1
|
Park SY, Park TG, Choi K, Kim KJ, Kim JY. The Impact of Pinus koraiensis Leaf Extract Consumption on Postprandial ApoB100 and Lipid Metabolism: A Randomized, Double-Blind, Placebo-Controlled Trial in Healthy Participants Subjected to an Oral High-Fat Challenge. Nutrients 2024; 16:2864. [PMID: 39275181 PMCID: PMC11397107 DOI: 10.3390/nu16172864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/16/2024] Open
Abstract
Pinus koraiensis (PK) leaf extract, derived from Korean pine byproducts, holds promise for alleviating postprandial hyperlipidemia. In this study, we investigated the potential of PK leaf extract for modulating postprandial hyperlipidemia in adults with normal or borderline fasting triglyceride levels. In a randomized, double-blind, parallel design, 70 subjects were randomly assigned to either the placebo or PK group for 4 weeks. After 4 weeks of consuming PK leaf extract, the results indicated a trend toward decreased serum apolipoprotein B-100 (ApoB100) levels 2 h after a high-fat challenge. Furthermore, significant improvements were observed in the incremental area under the curve (iAUC) at 0-4 h and 2-4 h compared to baseline, particularly among individuals with a higher body weight (>61.35 kg) and daily caloric intake (>1276.5 kcal). Based on these findings, PK leaf extract may have beneficial effects on postprandial lipoprotein metabolism, especially among individuals with a relatively high body weight and caloric intake.
Collapse
Affiliation(s)
- Soo-Yeon Park
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Tae Gwon Park
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Kwanyong Choi
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Kyeong Jin Kim
- Department of Nano Bio Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Ji Yeon Kim
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
- Department of Nano Bio Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| |
Collapse
|
2
|
Gasparro R, Pucci M, Costanzo E, Urzì O, Tinnirello V, Moschetti M, Conigliaro A, Raimondo S, Corleone V, Fontana S, Alessandro R. Citral-Enriched Fraction of Lemon Essential Oil Mitigates LPS-Induced Hepatocyte Injuries. BIOLOGY 2023; 12:1535. [PMID: 38132361 PMCID: PMC10740427 DOI: 10.3390/biology12121535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/01/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Lemon essential oil (LEO) is known for its aromatic and healthy properties; however, less consideration is given to the biological properties of the fractions obtained from LEO. This study aims to evaluate the ability of a citral-enriched fraction obtained from LEO (Cfr-LEO) to counteract lipopolysaccharide (LPS)-mediated inflammation, oxidative stress, and epithelial-mesenchymal transition (EMT) in healthy human hepatocytes. Human immortalized hepatocytes (THLE-2 cell line) were pretreated with Cfr-LEO and subsequently exposed to LPS at various time points. We report that the pretreatment with Cfr-LEO counteracts LPS-mediated effects by inhibiting inflammation, oxidative stress, and epithelial-mesenchymal transition in THLE-2. In particular, we found that pretreatment with Cfr-LEO reduced NF-κB activation and the subsequent proinflammatory cytokines release, ROS production, and NRF2 and p53 expression. Furthermore, the pretreatment with Cfr-LEO showed its beneficial effect in counteracting LPS-induced EMT. Taken together, these results support Cfr-LEO application in the nutraceutical research field not only for its organoleptic properties, conferred by citral enrichment, but also for its biological activity. Our study could lay the basis for the development of foods/drinks enriched with Cfr-LEO, aimed at preventing or alleviating chronic conditions associated with liver dysfunction.
Collapse
Affiliation(s)
- Roberta Gasparro
- Department of Biomedicine, Neurosciences, and Advanced Diagnostics (Bi.N.D), Section of Biology, Via Divisi 83, University of Palermo, 90133 Palermo, Italy; (R.G.); (M.P.); (E.C.); (O.U.); (V.T.); (M.M.); (A.C.); (S.R.); (R.A.)
| | - Marzia Pucci
- Department of Biomedicine, Neurosciences, and Advanced Diagnostics (Bi.N.D), Section of Biology, Via Divisi 83, University of Palermo, 90133 Palermo, Italy; (R.G.); (M.P.); (E.C.); (O.U.); (V.T.); (M.M.); (A.C.); (S.R.); (R.A.)
| | - Elisa Costanzo
- Department of Biomedicine, Neurosciences, and Advanced Diagnostics (Bi.N.D), Section of Biology, Via Divisi 83, University of Palermo, 90133 Palermo, Italy; (R.G.); (M.P.); (E.C.); (O.U.); (V.T.); (M.M.); (A.C.); (S.R.); (R.A.)
| | - Ornella Urzì
- Department of Biomedicine, Neurosciences, and Advanced Diagnostics (Bi.N.D), Section of Biology, Via Divisi 83, University of Palermo, 90133 Palermo, Italy; (R.G.); (M.P.); (E.C.); (O.U.); (V.T.); (M.M.); (A.C.); (S.R.); (R.A.)
| | - Vincenza Tinnirello
- Department of Biomedicine, Neurosciences, and Advanced Diagnostics (Bi.N.D), Section of Biology, Via Divisi 83, University of Palermo, 90133 Palermo, Italy; (R.G.); (M.P.); (E.C.); (O.U.); (V.T.); (M.M.); (A.C.); (S.R.); (R.A.)
