1
|
Tantipaiboonwong P, Pintha K, Chaiwangyen W, Suttajit M, Khanaree C, Khantamat O. Bioefficacy of Nga-Mon ( Perilla frutescens) Fresh and Dry Leaf: Assessment of Antioxidant, Antimutagenicity, and Anti-Inflammatory Potential. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112210. [PMID: 37299189 DOI: 10.3390/plants12112210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Perilla leaves are known to be a rich source of polyphenols, which have been shown to exhibit various biological effects. This study aimed to compare the bioefficacies and bioactivities of fresh (PLEf) and dry (PLEd) Thai perilla (Nga-mon) leaf extracts. Phytochemical analysis indicated that both PLEf and PLEd were abundant in rosmarinic acid and bioactive phenolic compounds. PLEd, which had higher levels of rosmarinic acid but lower levels of ferulic acid and luteolin than PLEf, exhibited greater effectiveness in a free radical scavenging assay. Furthermore, both extracts were found to suppress intracellular ROS generation and exhibit antimutagenic activity against food-borne carcinogens in S. typhimurium. They also attenuated lipopolysaccharide-induced inflammation in RAW 264.7 cells by inhibiting the expression of nitric oxide, iNOS, COX-2, TNF-α, IL-1β, and IL-6 through the suppression of NF-κB activation and translocation. However, PLEf exhibited a higher ability to suppress cellular ROS production and higher antimutagenic and anti-inflammatory activities than PLEd, which can be attributed to its combination of phytochemical components. Overall, PLEf and PLEd have the potential to serve as natural bioactive antioxidant, antimutagenic, and anti-inflammatory agents to achieve potential health benefits.
Collapse
Affiliation(s)
| | - Komsak Pintha
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Wittaya Chaiwangyen
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Maitree Suttajit
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Chakkrit Khanaree
- School of Traditional and Alternative Medicine, Chiang Rai Rajabhat University, Chiang Rai 57100, Thailand
| | - Orawan Khantamat
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
2
|
Pressi G, Rigillo G, Governa P, Borgonetti V, Baini G, Rizzi R, Guarnerio C, Bertaiola O, Frigo M, Merlin M, Paltrinieri S, Zambonin R, Pandolfo S, Biagi M. A Novel Perilla frutescens (L.) Britton Cell-Derived Phytocomplex Regulates Keratinocytes Inflammatory Cascade and Barrier Function and Preserves Vaginal Mucosal Integrity In Vivo. Pharmaceutics 2023; 15:240. [PMID: 36678869 PMCID: PMC9861994 DOI: 10.3390/pharmaceutics15010240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
In the last years, the medicinal plant Perilla frutescens (L.) Britton has gained scientific interest because leaf extracts, due to the presence of rosmarinic acid and other polyphenols, have shown anti-allergic and skin protective potential in pre-clinical studies. Nevertheless, the lack of standardized extracts has limited clinical applications to date. In this work, for the first time, a standardized phytocomplex of P. frutescens, enriched in rosmarinic acid and total polyphenols, was produced through innovative in vitro cell culture biotechnology and tested. The activity of perilla was evaluated in an in vitro inflammatory model of human keratinocytes (HaCaT) by monitoring tight junctions, filaggrin, and loricrin protein levels, the release of pro-inflammatory cytokines and JNK MAPK signaling. In a practical health care application, the perilla biotechnological phytocomplex was tested in a multilayer model of vaginal mucosa, and then, in a preliminary clinical observation to explore its capacity to preserve vaginal mucosal integrity in women in peri-menopause. In keratinocytes cells, perilla phytocomplex demonstrated to exert a marked activity in epidermis barrier maintenance and anti-inflammatory effects, preserving tight junction expression and downregulating cytokines release through targeting JNK activation. Furthermore, perilla showed positive effects in retaining vaginal mucosal integrity in the reconstructed vaginal mucosa model and in vivo tests. Overall, our data suggest that the biotechnological P. frutescens phytocomplex could represent an innovative ingredient for dermatological applications.
