1
|
Chen F, Zhang Z, Zhang H, Guo P, Feng J, Shen H, Liu X. Activation of α7 Nicotinic Acetylcholine Receptor Improves Muscle Endurance by Upregulating Orosomucoid Expression and Glycogen Content in Mice. J Cell Biochem 2024; 125:e30630. [PMID: 39014907 DOI: 10.1002/jcb.30630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/13/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024]
Abstract
There are presently no acknowledged therapeutic targets or official drugs for the treatment of muscle fatigue. The alpha7 nicotinic acetylcholine receptor (α7nAChR) is expressed in skeletal muscle, with an unknown role in muscle endurance. Here, we try to explore whether α7nAChR could act as a potential therapeutic target for the treatment of muscle fatigue. Results showed that nicotine and PNU-282987 (PNU), as nonspecific and specific agonists of α7nAChR, respectively, could both significantly increase C57BL6/J mice treadmill-running time in a time- and dose-dependent manner. The improvement effect of PNU on running time and ex vivo muscle fatigue index disappeared when α7nAChR deletion. RNA sequencing revealed that the differential mRNAs affected by PNU were enriched in glycolysis/gluconeogenesis signaling pathways. Further studies found that PNU treatment significantly elevates glycogen content and ATP level in the muscle tissues of α7nAChR+/+ mice but not α7nAChR-/- mice. α7nAChR activation specifically increased endogenous glycogen-targeting protein orosomucoid (ORM) expression both in vivo skeletal muscle tissues and in vitro C2C12 skeletal muscle cells. In ORM1 deficient mice, the positive effects of PNU on running time, glycogen and ATP content, as well as muscle fatigue index, were abolished. Therefore, the activation of α7nAChR could enhance muscle endurance via elevating endogenous anti-fatigue protein ORM and might act as a promising therapeutic strategy for the treatment of muscle fatigue.
Collapse
Affiliation(s)
- Fei Chen
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Zhen Zhang
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
- Department of Nutrition and Food Hygiene, Second Military Medical University, Shanghai, China
| | - Huimin Zhang
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Pengyue Guo
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jiayi Feng
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Hui Shen
- Department of Nutrition and Food Hygiene, Second Military Medical University, Shanghai, China
| | - Xia Liu
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
2
|
Iannuzzo F, Schiano E, Pastore A, Guerra F, Tenore GC, Novellino E, Stornaiuolo M. Controlled Cultivation Confers Rhodiola rosea Synergistic Activity on Muscle Cell Homeostasis, Metabolism and Antioxidant Defense in Primary Human Myoblasts. Antioxidants (Basel) 2024; 13:1000. [PMID: 39199244 PMCID: PMC11351949 DOI: 10.3390/antiox13081000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
Rhodiola rosea L. is recognized for its adaptogenic properties and ability to promote muscle health, function and recovery from exercise. The plethora of biological effects of this plant is ascribed to the synergism existing among the molecules composing its phytocomplex. In this manuscript, we analyze the activity of a bioactive fraction extracted from Rhodiola rosea L. controlled cultivation. Biological assays were performed on human skeletal myoblasts and revealed that the extract is able to modulate in vitro expression of transcription factors, namely Pax7 and myoD, involved in muscle differentiation and recovery. The extract also promotes ROS scavenging, ATP production and mitochondrial respiration. Untargeted metabolomics further reveals that the mechanism underpinning the plant involves the synergistic interconnection between antioxidant enzymes and the folic/acid polyamine pathway. Finally, by examining the phytochemical profiles of the extract, we identify the specific combination of secondary plant metabolites contributing to muscle repair, recovery from stress and regeneration.
Collapse
Affiliation(s)
- Fortuna Iannuzzo
- Department of Pharmacy, University of Chieti-Pescara G. D’Annunzio, 66100 Chieti, Italy;
| | - Elisabetta Schiano
- Inventia Biotech-Healthcare Food Research Center s.r.l., Strada Statale Sannitica KM 20.700, 81020 Caserta, Italy; (E.S.); (F.G.); (E.N.)
| | - Arianna Pastore
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 59, 80131 Naples, Italy; (A.P.); (G.C.T.)
| | - Fabrizia Guerra
- Inventia Biotech-Healthcare Food Research Center s.r.l., Strada Statale Sannitica KM 20.700, 81020 Caserta, Italy; (E.S.); (F.G.); (E.N.)
