology, Hobart and William Smith Colleges, Geneva, NY, 14456, USA
| | - Kimberly Hansen
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Richard C Cronn
- Pacific Northwest Research Station, USDA Forest Service, Corvallis, OR, 97331, USA
| | - Aaron Liston
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
14
|
Trapero C, Wilson IW, Stiller WN, Wilson LJ. Enhancing Integrated Pest Management in GM Cotton Systems Using Host Plant Resistance. FRONTIERS IN PLANT SCIENCE 2016; 7:500. [PMID: 27148323 PMCID: PMC4840675 DOI: 10.3389/fpls.2016.00500] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/29/2016] [Indexed: 05/12/2023]
Abstract
Cotton has lost many ancestral defensive traits against key invertebrate pests. This is suggested by the levels of resistance to some pests found in wild cotton genotypes as well as in cultivated landraces and is a result of domestication and a long history of targeted breeding for yield and fiber quality, along with the capacity to control pests with pesticides. Genetic modification (GM) allowed integration of toxins from a bacteria into cotton to control key Lepidopteran pests. Since the mid-1990s, use of GM cotton cultivars has greatly reduced the amount of pesticides used in many cotton systems. However, pests not controlled by the GM traits have usually emerged as problems, especially the sucking bug complex. Control of this complex with pesticides often causes a reduction in beneficial invertebrate populations, allowing other secondary pests to increase rapidly and require control. Control of both sucking bug complex and secondary pests is problematic due to the cost of pesticides and/or high risk of selecting for pesticide resistance. Deployment of host plant resistance (HPR) provides an opportunity to manage these issues in GM cotton systems. Cotton cultivars resistant to the sucking bug complex and/or secondary pests would require fewer pesticide applications, reducing costs and risks to beneficial invertebrate populations and pesticide resistance. Incorporation of HPR traits into elite cotton cultivars with high yield and fiber quality offers the potential to further reduce pesticide use and increase the durability of pest management in GM cotton systems. We review the challenges that the identification and use of HPR against invertebrate pests brings to cotton breeding. We explore sources of resistance to the sucking bug complex and secondary pests, the mechanisms that control them and the approaches to incorporate these defense traits to commercial cultivars.
Collapse
|
15
|
Moreira X, Sampedro L, Zas R, Pearse IS. Defensive Traits in Young Pine Trees Cluster into Two Divergent Syndromes Related to Early Growth Rate. PLoS One 2016; 11:e0152537. [PMID: 27028433 PMCID: PMC4814073 DOI: 10.1371/journal.pone.0152537] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/15/2016] [Indexed: 11/18/2022] Open
Abstract
The combination of defensive traits leads to the evolution of 'plant defense syndromes' which should provide better protection against herbivores than individual traits on their own. Defense syndromes can be generally driven by plant phylogeny and/or biotic and abiotic factors. However, we lack a solid understanding of (i) the relative importance of shared evolution vs. convergence due to similar ecological conditions and (ii) the role of induced defense strategies in shaping defense syndromes. We investigate the relative roles of evolutionary and ecological factors shaping the deployment of pine defense syndromes including multiple constitutive and induced chemical defense traits. We performed a greenhouse experiment with seedlings of eighteen species of Pinaceae family, and measured plant growth rate, constitutive chemical defenses and their inducibility. Plant growth rate, but not phylogenetic relatedness, determined the deployment of two divergent syndromes. Slow-growing pine species living in harsh environments where tissue replacement is costly allocated more to constitutive defenses (energetically more costly to produce than induced). In contrast, fast-growing species living in resource-rich habitats had greater inducibility of their defenses, consistent with the theory of constitutive-induced defense trade-offs. This study contributes to a better understanding of evolutionary and ecological factors driving the deployment of defense syndromes.
Collapse
Affiliation(s)
- Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Apdo. 28, 36080 Pontevedra, Galicia, Spain
| | - Luis Sampedro
- Misión Biológica de Galicia (MBG-CSIC), Apdo. 28, 36080 Pontevedra, Galicia, Spain
| | - Rafael Zas
- Misión Biológica de Galicia (MBG-CSIC), Apdo. 28, 36080 Pontevedra, Galicia, Spain
| | - Ian S. Pearse
- Illinois Natural History Survey, 1816 South Oak Street, Champaign, Illinois, 61820, United States of America
| |
Collapse
|
16
|
Cacho NI, Kliebenstein DJ, Strauss SY. Macroevolutionary patterns of glucosinolate defense and tests of defense-escalation and resource availability hypotheses. THE NEW PHYTOLOGIST 2015; 208:915-27. [PMID: 26192213 DOI: 10.1111/nph.13561] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/08/2015] [Indexed: 05/12/2023]
Abstract
We explored macroevolutionary patterns of plant chemical defense in Streptanthus (Brassicaceae), tested for evolutionary escalation of defense, as predicted by Ehrlich and Raven's plant-herbivore coevolutionary arms-race hypothesis, and tested whether species inhabiting low-resource or harsh environments invest more in defense, as predicted by the resource availability hypothesis (RAH). We conducted phylogenetically explicit analyses using glucosinolate profiles, soil nutrient analyses, and microhabitat bareness estimates across 30 species of Streptanthus inhabiting varied environments and soils. We found weak to moderate phylogenetic signal in glucosinolate classes and no signal in total glucosinolate production; a trend toward evolutionary de-escalation in the numbers and diversity of glucosinolates, accompanied by an evolutionary increase in the proportion of aliphatic glucosinolates; some support for the RAH relative to soil macronutrients, but not relative to serpentine soil use; and that the number of glucosinolates increases with microhabitat bareness, which is associated with increased herbivory and drought. Weak phylogenetic signal in chemical defense has been observed in other plant systems. A more holistic approach incorporating other forms of defense might be necessary to confidently reject escalation of defense. That defense increases with microhabitat bareness supports the hypothesis that habitat bareness is an underappreciated selective force on plants in harsh environments.