Collapse
Affiliation(s)
| | - Giovanna Rigillo
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Paolo Governa
- Department of Biotechnology, Chemistry and Pharmacy (Department of Excellence 2018–2022), University of Siena, 53100 Siena, Italy
| | - Vittoria Borgonetti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, 50139 Florence, Italy
| | - Giulia Baini
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | | | | | | | - Marco Frigo
- Aethera Biotech s.r.l., 36043 Camisano Vicentino, Italy
| | | | | | | | | | - Marco Biagi
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| |
Collapse
|
3
|
Kim YR, Han AR, Kim JB, Cao S, Jin CH. Isoegomaketone From Perilla frutescens Ameliorates Dextran Sodium Sulfate-Induced Ulcerative Colitis in Mice. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221105694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a worldwide health problem. An effective treatment for IBD is unavailable, and potential therapeutic agents should be developed for treating colonic inflammation. In this study, we demonstrated that isoegomaketone (IK), an essential oil component of a mutant cultivar of Perilla frutescens produced through radiation breeding, reduced levels of inflammatory cytokines, such as tumor necrosis factor-α, interleukin-6, interleukin-10, and interleukin-12p40, in lipopolysaccharide-stimulated mouse primary macrophages. Furthermore, when 5 mg/kg IK was administered to mice with dextran sodium sulfate-induced colitis, it ameliorated the severity of the disease as assessed by survival, body weight, and colonic damage. These results suggested that 5 mg/kg IK has a preventive effect in colitis and can be a novel alternative therapy for treating colitis.
Collapse
Affiliation(s)
- Ye-Ram Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Ah-Reum Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Jin-Baek Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo, HI, USA
| | - Chang Hyun Jin
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, Republic of Korea
| |
Collapse
|
4
|
Effects of Perilla frutescens var. acuta in amyloid β toxicity and Alzheimer's disease-like pathology in 5XFAD mice. Food Chem Toxicol 2022; 161:112847. [DOI: 10.1016/j.fct.2022.112847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/13/2022] [Accepted: 01/29/2022] [Indexed: 11/20/2022]
|
5
|
Extracts of Thai Perilla frutescens nutlets attenuate tumour necrosis factor-α-activated generation of microparticles, ICAM-1 and IL-6 in human endothelial cells. Biosci Rep 2021; 40:224731. [PMID: 32426811 PMCID: PMC7260356 DOI: 10.1042/bsr20192110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 05/05/2020] [Accepted: 05/12/2020] [Indexed: 01/08/2023] Open
Abstract
Elevation of endothelial microparticles (EMPs) play an important role in the progression of inflammation-related vascular diseases such as cardiovascular diseases (CVDs). Thai perilla (Perilla frutescens) nutlets are rich in phenolic compounds and flavonoids that exert potent antioxidant and anti-inflammatory effects. We found that the ethyl acetate (EA) and ethanol (Eth) extracts of Thai perilla nutlets contain phenolic compounds such as luteolin, apigenin, chryseoriol and their glycosides, which exhibit antioxidant activity. The goal of the present study was to investigate the effects of the extracts on endothelial activation and EMPs generation in tumour necrosis factor-α (TNF-α)-induced EA.hy926 cells. We found that TNF-α (10 ng/ml) activated EA.hy926 cells and subsequently generated EMPs. Pre-treatment with the extracts significantly attenuated endothelial activation by decreasing the expression of the intracellular adhesion molecule-1 (ICAM-1) in a dose-dependent manner. Only the Eth extract showed protective effects against overproduction of interleukin-6 (IL-6) in the activated cells. Furthermore, the extracts significantly reduced TNF-α-enhanced EMPs generation in a dose-dependent manner. In conclusion, Thai perilla nutlet extracts, especially the Eth extract, may have potential to protect endothelium against vascular inflammation through the inhibition of endothelial activation and the generation of endothelial microparticles (EMPs).
