1
|
Xue C, Chu Q, Shi Q, Zeng Y, Lu J, Li L. Wnt signaling pathways in biology and disease: mechanisms and therapeutic advances. Signal Transduct Target Ther 2025; 10:106. [PMID: 40180907 PMCID: PMC11968978 DOI: 10.1038/s41392-025-02142-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/13/2024] [Accepted: 12/29/2024] [Indexed: 04/05/2025] Open
Abstract
The Wnt signaling pathway is critically involved in orchestrating cellular functions such as proliferation, migration, survival, and cell fate determination during development. Given its pivotal role in cellular communication, aberrant Wnt signaling has been extensively linked to the pathogenesis of various diseases. This review offers an in-depth analysis of the Wnt pathway, detailing its signal transduction mechanisms and principal components. Furthermore, the complex network of interactions between Wnt cascades and other key signaling pathways, such as Notch, Hedgehog, TGF-β, FGF, and NF-κB, is explored. Genetic mutations affecting the Wnt pathway play a pivotal role in disease progression, with particular emphasis on Wnt signaling's involvement in cancer stem cell biology and the tumor microenvironment. Additionally, this review underscores the diverse mechanisms through which Wnt signaling contributes to diseases such as cardiovascular conditions, neurodegenerative disorders, metabolic syndromes, autoimmune diseases, and cancer. Finally, a comprehensive overview of the therapeutic progress targeting Wnt signaling was given, and the latest progress in disease treatment targeting key components of the Wnt signaling pathway was summarized in detail, including Wnt ligands/receptors, β-catenin destruction complexes, and β-catenin/TCF transcription complexes. The development of small molecule inhibitors, monoclonal antibodies, and combination therapy strategies was emphasized, while the current potential therapeutic challenges were summarized. This aims to enhance the current understanding of this key pathway.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Madabhushi A, Azarianpour-Esfahani S, Khalighi S, Aggarwal A, Viswanathan V, Fu P, Avril S. Computational Image and Molecular Analysis Reveal Unique Prognostic Features of Immune Architecture in African Versus European American Women with Endometrial Cancer. RESEARCH SQUARE 2023:rs.3.rs-3622429. [PMID: 38234757 PMCID: PMC10793492 DOI: 10.21203/rs.3.rs-3622429/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Endometrial cancer (EC) disproportionately affects African American (AA) women in terms of progression and death. In our study, we sought to employ computerized image and bioinformatic analysis to tease out morphologic and molecular differences in EC between AA and European-American (EA) populations. We identified the differences in immune cell spatial patterns between AA and EA populations with markers of tumor biology, including histologic and molecular subtypes. The models performed best when they were trained and validated using data from the same population. Unsupervised clustering revealed a distinct association between immune cell features and known molecular subtypes of endometrial cancer that varied between AA and EA populations. Our genomic analysis revealed two distinct and novel gene sets with mutations associated with improved prognosis in AA and EA patients. Our study findings suggest the need for population-specific risk prediction models for women with endometrial cancer.
Collapse
|
3
|
Lee DH, Jeong IH, Jang B. Elevated expression of Axin2 in intestinal metaplasia and gastric cancers. J Pathol Transl Med 2023; 57:315-322. [PMID: 37926983 PMCID: PMC10660364 DOI: 10.4132/jptm.2023.10.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND The Wnt signaling pathway regulates crucial cellular processes, including stem cell development and tissue repair. Dysregulation of this pathway, particularly β-catenin stabilization, is linked to colorectal carcinoma and other tumors. Axin2, a critical component in the pathway, plays a role in β-catenin regulation. This study examines Axin2 expression in normal gastric mucosa and various gastric pathologies. METHODS Formalin-fixed and paraffin-embedded tissue samples from normal stomach, gastritis, intestinal metaplasia (IM), and gastric carcinoma were collected. Axin2 and β-catenin expression were evaluated using RNA in situ hybridization and immunohistochemistry, respectively. Histo-scores (H-scores) were calculated to quantify expression levels of Axin2. Associations between Axin2 expression and clinicopathological variables were examined. RESULTS Axin2 expression was examined in normal stomach, gastritis, and IM tissues. Axin2 expression was mainly observed in the surface and isthmus areas in the normal stomach and gastritis, whereas Axin2 expression was markedly higher at the bases of IM. Axin2 H-scores were significantly elevated in IM (mean ± standard deviation [SD], 87.0 ± 38.9) compared to normal (mean ± SD, 18.0 ± 4.5) and gastritis tissues (mean ± SD, 33.0 ± 18.6). In total, 30% of gastric carcinomas showed higher Axin2 expression. Axin2 expression did not have significant associations with age, sex, Lauren classification, histological differentiation, invasion depth, and lymph node metastasis. However, a strong positive correlation was observed between Axin2 and nuclear β-catenin in gastric carcinomas (p < .001). CONCLUSIONS Axin2 expression was significantly increased in IM compared to normal and gastritis cases. In addition, Axin2 showed a strong positive association with nuclear β-catenin expression in gastric carcinomas, demonstrating a close relationship with abnormal Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Dong Hui Lee
- Department of Pathology, Jeju National University Hospital, Jeju National University School of Medicine, Jeju, Korea
| | - In Ho Jeong
- Department of Surgery, Jeju National University Hospital, Jeju National University School of Medicine, Jeju, Korea
| | - Bogun Jang
- Department of Pathology, Jeju National University Hospital, Jeju National University School of Medicine, Jeju, Korea
| |
Collapse
|
4
|
Flanagan DJ, Woodcock SA, Phillips C, Eagle C, Sansom OJ. Targeting ligand-dependent wnt pathway dysregulation in gastrointestinal cancers through porcupine inhibition. Pharmacol Ther 2022; 238:108179. [PMID: 35358569 PMCID: PMC9531712 DOI: 10.1016/j.pharmthera.2022.108179] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/20/2022]
Abstract
Gastrointestinal cancers are responsible for more cancer deaths than any other system of the body. This review summarises how Wnt pathway dysregulation contributes to the development of the most common gastrointestinal cancers, with a particular focus on the nature and frequency of upstream pathway aberrations. Tumors with upstream aberrations maintain a dependency on the presence of functional Wnt ligand, and are predicted to be tractable to inhibitors of Porcupine, an enzyme that plays a key role in Wnt secretion. We summarise available pre-clinical efficacy data from Porcupine inhibitors in vitro and in vivo, as well as potential toxicities and the data from early phase clinical trials. We appraise the rationale for biomarker-defined targeted approaches, as well as outlining future opportunities for combination with other therapeutics.
Collapse
Affiliation(s)
- Dustin J Flanagan
- Cancer Research UK Beatson Institute, Glasgow, UK; Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | | | | | | | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
5
|
Bhaskar Rao D, Devanandan HJ, Ganesan K. Identification of kinases and kinase inhibitors for the differential targeting of Wnt/β-catenin signaling in gastric cancer subtypes. Drug Dev Res 2021; 82:1182-1192. [PMID: 34002415 DOI: 10.1002/ddr.21833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 01/21/2023]
Abstract
The oncogenic signaling pathway Wnt is often activated in many cancers including gastric cancer. Wnt signaling pathway is considered as a potential target for developing new targeted therapeutics. Kinase inhibitors are the promising class of drugs for many diseases including cancers. Toward identifying the potent inhibitors targeting Wnt signaling pathway, a kinase inhibitor library with 82 inhibitors were screened using Wnt pathway reporter assay in gastric cancer cells. Notably, 34 kinase inhibitors were identified to inhibit Wnt mediated reporter activity to the extent of more than 50%. The corresponding kinase genes, which are known targets of these kinase inhibitors, were investigated for their expression in the available mRNA profiles of gastric tumors. A major group of the kinase genes showed higher expression in intestinal subtype gastric tumors. Another group of kinase genes were found expressed in diffuse type gastric tumors. The kinase genes expressed in intestinal type gastric tumors were found associated with varying survival of gastric cancer patients whereas those expressed in diffuse type tumors were found associated with the poor survival. Thus, the kinase genes specifically expressed in intestinal and diffuse type gastric tumors and the kinase inhibitors to target Wnt signaling pathway in gastric cancer subtypes have been identified.