- Agrumaria Corleone s.p.a., Via S. Corleone, 12—Zona Ind. Brancaccio, 90124 Palermo, Italy;
| | - Marta Moschetti
- Department of Biomedicine, Neurosciences, and Advanced Diagnostics (Bi.N.D), Section of Biology, Via Divisi 83, University of Palermo, 90133 Palermo, Italy; (R.G.); (M.P.); (E.C.); (O.U.); (V.T.); (M.M.); (A.C.); (S.R.); (R.A.)
| | - Alice Conigliaro
- Department of Biomedicine, Neurosciences, and Advanced Diagnostics (Bi.N.D), Section of Biology, Via Divisi 83, University of Palermo, 90133 Palermo, Italy; (R.G.); (M.P.); (E.C.); (O.U.); (V.T.); (M.M.); (A.C.); (S.R.); (R.A.)
| | - Stefania Raimondo
- Department of Biomedicine, Neurosciences, and Advanced Diagnostics (Bi.N.D), Section of Biology, Via Divisi 83, University of Palermo, 90133 Palermo, Italy; (R.G.); (M.P.); (E.C.); (O.U.); (V.T.); (M.M.); (A.C.); (S.R.); (R.A.)
| | - Valeria Corleone
- Agrumaria Corleone s.p.a., Via S. Corleone, 12—Zona Ind. Brancaccio, 90124 Palermo, Italy;
| | - Simona Fontana
- Department of Biomedicine, Neurosciences, and Advanced Diagnostics (Bi.N.D), Section of Biology, Via Divisi 83, University of Palermo, 90133 Palermo, Italy; (R.G.); (M.P.); (E.C.); (O.U.); (V.T.); (M.M.); (A.C.); (S.R.); (R.A.)
| | - Riccardo Alessandro
- Department of Biomedicine, Neurosciences, and Advanced Diagnostics (Bi.N.D), Section of Biology, Via Divisi 83, University of Palermo, 90133 Palermo, Italy; (R.G.); (M.P.); (E.C.); (O.U.); (V.T.); (M.M.); (A.C.); (S.R.); (R.A.)
| |
Collapse
|
3
|
Ba Y, Guo Q, Meng S, Tong G, He Y, Guan Y, Zheng B. Association of exposures to serum terpenes with the prevalence of dyslipidemia: a population-based analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:115295-115309. [PMID: 37880399 DOI: 10.1007/s11356-023-30546-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023]
Abstract
This study sought to examine hitherto unresearched relationships between serum terpenes and the prevalence of dyslipidemia. Serum terpenes such as limonene, α-pinene, and β-pinene from the 2013-2014 National Health and Nutrition Examination Survey (NHANES) were used as independent variables in this cross-sectional study. Continuous lipid variables included total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), non-HDL-C, triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), residual cholesterol (RC), and apolipoprotein B (Apo B). Binary lipid variables (elevated TC, ≥5.18 mmol/L; lowered HDL-C, <1.04 mmol/L in men, and <1.30 mmol/L in women; elevated non-HDL-C, ≥4.2 mmol/L; elevated TG, ≥1.7 mmol/L; elevated LDL-C, ≥3.37 mmol/L; elevated RC, ≥1.0 mmol/L; and elevated Apo B, ≥1.3 g/L) suggest dyslipidemia. The relationships between the mixture of serum terpenes with lipid variables were investigated using weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR). The study for TC, HDL-C, and non-HDL-C included a total of 1,528 people, whereas the analysis for TG, LDL-C, RC, and Apo B comprised 714 participants. The mean age of the overall participants was 47.69 years, and 48.77% were male. We found that tertiles of serum terpene were positively associated with binary (elevated TC, non-HDL-C, TG, LDL-C, RC, Apo B, and lowered HDL-C) and continuous (TC, non-HDL-C, TG, LDL-C, RC, and Apo B, but not HDL-C) serum lipid variables. WQS regression and BKMR analysis revealed that the mixture of serum terpenes was linked with the prevalence of dyslipidemia. According to our data, the prevalence of dyslipidemia was correlated with serum concentrations of three terpenes both separately and collectively.
Collapse
Affiliation(s)
- Yanqun Ba
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Huansha Road, Shangcheng District, Hangzhou, 310006, China
| | - Qixin Guo
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Huansha Road, Shangcheng District, Hangzhou, 310006, China
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, China
| | - Shasha Meng
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Huansha Road, Shangcheng District, Hangzhou, 310006, China
| | - Guoxin Tong
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Huansha Road, Shangcheng District, Hangzhou, 310006, China
| | - Ying He
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Huansha Road, Shangcheng District, Hangzhou, 310006, China
| | - Yihong Guan
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Huansha Road, Shangcheng District, Hangzhou, 310006, China
| | - Beibei Zheng
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Huansha Road, Shangcheng District, Hangzhou, 310006, China.
| |
Collapse
|
4
|
Swiderski J, Sakkal S, Apostolopoulos V, Zulli A, Gadanec LK. Combination of Taurine and Black Pepper Extract as a Treatment for Cardiovascular and Coronary Artery Diseases. Nutrients 2023; 15:nu15112562. [PMID: 37299525 DOI: 10.3390/nu15112562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The shift in modern dietary regimens to "Western style" and sedentary lifestyles are believed to be partly responsible for the increase in the global burden of cardiovascular diseases. Natural products have been used throughout human history as treatments for a plethora of pathological conditions. Taurine and, more recently, black pepper have gained attention for their beneficial health effects while remaining non-toxic even when ingested in excess. Taurine, black pepper, and the major terpene constituents found in black pepper (i.e., β-caryophyllene; α-pinene; β-pinene; α-humulene; limonene; and sabinene) that are present in PhytoCann BP® have been shown to have cardioprotective effects based on anti-inflammatory, antioxidative, anti-hypertensive and anti-atherosclerotic mechanisms. This comprehensive review of the literature focuses on determining whether the combination of taurine and black pepper extract is an effective natural treatment for reducing cardiovascular diseases risk factors (i.e., hypertension and hyperhomocysteinemia) and for driving anti-inflammatory, antioxidative and anti-atherosclerotic mechanisms to combat coronary artery disease, heart failure, myocardial infarction, and atherosclerotic disease.