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 59, 80131 Naples, Italy; (A.P.); (G.C.T.)
| | - Ettore Novellino
- Inventia Biotech-Healthcare Food Research Center s.r.l., Strada Statale Sannitica KM 20.700, 81020 Caserta, Italy; (E.S.); (F.G.); (E.N.)
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 59, 80131 Naples, Italy; (A.P.); (G.C.T.)
| |
Collapse
|
3
|
Feng J, Wan J, Guo P, Sun Y, Chen F, Chen Y, Sun Q, Zhang W, Liu X. A non-antibiotic erythromycin derivative improves muscle endurance by regulating endogenous anti-fatigue protein orosomucoid in mice. Clin Exp Pharmacol Physiol 2024; 51:e13873. [PMID: 38815994 DOI: 10.1111/1440-1681.13873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/15/2024] [Accepted: 04/28/2024] [Indexed: 06/01/2024]
Abstract
At present, there are no official approved drugs for improving muscle endurance. Our previous research found acute phase protein orosomucoid (ORM) is an endogenous anti-fatigue protein, and macrolides antibiotics erythromycin can elevate ORM level to increase muscle bioenergetics and endurance parameters. Here, we further designed, synthesized and screened a new erythromycin derivative named HMS-01, which lost its antibacterial activity in vitro and in vivo. Data showed that HMS-01 could time- and dose-dependently prolong mice forced-swimming time and running time, and improve fatigue index in isolated soleus muscle. Moreover, HMS-01 treatment could increase the glycogen content, mitochondria number and function in liver and skeletal muscle, as well as ORM level in these tissues and sera. In Orm-deficient mice, the anti-fatigue and glycogen-elevation activity of HMS-01 disappeared. Therefore, HMS-01 might act as a promising small molecule drug targeting ORM to enhance muscle endurance.
Collapse
Affiliation(s)
- Jiayi Feng
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jingjing Wan
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Pengyue Guo
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yang Sun
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Fei Chen
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yi Chen
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Qingyan Sun
- China Institute of Pharmaceutical Industry, Shanghai, China
| | - Weidong Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xia Liu
- School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
4
|
Liang L, Zheng T, Fan X, Gao Y, Chen X, Wang B, Liu Y, Zhang Y. Rosavin extends lifespan via the insulin/IGF-1 signaling pathway in Caenorhabditis elegans. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5275-5287. [PMID: 38277040 DOI: 10.1007/s00210-024-02952-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/10/2024] [Indexed: 01/27/2024]
Abstract
Rosavin, a phenylpropanoid glycoside, is the specific index component and one of the main active components of Rhodiola rosea. Currently, there are few studies describing the antiaging effect of rosavin, and most of them are mainly based on in vitro antioxidant research. Our study aimed to investigate the antiaging activities and mechanisms of rosavin in Caenorhabditis elegans. Using Caenorhabditis elegans as the model, the lifespan of Caenorhabditis elegans under various stressors (heat and juglone) and normal conditions was studied, and the antioxidant activities of rosavin were discussed. To discover the underlying mechanisms, we analyzed daf-16 nuclear localization, the expression of the sod-3p::GFP fusion protein, mRNA levels, and loss-of-function mutants of IIS-associated genes. The results showed that rosavin significantly improved the lifespan of Caenorhabditis elegans under stress and normal conditions. Rosavin can increase the expression and activity of antioxidant enzymes and suppress the generation of malondialdehyde and ROS in nematodes. Additionally, it promotes the nuclear localization of daf-16 and improves the expression of the sod-3 gene in Caenorhabditis elegans. The data revealed that rosavin activated the insulin/IGF-1 signaling pathway by downregulating the upstream components daf-2 and age-1. In summary, these results verify that rosavin could increase the lifespan of Caenorhabditis elegans through the insulin/IGF-1 signaling pathway.
Collapse
Affiliation(s)
- Lina Liang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
- Wuwei Occupational college, Gansu, 733000, China
| | - Tianyu Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiaoxiao Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yating Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xu Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Bo Wang
- Department of Pharmacy, Ningxia Hui Autonomous Region People's Hospital, Yinchuan, 750000, China.
