1
|
Das A, Giri S, Dey P. Cell-cell junctional proteins in cancer. Adv Clin Chem 2024; 125:93-142. [PMID: 39988409 DOI: 10.1016/bs.acc.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
A hallmark change during carcinogenesis is disruption or dysregulation of cell-cell junctions. It enables a transformed cell to adopt mesenchymal phenotype and acquire higher potential to migrate and invade. This ultimately leads to cancer metastasis. During this process, junctional proteins undergo remarkable changes in terms of their expressional pattern, localization, and activity. De-localized junctional proteins may adopt atypical roles which might act to either suppress tumorigenesis or facilitate cancer development, depending on several factors. In this chapter, the authors attempt to know the expression pattern of junctional proteins in different types of cancer, understand its significance, and gather knowledge about the mechanisms by which they regulate tumorigenesis and cancer development.
Collapse
Affiliation(s)
- Aparajita Das
- Molecular and Cell Biology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Sarbani Giri
- Molecular and Cell Biology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India.
| | - Pubali Dey
- Molecular and Cell Biology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| |
Collapse
|
2
|
Kerdkumthong K, Roytrakul S, Songsurin K, Pratummanee K, Runsaeng P, Obchoei S. Proteomics and Bioinformatics Identify Drug-Resistant-Related Genes with Prognostic Potential in Cholangiocarcinoma. Biomolecules 2024; 14:969. [PMID: 39199357 PMCID: PMC11352417 DOI: 10.3390/biom14080969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/21/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Drug resistance is a major challenge in the treatment of advanced cholangiocarcinoma (CCA). Understanding the mechanisms of drug resistance can aid in identifying novel prognostic biomarkers and therapeutic targets to improve treatment efficacy. This study established 5-fluorouracil- (5-FU) and gemcitabine-resistant CCA cell lines, KKU-213FR and KKU-213GR, and utilized comparative proteomics to identify differentially expressed proteins in drug-resistant cells compared to parental cells. Additionally, bioinformatics analyses were conducted to explore the biological and clinical significance of key proteins. The drug-resistant phenotypes of KKU-213FR and KKU-213GR cell lines were confirmed. In addition, these cells demonstrated increased migration and invasion abilities. Proteomics analysis identified 81 differentially expressed proteins in drug-resistant cells, primarily related to binding functions, biological regulation, and metabolic processes. Protein-protein interaction analysis revealed a highly interconnected network involving MET, LAMB1, ITGA3, NOTCH2, CDH2, and NDRG1. siRNA-mediated knockdown of these genes in drug-resistant cell lines attenuated cell migration and cell invasion abilities and increased sensitivity to 5-FU and gemcitabine. The mRNA expression of these genes is upregulated in CCA patient samples and is associated with poor prognosis in gastrointestinal cancers. Furthermore, the functions of these proteins are closely related to the epithelial-mesenchymal transition (EMT) pathway. These findings elucidate the potential molecular mechanisms underlying drug resistance and tumor progression in CCA, providing insights into potential therapeutic targets.
Collapse
Affiliation(s)
- Kankamol Kerdkumthong
- Department of Biochemistry, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai District, Songkhla 90110, Thailand; (K.K.); (K.S.); (K.P.); (P.R.)
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Tani 12120, Thailand;
| | - Kawinnath Songsurin
- Department of Biochemistry, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai District, Songkhla 90110, Thailand; (K.K.); (K.S.); (K.P.); (P.R.)
| | - Kandawasri Pratummanee
- Department of Biochemistry, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai District, Songkhla 90110, Thailand; (K.K.); (K.S.); (K.P.); (P.R.)
| | - Phanthipha Runsaeng
- Department of Biochemistry, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai District, Songkhla 90110, Thailand; (K.K.); (K.S.); (K.P.); (P.R.)
- Center of Excellence for Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai District, Songkhla 90110, Thailand
| | - Sumalee Obchoei
- Department of Biochemistry, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai District, Songkhla 90110, Thailand; (K.K.); (K.S.); (K.P.); (P.R.)