Collapse
Affiliation(s)
- Jordan Swiderski
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Samy Sakkal
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science, Melbourne, VIC 3021, Australia
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Laura Kate Gadanec
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| |
Collapse
|
5
|
Potential Anti-inflammatory, Hypoglycemic, and Hypolipidemic Activities of Alpha-Pinene in Diabetic Rats. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Özer Z, Teke N, Turan GB, Bahçecik AN. Effectiveness of lemon essential oil in reducing test anxiety in nursing students. Explore (NY) 2022; 18:526-532. [PMID: 35190270 DOI: 10.1016/j.explore.2022.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 01/01/2022] [Accepted: 02/09/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE This study examines the effectiveness of lemon essential oil in reducing test anxiety in first-year nursing students. METHOD A randomized, pre-test-post-test design was used in this study. The study included 46 first-year students from the Faculty of Medical Sciences of a private university in Istanbul, Turkey. Students were divided into two groups through randomization (Intervention, N = 22; Control, N = 24). In the pre-test, a personal information form, State Test Anxiety Scale (STAS) and Test Anxiety Schedule (TAS) were administered to students in both groups. The students in the intervention group smelled lemon essential oil for 15 min. The study was completed by applying STAS and TAS as post-test. RESULTS After smelling lemon essential oil, a significant difference was found between the mean pre-test and post-test scores for STAS, its sub-dimensions and TAS (p < 0.01) in the intervention group. It was observed that the nursing students' mean scores for STAS, its sub-dimensions and TAS decreased after smelling lemon essential oil (p<0.05). It was found that the intervention group's mean post-test scores for STAS, cognitive sub-dimension and TAS were lower than those of the control group. Mean post-test scores of physiological sub-dimension in the intervention group were also significantly lower than the control group. It was concluded that lemon essential oil reduced test anxiety by 43.3%. CONCLUSION Lemon essential oil was found to be effective in reducing test anxiety in nursing students.
Collapse
Affiliation(s)
- Zülfinaz Özer
- Department of Nursing, Faculty of Health Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey.
| | - Neslihan Teke
- Department of Nursing, Faculty of Health Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey.
| | | | - Ayşe Nefise Bahçecik
- Department of Nursing, Faculty of Health Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey.
| |
Collapse
|
7
|
Hypoglycemic, Hypolipidemic, and Anti-Inflammatory Effects of Beta-Pinene in Diabetic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8173307. [PMID: 35620400 PMCID: PMC9129963 DOI: 10.1155/2022/8173307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/11/2022] [Accepted: 04/25/2022] [Indexed: 12/28/2022]
Abstract
Background Diabetes is a metabolic disease linked to multiple comorbidities, such as low-grade inflammation. β-pinene, a monoterpene commonly found in aromatic plants, is endowed with anti-inflammatory effect and this fact lead us to investigate the possible hypoglycemic, hypolipidemic and anti-inflammatory effects of the monoterpene in the alloxan-induced diabetes experimental model. Methods Male Wistar rats (200–250 g) were treated orally with β-pinene (25, 50, 100, and 200 mg/kg) or glibenclamide (5 mg/kg), for seven consecutive days. Diabetes was induced by alloxan (40 mg/kg) through the penile vein. On the seventh day of treatment, blood samples were collected for biochemical analysis. The anti-inflammatory effect of β-pinene was evaluated using the carrageenan-induced paw edema model, followed by the carrageenan-induced peritonitis. Results The treatment with β-pinene decreased plasma glucose, triglyceride, VLDL, LDL, and HDL levels, when compared to those of the control group. In addition, the association β-pinene 10 mg/kg + glibenclamide 2 mg/kg significantly decreased blood glucose, total cholesterol, and triglyceride level. Finally, oral treatment with β-pinene reduced carrageenan-induced paw edema and leukocyte migration in the peritoneum. Taken together, our results indicate that β-pinene shows hypoglycemic and hypolipemic effects, which may involve some common mechanisms of glibenclamide. Besides, the monoterpene presented an anti-inflammatory action in diabetic rats that needs further investigation in order to clarify such effect and its correlation with the alterations observed in plasma parameters of β-pinene-treated diabetic rats.
Collapse
|
8
|
Bekkouch O, Dalli M, Harnafi M, Touiss I, Mokhtari I, Assri SE, Harnafi H, Choukri M, Ko SJ, Kim B, Amrani S. Ginger ( Zingiber officinale Roscoe), Lemon ( Citrus limon L.) Juices as Preventive Agents from Chronic Liver Damage Induced by CCl 4: A Biochemical and Histological Study. Antioxidants (Basel) 2022; 11:390. [PMID: 35204272 PMCID: PMC8869411 DOI: 10.3390/antiox11020390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/07/2022] [Accepted: 02/13/2022] [Indexed: 12/12/2022] Open
Abstract
Zingiber officinale Roscoe and Citrus limon L. are well known for their multi-use and for their pharmacological effect in the treatment of many illnesses. This study aims to investigate the chemical composition of the ginger and lemon juice extracts and in addition, to evaluate their antioxidant properties and their hepatoprotective effect against the liver damage of Wistar rats induced by the injection of CCl4 to treated animals. The obtained effects were completed by a histological study for better confirmation of the registered pharmacological effects. The ginger juice extract was found to be rich in 4-gingerol, 6-gingediol, and 6-gingerol, while the lemon juice extract chemical composition was highlighted by the presence of eriodyctiol, rutin, hesperidin, and isorhamnetin. Concerning the antioxidant activity, the ginger, lemon juice extracts, and their formulation showed an important antioxidant potential using TAC (total antioxidant capacity), an antiradical activity against the radical DPPH• (2,2-diphenyl-1-picrylhydrazil), and a ferric reducing power. Finally, the ginger, lemon, and their formulation at different doses were able to prevent CCl4 induced liver damage. Indeed, these different bioactive compounds could be used as alternative agents for the treatment of chronic liver diseases.