Collapse
Affiliation(s)
- Divya Bhaskar Rao
- Unit of Excellence in Cancer Genetics, Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Helen Jemimah Devanandan
- Unit of Excellence in Cancer Genetics, Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Kumaresan Ganesan
- Unit of Excellence in Cancer Genetics, Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| |
Collapse
|
6
|
Yu Z, Jiang X, Qin L, Deng H, Wang J, Ren W, Li H, Zhao L, Liu H, Yan H, Shi W, Wang Q, Luo C, Long B, Zhou H, Sun H, Jiao Z. A novel UBE2T inhibitor suppresses Wnt/β-catenin signaling hyperactivation and gastric cancer progression by blocking RACK1 ubiquitination. Oncogene 2021; 40:1027-1042. [PMID: 33323973 PMCID: PMC7862066 DOI: 10.1038/s41388-020-01572-w] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/20/2020] [Accepted: 11/17/2020] [Indexed: 12/24/2022]
Abstract
Dysregulation of the Wnt/β-catenin signaling pathway is critically involved in gastric cancer (GC) progression. However, current Wnt pathway inhibitors being studied in preclinical or clinical settings for other cancers such as colorectal and pancreatic cancers are either too cytotoxic or insufficiently efficacious for GC. Thus, we screened new potent targets from β-catenin destruction complex associated with GC progression from clinical samples, and found that scaffolding protein RACK1 deficiency plays a significant role in GC progression, but not APC, AXIN, and GSK3β. Then, we identified its upstream regulator UBE2T which promotes GC progression via hyperactivating the Wnt/β-catenin signaling pathway through the ubiquitination and degradation of RACK1 at the lysine K172, K225, and K257 residues independent of an E3 ligase. Indeed, UBE2T protein level is negatively associated with prognosis in GC patients, suggesting that UBE2T is a promising target for GC therapy. Furthermore, we identified a novel UBE2T inhibitor, M435-1279, and suggested that M435-1279 acts inhibit the Wnt/β-catenin signaling pathway hyperactivation through blocking UBE2T-mediated degradation of RACK1, resulting in suppression of GC progression with lower cytotoxicity in the meantime. Overall, we found that increased UBE2T levels promote GC progression via the ubiquitination of RACK1 and identified a novel potent inhibitor providing a balance between growth inhibition and cytotoxicity as well, which offer a new opportunity for the specific GC patients with aberrant Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Zeyuan Yu
- Department of General Surgery, Lanzhou University Second Hospital, 730000, Lanzhou, Gansu, China
| | - Xiangyan Jiang
- Department of General Surgery, Lanzhou University Second Hospital, 730000, Lanzhou, Gansu, China
| | - Long Qin
- Cui-ying Experimental Center, Lanzhou University Second Hospital, 730000, Lanzhou, Gansu, China
| | - Haixiao Deng
- Department of General Surgery, Lanzhou University Second Hospital, 730000, Lanzhou, Gansu, China
| | - Jianli Wang
- Cui-ying Experimental Center, Lanzhou University Second Hospital, 730000, Lanzhou, Gansu, China
| | - Wen Ren
- Cui-ying Experimental Center, Lanzhou University Second Hospital, 730000, Lanzhou, Gansu, China
| | - Hongbin Li
- Cui-ying Experimental Center, Lanzhou University Second Hospital, 730000, Lanzhou, Gansu, China
| | - Lei Zhao
- Cui-ying Experimental Center, Lanzhou University Second Hospital, 730000, Lanzhou, Gansu, China
| | - Huanxiang Liu
- School of pharmacy, Lanzhou University, 730000, Lanzhou, Gansu, China
| | - Hong Yan
- Department of Pathology, Lanzhou University Second Hospital, 730000, Lanzhou, Gansu, China
| | - Wengui Shi
- Cui-ying Experimental Center, Lanzhou University Second Hospital, 730000, Lanzhou, Gansu, China
| | - Qi Wang
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Changjiang Luo
- Department of General Surgery, Lanzhou University Second Hospital, 730000, Lanzhou, Gansu, China
| | - Bo Long
- Department of General Surgery, Lanzhou University Second Hospital, 730000, Lanzhou, Gansu, China
| | - Huinian Zhou
- Department of General Surgery, Lanzhou University Second Hospital, 730000, Lanzhou, Gansu, China
| | - Hui Sun
- Cui-ying Experimental Center, Lanzhou University Second Hospital, 730000, Lanzhou, Gansu, China.
| | - Zuoyi Jiao
- Department of General Surgery, Lanzhou University Second Hospital, 730000, Lanzhou, Gansu, China.
- Cui-ying Experimental Center, Lanzhou University Second Hospital, 730000, Lanzhou, Gansu, China.
| |
Collapse
|
7
|
Tabibzadeh A, Tameshkel FS, Moradi Y, Soltani S, Moradi-Lakeh M, Ashrafi GH, Motamed N, Zamani F, Motevalian SA, Panahi M, Esghaei M, Ajdarkosh H, Mousavi-Jarrahi A, Niya MHK. Signal transduction pathway mutations in gastrointestinal (GI) cancers: a systematic review and meta-analysis. Sci Rep 2020; 10:18713. [PMID: 33127962 PMCID: PMC7599243 DOI: 10.1038/s41598-020-73770-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023] Open
Abstract
The present study was conducted to evaluate the prevalence of the signaling pathways mutation rate in the Gastrointestinal (GI) tract cancers in a systematic review and meta-analysis study. The study was performed based on the PRISMA criteria. Random models by confidence interval (CI: 95%) were used to calculate the pooled estimate of prevalence via Metaprop command. The pooled prevalence indices of signal transduction pathway mutations in gastric cancer, liver cancer, colorectal cancer, and pancreatic cancer were 5% (95% CI: 3-8%), 12% (95% CI: 8-18%), 17% (95% CI: 14-20%), and 20% (95% CI: 5-41%), respectively. Also, the mutation rates for Wnt pathway and MAPK pathway were calculated to be 23% (95% CI, 14-33%) and 20% (95% CI, 17-24%), respectively. Moreover, the most popular genes were APC (in Wnt pathway), KRAS (in MAPK pathway) and PIK3CA (in PI3K pathway) in the colorectal cancer, pancreatic cancer, and gastric cancer while they were beta-catenin and CTNNB1 in liver cancer. The most altered pathway was Wnt pathway followed by the MAPK pathway. In addition, pancreatic cancer was found to be higher under the pressure of mutation compared with others based on pooled prevalence analysis. Finally, APC mutations in colorectal cancer, KRAS in gastric cancer, and pancreatic cancer were mostly associated gene alterations.
Collapse
Affiliation(s)
- Alireza Tabibzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Safarnezhad Tameshkel
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
- Gastrointestinal and Liver Disease Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Yousef Moradi
- Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Saber Soltani
- Department of Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Maziar Moradi-Lakeh
- Gastrointestinal and Liver Disease Research Center, Iran University of Medical Sciences, Tehran, Iran
- Preventive Medicine and Public Health Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - G Hossein Ashrafi
- Cancer Theme SEC Faculty, Kingston University, Penrhyn Road, London, KT1 2EE, UK
| | - Nima Motamed
- Department of Social Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Farhad Zamani
- Gastrointestinal and Liver Disease Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Abbas Motevalian
- Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mahshid Panahi
- Gastrointestinal and Liver Disease Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Esghaei
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Ajdarkosh
- Gastrointestinal and Liver Disease Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
8
|
Expression patterns of seven key genes, including β-catenin, Notch1, GATA6, CDX2, miR-34a, miR-181a and miR-93 in gastric cancer. Sci Rep 2020; 10:12342. [PMID: 32704077 PMCID: PMC7378835 DOI: 10.1038/s41598-020-69308-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/01/2020] [Indexed: 02/08/2023] Open
Abstract
Gastric cancer (GC) is one of the most prevalent cancers and a major cause of cancer related mortality worldwide. Incidence of GC is affected by various factors, including genetic and environmental factors. Despite extensive research has been done for molecular characterization of GC, it remains largely unknown. Therefore, further studies specially conducted among various ethnicities in different geographic locations, are required to know the precise molecular mechanisms leading to tumorigenesis and progression of GC. The expression patterns of seven candidate genes, including β-catenin, Notch1, GATA6, CDX2, miR-34a, miR-181a, and miR-93 were determined in 24 paired GC tissues and corresponding non-cancerous tissues by quantitative Real-Time PCR. The association between the expression of these genes and clinicopathologic factors were also investigated. Our results demonstrated that overall mRNA levels of GATA6 were significantly decreased in the tumor samples in comparison with the non-cancerous tissues (median fold change (FC) = 0.3143; P = 0.0003). Overall miR-93 levels were significantly increased in the tumor samples relative to the non-cancerous gastric tissues (FC = 2.441; P = 0.0002). β-catenin mRNA expression showed a strong positive correlation with miR-34a (r = 0.5784; P = 0.0031), and miR-181a (r = 0.5652; P = 0.004) expression. miR-34a and miR-181a expression showed a significant positive correlation (r = 0.4862; P = 0.016). Moreover, lower expression of Notch1 was related to distant metastasis in GC patients with a borderline statistical significance (p = 0.0549). These data may advance our understanding of the molecular biology that drives GC as well as provide potential targets for defining novel therapeutic strategies for GC treatment.