| | - Yonggang Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Yuanyuan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
5
|
Wang QY, He NX, Qiu YW, Jiang W, Zhong GY, Sang ZP, Ma QG, Wei RR. Vicatia thibetica de Boiss: Botany, Traditional Uses, Phytochemistry, Quantitative Analysis, and Pharmacology. Comb Chem High Throughput Screen 2024; 27:679-687. [PMID: 37259928 DOI: 10.2174/1386207326666230531144220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Vicatia thibetica de Boiss is a common Tibetan medicine used for both medicine and food, belonging to the family Apiaceae. This plant has the functions of dispelling wind, removing dampness, dispersing cold, and relieving pain. It has great development potential and application prospects in food development and medicinal value. METHODS The related references on botany, traditional uses, phytochemistry, quantitative analysis, and pharmacology of V. thibetica de Boiss had been retrieved from both online and offline databases, including PubMed, ScienceDirect, Web of Science, Elsevier, Willy, SpringLink, SciFinder, Google Scholar, Baidu Scholar, ACS publications, SciHub, Scopus, and CNKI. RESULTS V. thibetica de Boiss exerts nourishing, appetizing, and digestive effects according to the theory of Tibetan medicine. Phytochemical reports have revealed that V. thibetica de Boiss contains flavonoids, coumarins, sterols, and organic acids. Meanwhile, the quantitative analysis of the chemical constituents of V. thibetica de Boiss has been done by means of UPLC-Q-TOF-MS. It has also been found that V. thibetica de Boiss possesses multiple pharmacological activities, including anti-fatigue, anti-oxidant, anti-aging, and non-toxic activities. CONCLUSION This paper has comprehensively summarized botany, traditional uses, phytochemistry, quantitative analysis, and pharmacology of V. thibetica de Boiss. It will not only provide an important clue for further studying V. thibetica de Boiss, but also offer an important theoretical basis and valuable reference for in-depth research and exploitation of this plant in the future.
Collapse
Affiliation(s)
- Qin-Yuan Wang
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine & Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, P. R. China
| | - Neng-Xin He
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine & Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, P. R. China
| | - Yong-Wei Qiu
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine & Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, P. R. China
| | - Wei Jiang
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine & Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, P. R. China
| | - Guo-Yue Zhong
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine & Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, P. R. China
| | - Zhi-Pei Sang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
- School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Qin-Ge Ma
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine & Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, P. R. China
| | - Rong-Rui Wei
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine & Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, P. R. China
| |
Collapse
|
6
|
Qu B, Liu X, Liang Y, Zheng K, Zhang C, Lu L. Salidroside in the Treatment of NAFLD/NASH. Chem Biodivers 2022; 19:e202200401. [PMID: 36210339 DOI: 10.1002/cbdv.202200401] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/03/2022] [Indexed: 12/27/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the commonest reason for chronic liver diseases in the world and is commonly related to the hepatic manifestation of the metabolic syndrome. Non-alcoholic steatohepatitis (NASH) is a deteriorating form of NAFLD, which can eventually develop into fibrosis, cirrhosis, and liver cancer. The reason for NAFLD/NASH development is complicated, such as liver lipid metabolism, oxidative stress, inflammatory response, apoptosis and autophagy, liver fibrosis and gut microbiota. Apart from bariatric surgery and lifestyle changes, officially approved drug therapy for NAFLD/NASH treatment is lacking. Salidroside (SDS) is a phenolic compound extensively distributed in the tubers of Rhodiola plants, which possesses many significant biological activities. This review summarized the related targets regulated by SDS in treating NAFLD/NASH. It is indicated that SDS could improve the status of NAFLD/NASH by ameliorating abnormal lipid metabolism, inhibiting oxidative stress, regulating apoptosis and autophagy, reducing inflammatory response, alleviating fibrosis and regulating gut microbiota. In conclusion, although the multiple bioactivities of SDS have been confirmed, the clinical data are inadequate and need to become the focus of attention in the later study.