Collapse
Affiliation(s)
- N Ivalú Cacho
- Center for Population Biology, and Department of Evolution of Ecology, University of California, One Shields Avenue, Davis, CA, 95616, USA
- Instituto de Biología, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California. One Shields Avenue, Davis, CA, 95616, USA
- DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Sharon Y Strauss
- Center for Population Biology, and Department of Evolution of Ecology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
17
|
Kariñho-Betancourt E, Agrawal AA, Halitschke R, Núñez-Farfán J. Phylogenetic correlations among chemical and physical plant defenses change with ontogeny. THE NEW PHYTOLOGIST 2015; 206:796-806. [PMID: 25652325 DOI: 10.1111/nph.13300] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/15/2014] [Indexed: 05/27/2023]
Abstract
Theory predicts patterns of defense across taxa based on notions of tradeoffs and synergism among defensive traits when plants and herbivores coevolve. Because the expression of characters changes ontogenetically, the evolution of plant strategies may be best understood by considering multiple traits along a trajectory of plant development. Here we addressed the ontogenetic expression of chemical and physical defenses in 12 Datura species, and tested for macroevolutionary correlations between defensive traits using phylogenetic analyses. We used liquid chromatography coupled to mass spectrometry to identify the toxic tropane alkaloids of Datura, and also estimated leaf trichome density. We report three major patterns. First, we found different ontogenetic trajectories of alkaloids and leaf trichomes, with alkaloids increasing in concentration at the reproductive stage, whereas trichomes were much more variable across species. Second, the dominant alkaloids and leaf trichomes showed correlated evolution, with positive and negative associations. Third, the correlations between defensive traits changed across ontogeny, with significant relationships only occurring during the juvenile phase. The patterns in expression of defensive traits in the genus Datura are suggestive of adaptation to complex selective environments varying in space and time.
Collapse
Affiliation(s)
- Eunice Kariñho-Betancourt
- Laboratorio de Genética Ecológica y Evolución, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510, México city, México
| | | | | | | |
Collapse
|
18
|
Yamawo A. Relatedness of Neighboring Plants Alters the Expression of Indirect Defense Traits in an Extrafloral Nectary-Bearing Plant. Evol Biol 2014. [DOI: 10.1007/s11692-014-9295-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
19
|
Johnson MTJ, Ives AR, Ahern J, Salminen JP. Macroevolution of plant defenses against herbivores in the evening primroses. THE NEW PHYTOLOGIST 2014; 203:267-279. [PMID: 24634986 DOI: 10.1111/nph.12763] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 02/11/2014] [Indexed: 06/03/2023]
Abstract
Plant species vary greatly in defenses against herbivores, but existing theory has struggled to explain this variation. Here, we test how phylogenetic relatedness, tradeoffs, trait syndromes, and sexual reproduction affect the macroevolution of defense. To examine the macroevolution of defenses, we studied 26 Oenothera (Onagraceae) species, combining chemistry, comparative phylogenetics and experimental assays of resistance against generalist and specialist herbivores. We detected dozens of phenolic metabolites within leaves, including ellagitannins (ETs), flavonoids, and caffeic acid derivatives (CAs). The concentration and composition of phenolics exhibited low to moderate phylogenetic signal. There were clear negative correlations between multiple traits, supporting the prediction of allocation tradeoffs. There were also positively covarying suites of traits, but these suites did not strongly predict resistance to herbivores and thus did not act as defensive syndromes. By contrast, specific metabolites did correlate with the performance of generalist and specialist herbivores. Finally, that repeated losses of sex in Oenothera was associated with the evolution of increased flavonoid diversity and altered phenolic composition. These results show that secondary chemistry has evolved rapidly during the diversification of Oenothera. This evolution has been marked by allocation tradeoffs between traits, some of which are related to herbivore performance. The repeated loss of sex appears also to have constrained the evolution of plant secondary chemistry, which may help to explain variation in defense among plants.
Collapse
Affiliation(s)
- Marc T J Johnson
- Department of Biology, University of Toronto-Mississauga, Mississauga, ON, L5L 1C6, Canada
| | | | | | | |
Collapse
|
20
|
Haak DC, Ballenger BA, Moyle LC. No evidence for phylogenetic constraint on natural defense evolution among wild tomatoes. Ecology 2014; 95:1633-41. [DOI: 10.1890/13-1145.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Lasky JR, Yang J, Zhang G, Cao M, Tang Y, Keitt TH. The role of functional traits and individual variation in the co-occurrence ofFicusspecies. Ecology 2014; 95:978-90. [DOI: 10.1890/13-0437.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Wason EL, Hunter MD. Genetic variation in plant volatile emission does not result in differential attraction of natural enemies in the field. Oecologia 2013; 174:479-91. [DOI: 10.1007/s00442-013-2787-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 09/12/2013] [Indexed: 11/27/2022]
|
23
|
Weber MG, Keeler KH. The phylogenetic distribution of extrafloral nectaries in plants. ANNALS OF BOTANY 2013; 111:1251-61. [PMID: 23087129 PMCID: PMC3662505 DOI: 10.1093/aob/mcs225] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 09/19/2012] [Indexed: 05/04/2023]
Abstract
BACKGROUND AND AIMS Understanding the evolutionary patterns of ecologically relevant traits is a central goal in plant biology. However, for most important traits, we lack the comprehensive understanding of their taxonomic distribution needed to evaluate their evolutionary mode and tempo across the tree of life. Here we evaluate the broad phylogenetic patterns of a common plant-defence trait found across vascular plants: extrafloral nectaries (EFNs), plant glands that secrete nectar and are located outside the flower. EFNs typically defend plants indirectly by attracting invertebrate predators who reduce herbivory. METHODS Records of EFNs published over the last 135 years were compiled. After accounting for changes in taxonomy, phylogenetic comparative methods were used to evaluate patterns of EFN evolution, using a phylogeny of over 55 000 species of vascular plants. Using comparisons of parametric and non-parametric models, the true number of species with EFNs likely to exist beyond the current list was estimated. KEY RESULTS To date, EFNs have been reported in 3941 species representing 745 genera in 108 families, about 1-2 % of vascular plant species and approx. 21 % of families. They are found in 33 of 65 angiosperm orders. Foliar nectaries are known in four of 36 fern families. Extrafloral nectaries are unknown in early angiosperms, magnoliids and gymnosperms. They occur throughout monocotyledons, yet most EFNs are found within eudicots, with the bulk of species with EFNs being rosids. Phylogenetic analyses strongly support the repeated gain and loss of EFNs across plant clades, especially in more derived dicot families, and suggest that EFNs are found in a minimum of 457 independent lineages. However, model selection methods estimate that the number of unreported cases of EFNs may be as high as the number of species already reported. CONCLUSIONS EFNs are widespread and evolutionarily labile traits that have repeatedly evolved a remarkable number of times in vascular plants. Our current understanding of the phylogenetic patterns of EFNs makes them powerful candidates for future work exploring the drivers of their evolutionary origins, shifts, and losses.