Collapse
|
9
|
Shen E, Wang X, Liu X, Lv M, Zhang L, Zhu G, Sun Z. MicroRNA-93-5p promotes epithelial-mesenchymal transition in gastric cancer by repressing tumor suppressor AHNAK expression. Cancer Cell Int 2020; 20:76. [PMID: 32190000 PMCID: PMC7066804 DOI: 10.1186/s12935-019-1092-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/28/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is a common cause of cancer-related mortality worldwide, and microRNAs (miRNAs) have been shown to play an important role in GC development. This study aims to explore the effect of microRNA-93-5p (miR-93-5p) on the epithelial-mesenchymal transition (EMT) in GC, via AHNAK and the Wnt signaling pathway. METHODS Microarray-based gene expression analysis was performed to identify GC-related differentially expressed miRNAs and genes. Then the expression of the miR-93-5p was examined in GC tissues and GC cell lines. The targeting relationship between miR-93-5p and AHNAK was verified by a dual luciferase reporter gene assay. In an attempt to ascertain the contributory role of miR-93-5p in GC, miR-93-5p mimic or inhibitor, as well as an AHNAK overexpression vector, were introduced to HGC-27 cells. HGC-27 cell migration and invasive ability, and EMT were assayed using Transwell assay and western blot analysis. Regulation of the Wnt signaling pathway was also assessed using TOP/FOP flash luciferase assay. RESULTS miR-93-5p was highly expressed in GC tissue samples and cells. Notably, miR-93-5p could target and negatively regulate AHNAK. Down-regulation of miR-93-5p or overexpression of AHNAK could suppress the migration and invasion abilities, in addition to EMT in GC cells via inactivation of the Wnt signaling pathway. CONCLUSION Taken together, downregulation of miR-93-5p attenuated GC development via the Wnt signaling pathway by targeting AHNAK. These findings provide an enhanced understanding of miR-93-5p as a therapeutic target for GC treatment.
Collapse
Affiliation(s)
- Erdong Shen
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, No. 155, Nanjing North Road, Heping District, Shenyang, 110001 Liaoning People’s Republic of China
- Department of Oncology, Yueyang First People’s Hospital, Yueyang, 414000 P. R. China
| | - Xin Wang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, No. 155, Nanjing North Road, Heping District, Shenyang, 110001 Liaoning People’s Republic of China
| | - Xin Liu
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, No. 155, Nanjing North Road, Heping District, Shenyang, 110001 Liaoning People’s Republic of China
| | - Mingyue Lv
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, No. 155, Nanjing North Road, Heping District, Shenyang, 110001 Liaoning People’s Republic of China
| | - Liang Zhang
- Department of Thoracic Surgery, Cancer Hospital of China Medical University/Liaoning Cancer Hospital, Shenyang, 110001 P. R. China
| | - Guolian Zhu
- Department of Oncology, Shenyang Fifth People Hospital, Shenyang, 110001 P. R. China
| | - Zhe Sun
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, No. 155, Nanjing North Road, Heping District, Shenyang, 110001 Liaoning People’s Republic of China
| |
Collapse
|
10
|
Jiang Y, Wang W, Wu X, Shi J. Pizotifen inhibits the proliferation and invasion of gastric cancer cells. Exp Ther Med 2019; 19:817-824. [PMID: 32010241 PMCID: PMC6966152 DOI: 10.3892/etm.2019.8308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 07/07/2019] [Indexed: 01/04/2023] Open
Abstract
Gastric cancer is the fifth most common malignancy and the third highest cause of cancer-associated mortality worldwide. Therefore, research on the pathogenesis of gastric cancer is of utmost importance. It has been reported that aberrant activation of the Wnt/β-catenin signaling pathway is involved in the occurrence and development of gastric cancer. In the present study, it was found that pizotifen could inhibit the viability of gastric cancer cell lines MNK45 and AGS cells in a dose-dependent manner. Pizotifen treatment suppressed cell migration and invasion in MNK45 and AGS cells, whilst also inducing apoptosis. Western blot analysis demonstrated that pizotifen blocked the expression of Wnt3a, β-catenin and N-cadherin, whilst increasing E-cadherin expression. In addition, BML-284, a pharmacological Wnt signaling activator, partially reversed the changes in the expression levels of β-catenin, N-cadherin and E-cadherin in MNK45 and AGS cells induced by pizotifen. Collectively, these findings suggested that pizotifen demonstrates potential as a novel anti-cancer drug for the treatment of gastric cancer by inhibiting the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Gastroenterology, National Center of Gerontology, Beijing Hospital, Beijing 100730, P.R. China
| | - Wei Wang
- Department of Gastroenterology, National Center of Gerontology, Beijing Hospital, Beijing 100730, P.R. China
| | - Xi Wu
- Department of Gastroenterology, National Center of Gerontology, Beijing Hospital, Beijing 100730, P.R. China
| | - Jihua Shi
- Department of Gastroenterology, National Center of Gerontology, Beijing Hospital, Beijing 100730, P.R. China
| |
Collapse
|
11
|
Fischer AS, Sigal M. The Role of Wnt and R-spondin in the Stomach During Health and Disease. Biomedicines 2019; 7:E44. [PMID: 31248166 PMCID: PMC6631168 DOI: 10.3390/biomedicines7020044] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 12/13/2022] Open
Abstract
The Wnt signaling pathway is one of the most prominent developmental signals. In addition to its functions in development, there is emerging evidence that it is also crucial for various organ functions in adult organisms, where Wnt signaling controls tissue stem cell behavior, proliferation and differentiation. Deregulation of Wnt signaling is involved in various pathological conditions and has been linked to malignant tissue transformation in different organ systems. The study of the Wnt signaling pathway has revealed a complex regulatory network that tightly balances the quality and strength of Wnt signaling in tissues. In this context, R-spondins are secreted proteins that stabilize Wnt receptors and enhance Wnt signaling. In this review we focus on new insights into the regulatory function of Wnt and R-spondin signaling in the stomach. In addition to its function in the healthy state, we highlight the connection between Wnt signaling and infection with Helicobacter pylori (H. pylori), a pathogen that colonizes the stomach and is the main risk factor for gastric cancer. In addition to experimental data that link Wnt signaling to carcinogenesis, we discuss that Wnt signaling is affected in a substantial proportion of patients with gastric cancer, and provide examples for potential clinical implications for altered Wnt signaling in gastric cancer.
Collapse
Affiliation(s)
- Anne-Sophie Fischer
- Department of Hepatology and Gastroenterology, Charité University Medicine, 10117 Berlin, Germany.
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany.
- Berlin Institute of Health, 10117 Berlin, Germany.
| | - Michael Sigal
- Department of Hepatology and Gastroenterology, Charité University Medicine, 10117 Berlin, Germany.
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany.
- Berlin Institute of Health, 10117 Berlin, Germany.
| |
Collapse
|
12
|
Oliveira LAD, Oshima CTF, Soffner PA, Silva MDS, Lins RR, Malinverni ACDM, Waisberg J. THE CANONICAL WNT PATHWAY IN GASTRIC CARCINOMA. ABCD-ARQUIVOS BRASILEIROS DE CIRURGIA DIGESTIVA 2019; 32:e1414. [PMID: 30624523 PMCID: PMC6323632 DOI: 10.1590/0102-672020180001e1414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/25/2018] [Indexed: 12/29/2022]
Abstract
Background: It is believed that the Wnt pathway is one of the most important signaling
involved in gastric carcinogenesis. Aim: To analyze the protein expression of canonical and non-canonical Wnt pathways
in gastric carcinoma. Method: The immunohistochemistry was performed in 72 specimens of gastric carcinomas
for evaluating the expression of Wnt-5a, FZD5, GSK3β, axin, CK1, ubiquitin,
cyclin D1 and c-myc. Results: There were significant differences for cytoplasm and nucleus ubiquitin for
moderately and well differentiated tumors (p=0.03) and for those of the
intestinal type of the Lauren classification (p=0.03). The absence of c-myc
was related to Lauren’s intestinal tumors (p=0.03). Expression of CK1 in the
cytoplasm was related to compromised margin (p=0.03). Expression of cyclin
D1 protein was more intense in male patients (p=0.03) There was no relation
of the positive or negative expression of the Wnt-5a, FZD5, GSK3 and Axin
with any clinicopathological variables. Conclusion: The canonical WNT pathway is involved in gastric carcinoma.
Collapse
Affiliation(s)
| | - Celina Tizuko Fujiyama Oshima
- Laboratory of Molecular and Experimental Pathology, Department of Pathology, Federal University of São Paulo, UNIFESP/EPM, São Paulo, SP
| | | | - Marcelo de Souza Silva
- Laboratory of Molecular and Experimental Pathology, Department of Pathology, Federal University of São Paulo, UNIFESP/EPM, São Paulo, SP
| | | | | | - Jaques Waisberg
- Interdisciplinar Program in Surgical Sciences.,Department of Surgery, ABC Medical School, Santo André, SP, Brazil
| |
Collapse
|
13
|
Molaei F, Forghanifard MM, Fahim Y, Abbaszadegan MR. Molecular Signaling in Tumorigenesis of Gastric Cancer. IRANIAN BIOMEDICAL JOURNAL 2018; 22:217-230. [PMID: 29706061 PMCID: PMC5949124 DOI: 10.22034/ibj.22.4.217] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/28/2018] [Accepted: 02/03/2018] [Indexed: 02/07/2023]
Abstract
Gastric cancer (GC) is regarded as the fifth most common cancer and the third cause of cancer-related deaths worldwide. Mechanism of GC pathogenesis is still unclear and relies on multiple factors, including environmental and genetic characteristics. One of the most important environmental factors of GC occurrence is infection with Helicobacter pylori that is classified as class one carcinogens. Dysregulation of several genes and pathways play an essential role during gastric carcinogenesis. Dysregulation of developmental pathways such as Wnt/β-catenin signaling, Hedgehog signaling, Hippo pathway, Notch signaling, nuclear factor-kB, and epidermal growth factor receptor have been found in GC. Epithelial-mesenchymal transition, as an important process during embryogenesis and tumorigenesis, is supposed to play a role in initiation, invasion, metastasis, and progression of GC. Although surgery is the main therapeutic modality of the disease, the understanding of biological processes of cell signaling pathways may help to develop new therapeutic targets for GC.