Collapse
|
6
|
Jeong MJ, Lim DS, Kim SO, Park C, Choi YH, Jeong SJ. Effect of rosmarinic acid on differentiation and mineralization of MC3T3-E1 osteoblastic cells on titanium surface. Anim Cells Syst (Seoul) 2021; 25:46-55. [PMID: 33717416 PMCID: PMC7935130 DOI: 10.1080/19768354.2021.1886987] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Titanium (Ti) is a widely used biomaterial for dental implants because of its outstanding biocompatibility for hard tissues. Osseointegration, the interaction between implanted biomaterials and living cells in bone, is essential for successful implantation. Rosmarinic acid (RA) is a plant-derived phytochemical with low toxicity and side effects and has various effects that can be applied as a therapeutic substance. The MC3T3-E1 osteoblastic cells on the Ti surface in medium with or without 14 μg/ml RA were used to test RA effects on osteoblast differentiation, cell viability and mineralization during differentiation. RA treatment increased osteoblast differentiation, cell viability and mineralization in MC3T3-E1 osteoblastic cells on Ti surface during differentiation, upregulating Runx-2 and OPG, but downregulating RANKL. This study suggest that RA should be applied as an effective functional and therapeutic substance to enhance osseointegration of osteoblast cells by increasing differentiation, mineralization, and bone formation through the RANKL/RANK/OPG pathway during the differentiation in MC3T3-E1 osteoblastic cells on the Ti surface.
Collapse
Affiliation(s)
- Moon-Jin Jeong
- Department of Oral Histology and Developmental Biology, School of Dentistry, Chosun University, Gwangju, Korea
| | - Do-Seon Lim
- Department of Dental Hygiene, Graduate School of Public Health Science, Eulji University, Seongnam, Korea
| | - Sung Ok Kim
- Department of Food Science and Biotechnology, College of Engineering, Kyungsung University, Busan, Korea
| | - Cheol Park
- College of Liberal Studies, Division of Basic Sciences, Dong-eui University, Busan, Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan, Korea
| | - Soon-Jeong Jeong
- Department of Dental Hygiene, College of Health Science, Youngsan University, Yangsan, Korea.,Institute of Basic Science for Well-Aging, Youngsan University, Yangsan, Korea
| |
Collapse
|
7
|
Yin X, Wu H, Zhang B, Zhu N, Chen T, Ma X, Zhang L, Lv L, Zhang M, Wang F, Tang X. Tojapride prevents CaSR-mediated NLRP3 inflammasome activation in oesophageal epithelium irritated by acidic bile salts. J Cell Mol Med 2020; 24:1208-1219. [PMID: 31859410 PMCID: PMC6991659 DOI: 10.1111/jcmm.14631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/23/2019] [Accepted: 08/06/2019] [Indexed: 12/11/2022] Open
Abstract
Impairment of the oesophageal epithelium in patients with reflux oesophagitis (RE) is a cytokine-mediated injury rather than a chemical burn. The present study was conducted to explore CaSR/NLRP3 inflammasome pathway activation and cytokines IL-1β and IL-18 release in oesophageal epithelia injured by refluxates and the effects of Tojapride on that signal regulation. Using a modified RE rat model with Tojapride administration and Tojapride-pretreated SV40-immortalized human oesophageal epithelial cells (HET-1A) exposed to acidic bile salts pretreated with Tojapride, we evaluated the therapeutic effects of Tojapride on oesophageal epithelial barrier function, the expression of CaSR/NLRP3 inflammasome pathway-related proteins and the release of downstream cytokines in response to acidic bile salt irritation. In vivo, Tojapride treatment ameliorated the general condition and pathological lesions of the oesophageal epithelium in modified RE rats. In addition, Tojapride effectively blocked the CaSR-mediated NLRP3 inflammasome activation in modified RE rats. In vitro, Tojapride treatment can reverse the harmful effect of acidic bile salts, which reduced transepithelial electrical resistance (TEER), up-regulated the CaSR-mediated NLRP3 inflammasome pathway and increased caspase-1 activity, LDH release and cytokines secretion. Taken together, these data show that Tojapride can prevent CaSR-mediated NLRP3 inflammasome activation and alleviate oesophageal epithelial injury induced by acidic bile salt exposure.