Collapse
Affiliation(s)
- Marjorie G Weber
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14850, USA.
| | | |
Collapse
|
24
|
Moreira X, Zas R, Sampedro L. Additive genetic variation in resistance traits of an exotic pine species: little evidence for constraints on evolution of resistance against native herbivores. Heredity (Edinb) 2013; 110:449-56. [PMID: 23232833 PMCID: PMC3630812 DOI: 10.1038/hdy.2012.108] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 10/30/2012] [Accepted: 11/05/2012] [Indexed: 11/09/2022] Open
Abstract
The apparent failure of invasions by alien pines in Europe has been explained by the co-occurrence of native pine congeners supporting herbivores that might easily recognize the new plants as hosts. Previous studies have reported that exotic pines show reduced tolerance and capacity to induce resistance to those native herbivores. We hypothesize that limited genetic variation in resistance to native herbivores and the existence of evolutionary trade-offs between growth and resistance could represent additional potential constraints on the evolution of invasiveness of exotic pines outside their natural range. In this paper, we examined genetic variation for constitutive and induced chemical defences (measured as non-volatile resin in the stem and total phenolics in the needles) and resistance to two major native generalist herbivores of pines in cafeteria bioassays (the phloem-feeder Hylobius abietis and the defoliator Thaumetopoea pityocampa) using half-sib families drawn from a sample of the population of Pinus radiata introduced to Spain in the mid-19th century. We found (i) significant genetic variation, with moderate-to-high narrow-sense heritabilities for both the production of constitutive non-volatile resin and induced total phenolics, and for constitutive resistance against T. pityocampa in bioassays, (ii) no evolutionary trade-offs between plant resistance and growth traits or between the production of different quantitative chemical defences and (iii) a positive genetic correlation between constitutive resistance to the two studied herbivores. Overall, results of our study indicate that the exotic pine P. radiata has limited genetic constraints on the evolution of resistance against herbivores in its introduced range, suggesting that, at least in terms of interactions with these enemies, this pine species has potential to become invasive in the future.
Collapse
Affiliation(s)
- X Moreira
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA.
| | | | | |
Collapse
|
25
|
Moles AT, Peco B, Wallis IR, Foley WJ, Poore AGB, Seabloom EW, Vesk PA, Bisigato AJ, Cella-Pizarro L, Clark CJ, Cohen PS, Cornwell WK, Edwards W, Ejrnaes R, Gonzales-Ojeda T, Graae BJ, Hay G, Lumbwe FC, Magaña-Rodríguez B, Moore BD, Peri PL, Poulsen JR, Stegen JC, Veldtman R, von Zeipel H, Andrew NR, Boulter SL, Borer ET, Cornelissen JHC, Farji-Brener AG, DeGabriel JL, Jurado E, Kyhn LA, Low B, Mulder CPH, Reardon-Smith K, Rodríguez-Velázquez J, De Fortier A, Zheng Z, Blendinger PG, Enquist BJ, Facelli JM, Knight T, Majer JD, Martínez-Ramos M, McQuillan P, Hui FKC. Correlations between physical and chemical defences in plants: tradeoffs, syndromes, or just many different ways to skin a herbivorous cat? THE NEW PHYTOLOGIST 2013; 198:252-263. [PMID: 23316750 DOI: 10.1111/nph.12116] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 11/27/2012] [Indexed: 05/25/2023]
Abstract
Most plant species have a range of traits that deter herbivores. However, understanding of how different defences are related to one another is surprisingly weak. Many authors argue that defence traits trade off against one another, while others argue that they form coordinated defence syndromes. We collected a dataset of unprecedented taxonomic and geographic scope (261 species spanning 80 families, from 75 sites across the globe) to investigate relationships among four chemical and six physical defences. Five of the 45 pairwise correlations between defence traits were significant and three of these were tradeoffs. The relationship between species' overall chemical and physical defence levels was marginally nonsignificant (P = 0.08), and remained nonsignificant after accounting for phylogeny, growth form and abundance. Neither categorical principal component analysis (PCA) nor hierarchical cluster analysis supported the idea that species displayed defence syndromes. Our results do not support arguments for tradeoffs or for coordinated defence syndromes. Rather, plants display a range of combinations of defence traits. We suggest this lack of consistent defence syndromes may be adaptive, resulting from selective pressure to deploy a different combination of defences to coexisting species.
Collapse
Affiliation(s)
- Angela T Moles
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Begoña Peco
- Terrestrial Ecology Group, Departamento Interuniversitario de Ecología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin s/n, Cantoblanco, E-28049, Madrid, Spain
| | - Ian R Wallis
- Research School of Biology, Australian National University, Canberra, ACT, 0200, Australia
| | - William J Foley
- Research School of Biology, Australian National University, Canberra, ACT, 0200, Australia
| | - Alistair G B Poore
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Eric W Seabloom
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, MN, 55108, USA
| | - Peter A Vesk
- School of Botany, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Alejandro J Bisigato
- Centro Nacional Patagónico, CONICET, Blvd. Brown s/n, 9120, Puerto Madryn, Argentina
| | | | - Connie J Clark
- Woods Hole Research Center, 149 Woods Hole Road, Falmouth, MA, 02540, USA
| | - Philippe S Cohen
- Jasper Ridge Biological Preserve, Stanford University, Stanford, CA, 94305-5020, USA
| | - William K Cornwell
- Institute of Ecological Science, Department of Systems Ecology, Vrije Universiteit, Amsterdam, the Netherlands
| | - Will Edwards
- School of Marine and Tropical Biology and Centre for Tropical Environmental and Sustainability Science, James Cook University, PO Box 6811, Cairns, QLD, Australia
| | - Rasmus Ejrnaes
- National Environmental Research Institute, University of Aarhus, 8420, Rønde, Denmark
| | - Therany Gonzales-Ojeda
- Facultad de Ciencias Forestales y Medio Ambiente, Universidad Nacional de San Antonio Abad del Cusco, Jr. San Mart í n 451, Madre de Dios, Peru
| | - Bente J Graae
- Climate Impacts Research Centre, Department of Ecology and Environmental Sciences, Umeå University, Abisko Naturvetenskapliga Station, 98107, Abisko, Sweden
- Department of Biology, NTNU, 7491, Trondheim, Norway
| | - Gregory Hay
- School of Earth and Environmental Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Fainess C Lumbwe
- Department of Biological Sciences, University of Zambia, PO Box 32379, Lusaka, 10101, Zambia
| | - Benjamín Magaña-Rodríguez