Collapse
Affiliation(s)
- Fatemeh Molaei
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Yasaman Fahim
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
14
|
Zu LD, Peng XC, Zeng Z, Wang JL, Meng LL, Shen WW, Hu CT, Yang Y, Fu GH. Gastrin inhibits gastric cancer progression through activating the ERK-P65-miR23a/27a/24 axis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:115. [PMID: 29866191 PMCID: PMC5987590 DOI: 10.1186/s13046-018-0782-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/01/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND To test the hypothesis that activated extracellular signal-regulated kinase (ERK) regulates P65-miR23a/27a/24 axis in gastric cancer (GC) and the ERK-P65-miR23a/27a/24 axis plays an important role in the development of GC, and to evaluate the role of gastrin in GC progression and ERK-P65-miR23a/27a/24 axis. METHODS The component levels of the ERK-P65-miR23a/27a/24 axis in four fresh GC tissues, 101 paraffin-embedded GC tissues and four GC cell lines were determined by Western blotting, immunohistochemistry (IHC) or qRT-PCR. The effects of gastrin on GC were first evaluated by measuring gastrin serum levels in 30 healthy and 70 GC patients and performing a correlation analysis between gastrin levels and survival time in 27 GC patients after eight years of follow-up, then evaluated on GC cell lines, GC cell xenograft models, and patient-derived xenografts (PDX) mouse models. The roles of ERK-P65-miR23a/27a/24 axis in GC progression and in the effects of gastrin on GC were examined. RESULTS ERK- P65-miR23a/27a/24 axis was proved to be present in GC cells. The levels of components of ERK-P65-miR23a/27a/24 axis were decreased in GC tissue samples and PGC cells. The decreased levels of components of ERK-P65-miR23a/27a/24 axis were associated with poor prognosis of GC, and ERK-P65-miR23a/27a/24 axis played a suppressive role in GC progression. Low blood gastrin was correlated with poor prognosis of the GC patients and decreased expression of p-ERK and p-P65 in GC tissues. Gastrin inhibited proliferation of poorly-differentiated GC (PGC) cells through activating the ERK-P65-miR23a/27a/24 axis. Gastrin inhibited GC growth and enhanced the suppression of GC by cisplatin in mice or PGC cell culture models through activating the ERK-P65-miR23a/27a/24 axis or its components. CONCLUSIONS ERK-P65-miR23a/27a/24 axis is down-regulated, leading to excess GC growth and poor prognosis of GC. Low gastrin promoted excess GC growth and contributed to the poor prognosis of the GC patients by down-regulating ERK-P65-miR23a/27a/24 axis. Gastrin inhibits gastric cancer growth through activating the ERK-P65-miR23a/27a/24 axis.
Collapse
Affiliation(s)
- Li-Dong Zu
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xing-Chun Peng
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi Zeng
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing-Long Wang
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Li Meng
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Wei Shen
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chun-Ting Hu
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ye Yang
- Department of Digestive Medicine, Ningbo No. 2 Hospital, Ningbo, 315010, China
| | - Guo-Hui Fu
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, No. 280, South Chong-Qing Road, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
15
|
Chang TS, Wei KL, Lu CK, Chen YH, Cheng YT, Tung SY, Wu CS, Chiang MK. Inhibition of CCAR1, a Coactivator of β-Catenin, Suppresses the Proliferation and Migration of Gastric Cancer Cells. Int J Mol Sci 2017; 18:ijms18020460. [PMID: 28230774 PMCID: PMC5343993 DOI: 10.3390/ijms18020460] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/30/2017] [Accepted: 02/15/2017] [Indexed: 01/03/2023] Open
Abstract
The aberrant activation of Wnt signaling has been implicated in a variety of human cancers, including gastric cancer. Given the current hypothesis that cancer arises from cancer stem cells (CSCs), targeting the critical signaling pathways that support CSC self-renewal appears to be a useful approach for cancer therapy. Cell cycle and apoptosis regulator 1 (CCAR1) is a transcriptional coactivator which has been shown to be a component of Wnt/β-catenin signaling, and which plays an important role in transcriptional regulation by β-catenin. However, the function and clinical significance of CCAR1 in gastric cancer have not been elucidated. Here, we show that elevated CCAR1 nuclear expression correlates with the occurrence of gastric cancer. In addition, RNAi-mediated CCAR1 reduction not only suppressed the cell growth and increased apoptosis in AGS and MKN28 cells, but also reduced the migration and invasion ability of these cells. Furthermore, an in vivo xenograft assay revealed that the expression level of CCAR1 was critical for tumorigenesis. Our data demonstrates that CCAR1 contributes to carcinogenesis in gastric cancer and is required for the survival of gastric cancer cells. Moreover, CCAR1 may serve as a diagnostic marker and a potential therapeutic target.
Collapse
Affiliation(s)
- Te-Sheng Chang
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Chiayi 61303, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Kuo-Liang Wei
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Chiayi 61303, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Chung-Kuang Lu
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Chiayi 61303, Taiwan.
| | - Yi-Hsing Chen
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Chiayi 61303, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Ying-Tung Cheng
- Department of Life Science, National Chung Cheng University, Chiayi 62102, Taiwan.
| | - Shui-Yi Tung
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Chiayi 61303, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Cheng-Shyong Wu
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Chiayi 61303, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Ming-Ko Chiang
- Department of Life Science, National Chung Cheng University, Chiayi 62102, Taiwan.
| |
Collapse
|
16
|
Torres K, Labrador L, Valderrama E, Chiurillo MA. TCF7L2 rs7903146 polymorphism is associated with gastric cancer: A case-control study in the Venezuelan population. World J Gastroenterol 2016; 22:6520-6526. [PMID: 27605886 PMCID: PMC4968131 DOI: 10.3748/wjg.v22.i28.6520] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/25/2016] [Accepted: 06/13/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To explore the association between TCF7L2 rs12255372 and rs7903146 single nucleotide polymorphisms (SNPs) and gastric cancer risk in Venezuelan patients.
METHODS We performed a case-control study including 122 paraffin-embedded archived intestinal-type gastric cancer samples and 129 biopsies obtained by superior endoscopy from chronic gastritis patients. Gastric cancer samples were classified according the degree of carcinoma differentiation. Genomic DNA was extracted from tissues, and the two SNPs of TCF7L2 gene (rs12255372 and rs7903146) were genotyped by polymerase chain reaction-restriction fragment length polymorphism reactions. Multiple regression analysis with adjustments for age and gender were performed and best-fitting models of inheritance were determined. Statistic powers were post-hoc calculated.
RESULTS After adjusting for age and sex the TCF7L2 rs7903146 TT genotype was associated with gastric cancer risk under the recessive genetic model (OR = 3.11, 95%CI: 1.22-7.92, P = 0.017). We further investigated the distribution of rs12255372 and rs7903146 genotypes according gastric cancer stratified by degree of differentiation, and we observed that carriers of rs7903146 T allele (CT + TT vs CC) had a significantly increased risk of moderate/well differentiated gastric cancer (dominant model, OR = 2.55, 95%CI: 1.35-4.80, P = 0.004), whereas the rs7903146 TT genotype was associated with poorly differentiated gastric cancer in the recessive model (OR = 3.65, 95%CI: 1.25-10.62, P = 0.018). We did not find association between rs12255372 SNP and the susceptibility of developing gastric cancer.
CONCLUSION TCF7L2 rs7903146 polymorphism is associated with gastric cancer risk in the Venezuelan population, and could be related to determine the degree of differentiation of tumor cells.
Collapse
|
17
|
Yang C, Du W, Yang D. Inhibition of green tea polyphenol EGCG((-)-epigallocatechin-3-gallate) on the proliferation of gastric cancer cells by suppressing canonical wnt/β-catenin signalling pathway. Int J Food Sci Nutr 2016; 67:818-27. [PMID: 27338284 DOI: 10.1080/09637486.2016.1198892] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
(-)-Epigallocatechin-3-gallate (EGCG), the major polyphenol in green tea, could affect carcinogenesis and development of many cancers. However, the effects and underlying mechanisms of EGCG on gastric cancer remain unclear. We found that EGCG significantly inhibited proliferation and increased apoptosis of SGC-7901 cells in vitro. The decreased expressions of p-β-catenin(Ser552), p-GSK3β(S9) and β-catenin target genes were detected in SGC-7901 cells after treated by EGCG. XAV939 and β-catenin plasmid were further used to demonstrate the inhibition of EGCG on canonical Wnt/β-catenin signalling. Moreover, EGCG significantly inhibited gastric tumour growth in vivo by inhibiting Wnt/β-catenin signalling. Taken together, our findings establish that EGCG suppressed gastric cancer cell proliferation and demonstrate that this inhibitory effect is related to canonical Wnt/β-catenin signalling. This study raises a new insight into gastric cancer prevention and therapy, and provides evidence that green tea could be used as a nutraceutical beverage.