Collapse
Affiliation(s)
- Oussama Bekkouch
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (M.H.); (I.T.); (I.M.); (H.H.); (S.A.)
| | - Mohammed Dalli
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (M.H.); (I.T.); (I.M.); (H.H.); (S.A.)
| | - Mohamed Harnafi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (M.H.); (I.T.); (I.M.); (H.H.); (S.A.)
| | - Ilham Touiss
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (M.H.); (I.T.); (I.M.); (H.H.); (S.A.)
| | - Imane Mokhtari
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (M.H.); (I.T.); (I.M.); (H.H.); (S.A.)
| | - Soufiane El Assri
- Laboratory of Biochemistry, University Hospital Center Mohammed VI, BP 4806, Oujda 60000, Morocco; (S.E.A.); (M.C.)
| | - Hicham Harnafi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (M.H.); (I.T.); (I.M.); (H.H.); (S.A.)
| | - Mohammed Choukri
- Laboratory of Biochemistry, University Hospital Center Mohammed VI, BP 4806, Oujda 60000, Morocco; (S.E.A.); (M.C.)
- Faculty of Medicine and Pharmacy, Mohammed First University, Oujda 60000, Morocco
| | - Seok-Jae Ko
- Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Souliman Amrani
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (M.H.); (I.T.); (I.M.); (H.H.); (S.A.)
| |
Collapse
|
9
|
Elazab MA, Khalifah AM, Elokil AA, Elkomy AE, Rabie MM, Mansour AT, Morshedy SA. Effect of Dietary Rosemary and Ginger Essential Oils on the Growth Performance, Feed Utilization, Meat Nutritive Value, Blood Biochemicals, and Redox Status of Growing NZW Rabbits. Animals (Basel) 2022; 12:ani12030375. [PMID: 35158698 PMCID: PMC8833525 DOI: 10.3390/ani12030375] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary The rabbit farming industry has gained more interest due to its high productivity, high growth rate, and high-quality meat. One of the public health concerns is that global rabbit production is expected to increase to meet the increasing demand for lean meat. In the present study, we focused on the use of phytogenic feed additives (essential oils of rosemary (REO) and ginger (GEO)) as environmentally friendly supplementation to improve rabbit growth performance, physiological status, and meat quality. The results indicated that the use of REO and GEO at a dose of 0.5% dramatically improved the growth performance and feed utilization of treated rabbits. The cholesterol level decreased significantly in rabbit plasma and meat after REO and GEO treatments. The fat content tended to decline in the muscles and the triglycerides were remarkedly reduced in the plasma of treated animals. In addition, the oxidant/antioxidant balance in the plasma could be improved with supplementation with a high dose of REO and GEO. Accordingly, the use of REO and GEO as supplementations for growing rabbits could contribute to improving the sustainable production of the rabbit industry. Abstract This study was conducted to assess the impacts of using two essential oils, rosemary and ginger, on growing rabbits’ performance, carcass traits, meat composition, blood biochemicals, and the redox status of growing New Zealand White (NZW) rabbits. A total of 120 unsexed NZW rabbits, 42-days-old, were assigned randomly to five experimental groups (n = 24, 6 replicates with 4 rabbits each). The first group received a basal diet (control), the second to fifth groups were dietary supplemented daily with rosemary essential oil (REO) and ginger essential oil (GEO) at doses of 0.25 and 0.5% for each supplementation (REO-0.25, REO-0.5, GEO-0.25, and GEO-0.5), respectively. The growth traits were studied for 7 weeks, from the 7th to the 13th week of the rabbits’ age. The results revealed that final body weight, weight gain, and average daily gain increased significantly (p < 0.01) in the REO-0.5 and GEO-0.5 treatments compared to the control group. Daily feed intake decreased (p = 0.005) in essential oil treatments. Meanwhile, the feed conversion ratio improved significantly (p = 0.001) in REO and GEO at the high doses compared to the control group. The weight percentages of liver and giblets increased (p < 0.001) with both treatments of REO and GEO compared to the control group. The dietary supplementation with REO and GEO did not affect (p > 0.05) the meat composition of Longissimus dorsi and hind leg muscles. Meanwhile, REO and GEO supplementation significantly decreased cholesterol levels in the rabbit meat. Thiobarbituric acid reactive substance concentrations decreased by 10 and 15% in the meat of REO-0.5 and GEO-0.5 treatments, respectively, compared to the other groups. In the same trend, REO and GEO treatments induced a significant (p = 0.001) reduction in the plasma cholesterol concentrations and triglycerides compared to the control. The total antioxidant capacity increased by 7.60% and the malondialdehyde decreased by 11.64% in the plasma of GEO-0.5 treatment than the control. Thus, the dietary supplementation of REO and GEO have a beneficial effect in improving the productivity and meat quality of growing rabbits.
Collapse
Affiliation(s)
- Mahmoud A. Elazab
- Livestock Research Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria 21934, Egypt; (M.A.E.); (A.M.K.); (A.E.E.)
| | - Ayman M. Khalifah
- Livestock Research Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria 21934, Egypt; (M.A.E.); (A.M.K.); (A.E.E.)
| | - Abdelmotaleb A. Elokil
- Department of Animal Production, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt;
| | - Alaa E. Elkomy
- Livestock Research Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria 21934, Egypt; (M.A.E.); (A.M.K.); (A.E.E.)
- Faculty of Desert and Environmental Agriculture, Matrouh University, Matrouh 51512, Egypt
| | - Marwa M. Rabie
- Department of Poultry Production, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt;
| | - Abdallah Tageldein Mansour
- Animal and Fish Production Department, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Sabrin Abdelrahman Morshedy
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
- Correspondence:
| |
Collapse
|
10
|
Sut S, Ferrarese I, Lupo MG, De Zordi N, Tripicchio E, Ferri N, Dall’ Acqua S. The Modulation of PCSK9 and LDLR by Supercritical CO 2 Extracts of Mentha longifolia and Isolated Piperitone Oxide, an In Vitro Study. Molecules 2021; 26:molecules26133886. [PMID: 34202378 PMCID: PMC8272093 DOI: 10.3390/molecules26133886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
In the present study the ability of supercritical carbon dioxide (SCO2) extracts of M. longifolia L. leaves to modulate low-density lipoprotein receptor (LDLR) and proprotein convertase subtilisin/kexin type 9 (PCSK9) expression was evaluated in cultured human hepatoma cell lines Huh7 and HepG2. Two SCO2 extracts, one oil (ML-SCO2) and a semisolid (MW-SCO2), were subjected to detailed chemical characterization by mono- and bidimensional nuclear magnetic resonance (1D, 2D-NMR), gas chromatography coupled with mass spectrometry (GC-MS) and liquid chromatography coupled with mass spectrometry (LC-MS). Chemical analysis revealed significant amounts of fatty acids, phytosterols and terpenoids. ML-SCO2 was able to induce LDLR expression at a dose of 60 µg/mL in HuH7 and HepG2 cell lines. Furthermore, ML-SCO2 reduced PCSK9 secretion in a concentration-dependent manner in both cell lines. Piperitone oxide, the most abundant compound of the volatile constituent of ML-SCO2 (27% w/w), was isolated and tested for the same targets, showing a very effective reduction of PCSK9 expression. The overall results revealed the opportunity to obtain a new nutraceutical ingredient with a high amount of phytosterols and terpenoids using the SCO2 extraction of M. longifolia L., a very well-known botanical species used as food. Furthermore, for the first time we report the high activity of piperitone oxide in the reduction of PCSK9 expression.