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Ben D Moore
- School of Marine and Tropical Biology, James Cook University, Townsville, QLD, 4811, Australia
- Hawkesbury Institute for the Environment, University of Western Sydney, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Pablo L Peri
- Universidad Nacional de la Patagonia Austral, INTA, CONICET, 9400, Rio Gallegos, Santa Cruz, Argentina
| | - John R Poulsen
- Woods Hole Research Center, 149 Woods Hole Road, Falmouth, MA, 02540, USA
| | - James C Stegen
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Ruan Veldtman
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
- Kirstenbosch Research Centre, South African National Biodiversity Institute, Private Bag X7, Claremont, 7735, South Africa
| | - Hugo von Zeipel
- Department of Natural Sciences, Mid Sweden University, SE-851 70, Sundsvall, Sweden
| | - Nigel R Andrew
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW, 2351, Australia
| | - Sarah L Boulter
- Environmental Futures Centre, Griffith School of Environment, Griffith University, Nathan, QLD, 4111, Australia
| | - Elizabeth T Borer
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, MN, 55108, USA
| | - Johannes H C Cornelissen
- Department of Systems Ecology, Institute of Ecological Science, Vrije Universiteit, De Boelelaan 1087, NL-1081 HV, Amsterdam, the Netherlands
| | | | - Jane L DeGabriel
- School of Marine and Tropical Biology, James Cook University, Townsville, QLD, 4811, Australia
| | - Enrique Jurado
- Facultad de Ciencias Forestales, University of Nuevo Leon, Linares, 67700, Mexico
| | - Line A Kyhn
- National Environmental Research Institute, Aarhus University, Frederiksborgvej 399, DK- 4000, Roskilde, Denmark
| | - Bill Low
- Low Ecological Services, PO Box 3130, Alice Springs, NT, 0871, Australia
| | - Christa P H Mulder
- Institute of Arctic Biology and Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Kathryn Reardon-Smith
- Australian Centre for Sustainable Catchments, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Jorge Rodríguez-Velázquez
- Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México, Morelia, 58190, México
| | - An De Fortier
- Department of Zoology, University of Zululand, Private Bag x1001, Kwadlangezwa, 3886, Kwazulu-Natal, South Africa
| | - Zheng Zheng
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
| | - Pedro G Blendinger
- CONICET and Instituto de Ecología Regional, Universidad Nacional de Tucumán, Yerba Buena, 4107, Tucumán, Argentina
| | - Brian J Enquist
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | | | - Tiffany Knight
- Department of Biology, Washington University in St. Louis, Box 1137, St Louis, MO, 63105, USA
| | - Jonathan D Majer
- Curtin Institute for Biodiversity and Climate, Curtin University, PO Box U1987, Perth, WA, 6845, Australia
| | - Miguel Martínez-Ramos
- Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México, Morelia, 58190, México
| | - Peter McQuillan
- School of Geography & Environmental Studies, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Francis K C Hui
- School of Mathematics and Statistics and Evolution & Ecology Research Centre, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
26
|
Wei J, Yan L, Ren Q, Li C, Ge F, Kang LE. Antagonism between herbivore-induced plant volatiles and trichomes affects tritrophic interactions. PLANT, CELL & ENVIRONMENT 2013; 36:315-27. [PMID: 22789006 DOI: 10.1111/j.1365-3040.2012.02575.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We used tomato genotypes deficient in the jasmonic acid (JA) pathway to study the interaction between the production of herbivore-induced plant volatiles (HIPVs) that serve as information cues for herbivores as well as natural enemies of herbivores, and the production of foliar trichomes as defence barriers. We found that jasmonic acid-insensitive1 (jai1) mutant plants with both reduced HIPVs and trichome production received higher oviposition of adult leafminers, which were more likely to be parasitized by the leafminer parasitoids than JA biosynthesis spr2 mutant plants deficient in HIPVs but not trichomes. We also showed that the preference and acceptance of leafminers and parasitoids to trichome-removed plants from either spr2 or wild-type (WT) genotypes over trichome-intact genotypes can be ascribed to the reduced trichomes on treated plants, but not to altered direct and indirect defence traits such as JA, proteinase inhibitor (PI)-II and HIPVs levels. Although the HIPVs of WT plants were more attractive to adult insects, the insects preferred trichome-free jai1 plants for oviposition and also had greater reproductive success on these plants. Our results provide strong evidence that antagonism between HIPV emission and trichome production affects tritrophic interactions. The interactions among defence traits are discussed.
Collapse
Affiliation(s)
- Jianing Wei
- State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | | | | | |
Collapse
|
27
|
Weber MG, Clement WL, Donoghue MJ, Agrawal AA. Phylogenetic and Experimental Tests of Interactions among Mutualistic Plant Defense Traits in Viburnum (Adoxaceae). Am Nat 2012; 180:450-63. [DOI: 10.1086/667584] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Bixenmann RJ, Coley PD, Kursar TA. Developmental Changes in Direct and Indirect Defenses in the Young Leaves of the Neotropical Tree GenusInga(Fabaceae). Biotropica 2012. [DOI: 10.1111/j.1744-7429.2012.00914.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Koricheva J, Romero GQ. You get what you pay for: reward-specific trade-offs among direct and ant-mediated defences in plants. Biol Lett 2012; 8:628-30. [PMID: 22552633 DOI: 10.1098/rsbl.2012.0271] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Plant defences against herbivores include direct defences such as secondary metabolites or physical structures (e.g. trichomes) as well as indirect defences mediated via mutualistic interactions with other organisms including ants. Production of both direct defences and rewards for mutualistic ants may be costly for a plant, and it has been suggested that trade-offs may exist between direct and ant-mediated defences. We have conducted a meta-analysis of 25 studies testing the above hypothesis and found a significant negative correlation between plant allocation to direct and ant-mediated defences. The strength of correlation was similar for across- and within-species comparisons, and for chemical and physical direct defences. However, trade-offs with direct defences were significant only in plants which offered to ants more costly rewards such as food bodies and/or domatia, but not in plants which attracted ants with relatively cheap extrafloral nectaries. Our results therefore support the hypothesis that plant investment in ant-mediated defences may reduce the requirement for direct chemical and physical defences, but only in plants which offer more costly rewards to their bodyguards.