Collapse
Affiliation(s)
- Xiao‐Lan Yin
- Department of GastroenterologyChina Academy of Chinese Medical SciencesXiyuan HospitalBeijingChina
| | - Hao‐Meng Wu
- Department of Gastroenterology, Guangzhou Higher Education Mega CenterThe Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Xiao‐gu‐wei JieGuangzhouChina
| | - Bei‐Huang Zhang
- Department of GastroenterologyChina Academy of Chinese Medical SciencesXiyuan HospitalBeijingChina
| | - Ning‐Wei Zhu
- Department of PharmacyZhejiang Pharmaceutical CollegeNingboChina
| | - Ting Chen
- Department of GastroenterologyChina Academy of Chinese Medical SciencesXiyuan HospitalBeijingChina
| | - Xiang‐Xue Ma
- Department of GastroenterologyChina Academy of Chinese Medical SciencesXiyuan HospitalBeijingChina
| | - Li‐Ying Zhang
- Department of GastroenterologyChina Academy of Chinese Medical SciencesXiyuan HospitalBeijingChina
| | - Lin Lv
- Department of GastroenterologyChina Academy of Chinese Medical SciencesXiyuan HospitalBeijingChina
| | - Min Zhang
- Department of GastroenterologyChina Academy of Chinese Medical SciencesXiyuan HospitalBeijingChina
| | - Feng‐Yun Wang
- Department of GastroenterologyChina Academy of Chinese Medical SciencesXiyuan HospitalBeijingChina
| | - Xu‐Dong Tang
- Department of GastroenterologyChina Academy of Chinese Medical SciencesXiyuan HospitalBeijingChina
| |
Collapse
|
8
|
Jin CH, So Y, Kim HY, Han SN, Kim JB. Anti-Arthritic Activities of Supercritical Carbon Dioxide Extract Derived from Radiation Mutant Perilla Frutescens Var. Crispa in Collagen Antibody-Induced Arthritis. Nutrients 2019; 11:E2959. [PMID: 31817175 PMCID: PMC6950222 DOI: 10.3390/nu11122959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/29/2019] [Accepted: 12/01/2019] [Indexed: 11/16/2022] Open
Abstract
We investigated the anti-arthritic effects of the radiation mutant Perilla frutescens var. crispa leaf extract (SFE-M) and wild type leaf extract (SFE-W), both prepared by supercritical carbon dioxide (SC-CO2) extraction, on collagen antibody-induced arthritis (CAIA) in Balb/c mice. Animals were randomly divided into four groups: control, CAIA, CAIA + SFE-M (100 mg/kg/day), and CAIA + SFE-W (100 mg/kg/day). The mice were subjected to the respective treatments via oral gavage once daily for 4 days. Mice treated with SFE-M developed less severe arthritis than the CAIA mice. They showed significantly improved arthritic score, paw volume, and paw thickness compared to the CAIA mice from days 3 through 7. Furthermore, histopathological analysis of ankle for inflammation showed that SFE-M treatment reduced inflammatory cell infiltration and edema formation. Similarly, the neutrophil-to-lymphocyte ratio (NLR) in the whole blood was 37% lower in mice treated with SFE-M compared with the CAIA mice. However, treatment with SFE-W did not result in any significant difference compared with the CAIA group. In conclusion, SFE-M treatment delays the onset of arthritis and alleviates its clinical manifestations in CAIA mice.