Collapse
Affiliation(s)
- Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy; (S.S.); (I.F.); (M.G.L.); (N.F.)
| | - Irene Ferrarese
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy; (S.S.); (I.F.); (M.G.L.); (N.F.)
| | - Maria Giovanna Lupo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy; (S.S.); (I.F.); (M.G.L.); (N.F.)
| | - Nicola De Zordi
- Società Agricola Moldoi – S.A.M, SrL, Loc. Maras Moldoi 151/a, 32037 Sospirolo, Italy; (N.D.Z.); (E.T.)
| | - Elisa Tripicchio
- Società Agricola Moldoi – S.A.M, SrL, Loc. Maras Moldoi 151/a, 32037 Sospirolo, Italy; (N.D.Z.); (E.T.)
| | - Nicola Ferri
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy; (S.S.); (I.F.); (M.G.L.); (N.F.)
| | - Stefano Dall’ Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy; (S.S.); (I.F.); (M.G.L.); (N.F.)
- Correspondence:
| |
Collapse
|
11
|
Li G, Xiang S, Pan Y, Long X, Cheng Y, Han L, Zhao X. Effects of Cold-Pressing and Hydrodistillation on the Active Non-volatile Components in Lemon Essential Oil and the Effects of the Resulting Oils on Aging-Related Oxidative Stress in Mice. Front Nutr 2021; 8:689094. [PMID: 34195220 PMCID: PMC8236505 DOI: 10.3389/fnut.2021.689094] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to analyze the non-volatile composition and antioxidant differences of lemon essential oils (LEOs) obtained by cold-pressing vs. hydrodistillation. Pathological observations showed that LEO effectively inhibited liver injury caused by oxidative stress, and CPLEO was more effective than HDLEO. CPLEO increased serum T-AOC, SOD, GSH, and GSH-Px levels while decreasing NO, COX-2, IL-6, IL-1β, IFN-γ, and TNF-α levels in mice with oxidative damage. The effects of CPLEO were stronger than those of HDLEO and similar to those of vitamin C. CPLEO upregulated mRNA and protein expressions of Cu/Zn-SOD, Mn-SOD, CAT, HO-1, Nrf2, and NQO1 while downregulating nNOS, iNOS, IL-1β, COX-2, TNF-α, and NF-κB mRNA expression and nNOS, eNOS, iNOS, and COX-2 protein expression in mice with oxidative damage. The results demonstrate that LEO has good antioxidant effects and that CPLEO has a better antioxidant effect than HDLEO as it retains more active non-volatile substances.
Collapse
Affiliation(s)
- Guijie Li
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China.,Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China.,National Citrus Engineering Research Center, Chongqing, China
| | - Sha Xiang
- Department of Dermatology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yanni Pan
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Xingyao Long
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Yujiao Cheng
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China.,National Citrus Engineering Research Center, Chongqing, China
| | - Leng Han
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| |
Collapse
|
12
|
Ghosh S, Kumar A, Sachan N, Chandra P. Anxiolytic and antidepressant-like effects of essential oil from the fruits of Piper nigrum Linn. (Black pepper) in mice: involvement of serotonergic but not GABAergic transmission system. Heliyon 2021; 7:e06884. [PMID: 33997409 PMCID: PMC8093886 DOI: 10.1016/j.heliyon.2021.e06884] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/02/2021] [Accepted: 04/19/2021] [Indexed: 10/31/2022] Open
Abstract
In this study, the anxiolytic activity of Piper nigrum essential oil (PNEO) was evaluated in the elevated plus maze (EPM) and the antidepressant-like effect was evaluated through tail suspension test (TST) in mice. Flumazenil, a competitive inhibitor of GABAA receptor in the benzodiazepine site and WAY-100635 maleate salt, a 5-HT1A receptor antagonist were used to find out the possible mechanism(s) of action of PNEO. To exclude the false-positive results due to the enhancement of the locomotor activity, the animals were submitted to open field test (OFT). We also measured monoamines levels of the mice brain after acute PNEO treatment. The data obtained from the study suggest that the anxiolytics and antidepressant-like effect of PNEO have observed in EPM and TST respectively in a dose-dependent manner after oral acute and repetitive treatment. WAY-100635, but not flumazenil was able to reverse the effect of PNEO in EPM and TST both, indicating the possible involvement of 5-HT1A receptor. The neurochemical analysis showed no alteration in monoamine levels in mice brains. Furthermore, no locomotor impairment or sign of toxicity or changes in body weight or abnormalities in the biochemical parameters, except for a significant decrease in total cholesterol level was observed after treatment with PNEO. The findings suggest that Piper nigrum EO possesses a dual anxiolytic and antidepressant-like effect through the possible involvement of serotonergic transmission.