Collapse
Affiliation(s)
- Baozhen Qu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, 127 Siliunan Road, Qingdao, 266042, China
| | - Xuemao Liu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, 127 Siliunan Road, Qingdao, 266042, China
| | - Yanjiao Liang
- Department of Oncology Center, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, 266042, China
| | - Keke Zheng
- Department of Oncology Center, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, 266042, China
| | - Chunling Zhang
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, 127 Siliunan Road, Qingdao, 266042, China
| | - Linlin Lu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, 127 Siliunan Road, Qingdao, 266042, China
| |
Collapse
|
7
|
Cui P, Li M, Yu M, Liu Y, Ding Y, Liu W, Liu J. Advances in sports food: Sports nutrition, food manufacture, opportunities and challenges. Food Res Int 2022; 157:111258. [DOI: 10.1016/j.foodres.2022.111258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/26/2022]
|
8
|
Anti-Photoaging Effect of Rhodiola rosea Fermented by Lactobacillus plantarum on UVA-Damaged Fibroblasts. Nutrients 2022; 14:nu14112324. [PMID: 35684124 PMCID: PMC9183149 DOI: 10.3390/nu14112324] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 12/06/2022] Open
Abstract
UVA can cause oxidative stress and photoaging of cells. We established a UVA-induced oxidative stress model of human fibroblasts and focused on the antioxidant and anti-photoaging ability of Lactobacillus plantarum fermented Rhodiola rosea. Compared with the unfermented Rhodiola rosea, Lactobacillus plantarum fermented Rhodiola rosea has better DPPH free radical and hydroxyl free radical scavenging ability, significantly reduces the content of reactive oxygen species (ROS), and improves the antioxidant level. Further studies have shown that the Lactobacillus plantarum fermented Rhodiola rosea can activate the Nrf2/Keap1 signaling pathway and up-regulate heme oxygenase-1 (HO-1), NAD(P)H quinone dehydrogenase 1 (NQO1), catalase (CAT) and glutathione Peptide peroxidase (GSH-Px), and protect fibroblasts from oxidative stress caused by UVA. On the other hand, Lactobacillus plantarum fermented Rhodiola rosea significantly reduces the activity of metalloproteinases in the cell, thereby increasing the collagen and elastin in the cell, alleviating the photoaging caused by UVA. Finally, we concluded that the antioxidant capacity and anti-photoaging ability of Lactobacillus plantarum fermented Rhodiola rosea are better than that of unfermented Rhodiola rosea.
Collapse
|
9
|
Enhancement of Swimming Endurance by Herbal Supplement M3P. Chin J Integr Med 2022; 28:725-729. [PMID: 35048243 DOI: 10.1007/s11655-021-3502-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To investigate the effect of M3P (containing Deer antler, Cordyceps sinensis, Rhodiola rosea, and Panax ginseng); an herbal remedy with the function of tonifying Kidney (Shen) and invigorating Spleen (Pi), replenishing qi and nourishing blood; on fatigue alleviation, endurance capacity and toxicity. METHODS Swimming with weight-loading of 24 male ICR mice was used to evaluate the endurance capacity, and fatigue-related plasma biomarkers were determined. Mice were randomly assigned to control or M3P treatment groups with 6 mice for each group and were orally administered with M3P everyday for 8 weeks at doses 0, 10, 33 or 100 mg/kg. Swimming time to exhaustion was measured in a specialized water tank. Lliver and kidney functions, body weight, and hematological profile were determined to evaluate the safety and toxicity after long-term M3P administration. RESULTS M3P supplementation 100 mg/kg significantly increased swimming endurance time up to approximate 2.4 folds of controls (P<0.05). The plasma concentrations of cortisol and hepatic glycogen content were significantly increased in mice received M3P (P<0.05, P<0.01 respectively). The lactic acid level and blood glucose were not changed after M3P treatment (P>0.05). The liver and kidney functions muscle damage biomarker creatine, body weight, and hemograms were not altered in M3P supplementation (P>0.05). CONCLUSION M3P supplementation may improve swimming endurance accompanied by increasing hepatic glycogen content and serum cortisol level without major toxicity.
Collapse
|
10
|
Wang Y, Tao H, Huang H, Xiao Y, Wu X, Li M, Shen J, Xiao Z, Zhao Y, Du F, Ji H, Chen Y, Cho CH, Wang Y, Wang S, Wu X. The dietary supplement Rhodiola crenulata extract alleviates dextran sulfate sodium-induced colitis in mice through anti-inflammation, mediating gut barrier integrity and reshaping the gut microbiome. Food Funct 2021; 12:3142-3158. [PMID: 33729231 DOI: 10.1039/d0fo03061a] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rhodiola species are edible medicinal plants, which have been traditionally used in both Asia and Europe as an adaptogen, a tonic, an anti-depressant and anti-inflammatory supplement. However, whether it presents a therapeutic effect on colitis or not remains unknown. The aim of this study is to investigate the protective effect of a Rhodiola crenulata extract (RCE) on mice with DSS-induced colitis. RCE significantly alleviated the pathological abnormalities in colitic mice, including the correspondingly increased colon length, ameliorated colonic injury and reduced pro-inflammatory factors. The protective effect was similar to that of the positive control, 5-aminosalicylic acid. The DSS-induced epithelial apoptosis and maintained intestinal barrier function were attenuated by RCE through the upregulation of the level of tight junction proteins such as ZO-1 and occludin. Notably, RCE prevented gut dysbiosis in colitic mice by restoring the microbial richness and diversity, and decreasing the abundance of Proteobacteria phylum and opportunistic pathogenic Parasutterella and Staphylococcus, as well as increasing the abundance of beneficial microbes in Lactobacillus and Bifidobacterium, which were closely correlated with its protective effect against colitis. Meanwhile, chemical characterization of RCE was performed by UPLC-HR-MS to explain its material basis. A total of 63 compounds were identified, while the content of two bioactive ingredients (salidroside, 1.81%; rosavin, 0.034%) was determined.