Collapse
Affiliation(s)
- Chang Hyun Jin
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 56212, Korea;
| | - Yangkang So
- Institute of Natural Cosmetic Industry for Namwon, Namwon, Jeonbuk 55801, Korea;
| | - Hyo-Young Kim
- Department of Agricultural Biology, National Institute of Agricultural Science, Rural Development Administration, Wanju 55365, Korea;
| | - Sung Nim Han
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea;
| | - Jin-Baek Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 56212, Korea;
| |
Collapse
|
9
|
Lee Y, Lee J, Ju J. Perilla frutescens Britton var. frutescens leaves attenuate dextran sulfate sodium-induced acute colitis in mice and lipopolysaccharide-stimulated angiogenic processes in human umbilical vein endothelial cells. Food Sci Biotechnol 2019; 29:131-140. [PMID: 31976135 DOI: 10.1007/s10068-019-00711-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 02/08/2023] Open
Abstract
The aim of the current study was to investigate whether the leaves of Perilla frutescens Britton var. frutescens (PL), a frequently consumed vegetable in Korea, attenuate dextran sulfate sodium (DSS)-induced acute colitis in mice and lipopolysaccharide (LPS)-stimulated angiogenic processes in human umbilical vein endothelial cells (HUVEC). In DSS-treated mice, dietary supplementation with PL mitigated DAI and colon shortening. The dietary PL also reduced colonic levels of inflammatory and angiogenic mediators, such as interleukin-1β, interleukin-6, monocyte chemoattractant protein-1, macrophage inflammatory protein-2, leukotriene B4, inducible nitric oxide synthase, cyclooxygenase-2, basic fibroblast growth factor, and intercellular adhesion molecule-1 (ICAM-1). Treatment of HUVEC with ethanol extract of PL attenuated LPS-stimulated increases in ICAM-1 levels, monocyte adhesion, invasion, and tube formation. This study suggests that dietary PL effectively inhibited DSS-induced acute colitis in mice, and its anti-angiogenic activities may partially contribute to the inhibition.
Collapse
Affiliation(s)
- Yuna Lee
- Department of Food and Nutrition, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 362-763 Korea
| | - Jungjae Lee
- Department of Food and Nutrition, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 362-763 Korea
| | - Jihyeung Ju
- Department of Food and Nutrition, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 362-763 Korea
| |
Collapse
|
10
|
Jin CH, Park HC, So Y, Nam B, Han SN, Kim JB. Comparison of the Anti-Inflammatory Activities of Supercritical Carbon Dioxide versus Ethanol Extracts from Leaves of Perilla frutescens Britt. Radiation Mutant. Molecules 2017; 22:molecules22020311. [PMID: 28218690 PMCID: PMC6155756 DOI: 10.3390/molecules22020311] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/14/2017] [Indexed: 11/16/2022] Open
Abstract
In this study, we aimed to compare supercritical carbon dioxide extraction and ethanol extraction for isoegomaketone (IK) content in perilla leaf extracts and to identify the optimal method. We measured the IK concentration using HPLC and inflammatory mediators in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells from the extracts. The IK concentration was 10-fold higher in perilla leaf extracts by supercritical carbon dioxide extraction (SFE) compared with that in perilla leaf extracts by ethanol extraction (EE). When the extracts were treated in LPS-induced RAW 264.7 cells at 25 µg/mL, the SFE inhibited the expression of inflammatory mediators such as nitric oxide (NO), monocyte chemoattractant protein-1 (MCP-1), interleutkin-6 (IL-6), interferon-β (IFN-β), and inducible nitric oxide synthase (iNOS) to a much greater extent compared with EE. Taken together, supercritical carbon dioxide extraction is considered the optimal process for obtaining high IK content and anti-inflammatory activities in leaf extracts from the P. frutescens Britt. radiation mutant.
Collapse
Affiliation(s)
- Chang Hyun Jin
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 56212, Korea.
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| | - Han Chul Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 56212, Korea.
| | - Yangkang So
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 56212, Korea.
| | - Bomi Nam
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 56212, Korea.
| | - Sung Nim Han
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| | - Jin-Baek Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 56212, Korea.