Collapse
Affiliation(s)
- Sourav Ghosh
- School of Pharmaceutical Sciences, IFTM University, Lodhipur Rajput, Delhi Road (NH-24), Moradabad, 244 102, UP, India
| | - Arvind Kumar
- Department of Pharmaceutical Chemistry, S. D. College of Pharmacy & Vocational Studies, Bhopa Road, Muzaffarnagar, 251001, UP, India
| | - Neetu Sachan
- School of Pharmaceutical Sciences, IFTM University, Lodhipur Rajput, Delhi Road (NH-24), Moradabad, 244 102, UP, India
| | - Phool Chandra
- School of Pharmaceutical Sciences, IFTM University, Lodhipur Rajput, Delhi Road (NH-24), Moradabad, 244 102, UP, India
| |
Collapse
|
13
|
Bahr T, Butler G, Rock C, Welburn K, Allred K, Rodriguez D. Cholesterol-lowering activity of natural mono- and sesquiterpenoid compounds in essential oils: A review and investigation of mechanisms using in silico protein-ligand docking. Phytother Res 2021; 35:4215-4245. [PMID: 33754393 DOI: 10.1002/ptr.7083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 02/07/2021] [Accepted: 02/23/2021] [Indexed: 01/03/2023]
Abstract
Mono- and sesquiterpenoids are the main chemical constituents of essential oils. Essential oils and their constituents have received increasing attention for lipid-lowering properties in both cell and animal models. Despite the chemical diversity of essential oil compounds, the effects of many of these compounds on cholesterol metabolism are highly similar. In this report, we review the literature regarding the effects of essential oils and their terpenoid constituents on cholesterol homeostasis, and explore likely mechanisms using protein-ligand docking. We identified 98 experimental and seven clinical studies on essential oils, isolated compounds, and blends; 100 of these described improvements either in blood cholesterol levels or in sterol metabolic pathways. Our review and docking analysis confirmed two likely mechanisms common to many essential oil compounds: (1) direct agonism of peroxisome-proliferator-activated receptors, and (2) direct interaction with sterol-sensing domains, motifs found in key sterol regulatory proteins including sterol regulatory element binding protein cleavage activating protein and HMG-CoA reductase. Notably, these direct interactions lead to decreased transcription and accelerated degradation of HMG-CoA reductase. Our work suggests that terpene derivatives in essential oils have cholesterol-lowering activity and could potentially work synergistically with statins, however, further high quality studies are needed to establish their clinical efficacy.
Collapse
Affiliation(s)
- Tyler Bahr
- School of Medicine, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas, 78229, USA
| | - Gavin Butler
- School of Medicine, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas, 78229, USA
| | - Christian Rock
- School of Medicine, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas, 78229, USA
| | - Kyle Welburn
- School of Osteopathic Medicine, University of the Incarnate Word, 7615 Kennedy Hill, San Antonio, Texas, 78235, USA
| | - Kathryn Allred
- Science & Education, doTERRA International LLC, 389 1300 W, Pleasant Grove, Utah, 84062, USA
| | - Damian Rodriguez
- Science & Education, doTERRA International LLC, 389 1300 W, Pleasant Grove, Utah, 84062, USA
| |
Collapse
|
14
|
Singh N, Yarla NS, Siddiqi NJ, de Lourdes Pereira M, Sharma B. Features, Pharmacological Chemistry, Molecular Mechanism and Health Benefits of Lemon. Med Chem 2021; 17:187-202. [DOI: 10.2174/1573406416666200909104050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/30/2020] [Accepted: 07/20/2020] [Indexed: 11/22/2022]
Abstract
Background:
Citrus limon, a Mediterranean-grown citrus species of plants belonging to
the Rutaceae family, occupies a place of an impressive range of food and medicinal uses with considerable
value in the economy of the fruit of the country. Citrus fruits are economically important with
large-scale production of both the fresh fruits and industrially processed products. The extracts and
phytochemicals obtained from all parts of C. limon have shown immense therapeutic potential because
of their anticancer, anti-tumor and anti-inflammatory nature, and also serve as an important
ingredient in the formulation of several ethnic herbal medicines. These properties are mediated by the
presence of different phytochemicals, vitamins and nutrients in the citrus fruits.
Material and Methods:
The methods involved in the preparation of the present article included the
collection of information from various scientific databases, indexed periodicals, and search engines
such as Medline Scopus google scholar PubMed, PubMed central web of science, and science direct.
Results:
This communication presents an updated account of different pharmacological aspects of C.
limon associated with its anti-oxidative, antiulcer, antihelmintic, insecticidal, anticancer, cytotoxic,
and estrogenic activities. In addition, C. limon extracts possess hepatoprotective, anti-hyperglycemic,
and antimicrobial properties. The present article includes the structure and function of different key
chemical constituents from different parts of C. limon. Also, the possible molecular mechanisms of
actions of bioactive compounds from C. limon are displayed.
Conclusion:
The traditional and ethno-medicinal literature revealed that C. limon is very effective in
different pathologies. Most of these compounds possessing antioxidant properties would be implicated
in offering health benefits by acting as potential nutraceuticals to humans with special reference to
disease management of health and disease.