Collapse
Affiliation(s)
- Chenggang Yang
- a Department of Gastrointestinal Surgery , Liaocheng People's Hospital , Liaocheng , Shandong , China
| | - Wenfeng Du
- a Department of Gastrointestinal Surgery , Liaocheng People's Hospital , Liaocheng , Shandong , China
| | - Daogui Yang
- a Department of Gastrointestinal Surgery , Liaocheng People's Hospital , Liaocheng , Shandong , China
| |
Collapse
|
18
|
Wu C, Zhuang Y, Jiang S, Liu S, Zhou J, Wu J, Teng Y, Xia B, Wang R, Zou X. Interaction between Wnt/β-catenin pathway and microRNAs regulates epithelial-mesenchymal transition in gastric cancer (Review). Int J Oncol 2016; 48:2236-2246. [PMID: 27082441 DOI: 10.3892/ijo.2016.3480] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 03/15/2016] [Indexed: 11/06/2022] Open
Abstract
Gastric cancer (GC) is the third primary cause of cancer-related mortality and one of the most common type of malignant diseases worldwide. Despite remarkable progress in multimodality therapy, advanced GC with high aggressiveness always ends in treatment failure. Epithelial-mesenchymal transition (EMT) has been widely recognized to be a key process associating with GC evolution, during which cancer cells go through phenotypic variations and acquire the capability of migration and invasion. Wnt/β-catenin pathway has established itself as an EMT regulative signaling due to its maintenance of epithelial integrity as well as tight adherens junctions while mutations of its components will lead to GC initiation and diffusion. The E-cadherin/β-catenin complex plays an important role in stabilizing β-catenin at cell membrane while disruption of this compound gives rise to nuclear translocation of β-catenin, which accounts for upregulation of EMT biomarkers and unfavorable prognosis. Additionally, several microRNAs positively or negatively modify EMT by reciprocally acting with certain target genes of Wnt/β-catenin pathway in GC. Thus, this review centers on the strong associations between Wnt/β-catenin pathway and microRNAs during alteration of EMT in GC, which may induce advantageous therapeutic strategies for human gastric cancer.
Collapse
Affiliation(s)
- Cunen Wu
- Department of Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Yuwen Zhuang
- Department of Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Shan Jiang
- Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Shenlin Liu
- Department of Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Jinyong Zhou
- Department of Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Jian Wu
- Department of Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Yuhao Teng
- Department of Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Baomei Xia
- Department of Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Ruiping Wang
- Department of Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Xi Zou
- Department of Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
19
|
Li CY, Liang GY, Yao WZ, Sui J, Shen X, Zhang YQ, Peng H, Hong WW, Ye YC, Zhang ZY, Zhang WH, Yin LH, Pu YP. Integrated analysis of long non-coding RNA competing interactions reveals the potential role in progression of human gastric cancer. Int J Oncol 2016; 48:1965-76. [PMID: 26935047 DOI: 10.3892/ijo.2016.3407] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/20/2016] [Indexed: 12/17/2022] Open
Abstract
Abnormal expression of long non-coding RNAs (lncRNAs) have been shown to play an important role in tumor biology. The Cancer Genome Atlas (TCGA) platform is a large sample sequencing database of lncRNAs, and further analysis of the associations between these data and patients' clinical related information can provide new approaches to find the functions of lncRNA. In the present study, 361 RNA sequencing profiles of gastric cancer (GC) patients were selected from TCGA. Then, we constructed the lncRNA-miRNA-mRNA competitive endogenous RNA (ceRNA) network of GC. There were 25 GC specific lncRNAs (fold change >2, p<0.05) identified, 19 of them were included in ceRNA network. Subsequently, we selected these 19 key lncRNAs and analyzed the correlations with clinical features and overall survival, 14 of them were discriminatively expressed with tumor size, tumor grade, TNM stage and lymphatic metastasis (p<0.05). In addition, eight lncRNAs (RPLP0P2, FOXD2-AS1, H19, TINCR, SLC26A4-AS1, SMIM10L2A, SMIM10L2B and SNORD116-4) were found to be significantly associated with overall survival (log-rank p<0.05). Finally, two key lncRNAs HOTAIR and UCA1 were selected for validation of their expression levels in 82 newly diagnosed GC patients by qRT-PCR. Results showed that the fold changes between TCGA and qRT-PCR were 100% in agreement. In addition, we also found that HOTAIR was significantly correlated with tumor size and lymphatic metastasis (p<0.05), and UCA1 was significantly correlated with tumor size, TNM stage and lymphatic metastasis (p<0.05). The clinical relevance of the two lncRNAs and the bioinformatics analysis results were almost the same. Overall, our study showed the GC specific lncRNAs expression patterns and a ceRNA network in GC. Clinical features related to GC specific lncRNAs also suggested these lncRNAs are worthwhile for further study as novel candidate biomarkers for the clinical diagnosis of GC and potential indicators for prognosis.
Collapse
Affiliation(s)
- Cheng-Yun Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Ge-Yu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Wen-Zhuo Yao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Jing Sui
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Xian Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yan-Qiu Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Hui Peng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Wei-Wei Hong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yan-Cheng Ye
- Gansu Wuwei Tumor Hospital, Wuwei, Gansu 733000, P.R. China
| | - Zhi-Yi Zhang
- Gansu Wuwei Tumor Hospital, Wuwei, Gansu 733000, P.R. China
| | - Wen-Hua Zhang
- Gansu Wuwei Tumor Hospital, Wuwei, Gansu 733000, P.R. China
| | - Li-Hong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yue-Pu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
20
|
Wang L, Tan C, Qiao F, Wang W, Jiang X, Lian P, Chang B, Sheng W. Upregulated expression of DIXDC1 in intestinal-type gastric carcinoma: co-localization with β-catenin and correlation with poor prognosis. Cancer Cell Int 2015; 15:120. [PMID: 26689843 PMCID: PMC4683926 DOI: 10.1186/s12935-015-0273-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/09/2015] [Indexed: 02/06/2023] Open
Abstract
Background DIXDC1 (Dishevelled-Axin domain containing 1) is a positive regulator of the Wnt pathway. In the field of cancer research, the role of DIXDC1 is unclear. Our previous in vitro study showed that DIXDC1 enhances β-catenin nuclear accumulation in gastric cancer cell lines. The aim of this study was to detect the expression of DIXDC1 in different histological subtypes of gastric carcinoma and to evaluate the correlation between the expression of DIXDC1 and β-catenin localization and clinicopathological parameters, including patients’ survival. Methods Immunohistochemical staining was performed to characterize the expression of DIXDC1 and β-catenin in archived materials from 259 cases of gastric carcinoma. The χ2 test and the Fisher’s test were used to analyze correlations between DIXDC1 expression, β-catenin localization, and clinicopathological parameters. Univariate analyses were performed using the Kaplan–Meier method, and the survival difference between groups was assessed by the log-rank test. Multivariate analysis was performed using the Cox proportional hazards regression model. Results Positive DIXDC1 staining was detected in tumor cells in 123 of 259 (47.5 %) cases. DIXDC1 expression in gastric carcinoma was significantly correlated with the histological intestinal-type (P < 0.001), the depth of tumor invasion (P < 0.001) and the lymph node metastasis (P = 0.006). In the intestinal-type, DIXDC1 was correlated with the nuclear and cytoplasmic β-catenin expression (P = 0.002). Kaplan–Meier analysis indicated that patients with high DIXDC1 expression had poor disease-specific survival (P < 0.001), especially in the intestinal-type. Moreover, multivariate regression analysis showed that positive expression of DIXDC1 was an independent prognostic predictor of intestinal-type gastric carcinoma. Conclusion Our study indicated that DIXDC1 is a significant independent prognostic indicator in intestinal-type gastric carcinoma that plays an important role in carcinogenesis and progression of gastric carcinoma through the Wnt signaling pathway.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Cong Tan
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Fan Qiao
- Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433 China
| | - Weige Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Xiangnan Jiang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Peng Lian
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
| | - Bin Chang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Weiqi Sheng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| |
Collapse
|
21
|
BMP10 inhibited the growth and migration of gastric cancer cells. Tumour Biol 2015; 37:3025-31. [PMID: 26419594 DOI: 10.1007/s13277-015-4116-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/20/2015] [Indexed: 12/19/2022] Open
Abstract
Bone morphogenetic protein 10 (BMP10), a novel member of BMP family, has been identified as an important regulator for angiogenesis. Dysregulation of BMP has been observed in several cancer types. However, its roles in gastric cancer (GC) remain unknown. In this study, the expression of BMP10 was found to be down-regulated in GC samples. Forced expression of BMP10 in GC cells inhibited its growth and migration, while knocking down the expression of BMP10 in GC cells promoted cell growth, migration, and metastasis. BMP10 was shown to negatively regulated beta-catenin/TCF signaling by up-regulating Axin protein level. Taken together, the present study revealed the suppressive function of BMP10 in gastric cancer.