Collapse
Affiliation(s)
- Yi Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Oh J, Han Y, Kim J, Park C, Oh D, Yun H, Lee G, Kim J, Choi C, Lee Y. Anti-Fatigue Activity of a Mixture of Stauntonia hexaphylla (Thunb.) Decaisne and Vaccinium bracteatum Thunb. Fruit Extract. Prev Nutr Food Sci 2020; 25:380-388. [PMID: 33505932 PMCID: PMC7813597 DOI: 10.3746/pnf.2020.25.4.380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/13/2020] [Indexed: 02/04/2023] Open
Abstract
Stauntonia hexaphylla (Thunb.) Decaisne and Vaccinium bracteatum Thunb. are commonly used in traditional herbal medicine and food and both exhibit antioxidant and anti-inflammatory effects. Herein, hot-water extracts of Stauntonia hexaphylla (Thunb.) Decaisne and Vaccinium bracteatum Thunb. fruits (1:1 mixture) were used to produce a complex extract NET-1601. The anti-fatigue activity of NET-1601 was evaluated in an in vitro oxidative stress model induced by treating C2C12 myotubes with H2O2. An exhaustive swimming test (EST) in vivo model was established using ICR mice. NET-1601-treated C2C12 myotubes (50, 100, and 200 mg/mL) with H2O2-induced oxidative stress displayed significantly increased cell viability and ATP content, but significantly decreased levels of reactive oxygen species. All NET-1601-treated EST models demonstrated significantly higher maximum swimming rates than control mice. Furthermore, serum lactate, lactate dehydrogenase activity, non-esterified fatty acid, and intramuscular glycogen levels were higher in NET-1601-treated mice than in control mice. In addition, mRNA levels of regulatory factors involved in muscle mitochondrial fatty acid β-oxidation increased upon NET-1601 treatment. Moreover, catalase, superoxide dismutase, glutathione-S-transferase, and liver glutathione content, and antioxidant activity were higher in NET-1601-treated mice than in control mice. Reduced malondialdehyde levels indicated that NET-1601 treatment inhibited exercise-induced lipid peroxidation. Together, these results suggest that NET-1601 retains antioxidant enzyme activity during oxidative stress, simultaneously enhancing both muscle function via glycogen and fatty acid oxidation, thereby exerting a positive effect on recovery from fatigue.
Collapse
Affiliation(s)
- Joohyun Oh
- Herbal Hormone Research Institute, Naturalendo Tech Co., Ltd., Gyeonggi 13486, Korea
| | - Yoonyoung Han
- Herbal Hormone Research Institute, Naturalendo Tech Co., Ltd., Gyeonggi 13486, Korea
| | - Jimin Kim
- Herbal Hormone Research Institute, Naturalendo Tech Co., Ltd., Gyeonggi 13486, Korea
| | - Chansung Park
- Herbal Hormone Research Institute, Naturalendo Tech Co., Ltd., Gyeonggi 13486, Korea
| | - Doolri Oh
- Jeollanamdo Institute of Natural Resources Research, Jeonnam 59338, Korea
| | - Hyojeong Yun
- Jeollanamdo Institute of Natural Resources Research, Jeonnam 59338, Korea
| | - Gyuok Lee
- Jeollanamdo Institute of Natural Resources Research, Jeonnam 59338, Korea
| | - Jaeyong Kim
- Jeollanamdo Institute of Natural Resources Research, Jeonnam 59338, Korea
| | - Chulyung Choi
- Jeollanamdo Institute of Natural Resources Research, Jeonnam 59338, Korea
| | - Yongwook Lee
- Herbal Hormone Research Institute, Naturalendo Tech Co., Ltd., Gyeonggi 13486, Korea
| |
Collapse
|
12
|
Koop T, Dienel A, Heldmann M, Münte TF. Effects of a
Rhodiola rosea
extract on mental resource allocation and attention: An event‐related potential dual task study. Phytother Res 2020; 34:3287-3297. [DOI: 10.1002/ptr.6778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Tina Koop
- Department of Neurology University of Lübeck Lübeck Germany
| | | | - Marcus Heldmann
- Department of Neurology University of Lübeck Lübeck Germany
- Institute for Psychology II, University of Lübeck Lübeck Germany
| | - Thomas F. Münte
- Department of Neurology University of Lübeck Lübeck Germany
- Institute for Psychology II, University of Lübeck Lübeck Germany
| |
Collapse
|
13
|
Erythromycin has therapeutic efficacy on muscle fatigue acting specifically on orosomucoid to increase muscle bioenergetics and physiological parameters of endurance. Pharmacol Res 2020; 161:105118. [DOI: 10.1016/j.phrs.2020.105118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/12/2020] [Accepted: 07/31/2020] [Indexed: 02/01/2023]
|
14
|