Collapse
Affiliation(s)
- Nitika Singh
- Department of Biochemistry, Faculty of Science, University of Allahabad, Allahabad-211002, India
| | - Nagendra Sastry Yarla
- Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telagana, India
| | - Nikhat Jamal Siddiqi
- Department of Biochemistry, King Saud University, Faculty of Science, Riyadh, Saudi Arabia
| | - Maria de Lourdes Pereira
- Department of Medical Sciences & CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bechan Sharma
- Department of Biochemistry, Faculty of Science, University of Allahabad, Allahabad-211002, India
| |
Collapse
|
15
|
Kaur N, Ahmed T. Bioactive Secondary Metabolites of Medicinal and Aromatic Plants and Their Disease-Fighting Properties. MEDICINAL AND AROMATIC PLANTS 2021:113-142. [DOI: 10.1007/978-3-030-58975-2_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Santos Rodrigues AP, Faria E Souza BS, Alves Barros AS, de Oliveira Carvalho H, Lobato Duarte J, Leticia Elizandra Boettger M, Barbosa R, Maciel Ferreira A, Maciel Ferreira I, Fernandes CP, Cesar Matias Pereira A, Tavares Carvalho JC. The effects of Rosmarinus officinalis L. essential oil and its nanoemulsion on dyslipidemic Wistar rats. J Appl Biomed 2020; 18:126-135. [PMID: 34907765 DOI: 10.32725/jab.2020.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 11/03/2020] [Indexed: 11/05/2022] Open
Abstract
Dyslipidemias are lipid metabolism alterations that cause increased levels of serum lipoprotein, cholesterol, and triglycerides. These alterations are associated with a higher incidence of cardiovascular diseases and are a risk factor for atherosclerosis development. This study aimed to evaluate the effect of Rosmarinus officinalis essential oil (EORO, 100 mg/kg) and its nanoemulsion (NEORO, 500 µg/kg) on Triton and coconut saturated-fat-induced (CSF) dyslipidemias using Wistar rats. The phytochemical evaluation of EORO performed by gas chromatography-mass spectroscopy (GC-MS) revealed 1,8-cineole (33.70%), camphor (27.68%), limonene (21.99%), and α-pinene (8.13%) as its major compounds. Triton-induced dyslipidemia significantly increased total cholesterol, LDL, and triglycerides levels. On the other hand, the groups treated with EORO and NEORO had significantly reduced total cholesterol, LDL, and triglycerides compared to the group treated only with Triton. Similar results were observed on the positive control treated with simvastatin. Dyslipidemia induced with coconut saturated-fat (CSF) caused abdominal fat gain, hypercholesterolemia, hypertriglyceridemia, increased LDL levels, and atherogenesis in the aorta. In contrast, the groups treated with EORO, NEORO, and simvastatin had significantly reduced hypercholesterolemia and hypertriglyceridemia, reduced abdominal fat gain, and absence of atherogenesis in the vascular endothelium. Overall, in the Triton-induced dyslipidemia model, EORO treatment had superior values than NEORO's (and simvastatin), although the differences were not too high, while in the CSF model, the values were mixed. In this manner, our results show an anti-dyslipidemic and anti-atherogenic activity effect by EORO and NEORO.
Collapse
Affiliation(s)
- Ana Paula Santos Rodrigues
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Curso de Farmacia, Laboratorio de Pesquisa em Farmacos, Macapa, Amapa, Brasil
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Programa de Pos-graduacao em Ciencias Farmaceuticas, Macapa, Amapa, Brasil
| | - Belmira Silva Faria E Souza
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Curso de Farmacia, Laboratorio de Pesquisa em Farmacos, Macapa, Amapa, Brasil
| | - Albenise Santana Alves Barros
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Curso de Farmacia, Laboratorio de Pesquisa em Farmacos, Macapa, Amapa, Brasil
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Programa de Pos-graduacao em Inovacao Farmaceutica, Macapa, Amapa, Brasil
| | - Helison de Oliveira Carvalho
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Curso de Farmacia, Laboratorio de Pesquisa em Farmacos, Macapa, Amapa, Brasil
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Programa de Pos-graduacao em Inovacao Farmaceutica, Macapa, Amapa, Brasil
| | - Jonatas Lobato Duarte
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Curso de Farmacia, Laboratorio de Pesquisa em Farmacos, Macapa, Amapa, Brasil
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Programa de Pos-graduacao em Ciencias Farmaceuticas, Macapa, Amapa, Brasil
| | - Mehl Leticia Elizandra Boettger
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Programa de Pos-graduacao em Ciencias Farmaceuticas, Macapa, Amapa, Brasil
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Curso de Farmacia, Laboratorio de Bioquimica e Citologia Clinica, Macapa, Amapa, Brasil
| | - Robson Barbosa
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Programa de Pos-graduacao em Ciencias Farmaceuticas, Macapa, Amapa, Brasil
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Curso de Farmacia, Laboratorio de Bioquimica e Citologia Clinica, Macapa, Amapa, Brasil
| | - Adriana Maciel Ferreira
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Curso de Farmacia, Laboratorio de Pesquisa em Farmacos, Macapa, Amapa, Brasil
| | - Irlon Maciel Ferreira
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Programa de Pos-graduacao em Ciencias Farmaceuticas, Macapa, Amapa, Brasil
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Programa de Pos-graduacao em Inovacao Farmaceutica, Macapa, Amapa, Brasil
- Universidade Federal do Amapa, Curso de Quimica, Laboratorio de Biocatalise e Biotransformacao em Quimica Organica, Macapa, Amapa, Brasil
| | - Caio Pinho Fernandes
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Programa de Pos-graduacao em Ciencias Farmaceuticas, Macapa, Amapa, Brasil
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Curso de Farmacia, Laboratorio de Nanobiotecnologia Fitofarmaceutica, Macapa, Amapa, Brasil
| | - Arlindo Cesar Matias Pereira
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Curso de Farmacia, Laboratorio de Pesquisa em Farmacos, Macapa, Amapa, Brasil
| | - Jose Carlos Tavares Carvalho
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Curso de Farmacia, Laboratorio de Pesquisa em Farmacos, Macapa, Amapa, Brasil
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Programa de Pos-graduacao em Ciencias Farmaceuticas, Macapa, Amapa, Brasil
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Programa de Pos-graduacao em Inovacao Farmaceutica, Macapa, Amapa, Brasil
| |
Collapse
|
17
|
Heghes SC, Filip L, Vostinaru O, Mogosan C, Miere D, Iuga CA, Moldovan M. Essential Oil-Bearing Plants From Balkan Peninsula: Promising Sources for New Drug Candidates for the Prevention and Treatment of Diabetes Mellitus and Dyslipidemia. Front Pharmacol 2020; 11:989. [PMID: 32695007 PMCID: PMC7339870 DOI: 10.3389/fphar.2020.00989] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
Metabolic diseases like diabetes mellitus or dyslipidemia have a complex etiology characterized by the interference of genetic predisposition and environmental factors like diet or lifestyle. Over time they can cause significant vascular complications, leading to dysfunction or failure of key organs (brain, heart), with possible fatal consequences or a severe reduction of life quality. Although current authorized drugs may successfully control blood glucose or cholesterol level, their use is often associated with severe side effects, therefore the development of new drug candidates is necessary for a better management of metabolic diseases. Among potential new drug sources, aromatic plants rich in essential oils like Melissa officinalis L., Mentha x piperita L., Cuminum cyminum L. or Pistacia lentiscus L. var. chia are very promising due to their diverse chemical composition and multiple mechanisms of action. This review describes a series of recent experimental studies investigating antidiabetic and hypolipemic effects of essential oils extracted from several aromatic plant species with an ethnopharmacological relevance in the Balkan peninsula. The pharmacological models used in the studies together with the putative mechanisms of action of the main constituents are also detailed. The presented data clearly sustain a potential administration of the studied essential oils for the prevention and treatment of metabolic diseases. Further research is needed in order to ascertain the therapeutic importance of these findings.