Collapse
Affiliation(s)
- Julia Koricheva
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK.
| | | |
Collapse
|
30
|
Erb M, Balmer D, De Lange ES, Von Merey G, Planchamp C, Robert CAM, Röder G, Sobhy I, Zwahlen C, Mauch-Mani B, Turlings TCJ. Synergies and trade-offs between insect and pathogen resistance in maize leaves and roots. PLANT, CELL & ENVIRONMENT 2011; 34:1088-103. [PMID: 21410707 DOI: 10.1111/j.1365-3040.2011.02307.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Determining links between plant defence strategies is important to understand plant evolution and to optimize crop breeding strategies. Although several examples of synergies and trade-offs between defence traits are known for plants that are under attack by multiple organisms, few studies have attempted to measure correlations of defensive strategies using specific single attackers. Such links are hard to detect in natural populations because they are inherently confounded by the evolutionary history of different ecotypes. We therefore used a range of 20 maize inbred lines with considerable differences in resistance traits to determine if correlations exist between leaf and root resistance against pathogens and insects. Aboveground resistance against insects was positively correlated with the plant's capacity to produce volatiles in response to insect attack. Resistance to herbivores and resistance to a pathogen, on the other hand, were negatively correlated. Our results also give first insights into the intraspecific variability of root volatiles release in maize and its positive correlation with leaf volatile production. We show that the breeding history of the different genotypes (dent versus flint) has influenced several defensive parameters. Taken together, our study demonstrates the importance of genetically determined synergies and trade-offs for plant resistance against insects and pathogens.
Collapse
Affiliation(s)
- Matthias Erb
- FARCE Laboratory, University of Neuchâtel, Neuchâtel, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wozniak CA, Martinez JC. U.S. EPA regulation of plant-incorporated protectants: assessment of impacts of gene flow from pest-resistant plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:5859-5864. [PMID: 21080671 DOI: 10.1021/jf1030168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The U.S. Environmental Protection Agency licenses pesticide-expressing plants under the authority of the Federal Insecticide, Fungicide and Rodenticide Act (FIFRA). Transgenes and their pesticidal products represent pesticides under FIFRA and are referred to as plant-incorporated protectants (PIPs). When sexually compatible wild relatives (SCWR) are sympatric with PIP crops, there is a need to assess the potential for adverse effects to man and the environment resulting from transgene introgression in accord with FIFRA requirements. Genetic compatibility, introgression, weediness of SCWR × PIP hybrids, seed dispersal, and dormancy, among other parameters, as well as effects on other species (herbivores and beneficial insects), all need to be considered as part of the risk assessment for experimental use under Section 5 or registration under Section 3 of FIFRA. EPA is currently developing data requirements and guidance toward addressing potential gene flow impacts from PIPs.
Collapse
Affiliation(s)
- Chris A Wozniak
- Office of Chemical Safety and Pollution Prevention, Office of Pesticide Programs, Biopesticides and Pollution Prevention Division, U.S. Environmental Protection Agency, 7511P, 1200 Pennsylvania Avenue, N.W., Washington, D.C. 20460, USA
| | | |
Collapse
|
32
|
How do plants balance multiple mutualists? Correlations among traits for attracting protective bodyguards and pollinators in cotton (Gossypium). Evol Ecol 2011. [DOI: 10.1007/s10682-011-9497-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
LLANDRES ANAL, RODRÍGUEZ-GIRONÉS MIGUELA, DIRZO RODOLFO. Plant stages with biotic, indirect defences are more palatable and suffer less herbivory than their undefended counterparts. Biol J Linn Soc Lond 2010. [DOI: 10.1111/j.1095-8312.2010.01521.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Mortensen B, Wagner D, Doak P. Defensive effects of extrafloral nectaries in quaking aspen differ with scale. Oecologia 2010; 165:983-93. [PMID: 20931234 DOI: 10.1007/s00442-010-1799-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 09/14/2010] [Indexed: 11/25/2022]
Abstract
The effects of plant defenses on herbivory can differ among spatial scales. This may be particularly common with indirect defenses, such as extrafloral nectaries (EFNs), that attract predatory arthropods and are dependent on predator distribution, abundance, and behavior. We tested the defensive effects of EFNs in quaking aspen (Populus tremuloides Michx.) against damage by a specialist herbivore, the aspen leaf miner (Phyllocnistis populiella Cham.), at the scale of individual leaves and entire ramets (i.e., stems). Experiments excluding crawling arthropods revealed that the effects of aspen EFNs differed at the leaf and ramet scales. Crawling predators caused similar reductions in the percent leaf area mined on individual leaves with and without EFNs. However, the extent to which crawling predators increased leaf miner mortality and, consequently, reduced mining damage increased with EFN expression at the ramet scale. Thus, aspen EFNs provided a diffuse defense, reducing damage to leaves across a ramet regardless of leaf-scale EFN expression. We detected lower leaf miner damage and survival unassociated with crawling predators on EFN-bearing leaves, suggesting that direct defenses (e.g., chemical defenses) were stronger on leaves with than without EFNs. Greater direct defenses on EFN-bearing leaves may reduce the probability of losing these leaves and thus weakening ramet-scale EFN defense. Aspen growth was not related to EFN expression or the presence of crawling predators over the course of a single season. Different effects of aspen EFNs at the leaf and ramet scales suggest that future studies may benefit from examining indirect defenses simultaneously at multiple scales.
Collapse
Affiliation(s)
- Brent Mortensen
- Department of Biology and Wildlife, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775-7000, USA
| | | | | |
Collapse
|
35
|
Yamawo A, Hada Y. Effects of light on direct and indirect defences against herbivores of young plants of Mallotus japonicus demonstrate a trade-off between two indirect defence traits. ANNALS OF BOTANY 2010; 106:143-8. [PMID: 20472698 PMCID: PMC2889801 DOI: 10.1093/aob/mcq093] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 02/25/2010] [Accepted: 03/23/2010] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND AIMS Although most studies on plant defence strategies have focused on a particular defence trait, some plant species develop multiple defence traits. To clarify the effects of light on the development of multiple defence traits, the production of direct and indirect defence traits of young plants of Mallotus japonicus were examined experimentally under different light conditions. METHODS The young plants were cultivated under three light conditions in the experimental field for 3 months from May to July. Numbers of ants and pearl bodies on leaves in July were examined. After cultivation, the plants were collected and the developments of trichomes and pellucid dots, and extrafloral nectaries (EFNs) on the leaves were examined. On plants without nectar-collecting insects, the size of EFNs and the volume of extrafloral nectar secreted from the EFNs were examined. KEY RESULTS Densities of trichomes and pellucid dots did not differ significantly among the plants under the different light conditions, suggesting that the chemical and physical defences function under both high and low light availability. The number of EFNs on the leaves did not differ significantly among the plants under the different light conditions, but there appeared to be a trade-off between the size of EFNs and the number of pearl bodies; the largest EFNs and the smallest number of pearl bodies were found under high light availability. EFN size was significantly correlated with the volume of extrafloral nectar secreted for 24 h. The number of ants on the plants was smaller under low light availability than under high and moderate light availability. CONCLUSIONS These results suggest that direct defence traits function regardless of light conditions, but light conditions affected the development of indirect defence traits.