Collapse
|
22
|
Chiurillo MA. Role of the Wnt/β-catenin pathway in gastric cancer: An in-depth literature review. World J Exp Med 2015; 5:84-102. [PMID: 25992323 PMCID: PMC4436943 DOI: 10.5493/wjem.v5.i2.84] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 12/05/2014] [Accepted: 03/20/2015] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer remains one of the most common cancers worldwide and one of the leading cause for cancer-related deaths. Gastric adenocarcinoma is a multifactorial disease that is genetically, cytologically and architecturally more heterogeneous than other gastrointestinal carcinomas. The aberrant activation of the Wnt/β-catenin signaling pathway is involved in the development and progression of a significant proportion of gastric cancer cases. This review focuses on the participation of the Wnt/β-catenin pathway in gastric cancer by offering an analysis of the relevant literature published in this field. Indeed, it is discussed the role of key factors in Wnt/β-catenin signaling and their downstream effectors regulating processes involved in tumor initiation, tumor growth, metastasis and resistance to therapy. Available data indicate that constitutive Wnt signalling resulting from Helicobacter pylori infection and inactivation of Wnt inhibitors (mainly by inactivating mutations and promoter hypermethylation) play an important role in gastric cancer. Moreover, a number of recent studies confirmed CTNNB1 and APC as driver genes in gastric cancer. The identification of specific membrane, intracellular, and extracellular components of the Wnt pathway has revealed potential targets for gastric cancer therapy. High-throughput “omics” approaches will help in the search for Wnt pathway antagonist in the near future.
Collapse
|
23
|
Analysis of wntless (WLS) expression in gastric, ovarian, and breast cancers reveals a strong association with HER2 overexpression. Mod Pathol 2015; 28:428-36. [PMID: 25258105 DOI: 10.1038/modpathol.2014.114] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/20/2014] [Accepted: 07/20/2014] [Indexed: 12/31/2022]
Abstract
The oncogenic role of WNT is well characterized. Wntless (WLS) (also known as GPR177, or Evi), a key modulator of WNT protein secretion, was recently found to be highly overexpressed in malignant astrocytomas. We hypothesized that this molecule may be aberrantly expressed in other cancers known to possess aberrant WNT signaling such as ovarian, gastric, and breast cancers. Immunohistochemical analysis using a TMA platform revealed WLS overexpression in a subset of ovarian, gastric, and breast tumors; this overexpression was associated with poorer clinical outcomes in gastric cancer (P=0.025). In addition, a strong correlation was observed between WLS expression and human epidermal growth factor receptor 2 (HER2) overexpression. Indeed, 100% of HER2-positive intestinal gastric carcinomas, 100% of HER2-positive serous ovarian carcinomas, and 64% of HER2-positive breast carcinomas coexpressed WLS protein. Although HER2 protein expression or gene amplification is an established predictive biomarker for trastuzumab response in breast and gastric cancers, a significant proportion of HER2-positive tumors display resistance to trastuzumab, which may be in part explainable by a possible mechanistic link between WLS and HER2.
Collapse
|
24
|
In silico analysis of expression pattern of a Wnt/β-catenin responsive gene ANLN in gastric cancer. Gene 2014; 545:23-9. [PMID: 24809965 DOI: 10.1016/j.gene.2014.05.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/14/2014] [Accepted: 05/04/2014] [Indexed: 01/12/2023]
Abstract
Actin-binding protein anillin (ANLN) is primarily involved in the cytokinesis and known to be dysregulated in many cancers including gastric cancer (GC). However, the regulation and clinical significance of ANLN in GC are far less clear. In the present study, we aimed to investigate the clinical significance and possible regulators of ANLN in GC. We have identified the Wnt/β-catenin associated regulation of ANLN by analyzing the in vitro perturbed β-catenin mRNA expression profiles. Investigating the gastric tumors from publicly available genome-wide mRNA expression profiles, we have identified the over expression of ANLN in gastric tumors. Association between ANLN expression and clinical characteristics of GC showed elevated expression in intestinal type GC. Performing a single sample prediction method across GC mRNA expression profiles, we have identified the over expression of ANLN in proliferative type gastric tumors compared to the invasive and metabolic type gastric tumors. In silico pathway prediction analysis revealed the association between Wnt/β-catenin signaling and ANLN expression in gastric tumors. Our results highlight that expression of a Wnt/β-catenin responsive gene ANLN in GC is a molecular predictor of intestinal and proliferative type gastric tumors.
Collapse
|
25
|
Kim JS, Park SY, Lee SA, Park MG, Yu SK, Lee MH, Park MR, Kim SG, Oh JS, Lee SY, Kim CS, Kim HJ, Chun HS, Kim JS, Moon SM, Kim DK. MicroRNA-205 suppresses the oral carcinoma oncogenic activity via down-regulation of Axin-2 in KB human oral cancer cell. Mol Cell Biochem 2013; 387:71-9. [PMID: 24166197 DOI: 10.1007/s11010-013-1872-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 10/18/2013] [Indexed: 10/26/2022]
Abstract
MicroRNA (miRNA) is a small noncoding RNA molecule, 19-25 nucleotides in length, which regulates several pathways including cell development, cell proliferation, carcinogenesis, apoptosis, etc. In this study, the over-expression of microRNA-205 (miR-205) increased the number of apoptotic cells by at least 4 times compared to the control. In addition, over-expressed miRNA in KB oral cancer cells triggered apoptosis via the caspase cascade, including the cleavage of caspase-9, caspase-7, caspase-3, and PARP. Flow cytometry showed that apoptotic cell death was increased significantly by 35.33% in KB oral cancer cells with over-expressed miR-205 compared to the control. The microarray data showed that axis inhibitor protein 2 (Axin2) was down-regulated in KB oral cancer cells transfected with miR-205. In addition, Axin2 was down-regulated by approximately 50% by over-expressed miR-205 at both the mRNA and protein levels. Interestingly, Axin2 was up-regulated in KB oral cancer compared to human normal oral keratinocytes. Furthermore, the cell cytotoxicity and apoptotic population of KB oral cancer cells were increased significantly after Axin2 siRNA transfection. These results suggest that Axin2 is might be as potential oncogene in KB oral cancer cells. The luciferase assay showed that over-expressed miR-205 in KB oral cancer cells suppressed AXIN2 expression through an interaction with its own binding site at AXIN2 3'UTR (64-92). These results suggest that miR-205 is a novel anti-oncogenic miRNA in KB oral cancer cells, and may have potential applications in oral cancer therapy.
Collapse
Affiliation(s)
- Jae-Sung Kim
- Oral Biology Research Institute, School of Dentistry, Chosun University, 375 Seosuk-dong, Dong-gu, Gwangju, 501-759, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hidaka Y, Mitomi H, Saito T, Takahashi M, Lee SY, Matsumoto K, Yao T, Watanabe S. Alteration in the Wnt/β-catenin signaling pathway in gastric neoplasias of fundic gland (chief cell predominant) type. Hum Pathol 2013; 44:2438-48. [PMID: 24011952 DOI: 10.1016/j.humpath.2013.06.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 06/04/2013] [Accepted: 06/12/2013] [Indexed: 12/13/2022]
Abstract
Gastric neoplasia of chief cell-predominant type (GN-CCP) has been reported as a new, rare variant of gastric tumor. GN-CCPs were defined as tumors consisting of irregular anastomosing glands of columnar cells mimicking chief cells of fundic gland with nuclear atypia and prolapse-type submucosal involvement. We comparatively evaluated clinicopathologic features between 31 GN-CCPs and 130 cases of conventional gastric adenocarcinoma invading into submucosa (CGA-SM) in addition to nuclear β-catenin immunolabeling and direct sequencing of members of the Wnt/β-catenin pathway, CTNNB1, APC, and AXIN, in a subset of these tumors. GN-CCP presented as small protruded lesions located in the upper third of the stomach, with minimal involvement into the submucosa and rare lymphovascular invasion. None of the lesions have demonstrated a recurrence of disease or metastasis on follow-up. Nuclear β-catenin immunolabeling was higher in GN-CCP (labeling index [LI]: median, 19.3%; high expresser [LI >30%], 7/27 cases [26%]) than CGA-SM (median LI, 14.7%; high expresser, 1/19 cases [6%]). Missense mutation of APC was observed in 1 GN-CCP but not CGA-SM. Missense or nonsense mutations of CTNNB1 and AXIN1 were higher in GN-CCPs (14.8%, both) than CGA-SMs (5.3%, both). Missense mutations of AXIN2 were higher in GN-CCPs (25.9%) than in CGA-SMs (10.5%). Overall, 14 (51.9%) of 27 GN-CCPs and 5 (26.3%) of 19 CGA-SM cases harbored at least 1 of these gene mutations. In conclusion, GN-CCPs as a unique variant of nonaggressive tumor are characterized by nuclear β-catenin accumulation and mutation of CTNNB1 or AXIN gene, suggesting activation of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Yasuhiro Hidaka
- Department of Gastroenterology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Human Pathology, Juntendo University School of Medicine, 1-1-19 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Catalytic aminohalogenation methods enable the regio- and stereoselective vicinal difunctionalization of alkynes, allenes and alkenes with amine and halogen moieties. A range of protocols and reaction mechanisms including organometallic, Lewis base, Lewis acid and Brønsted acid catalysis have been disclosed, enabling the regio- and stereoselective synthesis of halogen-functionalized acyclic amines and nitrogen heterocycles. Recent advances including aminofluorination and catalytic enantioselective aminohalogenation reactions are summarized in this review.