| |
Collapse
|
11
|
Bae JS, Han M, Shin HS, Kim MK, Shin CY, Lee DH, Chung JH. Perilla frutescens leaves extract ameliorates ultraviolet radiation-induced extracellular matrix damage in human dermal fibroblasts and hairless mice skin. JOURNAL OF ETHNOPHARMACOLOGY 2017; 195:334-342. [PMID: 27888134 DOI: 10.1016/j.jep.2016.11.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/31/2016] [Accepted: 11/21/2016] [Indexed: 05/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Perilla frutescens (L.) Britt. (Lamiaceae) is a traditional herb that is consumed in East Asian countries as a traditional medicine. This traditional herb has been documented for centuries to treat various diseases such as depression, allergies, inflammation and asthma. However, the effect of Perilla frutescens on skin has not been characterized well. AIM OF THE STUDY The present study aimed to investigate the effect of Perilla frutescens leaves extract (PLE) on ultraviolet radiation-induced extracellular matrix damage in human dermal fibroblasts and hairless mice skin. MATERIALS AND METHODS Human dermal fibroblasts and Skh-1 hairless mice were irradiated with UV and treated with PLE. Protein and mRNA levels of various target molecules were analyzed by western blotting and quantitative RT-PCR, respectively. Histological changes of mouse skin were analyzed by H&E staining. To elucidate underlying mechanism of PLE, activator protein-1 (AP-1) DNA binding assay and the measurement of reactive oxygen species (ROS) were performed. RESULTS PLE significantly inhibited basal and UV-induced MMP-1 and MMP-3 expression dose-dependently, and also decreased UV-induced phosphorylation of extracellular signal-regulated kinases and c-Jun N-terminal kinases. This inhibitory effects of PLE on MMP-1 and MMP-3 were mediated by reduction of ROS generation and AP-1 DNA binding activity induced by UV. Furthermore, PLE promoted type I procollagen production irrespective of UV irradiation. In the UV-irradiated animal model, PLE significantly reduced epidermal skin thickness and MMP-13 expression induced by UV. CONCLUSION Our results demonstrate that PLE has the protective effect against UV-induced dermal matrix damage. Therefore, we suggest that PLE can be a potential agent for prevention of skin aging.
Collapse
Affiliation(s)
- Jung-Soo Bae
- Department of Dermatology, Seoul National University College of Medicine, 101, Daehak-ro Jongno-gu, Seoul, Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, 101, Daehak-ro Jongno-gu, Seoul, Korea; Instutite of Human-Environment Interface Biology, Seoul National University, 101, Daehak-ro Jongno-gu, Seoul, Korea
| | - Mira Han
- Department of Dermatology, Seoul National University College of Medicine, 101, Daehak-ro Jongno-gu, Seoul, Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, 101, Daehak-ro Jongno-gu, Seoul, Korea; Instutite of Human-Environment Interface Biology, Seoul National University, 101, Daehak-ro Jongno-gu, Seoul, Korea
| | - Hee Soon Shin
- Korea Food Research Institute, Seongnam-si, Kyeonggi-do 463-746, Korea
| | - Min-Kyoung Kim
- Department of Dermatology, Seoul National University College of Medicine, 101, Daehak-ro Jongno-gu, Seoul, Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, 101, Daehak-ro Jongno-gu, Seoul, Korea; Instutite of Human-Environment Interface Biology, Seoul National University, 101, Daehak-ro Jongno-gu, Seoul, Korea
| | - Chang-Yup Shin
- Department of Dermatology, Seoul National University College of Medicine, 101, Daehak-ro Jongno-gu, Seoul, Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, 101, Daehak-ro Jongno-gu, Seoul, Korea; Instutite of Human-Environment Interface Biology, Seoul National University, 101, Daehak-ro Jongno-gu, Seoul, Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, 101, Daehak-ro Jongno-gu, Seoul, Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, 101, Daehak-ro Jongno-gu, Seoul, Korea; Instutite of Human-Environment Interface Biology, Seoul National University, 101, Daehak-ro Jongno-gu, Seoul, Korea.
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University College of Medicine, 101, Daehak-ro Jongno-gu, Seoul, Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, 101, Daehak-ro Jongno-gu, Seoul, Korea; Instutite of Human-Environment Interface Biology, Seoul National University, 101, Daehak-ro Jongno-gu, Seoul, Korea; SNU Institute on Aging, 101, Daehak-ro Jongno-gu, Seoul, Korea.