Rhodiola/Cordyceps-Based Herbal Supplement Promotes Endurance Training-Improved Body Composition But Not Oxidative Stress and Metabolic Biomarkers: A Preliminary Randomized Controlled Study. Nutrients 2019; 11:nu11102357. [PMID: 31623349 PMCID: PMC6835767 DOI: 10.3390/nu11102357] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 09/30/2019] [Accepted: 09/30/2019] [Indexed: 12/23/2022] Open
Abstract
Rhodiola crenulata (R) and Cordyceps sinensis (C) are commonly used herbs that promote health in traditional Chinese medicine. These two herbs have also been shown to exhibit anti-inflammation and antioxidant functions. Regular endurance training reveals potent endurance capacity, body composition improvement, and metabolic-related biomarker benefits. However, it is not known whether the combination of Rhodiola crenulata and Cordyceps sinensis (RC) supplementation during endurance training provides additive health benefits. The purpose of this study was to investigate the effects of 8-week endurance training plus RC supplementation on body composition, oxidative stress, and metabolic biomarkers in young sedentary adults. Methods: Fourteen young sedentary adults (8M/6F) participated in this double-blind randomized controlled study. Participants were assigned to exercise training with placebo groups (PLA, n = 7, 4M/3F; age: 21.4 ± 0.4 years) and exercise training with the RC group (RC, 20 mg/kg/day; n = 7, 4M/3F; age: 21.7 ± 0.4 years). Both groups received identical exercise training for eight weeks. The body composition, circulating oxidative stress, and blood metabolic biomarkers were measured before and after the 8-week intervention. Results: Improvement in body composition profiles were significantly greater in the RC group (body weight: p = 0.044, BMI: p = 0.003, upper extremity fat mass: p = 0.032, lower extremity muscle mass: p = 0.029, trunk fat mass: p = 0.011) compared to the PLA group after training. The blood lipid profile and systemic oxidative stress makers (thiobarbituric reactive substanceand total antioxidant capacity) did not differ between groups. Although endurance training markedly improved endurance capacity and glycemic control ability (i.e., fast blood glucose, insulin, and HOMA index), there were no differences in these variables between treatments. Conclusions: In this preliminary investigation, we demonstrated that an 8-week RC supplementation (20 mg/kg/day) faintly enhanced endurance training-induced positive adaptations in body composition in young sedentary individuals, whereas the blood lipid profile and systemic oxidative stress states were not altered after such intervention.
Collapse
|
15
|
Bang VMJ, Aranão ALDC, Nogueira BZ, Araújo AC, Bueno PCDS, Barbalho SM, de Souza MDSS, Guiguer EL. Effects of Rhodiola rosea and Panax ginseng on the Metabolic Parameters of Rats Submitted to Swimming. J Med Food 2019; 22:1087-1090. [PMID: 31149868 DOI: 10.1089/jmf.2019.0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adaptogen-based plant formulations play an important role in traditional medicine and have been used in medical practice to increase the resistance of individuals. Rhodiola rosea (RR) and Panax ginseng (PG) exhibit adaptogenic properties and are related to the recovery of homeostasis and strengthen systems impaired by stress. This study aimed to evaluate the effects of RR and PG on metabolic profile and muscle damage parameters in Wistar rats submitted to swimming. Animals were divided according to the following: G1: control group; G2: group that was submitted to swimming; G3: group treated with PG; G4: group treated with PG and submitted to swimming; G5: treated with RR; and G6: treated with RR and submitted to swimming. At the end of the experimental protocol, groups G2, G4, and G6 practiced swimming for a period five times longer than during the previous 30 days. Anthropometric and biochemical parameters were investigated, and no significant results were found in the groups. Nevertheless, animals treated with PG and RR reduced the levels of creatine phosphokinase (CPK) and lactic dehydrogenase (LDH). Our findings demonstrate that both PG and RR produced a significant reduction in the levels of CPK and LDH after physical stress, suggesting that they can be used to improve physical performance. For these reasons, we may say that these plants may be used to minimize the stress promoted by the practice of physical exercises.