Collapse
Affiliation(s)
- Sherry R. Chemler
- Department of Chemistry, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Michael T. Bovino
- Department of Chemistry, The State University of New York at Buffalo, Buffalo, New York, USA
| |
Collapse
|
28
|
Sun JZ, Yang XX, Hu NY, Li X, Li FX, Li M. Genetic Variants in MMP9 and TCF2 Contribute to Susceptibility to Lung Cancer. Chin J Cancer Res 2013; 23:183-7. [PMID: 23467666 DOI: 10.1007/s11670-011-0183-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Accepted: 05/17/2011] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE The Wnt signaling pathway is crucial for pulmonary development and differentiation; dysregulation of the Wnt signaling pathway may impair lung function. Indeed, single nucleotide polymorphisms (SNPs) of Wnt pathway-related genes have been suggested as risk factors for certain types of cancers. In this study, we aimed to evaluate the influence of SNPs in Wnt-related genes (TCF2, MMP9) on susceptibility to lung cancer. METHODS Polymorphisms of TCF2 rs4430796, MMP9 rs2250889, and MMP9 rs17576 were studied in Han Chinese subjects, including 135 patients with lung cancer and 176 controls, using the Sequenom MassARRAY platform. The association of genotypes with susceptibility to lung cancer was analyzed using odds ratio (OR), with 95% confidence interval (95% CI) and χ(2). RESULTS The three SNPs (rs4430796, rs2250889, and rs17576) were found to be significantly associated with an increased risk of lung cancer. The AA genotype and AG+AA genotype of rs4430796 showed a significantly increased susceptibility to lung cancer compared with the GG genotype (adjusted OR=6.03, 95% CI: 1.30-28.09, P=0.022; 5.55, 95% CI: 1.20-25.58, P=0.028). Compared with the rs17576 GG genotype, the AG and AG+AA genotypes were also associated with a significant risk (adjusted OR=2.65, 95% CI: 1.60-4.37, P≤0.001; 2.57, 95% CI: 1.59-4.19, P≤0.001) whereas the rs2250889 CG and CG+GG genotypes had 2.97-fold (95% CI: 1.81-4.85; P≤0.001) and 2.80-fold increased associations with lung cancer (95% CI: 1.73-4.54; P≤0.001), respectively, compared with the rs2250889 CC genotype. Furthermore, the association of rs4430796 with lung cancer became insignificant (P>0.05) after adjusting for gender and rs2250889. CONCLUSION The three SNPs may play a role in the predisposition of members of the Han Chinese population to lung cancer.
Collapse
Affiliation(s)
- Jing-Zhe Sun
- School of Biotechnology, Southern Medical University, Guangzhou 510515, China
| | | | | | | | | | | |
Collapse
|
29
|
Guan WH, Yang K, Zhao WJ, Liu XS, Wang XJ. Significance of expression of Wnt3 and Wnt3a in gastric carcinoma. Shijie Huaren Xiaohua Zazhi 2013; 21:624-628. [DOI: 10.11569/wcjd.v21.i7.624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To detect the expression of Wnt3, Wnt3a, Wnt5a, Wnt8a and β-catenin in chronic atrophic gastritis (CAG) and gastric carcinoma (GC), and to investigate the role of the Wnt signaling pathway in the pathogenesis of GC.
METHODS: The mRNA expression of Wnt3, Wnt3a, Wnt5a and Wnt8a in 26 fresh CAG and 40 GC tissue samples was examined using Real-time RT-PCR. The protein expression of β-catenin was detected by Western blot.
RESULTS: The mRNA expression levels of Wnt3 and Wnt3a were significantly increased in GC (1.9940 ± 0.1311 vs 1.3349 ± 0.2487, P < 0.05; 2.3033 ± 0.3979 vs 1.2835 ± 0.2815, P < 0.05) and were associated with lymph node metastasis and TNM stage. The expression of Wnt5a and Wnt8a did not significantly differ between CAG and GC (both P > 0.05). Western blot analysis showed that the relative expression of β-catenin protein was significantly elevated in GC compared with CAG (0.6290 ± 0.1369 vs 0.2341 ± 0.0975, P < 0.05).
CONCLUSION: Our results suggest that Wnt3 and Wnt3a may be critically involved in the activation of the Wnt signaling pathway and in the carcinogenesis and progression of GC.
Collapse
|
30
|
Schepers A, Clevers H. Wnt signaling, stem cells, and cancer of the gastrointestinal tract. Cold Spring Harb Perspect Biol 2012; 4:a007989. [PMID: 22474007 DOI: 10.1101/cshperspect.a007989] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Wnt signaling pathway was originally uncovered as one of the prototype developmental signaling cascades in invertebrates as well as in vertebrates. The first indication that Wnt signaling also plays a role in the adult animal came from the study of the intestine of Tcf-4 (Tcf7L2) knockout mice. The gastrointestinal epithelium continuously self-renews over the lifetime of an organism and is, in fact, the most rapidly self-renewing tissue of the mammalian body. Recent studies indicate that Wnt signaling plays a central role in the biology of gastrointestinal stem cells. Furthermore, mutational activation of the Wnt cascade is the principle cause of colon cancer.
Collapse
Affiliation(s)
- Arnout Schepers
- Hubrecht Institute, KNAW and University Medical Centre Utrecht, 3584CT Utrecht, The Netherlands
| | | |
Collapse
|
31
|
Erbilgin Y, Ng OH, Mavi N, Ozbek U, Sayitoglu M. Genetic alterations in members of the Wnt pathway in acute leukemia. Leuk Lymphoma 2011; 53:508-10. [PMID: 21902576 DOI: 10.3109/10428194.2011.613133] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
32
|
Tao J, Deng NT, Ramnarayanan K, Huang B, Oh HK, Leong SH, Lim SS, Tan IB, Ooi CH, Wu J, Lee M, Zhang S, Rha SY, Chung HC, Smoot DT, Ashktorab H, Kon OL, Cacheux V, Yap C, Palanisamy N, Tan P. CD44-SLC1A2 gene fusions in gastric cancer. Sci Transl Med 2011; 3:77ra30. [PMID: 21471434 DOI: 10.1126/scitranslmed.3001423] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fusion genes are chimeric genes formed in cancers through genomic aberrations such as translocations, amplifications, and rearrangements. To identify fusion genes in gastric cancer, we analyzed regions of chromosomal imbalance in a cohort of 106 primary gastric cancers and 27 cell lines derived from gastric cancers. Multiple samples exhibited genomic breakpoints in the 5' region of SLC1A2/EAAT2, a gene encoding a glutamate transporter. Analysis of a breakpoint-positive SNU16 cell line revealed expression of a CD44-SLC1A2 fusion transcript caused by a paracentric chromosomal inversion, which was predicted to produce a truncated but functional SLC1A2 protein. In primary tumors, CD44-SLC1A2 gene fusions were detected in 1 to 2% of gastric cancers, but not in adjacent matched normal gastric tissues. When we specifically silenced CD44-SLC1A2, cellular proliferation, invasion, and anchorage-independent growth were significantly reduced. Conversely, CD44-SLC1A2 overexpression in gastric cells stimulated these pro-oncogenic traits. CD44-SLC1A2 silencing caused significant reductions in intracellular glutamate concentrations and sensitized SNU16 cells to cisplatin, a commonly used chemotherapeutic agent in gastric cancer. We conclude that fusion of the SLC1A2 gene coding region to CD44 regulatory elements likely causes SLC1A2 transcriptional dysregulation, because tumors expressing high SLC1A2 levels also tended to be CD44-SLC1A2-positive. CD44-SLC1A2 may represent a class of gene fusions in cancers that establish a pro-oncogenic metabolic milieu favoring tumor growth and survival.
Collapse
Affiliation(s)
- Jiong Tao
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wang BS, Wei DQ, Yu SN, Jiang DD, Zhao JL, Shi CX, Jiang JY. Heterogeneous expression of Wnt signal molecules in parental HepG2 cells and HepG2 colony-forming cells. Shijie Huaren Xiaohua Zazhi 2011; 19:284-288. [DOI: 10.11569/wcjd.v19.i3.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the heterogeneous expression of Wnt signal molecules in HepG2 cells with different proliferative ability.
METHODS: The soft agar colony formation assay was used to separate HepG2 colony-forming cells. The mRNA expression and protein expression and distribution of β-catenin and COX-2 in parental HepG2 cells and HepG2 colony-forming cells were detected by RT-PCR, Western blotting and immunochemistry, respectively.