Collapse
Affiliation(s)
- Akira Yamawo
- Department of Biosphere-Geosphere System Science, Okayama University of Science, Okayama 700-0005, Japan.
| | | |
Collapse
|
36
|
Young B, Wagner D, Doak P, Clausen T. Induction of phenolic glycosides by quaking aspen (Populus tremuloides) leaves in relation to extrafloral nectaries and epidermal leaf mining. J Chem Ecol 2010; 36:369-77. [PMID: 20354896 DOI: 10.1007/s10886-010-9763-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2009] [Revised: 01/24/2010] [Accepted: 02/10/2010] [Indexed: 11/27/2022]
Abstract
We studied the effect of epidermal leaf mining on the leaf chemistry of quaking aspen, Populus tremuloides, during an outbreak of the aspen leaf miner, Phyllocnistis populiella, in the boreal forest of interior Alaska. Phyllocnistis populiella feeds on the epidermal cells of P. tremuloides leaves. Eleven days after the onset of leaf mining, concentrations of the phenolic glycosides tremulacin and salicortin were significantly higher in aspen leaves that had received natural levels of leaf mining than in leaves sprayed with insecticide to reduce mining damage. In a second experiment, we examined the time course of induction in more detail. The levels of foliar phenolic glycosides in naturally mined ramets increased relative to the levels in insecticide-treated ramets on the ninth day following the onset of leaf mining. Induction occurred while some leaf miner larvae were still feeding and when leaves had sustained mining over 5% of the leaf surface. Leaves with extrafloral nectaries (EFNs) had significantly higher constitutive and induced levels of phenolic glycosides than leaves lacking EFNs, but there was no difference in the ability of leaves with and without EFNs to induce phenolic glycosides in response to mining. Previous work showed that the extent of leaf mining damage was negatively related to the total foliar phenolic glycoside concentration, suggesting that phenolic glycosides deter or reduce mining damage. The results presented here demonstrate that induction of phenolic glycosides can be triggered by relatively small amounts of mining damage confined to the epidermal tissue, and that these changes in leaf chemistry occur while a subset of leaf miners are still feeding within the leaf.
Collapse
Affiliation(s)
- Brian Young
- Institute of Arctic Biology, Department of Biology & Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775-7000, USA.
| | | | | | | |
Collapse
|
37
|
The evolution of antiherbivore defenses and their contribution to species coexistence in the tropical tree genus Inga. Proc Natl Acad Sci U S A 2009; 106:18073-8. [PMID: 19805183 DOI: 10.1073/pnas.0904786106] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plants and their herbivores constitute more than half of the organisms in tropical forests. Therefore, a better understanding of the evolution of plant defenses against their herbivores may be central for our understanding of tropical biodiversity. Here, we address the evolution of antiherbivore defenses and their possible contribution to coexistence in the Neotropical tree genus Inga (Fabaceae). Inga has >300 species, has radiated recently, and is frequently one of the most diverse and abundant genera at a given site. For 37 species from Panama and Peru we characterized developmental, ant, and chemical defenses against herbivores. We found extensive variation in defenses, but little evidence of phylogenetic signal. Furthermore, in a multivariate analysis, developmental, ant, and chemical defenses varied independently (were orthogonal) and appear to have evolved independently of each other. Our results are consistent with strong selection for divergent defensive traits, presumably mediated by herbivores. In an analysis of community assembly, we found that Inga species co-occurring as neighbors are more different in antiherbivore defenses than random, suggesting that possessing a rare defense phenotype increases fitness. These results imply that interactions with herbivores may be an important axis of niche differentiation that permits the coexistence of many species of Inga within a single site. Interactions between plants and their herbivores likely play a key role in the generation and maintenance of the conspicuously high plant diversity in the tropics.
Collapse
|
38
|
Besnard G, Rubio de Casas R, Christin PA, Vargas P. Phylogenetics of Olea (Oleaceae) based on plastid and nuclear ribosomal DNA sequences: tertiary climatic shifts and lineage differentiation times. ANNALS OF BOTANY 2009; 104:143-60. [PMID: 19465750 PMCID: PMC2706730 DOI: 10.1093/aob/mcp105] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 11/25/2008] [Accepted: 03/30/2009] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND AIMS The genus Olea (Oleaceae) includes approx. 40 taxa of evergreen shrubs and trees classified in three subgenera, Olea, Paniculatae and Tetrapilus, the first of which has two sections (Olea and Ligustroides). Olive trees (the O. europaea complex) have been the subject of intensive research, whereas little is known about the phylogenetic relationships among the other species. To clarify the biogeographical history of this group, a molecular analysis of Olea and related genera of Oleaceae is thus necessary. METHODS A phylogeny was built of Olea and related genera based on sequences of the nuclear ribosomal internal transcribed spacer-1 and four plastid regions. Lineage divergence and the evolution of abaxial peltate scales, the latter character linked to drought adaptation, were dated using a Bayesian method. KEY RESULTS Olea is polyphyletic, with O. ambrensis and subgenus Tetrapilus not sharing a most recent common ancestor with the main Olea clade. Partial incongruence between nuclear and plastid phylogenetic reconstructions suggests a reticulation process in the evolution of subgenus Olea. Estimates of divergence times for major groups of Olea during the Tertiary were obtained. CONCLUSIONS This study indicates the necessity of revising current taxonomic boundaries in Olea. The results also suggest that main lines of evolution were promoted by major Tertiary climatic shifts: (1) the split between subgenera Olea and Paniculatae appears to have taken place at the Miocene-Oligocene boundary; (2) the separation of sections Ligustroides and Olea may have occurred during the Early Miocene following the Mi-1 glaciation; and (3) the diversification within these sections (and the origin of dense abaxial indumentum in section Olea) was concomitant with the aridification of Africa in the Late Miocene.