- Center of Excellence for Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai District, Songkhla 90110, Thailand
| |
Collapse
|
3
|
Ditto M, Jacho D, Eisenmann KM, Yildirim-Ayan E. Extracellular Mechanical Stimuli Alters the Metastatic Progression of Prostate Cancer Cells within 3D Tissue Matrix. Bioengineering (Basel) 2023; 10:1271. [PMID: 38002395 PMCID: PMC10669840 DOI: 10.3390/bioengineering10111271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
This study aimed to understand extracellular mechanical stimuli's effect on prostate cancer cells' metastatic progression within a three-dimensional (3D) bone-like microenvironment. In this study, a mechanical loading platform, EQUicycler, has been employed to create physiologically relevant static and cyclic mechanical stimuli to a prostate cancer cell (PC-3)-embedded 3D tissue matrix. Three mechanical stimuli conditions were applied: control (no loading), cyclic (1% strain at 1 Hz), and static mechanical stimuli (1% strain). The changes in prostate cancer cells' cytoskeletal reorganization, polarity (elongation index), proliferation, expression level of N-Cadherin (metastasis-associated gene), and migratory potential within the 3D collagen structures were assessed upon mechanical stimuli. The results have shown that static mechanical stimuli increased the metastasis progression factors, including cell elongation (p < 0.001), cellular F-actin accumulation (p < 0.001), actin polymerization (p < 0.001), N-Cadherin gene expression, and invasion capacity of PC-3 cells within a bone-like microenvironment compared to its cyclic and control loading counterparts. This study established a novel system for studying metastatic cancer cells within bone and enables the creation of biomimetic in vitro models for cancer research and mechanobiology.
Collapse
Affiliation(s)
- Maggie Ditto
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA
| | - Diego Jacho
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA
| | - Kathryn M. Eisenmann
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, Toledo, OH 43614, USA
| | - Eda Yildirim-Ayan
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
4
|
Xu QR, Du XH, Huang TT, Zheng YC, Li YL, Huang DY, Dai HQ, Li EM, Fang WK. Role of Cell-Cell Junctions in Oesophageal Squamous Cell Carcinoma. Biomolecules 2022; 12:biom12101378. [PMID: 36291586 PMCID: PMC9599896 DOI: 10.3390/biom12101378] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 02/05/2023] Open
Abstract
Cell-cell junctions comprise various structures, including adherens junctions, tight junctions, desmosomes, and gap junctions. They link cells to each other in tissues and regulate tissue homeostasis in critical cellular processes. Recent advances in cell-cell junction research have led to critical discoveries. Cell-cell adhesion components are important for the invasion and metastasis of tumour cells, which are not only related to cell-cell adhesion changes, but they are also involved in critical molecular signal pathways. They are of great significance, especially given that relevant molecular mechanisms are being discovered, there are an increasing number of emerging biomarkers, targeted therapies are becoming a future therapeutic concern, and there is an increased number of therapeutic agents undergoing clinical trials. Oesophageal squamous cell carcinoma (ESCC), the most common histological subtype of oesophageal cancer, is one of the most common cancers to affect epithelial tissue. ESCC progression is accompanied by the abnormal expression or localisation of components at cell-cell junctions. This review will discuss the recent scientific developments related to the molecules at cell-cell junctions and their role in ESCC to offer valuable insights for readers, provide a global view of the relationships between position, construction, and function, and give a reference for future mechanistic studies, diagnoses, and therapeutic developments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - En-Min Li
- Correspondence: (E.-M.L.); (W.-K.F.)
| | | |
Collapse
|
5
|
Pulford CS, Uppalapati CK, Montgomery MR, Averitte RL, Hull EE, Leyva KJ. A Hybrid Epithelial to Mesenchymal Transition in Ex Vivo Cutaneous Squamous Cell Carcinoma Tissues. Int J Mol Sci 2022; 23:ijms23169183. [PMID: 36012449 PMCID: PMC9408944 DOI: 10.3390/ijms23169183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/09/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
While most cases of cutaneous squamous cell carcinoma (cSCC) are benign, invasive cSCC is associated with higher mortality and is often more difficult to treat. As such, understanding the factors that influence the progression of cSCC are important. Aggressive cancers metastasize through a series of evolutionary changes, collectively called the epithelial-to-mesenchymal transition (EMT). During EMT, epithelial cells transition to a highly mobile mesenchymal cell type with metastatic capacities. While changes in expression of TGF-β, ZEB1, SNAI1, MMPs, vimentin, and E-cadherin are hallmarks of an EMT process occurring within cancer cells, including cSCC cells, EMT within tissues is not an “all or none” process. Using patient-derived cSCC and adjacent normal tissues, we show that cells within individual cSCC tumors are undergoing a hybrid EMT process, where there is variation in expression of EMT markers by cells within a tumor mass that may be facilitating invasion. Interestingly, cells along the outer edges of a tumor mass exhibit a more mesenchymal phenotype, with reduced E-cadherin, β-catenin, and cytokeratin expression and increased vimentin expression. Conversely, cells in the center of a tumor mass retain a higher expression of the epithelial markers E-cadherin and cytokeratin and little to no expression of vimentin, a mesenchymal marker. We also detected inverse expression changes in the miR-200 family and the EMT-associated transcription factors ZEB1 and SNAI1, suggesting that cSCC EMT dynamics are regulated in a miRNA-dependent manner. These novel findings in cSCC tumors provide evidence of phenotypic plasticity of the EMT process occurring within patient tissues, and extend the characterization of a hybrid EMT program occurring within a tumor mass. This hybrid EMT program may be promoting both survival and invasiveness of the tumors. A better understanding of this hybrid EMT process may influence therapeutic strategies in more invasive disease.