| |
Collapse
|
12
|
Kaufmann CM, Letzel T, Grassmann J, Pfaffl MW. Effect of Perilla frutescens Extracts on Porcine Jejunal Epithelial Cells. Phytother Res 2016; 31:303-311. [PMID: 27958644 DOI: 10.1002/ptr.5750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/14/2016] [Accepted: 10/29/2016] [Indexed: 12/24/2022]
Abstract
Green-leaved Perilla frutescens extracts were investigated on their effect on cell proliferation of the porcine jejunal epithelial cell line, IPEC-J2, as well as on the gene expression of cell cycle or cancer-related genes. Some extracted compounds were, however, susceptible to degradation in cell culture medium, whereas others were found to be stable during the entire experimental time. Control experiments also included the assessment of H2 O2 generation in cell culture medium caused by oxidation of natural extract compounds, which was proved to be absent at low extract concentrations. A fast and significant inhibition of cell growth at low physiological extract concentrations could be observed. This finding, along with an immediate downregulation of 67 kDa laminin receptor and cyclin D1 expression, can be accounted to the presence of Perilla frutescens extract. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Christine M Kaufmann
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748, Garching, Germany.,Institute of Animal Physiology and Immunology Weihenstephan, Technical University of Munich, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Thomas Letzel
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748, Garching, Germany
| | - Johanna Grassmann
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748, Garching, Germany
| | - Michael W Pfaffl
- Institute of Animal Physiology and Immunology Weihenstephan, Technical University of Munich, Weihenstephaner Berg 3, 85354, Freising, Germany
| |
Collapse
|
13
|
Kim B, Lee JH, Seo MJ, Eom SH, Kim W. Linarin down-regulates phagocytosis, pro-inflammatory cytokine production, and activation marker expression in RAW264.7 macrophages. Food Sci Biotechnol 2016; 25:1437-1442. [PMID: 30263427 DOI: 10.1007/s10068-016-0223-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 10/20/2022] Open
Abstract
Plant-extracted flavonoid glycosides have been reported to be bioactive compounds with pleiotropic functions, including antioxidant, anti-inflammatory, and anti-cancer effects. This study investigated the anti-inflammatory role of linarin (acacetin-7-rutinoside, which is found in Chrysanthemum indicum (Gam-Guk) and Dendranthema zawadskii (Gu-Jul-Cho)), on lipopolysaccharide-stimulated RAW264.7 macrophages. Linarin treatments exhibited no cytotoxicity up to a concentration of 30 μM, as assessed by MTT assay. The production of nitric oxide, an inflammatory mediator, was decreased by addition of linarin. The secretion of pro-inflammatory cytokines, interleukin-1β and interleukin-6, was significantly decreased in a dose-dependent manner. Linarin also decreased the phagocytic ability of macrophages following co-culture with fluorescent beads. In addition, expression levels of antigenpresenting surface markers, MHC II and CD80, were suppressed by linarin. Taken together, these results indicate that the flavonoid glycoside linarin has an anti-inflammatory effect, in part through the suppression of phagocytosis, cytokine production, and antigen presentation in macrophages.
Collapse
Affiliation(s)
- Bomi Kim
- 1Department of Food Science and Biotechnology, Kyung Hee University, Yongin, Gyeonggi, 17104 Korea
| | - Jong Hun Lee
- 2Department of Food Science and Biotechnology, CHA University, Seongnam, Gyeonggi, 13488 Korea
| | - Myung-Ji Seo
- 3Division of Bioengineering, Incheon National University, Incheon, 22012 Korea
| | - Seok Hyun Eom
- 4Department of Horticultural Biotechnology, Kyung Hee University, Yongin, Gyeonggi, 17104 Korea
| | - Wooki Kim
- 1Department of Food Science and Biotechnology, Kyung Hee University, Yongin, Gyeonggi, 17104 Korea.,5Institute of Life Sciences & Resources, Kyung Hee University, Yongin, Gyeonggi, 17104 Korea.,6Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi, 17104 Korea
| |
Collapse
|
14
|
Lee Y, Song B, Ju J. Anti-inflammatory Activity of Perilla frutescens Britton Seed in RAW 264.7 Macrophages and an Ulcerative Colitis Mouse Model. ACTA ACUST UNITED AC 2014. [DOI: 10.9721/kjfst.2014.46.1.61] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|