Collapse
Affiliation(s)
- Guillaume Besnard
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland.
| | | | | | | |
Collapse
|
39
|
Kaplan I, Dively GP, Denno RF. The costs of anti-herbivore defense traits in agricultural crop plants: a case study involving leafhoppers and trichomes. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2009; 19:864-872. [PMID: 19544730 DOI: 10.1890/07-1566.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The expression of plant defenses is thought to entail costs (e.g., the allocation of resources away from growth or reproduction) that constrain the evolution of plant genotypes maximally defended against herbivores. Although central to the ecological theory underlying plant-insect interactions at large, the concept of defense costs is particularly evident in agricultural crops where plants may be under simultaneous selection for enhanced growth and/or reproduction (i.e., yield) and anti-herbivore resistance traits that deter pests. In this study we investigate the role of trichomes as a resistance mechanism against a sap-feeding insect (the leafhopper, Empoasca fabae) on potato. Natural variation in trichome density among 17 potato cultivars was used to test for the role of trichomes as a putative defense against leafhoppers, and evidence of costs in trichome expression. Two different types of costs were explored: (1) allocation costs (i.e., the relationship between trichomes and yield), and (2) costs involving trade-offs with alternative defense strategies (e.g., tolerance). Although leafhopper abundance did not decrease as trichome density increased, leafhopper injury to potato plants (foliar necrosis) was negatively correlated with trichome density. As a result, the per capita effect of leafhopper adults and nymphs on foliar damage was lower on plants with high trichome densities. We found no evidence, however, for costs of expressing this resistance trait; trichomes were not correlated with either potato yield or tolerance to herbivory. Thus, selection for multiple plant defenses to alleviate the impact of pests in agronomic crops may indeed be possible without inherent losses in plant yield.
Collapse
Affiliation(s)
- Ian Kaplan
- Department of Entomology, University of Maryland, College Park, Maryland 20742, USA.
| | | | | |
Collapse
|
40
|
Travers-Martin N, Müller C. Matching plant defence syndromes with performance and preference of a specialist herbivore. Funct Ecol 2008. [DOI: 10.1111/j.1365-2435.2008.01487.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Agrawal AA, Salminen JP, Fishbein M. Phylogenetic trends in phenolic metabolism of milkweeds (Asclepias): evidence for escalation. Evolution 2008; 63:663-73. [PMID: 19220456 DOI: 10.1111/j.1558-5646.2008.00573.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although plant-defense theory has long predicted patterns of chemical defense across taxa, we know remarkably little about the evolution of defense, especially in the context of directional phylogenetic trends. Here we contrast the production of phenolics and cardenolides in 35 species of milkweeds (Asclepias and Gomphocarpus). Maximum-likelihood analyses of character evolution revealed three major patterns. First, consistent with the defense-escalation hypothesis, the diversification of the milkweeds was associated with a trend for increasing phenolic production; this pattern was reversed (a declining evolutionary trend) for cardenolides, toxins sequestered by specialist herbivores. Second, phylogenetically independent correlations existed among phenolic classes across species. For example, coumaric acid derivatives showed negatively correlated evolution with caffeic acid derivatives, and this was likely driven by the fact that the former are used as precursors for the latter. In contrast, coumaric acid derivatives were positively correlated with flavonoids, consistent with competition for the precursor p-coumaric acid. Finally, of the phenolic classes, only flavonoids showed correlated evolution (positive) with cardenolides, consistent with a physiological and evolutionary link between the two via malonate. Thus, this study presents a rigorous test of the defense-escalation hypothesis and a novel phylogenetic approach to understanding the long-term persistence of physiological constraints on secondary metabolism.
Collapse
Affiliation(s)
- Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, and Center for a Sustainable Future, Cornell University, Corson Hall, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
42
|
Haugen R, Steffes L, Wolf J, Brown P, Matzner S, Siemens DH. Evolution of drought tolerance and defense: dependence of tradeoffs on mechanism, environment and defense switching. OIKOS 2007. [DOI: 10.1111/j.2007.0030-1299.16111.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Abdala-Roberts L, Marquis RJ. Test of local adaptation to biotic interactions and soil abiotic conditions in the ant-tended Chamaecrista fasciculata (Fabaceae). Oecologia 2007; 154:315-26. [PMID: 17704951 DOI: 10.1007/s00442-007-0831-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 07/19/2007] [Indexed: 10/22/2022]
Abstract
Few previous studies have assessed the role of herbivores and the third trophic level in the evolution of local adaptation in plants. The overall objectives of this study were to determine (1) whether local adaptation is present in the ant-defended plant, Chamaecrista fasciculata, and (2) the contribution of ant-plant-herbivore interactions and soil source to such adaptation. We used three C. fasciculata populations and performed both a field and a greenhouse experiment. The first involved reciprocally transplanting C. fasciculata seedlings from each population-source to each site, and subsequently applying one of three treatments to one-third of the seedlings of each population-source at each site: control, reduced ant density and reduced folivory. The greenhouse experiment involved reciprocal transplants of population-sources with soil sources to test for a soil-source effect on flower production and local adaptation to soil conditions. Field results showed that ant and herbivore treatments reduced ant density (increasing folivory) and herbivore damage relative to controls, respectively; however, these manipulations did not impact C. fasciculata reproduction or the likelihood of survival. In contrast, greenhouse results showed that soil source significantly affected flower production. Overall, plants in both experiments, regardless of population-source, always had higher reproductive output at one specific site. Native populations did not outperform nonnative ones, causing us to reject the hypothesis of local adaptation. The absence of treatment effects on plant reproduction and the likelihood of survival suggest a limited effect of ants and folivores on C. fasciculata fitness and local adaptation during the study year. Temporally inconsistent effects of biotic forces across years, coupled with the young age of populations, relative proximity of populations and possible counter effects of seed predators may reduce the likelihood of local adaptation in the populations studied.
Collapse
Affiliation(s)
- Luis Abdala-Roberts
- Department of Biology, University of Missouri, St. Louis, One University Boulevard, St. Louis, MO 63121-4499, USA.
| | | |
Collapse
|
44
|
Agrawal AA. Macroevolution of plant defense strategies. Trends Ecol Evol 2007; 22:103-9. [PMID: 17097760 DOI: 10.1016/j.tree.2006.10.012] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 09/28/2006] [Accepted: 10/30/2006] [Indexed: 11/12/2022]
Abstract
Theories of plant defense expression are typically based on the concepts of tradeoffs among traits and of phylogenetic conservatism within clades. Here, I review recent developments in phylogenetic approaches to understanding the evolution of plant defense strategies and plant-herbivore coevolutionary interactions. I focus particularly on multivariate defense against insect herbivores, which is the simultaneous deployment of multiple traits, often arranged as convergently evolved defense syndromes. Answering many of the outstanding questions in the biology of plant defense will require generating broad hypotheses that can be explicitly tested by using comparative approaches and interpreting phylogenetic patterns. The comparative approach has wide-spread potential to reinvigorate tests of classic hypotheses about the evolution of interspecific interactions.