RESULTS: The expression levels of β-catenin mRNA and protein in HepG2 colony-forming cells were significantly higher than those in parental HepG2 cells (0.905 vs 0.549; 1.021 vs 0.700; both P < 0.05). β-catenin was mainly localized in the cytoplasm in parental HepG2 cells and in the nucleus in HepG2 colony-forming cells. The expression levels of COX-2 mRNA and protein in parental HepG2 cells were significantly higher than those in HepG2 colony-forming cells (0.857 vs 0.527; 0.731 vs 0.434; both P < 0.05). Immunochemistry analysis showed that most HepG2 cells were positive for COX-2.
CONCLUSION: β-catenin and COX-2 may be closely related to the degree of differentiation of hepatocellular carcinoma. The expression patterns of β-catenin and COX-2 in parental HepG2 cells and HepG2 colony-forming cells imply that HepG2 colony-forming cells have the characteristics of liver cancer stem cells.
Collapse
|
34
|
Situ DR, Hu Y, Zhu ZH, Wang J, Long H, Rong TH. Prognostic relevance of β-catenin expression in T2-3N0M0 esophageal squamous cell carcinoma. World J Gastroenterol 2010; 16:5195-202. [PMID: 21049553 PMCID: PMC2975090 DOI: 10.3748/wjg.v16.i41.5195] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM: To study the expression of β-catenin in esophageal squamous cell carcinoma (ESCC) at stage T2-3N0M0 and its relation with the prognosis of ESCC patients.
METHODS: Expression of β-catenin in 227 ESCC specimens was detected by immunohistochemistry (IHC). A reproducible semi-quantitative method which takes both staining percentage and intensity into account was applied in IHC scoring, and receiver operating characteristic curve analysis was used to select the cut-off score for high or low IHC reactivity. Then, correlation of β-catenin expression with clinicopathological features and prognosis of ESCC patients was determined.
RESULTS: No significant correlation was observed between β-catenin expression and clinicopathological parameters in terms of gender, age, tumor size, tumor grade, tumor location, depth of invasion and pathological stage. The Kaplan-Meier survival curve showed that the up-regulated expression of β-catenin indicated a poorer post-operative survival rate of ESCC patients at stage T2-3N0M0 (P = 0.004), especially of those with T3 lesions (P = 0.014) or with stage IIB diseases (P = 0.007). Multivariate analysis also confirmed that β-catenin was an independent prognostic factor for the overall survival rate of ESCC patients at stage T2-3N0M0 (relative risk = 1.642, 95% CI: 1.159-2.327, P = 0.005).
CONCLUSION: Elevated β-catenin expression level may be an adverse indicator for the prognosis of ESCC patients at stage T2-3N0M0, especially for those with T3 lesions or stage IIB diseases.
Collapse
|
35
|
Wang B, Zhang QL, Yan W, Xia LM, Liu M, Tian DA. Short hairpin RNA-mediated downregulation of the Pokemon gene suppresses proliferation and promotes apoptosis in HepG2 cells. Shijie Huaren Xiaohua Zazhi 2009; 17:3128-3133. [DOI: 10.11569/wcjd.v17.i30.3128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To construct recombinant plasmids containing short hairpin RNA (shRNA) targeting the Pokemon gene and investigate the effects of shRNA-mediated downregulation of the Pokemon gene on the proliferation and apoptosis of HepG2 cells.
METHODS: Three shRNAs were designed according to the coding sequence of the Pokemon gene and used to construct recombinant plasmids. The recombinant plasmids were transfected into HepG2 cells using Lipofectamine 2000. The expression of Pokemon mRNA and protein was detected by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot, respectively. Cellular proliferation was measured by methyl thiazolyl tetrazolium (MTT) assay. Apoptosis was analyzed by flow cytometry. The expression of H-ras and β-catenin genes was detected by RT-PCR.
RESULTS: Three recombinant plasmids were successfully constructed. The expression of Pokemon mRNA and protein was obviously downregulated in HepG2 cells transfected with the recombinant plasmids. The best silencing effect was achieved in cells transfected with the pshRNA2 plasmid. The expression levels of Pokemon mRNA and protein were downregulated by 75.2% and 72.61%, respectively. MTT assay indicated that pshRNA2 transfection could inhibit cellular proliferation and promote apoptosis. After pshRNA2 transfection, the expression of H-ras mRNA was downregulated (P < 0.05) in HepG2 cells though no significant change was observed in β-catenin expression.
CONCLUSION: The recombinant plasmids containing shRNA targeting the Pokemon gene can specifically downregulate Pokemon expression. The Pokemon protein can promote proliferation and inhibit apoptosis in HepG2 cells possibly via downregulation of H-ras expression.
Collapse
|
36
|
Hurst JH, Hooks SB. Regulator of G-protein signaling (RGS) proteins in cancer biology. Biochem Pharmacol 2009; 78:1289-97. [PMID: 19559677 DOI: 10.1016/j.bcp.2009.06.028] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 06/16/2009] [Accepted: 06/18/2009] [Indexed: 01/09/2023]
Abstract
The regulator of G-protein signaling (RGS) family is a diverse group of multifunctional proteins that regulate cellular signaling events downstream of G-protein coupled receptors (GPCRs). In recent years, GPCRs have been linked to the initiation and progression of multiple cancers; thus, regulators of GPCR signaling are also likely to be important to the pathophysiology of cancer. This review highlights recent studies detailing changes in RGS transcript expression during oncogenesis, single nucleotide polymorphisms in RGS proteins linked to lung and bladder cancers, and specific roles for RGS proteins in multiple cancer types.
Collapse
Affiliation(s)
- Jillian H Hurst
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
37
|
Peng CW, Yan M, Yu YY, Li JF, Ji J, Cai Q, Liu BY, Zhu ZG. Expression of the new target GS mRNA and protein of Wnt signaling pathway in gastric cancerous tissue. Shijie Huaren Xiaohua Zazhi 2009; 17:1777-1781. [DOI: 10.11569/wcjd.v17.i17.1777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the new target of Wnt signaling pathway GS mRNA and protein expression in cancerous tissue from patients with gastric carcinoma and to evaluate its clinic significance.
METHODS: Fluorescent quantitative PCR (FQ-PCR) was used to detect the GS mRNA expression in cancerous tissue and paracancerous normal mucosa from 52 patients with gastric carcinoma. Immunohistochemistry (SP method) was used to detect GS expressions in paraffin-embedded gastric carcinoma tissues of 97 cases, paracancerous normal mucosa of 30 cases and 10 intestinal metaplasia tissues.
RESULTS: The expression of GS mRNA was significantly higher in cancerous tissue from patients with gastric carcinoma than in normal tissue (25.508 ± 5.090 vs 13.001 ± 2.040, P < 0.05). GS protein expression was closely related to the pathologic parameters, such as histological type, Lauren classification and distant metastasis (χ2 = 26.994, 54.929, 5.173, all P < 0.05). However, there was no significant correlation between GS expression and lymph node metastasis, tumor size, TNM staging, age and gender of patients.
CONCLUSION: GS mRNA and protein expression is significantly correlated with the biological behavior of gastric carcinoma. The high expression of GS may be related with the occurrence and progress of gastric cancer.
Collapse
|
38
|
Frameshift mutations of Wnt pathway genes AXIN2 and TCF7L2 in gastric carcinomas with high microsatellite instability. Hum Pathol 2008; 40:58-64. [PMID: 18755497 DOI: 10.1016/j.humpath.2008.06.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 06/10/2008] [Accepted: 06/11/2008] [Indexed: 01/12/2023]
Abstract
Frameshift mutations of genes with mononucleotide repeats are features of colorectal and gastric cancers with microsatellite instability (MSI). Deregulation of Wnt pathway is involved in the mechanisms of cancer development, and mutations of the Wnt-pathway genes have frequently been detected in cancers, indicating somatic mutations are important deregulation mechanisms of the Wnt signaling in cancer development. Both AXIN2 and TCF7L2 genes in the Wnt pathway possess mononucleotide repeats in their coding sequences and are considered as candidate tumor suppressor genes. The aim of this study was to see whether AXIN2 and TCF7L2 are altered by frameshift mutations in gastric carcinomas with MSI. For this, we analyzed human AXIN2 exon 8 and TCF7L2 exon 14 in 32 gastric carcinomas with high MSI, 13 gastric carcinomas with low MSI, and 47 gastric carcinomas without MSI by a single-strand conformation polymorphism analysis. Overall, we detected 9 AXIN2 and 6 TCF7L2 frameshift mutations in the mononucleotide repeats in the cancers with MSH-H, and all of them were found in MSH-H cancers (AXIN2, 28.1%; TCF7L2, 18.8%). Of the 32 high MSI cancers, 13 cancers (40.6%) harbored at least one of AXIN2 and TCF7L2 mutation, whereas 19 cancers (59.4%) harbored neither. The present data indicate that frameshift mutations in both AXIN2 and TCF7L2 genes are common in gastric carcinomas with high MSI and suggest that these mutations may contribute to development of gastric cancers with high MSI by deregulating the Wnt signaling in the affected cancer cells.
Collapse
|