Collapse
Affiliation(s)
- Christopher S. Pulford
- Arizona College of Osteopathic Medicine, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA
| | - Chandana K. Uppalapati
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA
| | | | - Richard L. Averitte
- Affiliated Dermatology & Affiliated Laboratories, 20401 N. 73rd Street #230, Scottsdale, AZ 85255, USA
| | - Elizabeth E. Hull
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA
| | - Kathryn J. Leyva
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA
- Correspondence: ; Tel.: 1-623-572-3294
| |
Collapse
|
6
|
Jiao M, Zhang P, Yu X, Sun P, Liu M, Qiao Y, Pan K. Osteoprotegerin/receptor activator of nuclear factor‑κB ligand are involved in periodontitis‑promoted vascular calcification. Exp Ther Med 2022; 24:512. [PMID: 35813311 PMCID: PMC9260016 DOI: 10.3892/etm.2022.11439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/23/2022] [Indexed: 11/23/2022] Open
Abstract
The present study explored the potential role of osteoprotegerin (OPG)/receptor activator of nuclear factor-κB (RANK)/receptor activator of nuclear factor-κB ligand (RANKL) in promoting vascular calcification by periodontitis. Thirty-six male Wistar rats were randomly assigned to four groups to establish animal models as follows: the sham group (group C), vascular calcification group (group VDN), periodontitis group (group CP), and test group (group CP+VDN). After eight weeks, all the rats were sacrificed. The periodontal and vascular calcification indices were detected. Quantitative polymerase chain reaction (qPCR), immunohistochemistry, western blot analysis, and enzyme-linked immunosorbent assay (ELISA) were used to quantify OPG/RANK/RANKL expression in vascular tissue and serum. Protein expression analyses revealed the expression of OPG and RANKL in the vascular tissues of the four groups. The expression of OPG in group C was the highest, which was similar to group CP+VDN, and the expression of OPG in groups CP and VDN were lower. However, the expression of RANKL was inversely correlated with OPG, and the ratio of RANKL/OPG was also higher in groups CP and VDN than that in groups C and CP+VDN. In conclusion, OPG/RANK/RANKL may play an essential role in the promotion of vascular calcification by periodontitis. However, the expression levels of OPG and RANKL were not simply superimposed when periodontitis and vascular calcification co-existed.
Collapse
Affiliation(s)
- Mengyu Jiao
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Pengmei Zhang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Xinbo Yu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Pei Sun
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Meiwei Liu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yanya Qiao
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Keqing Pan
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
7
|
Sisto M, Ribatti D, Lisi S. Cadherin Signaling in Cancer and Autoimmune Diseases. Int J Mol Sci 2021; 22:ijms222413358. [PMID: 34948155 PMCID: PMC8704376 DOI: 10.3390/ijms222413358] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023] Open
Abstract
Cadherins mediate cell–cell adhesion through a dynamic process that is strongly dependent on the cellular context and signaling. Cadherin regulation reflects the interplay between fundamental cellular processes, including morphogenesis, proliferation, programmed cell death, surface organization of receptors, cytoskeletal organization, and cell trafficking. The variety of molecular mechanisms and cellular functions regulated by cadherins suggests that we have only scratched the surface in terms of clarifying the functions mediated by these versatile proteins. Altered cadherins expression is closely connected with tumorigenesis, epithelial–mesenchymal transition (EMT)-dependent fibrosis, and autoimmunity. We review the current understanding of how cadherins contribute to human health and disease, considering the mechanisms of cadherin involvement in diseases progression, as well as the clinical significance of cadherins as therapeutic targets.