Collapse
Affiliation(s)
- Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Corson Hall, Ithaca, NY 14853-2701, USA.
| |
Collapse
|
45
|
Abstract
Given that a plant's defensive strategy against herbivory is never likely to be a single trait, we develop the concept of plant defense syndromes, where association with specific ecological interactions can result in convergence on suites of covarying defensive traits. Defense syndromes can be studied within communities of diverse plant species as well as within clades of closely related species. In either case, theory predicts that plant defense traits can consistently covary across species, due to shared evolutionary ancestry or due to adaptive convergence. We examined potential defense syndromes in 24 species of milkweeds (Asclepias spp.) in a field experiment. Employing phylogenetically independent contrasts, we found few correlations between seven defensive traits, no bivariate trade-offs, and notable positive correlations between trichome density and latex production, and between C:N ratio and leaf toughness. We then used a hierarchical cluster analysis to produce a phenogram of defense trait similarity among the 24 species. This analysis revealed three distinct clusters of species. The defense syndromes of these species clusters are associated with either low nutritional quality or a balance of higher nutritional quality coupled with physical or chemical defenses. The phenogram based on defense traits was not congruent, however, with a molecular phylogeny of the group, suggesting convergence on defense syndromes. Finally, we examined the performance of monarch butterfly caterpillars on the 24 milkweed species in the field; monarch growth and survival did not differ on plants in the three syndromes, although multiple regression revealed that leaf trichomes and toughness significantly reduced caterpillar growth. The discovery of convergent plant defense syndromes can be used as a framework to ask questions about how abiotic environments, communities of herbivores, and biogeography are associated with particular defense strategies of plants.
Collapse
Affiliation(s)
- Anurag A Agrawal
- Department of Ecology and Evolutionary Biology and Department of Entomology, Cornell University, Ithaca, New York 14853, USA.
| | | |
Collapse
|
46
|
Abstract
Mutualisms (cooperative interactions between species) have had a central role in the generation and maintenance of life on earth. Insects and plants are involved in diverse forms of mutualism. Here we review evolutionary features of three prominent insect-plant mutualisms: pollination, protection and seed dispersal. We focus on addressing five central phenomena: evolutionary origins and maintenance of mutualism; the evolution of mutualistic traits; the evolution of specialization and generalization; coevolutionary processes; and the existence of cheating. Several features uniting very diverse insect-plant mutualisms are identified and their evolutionary implications are discussed: the involvement of one mobile and one sedentary partner; natural selection on plant rewards; the existence of a continuum from specialization to generalization; and the ubiquity of cheating, particularly on the part of insects. Plant-insect mutualisms have apparently both arisen and been lost repeatedly. Many adaptive hypotheses have been proposed to explain these transitions, and it is unlikely that any one of them dominates across interactions differing so widely in natural history. Evolutionary theory has a potentially important, but as yet largely unfilled, role to play in explaining the origins, maintenance, breakdown and evolution of insect-plant mutualisms.
Collapse
Affiliation(s)
- Judith L Bronstein
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85745, USA.
| | | | | |
Collapse
|
47
|
Coley PD, Lokvam J, Rudolph K, Bromberg K, Sackett TE, Wright L, Brenes-Arguedas T, Dvorett D, Ring S, Clark A, Baptiste C, Pennington RT, Kursar TA. DIVERGENT DEFENSIVE STRATEGIES OF YOUNG LEAVES IN TWO SPECIES OF INGA. Ecology 2005. [DOI: 10.1890/04-1283] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
48
|
Waghmare VN, Rong J, Rogers CJ, Pierce GJ, Wendel JF, Paterson AH. Genetic mapping of a cross between Gossypium hirsutum (cotton) and the Hawaiian endemic, Gossypium tomentosum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 111:665-76. [PMID: 16044266 DOI: 10.1007/s00122-005-2032-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2004] [Accepted: 04/07/2005] [Indexed: 05/03/2023]
Abstract
The existence of five tetraploid species that derive from a common polyploidization event about 1 million years ago makes Gossypium (cotton) an attractive genus in which to study polyploid evolution and offers opportunities for crop improvement through introgression. To date, only crosses (HB) between the cultivated tetraploid cottons Gossypium hirsutum and G. barbadense have been genetically mapped. Genetic analysis of a cross (HT) between G. hirsutum and the Hawaiian endemic G. tomentosum is reported here. Overall, chromosomal lengths are closely correlated between the HB and HT maps, although there is generally more recombination in HT, consistent with a closer relationship between the two species. Interspecific differences in local recombination rates are observed, perhaps involving a number of possible factors. Our data corroborate cytogenetic evidence that chromosome arm translocations have not played a role in the divergence of polyploid cottons. However, one terminal inversion on chromosome (chr.) 3 does appear to differentiate G. tomentosum from G. barbadense; a few other apparent differences in marker order fall near gaps in the HT map and/or lack the suppression of recombination expected of inversions, and thus remain uncertain. Genetic analysis of a discrete trait that is characteristic of G. tomentosum, nectarilessness, mapped not to the classically reported location on chr. 12 but to the homoeologous location on chr. 26. We propose some hypotheses for further study to explore this incongruity. Preliminary quantitative trait locus (QTL) analysis of this small population, albeit with a high probability of false negatives, suggests a different genetic control of leaf morphology in HT than in HB, which also warrants further investigation.
Collapse
Affiliation(s)
- Vijay N Waghmare
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | |
Collapse
|
49
|
Arimura GI, Kost C, Boland W. Herbivore-induced, indirect plant defences. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1734:91-111. [PMID: 15904867 DOI: 10.1016/j.bbalip.2005.03.001] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 02/25/2005] [Accepted: 03/01/2005] [Indexed: 11/28/2022]
Abstract
Indirect responses are defensive strategies by which plants attract natural enemies of their herbivores that act as plant defending agents. Such defences can be either constitutively expressed or induced by the combined action of mechanical damage and low- or high-molecular-weight elicitors from the attacking herbivore. Here, we focus on two induced indirect defences, namely the de novo production of volatiles and the secretion of extrafloral nectar, which both mediate interactions with organisms from higher trophic levels (i.e., parasitoids or carnivores). We give an overview on elicitors, early signals, and signal transduction resulting in a complex regulation of indirect defences and discuss effects of cross-talks between the signalling pathways (synergistic and antagonistic effects). In the light of recent findings, we review molecular and genetic aspects of the biosynthesis of herbivore-induced plant volatiles comprising terpenoids, aromatic compounds, and metabolites of fatty acids which act as infochemicals for animals and some of which even induce defence genes in neighbouring plants. Finally, ecological aspects of these two indirect defences such as their variability, specificity, evolution as well as their ecological relevance in nature are discussed.
Collapse
Affiliation(s)
- Gen-ichiro Arimura
- Max Planck Institute for Chemical Ecology, Department of Bioorganic Chemistry, Hans-Knöll-Strasse 8, D-07745 Jena, Germany
| | | | | |
Collapse
|