Collapse
Affiliation(s)
- Victor Myung Joon Bang
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília-Brazil, Brazil
| | - Ana Luisa de Carvalho Aranão
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília-Brazil, Brazil
| | - Bruna Zampieri Nogueira
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília-Brazil, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília-Brazil, Brazil
| | | | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília-Brazil, Brazil.,Department of Biochemistry and Nutrition, Faculty of Food Technology of Marília, Marília, São Paulo-Brazil
| | | | - Elen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília-Brazil, Brazil.,Department of Biochemistry and Nutrition, Faculty of Food Technology of Marília, Marília, São Paulo-Brazil
| |
Collapse
|
16
|
Lu L, Liu S, Dong Q, Xin Y. Salidroside suppresses the metastasis of hepatocellular carcinoma cells by inhibiting the activation of the Notch1 signaling pathway. Mol Med Rep 2019; 19:4964-4972. [PMID: 30942419 DOI: 10.3892/mmr.2019.10115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 03/26/2019] [Indexed: 11/06/2022] Open
Abstract
Salidroside (SDS) is a phenylpropanoid glycoside isolated from Rhodiola rosea L. It exhibits multiple pharmacological properties in clinical medicine and has been commonly used in traditional Chinese medicine. The present study investigated the inhibitory effects of SDS on tumor invasion and migration, and the expression of metastasis‑related genes in highly metastatic hepatocellular carcinoma (HCC) cells (MHCC97H) in vitro. The underlying mechanisms of SDS on the tumor metastasis were also explored. SDS was found to significantly reduce wound closure areas and inhibit cell migration. In addition, SDS markedly inhibited the invasion of these cells into Matrigel‑coated membranes. SDS markedly downregulated the expression of Notch1, Snail, COX‑2, MMP‑2, MMP‑9 genes and upregulated the expression of E‑cadherin in a dose‑dependent manner. Furthermore, SDS inhibited the expression of the Notch signaling target genes, Hey1, Hes1 and Hes5. On the whole, the findings of this study suggest that SDS inhibits HCC cell metastasis by modulating the activity of the Notch1 signaling pathway.
Collapse
Affiliation(s)
- Linlin Lu
- Department of Clinical Medicine, Qingdao University, Qingdao University Hospital, Qingdao, Shandong 266003, P.R. China
| | - Shousheng Liu
- Central Laboratories, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| | - Quanjiang Dong
- Central Laboratories, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| | - Yongning Xin
- Digestive Disease Key Laboratory of Qingdao, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
17
|
Liu Y, Chen C, Qiu J, Fang Z, Wu H, Zhang X, Wang S. Characterization of the chemical constituents in Hongjingtian injection by liquid chromatography quadrupole time‐of‐flight mass spectrometry. Biomed Chromatogr 2018; 33:e4446. [DOI: 10.1002/bmc.4446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 11/10/2018] [Accepted: 11/16/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Yining Liu
- College of Pharmaceutical SciencesZhejiang University Hangzhou China
| | - Canhui Chen
- College of Pharmaceutical ScienceZhejiang University of Technology Hangzhou China
| | - Jiuwen Qiu
- Tonghua Yusheng Pharmaceutical Co. Ltd Tonghua China
| | - Zongbao Fang
- Tonghua Yusheng Pharmaceutical Co. Ltd Tonghua China
| | - Haibo Wu
- Tonghua Yusheng Pharmaceutical Co. Ltd Tonghua China
| | - Xingxian Zhang
- College of Pharmaceutical ScienceZhejiang University of Technology Hangzhou China
| | - Shufang Wang
- College of Pharmaceutical SciencesZhejiang University Hangzhou China
| |
Collapse
|
18
|
Muscle fatigue: general understanding and treatment. Exp Mol Med 2017; 49:e384. [PMID: 28983090 PMCID: PMC5668469 DOI: 10.1038/emm.2017.194] [Citation(s) in RCA: 307] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 05/20/2017] [Accepted: 05/23/2017] [Indexed: 12/19/2022] Open
Abstract
Muscle fatigue is a common complaint in clinical practice. In humans, muscle fatigue can be defined as exercise-induced decrease in the ability to produce force. Here, to provide a general understanding and describe potential therapies for muscle fatigue, we summarize studies on muscle fatigue, including topics such as the sequence of events observed during force production, in vivo fatigue-site evaluation techniques, diagnostic markers and non-specific but effective treatments.