Collapse
Affiliation(s)
- Simona Codruta Heghes
- Department of Drug Analysis, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lorena Filip
- Department of Bromatology, Hygiene, Nutrition, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Oliviu Vostinaru
- Department of Pharmacology, Physiology and Physiopathology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Mogosan
- Department of Pharmacology, Physiology and Physiopathology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Doina Miere
- Department of Bromatology, Hygiene, Nutrition, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Adela Iuga
- Department of Drug Analysis, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mirela Moldovan
- Department of Dermopharmacy and Cosmetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
18
|
The effect of lemon inhalation aromatherapy on blood pressure, electrocardiogram changes, and anxiety in acute myocardial infarction patients: A clinical, multi-centered, assessor-blinded trial design. Complement Ther Clin Pract 2020; 39:101155. [DOI: 10.1016/j.ctcp.2020.101155] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/21/2020] [Accepted: 03/22/2020] [Indexed: 11/18/2022]
|
19
|
Feng K, Zhu X, Liu G, Kan Q, Chen T, Chen Y, Cao Y. Dietary citrus peel essential oil ameliorates hypercholesterolemia and hepatic steatosis by modulating lipid and cholesterol homeostasis. Food Funct 2020; 11:7217-7230. [DOI: 10.1039/d0fo00810a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Integration of lipidomics and gene expression analysis provided new insights into in-depth mechanistic understanding of the effects of dietary CPEO.
Collapse
Affiliation(s)
- Konglong Feng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods
- College of Food Sciences
- South China Agricultural University
- Guangzhou
- China
| | - Xiaoai Zhu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods
- College of Food Sciences
- South China Agricultural University
- Guangzhou
- China
| | - Guo Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods
- College of Food Sciences
- South China Agricultural University
- Guangzhou
- China
| | - Qixin Kan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods
- College of Food Sciences
- South China Agricultural University
- Guangzhou
- China
| | - Tong Chen
- Shenzhen Agricultural Product Quality Safety Inspection Testing Center
- Shenzhen
- China
| | - Yunjiao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods
- College of Food Sciences
- South China Agricultural University
- Guangzhou
- China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods
- College of Food Sciences
- South China Agricultural University
- Guangzhou
- China
| |
Collapse
|
20
|
Georgia-Eirini D, Athina S, Wim VB, Christos K, Theodoros C. Natural Products from Mediterranean Diet: From Anti-hyperlipidemic Agents to Dietary Epigenetic Modulators. Curr Pharm Biotechnol 2019; 20:825-844. [DOI: 10.2174/1573407215666190628150921] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/23/2018] [Accepted: 06/03/2019] [Indexed: 01/05/2023]
Abstract
Background:
Cardiovascular Diseases (CVD) are, currently, the major contributor to global
mortality and will continue to dominate mortality rates in the future. Hyperlipidemia refers to the elevated
levels of lipids and cholesterol in the blood, and is also identified as dyslipidemia, manifesting in
the form of different disorders of lipoprotein metabolism. These abnormalities may lead to the development
of atherosclerosis, which can lead to coronary artery disease and stroke. In recent years, there
is a growing interest in the quest for alternative therapeutic treatments based on natural products, offering
better recovery and the avoidance of side effects. Recent technological advances have further improved
our understanding of the role of epigenetic mechanisms in hyperlipidemic disorders and dietary
prevention strategies.
Objective:
This is a comprehensive overview of the anti-hyperlipidemic effects of plant extracts, vegetables,
fruits and isolated compounds thereof, with a focus on natural products from the Mediterranean
region as well as the possible epigenetic changes in gene expression or cardiometabolic signaling
pathways.
Methods:
For the purpose of this study, we searched the PubMed, Scopus and Google Scholar databases
for eligible articles and publications over the last five years. The keywords included: “hyperlipidemia”,
“plant extract”, “herbs”, “natural products”, “vegetables”, “cholesterol” and others. We initially
included all relevant articles referring to in vitro studies, animal studies, Randomized Controlled
Trials (RCTs) and previous reviews.
Conclusion:
Many natural products found in the Mediterranean diet have been studied for the treatment
of hyperlipidemia. The antihyperlipidemic effect seems to be dose and/or consumption frequency
related, which highlights the fact that a healthy diet can only be effective in reversing disease markers
if it is consistent and within the framework of a healthy lifestyle. Finally, epigenetic biomarkers are increasingly
recognized as new lifestyle management tools to monitor a healthy dietary lifestyle for the
prevention of hyperlipidaemic disorders and comorbidities to promote a healthy life.
Collapse
Affiliation(s)
- Deligiannidou Georgia-Eirini
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Sygkouna Athina
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Vanden Berghe Wim
- Lab of Protein Science, Proteomics & Epigenetic Signaling (PPES), Department of Biomedical sciences, University Antwerp, 2610, Wilrijk, Belgium
| | - Kontogiorgis Christos
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Constantinides Theodoros
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| |
Collapse
|