Collapse
|
19
|
Golden root: A wholesome treat of immunity. Biomed Pharmacother 2017; 87:496-502. [DOI: 10.1016/j.biopha.2016.12.132] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/21/2016] [Accepted: 12/31/2016] [Indexed: 12/27/2022] Open
|
20
|
Kim HY, Han NR, Kim NR, Lee M, Kim J, Kim CJ, Jeong HJ, Kim HM. Effect of fermented porcine placenta on physical fatigue in mice. Exp Biol Med (Maywood) 2016; 241:1985-1996. [PMID: 27439540 DOI: 10.1177/1535370216659945] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/17/2016] [Indexed: 11/17/2022] Open
Abstract
The fatigue spreads among the people who live under stressful life and brings about a negative impact on physical function. Here we evaluated the anti-fatigue effects of fermented porcine placenta (FPP) and main constituents, lysine (Lys) and leucine (Leu) with treadmill stress test and forced swimming test (FST) in animal models. The mice were administrated with FPP, Lys, and Leu for 21 days. After treadmill exercise, FPP, Lys, and Leu significantly reduced fatigue-related biochemical parameters, including lactate, lactate dehydrogenase, glucose, creatine kinase, urea nitrogen, cortisol, and pro-inflammatory cytokines, whereas superoxide dismutase activity and glycogen levels were significantly increased by FPP, Lys, and Leu. In the FST, FPP, Lys, and Leu significantly decreased immobility times and up-regulated brain-derived neurotrophic factor expression in brain. Furthermore, FPP, Lys, and Leu significantly decreased production of tumor necrosis factor-α, interleukin (IL)-6, IL-1β, and IL-4 through blockade of caspase-1/nuclear factor-κB pathway in stimulated splenocytes. In addition, FPP, Lys, and Leu significantly promoted proliferation of splenocytes. In conclusion, these findings suggest the potential of FPP as a novel functional food for the regulation of fatigue.
Collapse
Affiliation(s)
- Hee-Yun Kim
- Department of Pharmacology, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Na-Ra Han
- Department of Pharmacology, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Na-Rae Kim
- Department of Pharmacology, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Mikyung Lee
- LG Household & Healthcare Research Park, Daejeon 34114, Republic of Korea
| | - Jongbae Kim
- LG Household & Healthcare Research Park, Daejeon 34114, Republic of Korea
| | - Chang-Ju Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyun-Ja Jeong
- Department of Food Technology and Inflammatory Disease Research Center, Hoseo University, Asan 31499, Republic of Korea
| | - Hyung-Min Kim
- Department of Pharmacology, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
21
|
Antifatigue Activity of Liquid Cultured Tricholoma matsutake Mycelium Partially via Regulation of Antioxidant Pathway in Mouse. BIOMED RESEARCH INTERNATIONAL 2015; 2015:562345. [PMID: 26697489 PMCID: PMC4677160 DOI: 10.1155/2015/562345] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 11/03/2015] [Indexed: 11/17/2022]
Abstract
Tricholoma matsutake has been popular as food and biopharmaceutical materials in Asian countries for its various pharmacological activities. The present study aims to analyze the antifatigue effects on enhancing exercise performance of Tricholoma matsutake fruit body (ABM) and liquid cultured mycelia (TM) in mouse model. Two-week Tricholoma matsutake treatment significantly enhances the exercise performance in weight-loaded swimming, rotating rod, and forced running test. In TM- and ABM-treated mice, some factors were observed at 60 min after swimming compared with nontreated mice, such as the increased levels of adenosine triphosphate (ATP), antioxidative enzymes, and glycogen and the reduced levels of malondialdehyde and reactive oxygen species in muscle, liver, and/or serum. Further data obtained from western blot show that CM and ABM have strongly enhanced the activation of 5'-AMP-activated protein kinase (AMPK), and the expressions of peroxisome proliferator have activated receptor γ coactivator-1α (PGC-1α) and phosphofructokinase-1 (PFK-1) in liver. Our data suggest that both Tricholoma matsutake fruit body and liquid cultured mycelia possess antifatigue effects related to AMPK-linked antioxidative pathway. The information uncovered in our study may serve as a valuable resource for further identification and provide experimental evidence for clinical trials of Tricholoma matsutake as an effective agent against fatigue related diseases.
Collapse
|