Collapse
|
8
|
Wu W, Wang C, Wang F, Wang Y, Jin Y, Luo J, Wang M, Zhang C, Wang S, Zhang F, Li M. Silencing the COPB2 gene decreases the proliferation, migration and invasion of human triple-negative breast cancer cells. Exp Ther Med 2021; 22:792. [PMID: 34093748 PMCID: PMC8170640 DOI: 10.3892/etm.2021.10224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/23/2021] [Indexed: 12/27/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is highly invasive, has a high rate of recurrence and is associated with a poor clinical outcome when compared with non-TNBC due to a lack of effective and targeted treatments. The coatomer protein complex subunit β2 (COPB2) is upregulated in various types of malignant cancer. The present study demonstrated that COPB2 expression levels were significantly upregulated in breast carcinoma HS-578T cells (clonal cells originating from TNBC) when compared with non-TNBC MCF-7 cells. HS-578T cells also exhibited higher rates of proliferation, invasion and transendothelial migration when compared with MCF-7 cells. Moreover, it was identified that genetically silencing the COPB2 gene using a lentivirus-short hairpin RNA inhibited the proliferative, colony formation, migratory and invasive properties of the TNBC HS-578T cells. Mediation of the COPB2 silencing effect may be associated with regulating the phosphorylation of serine/threonine kinase AKT in the PI3K/AKT signaling pathway. These results suggested the importance of COPB2 in promoting the proliferation of TNBC cells and identified COPB2 as a potential novel therapeutic target.
Collapse
Affiliation(s)
- Wencheng Wu
- Department of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Chenyu Wang
- Department of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Fengxia Wang
- Department of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yan Wang
- Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Yanling Jin
- Department of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jing Luo
- Department of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Min Wang
- Department of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Chenli Zhang
- Department of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Shuya Wang
- Department of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Fangfang Zhang
- Department of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Min Li
- Department of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Gansu Provincial Key Laboratory of Preclinical Study for New Drug Development, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
9
|
Kaszak I, Witkowska-Piłaszewicz O, Niewiadomska Z, Dworecka-Kaszak B, Ngosa Toka F, Jurka P. Role of Cadherins in Cancer-A Review. Int J Mol Sci 2020; 21:E7624. [PMID: 33076339 PMCID: PMC7589192 DOI: 10.3390/ijms21207624] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Cadherins play an important role in tissue homeostasis, as they are responsible for cell-cell adhesion during embryogenesis, tissue morphogenesis, differentiation and carcinogenesis. Cadherins are inseparably connected with catenins, forming cadherin-catenin complexes, which are crucial for cell-to-cell adherence. Any dysfunction or destabilization of cadherin-catenin complex may result in tumor progression. Epithelial mesenchymal transition (EMT) is a mechanism in which epithelial cadherin (E-cadherin) expression is lost during tumor progression. However, during tumorigenesis, many processes take place, and downregulation of E-cadherin, nuclear β-catenin and p120 catenin (p120) signaling are among the most critical. Additional signaling pathways, such as Receptor tyrosine kinase (RTK), Rho GTPases, phosphoinositide 3-kinase (PI3K) and Hippo affect cadherin cell-cell adhesion and also contribute to tumor progression and metastasis. Many signaling pathways may be activated during tumorigenesis; thus, cadherin-targeting drugs seem to limit the progression of malignant tumor. This review discusses the role of cadherins in selected signaling mechanisms involved in tumor growth. The clinical importance of cadherin will be discussed in cases of human and animal cancers.
Collapse
Affiliation(s)
- Ilona Kaszak
- Department of Small Animal Diseases, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
| | - Olga Witkowska-Piłaszewicz
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Zuzanna Niewiadomska
- Carnivore Reproduction Study Center, Ecole Nationale Veterinaire d’Alfort, 94700 Maison Alfort, France;
| | - Bożena Dworecka-Kaszak
- Department of Preclinical Sciences, Institute of Veterinary Medicine; Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
| | - Felix Ngosa Toka
- Center for Integrative Mammalian Research, Ross University School of Veterinary Medicine, BOX 334 Basseterre, Saint Kitts and Nevis, West Indies;
| | - Piotr Jurka
- Department of Small Animal Diseases, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
| |
Collapse
|
10
|
Bonfim-Silva R, Salomão KB, Pimentel TVCDA, Menezes CCBDO, Palma PVB, Fontes AM. Biological characterization of the UW402, UW473, ONS-76 and DAOY pediatric medulloblastoma cell lines. Cytotechnology 2019; 71:893-903. [PMID: 31346954 PMCID: PMC6787134 DOI: 10.1007/s10616-019-00332-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 07/19/2019] [Indexed: 12/15/2022] Open
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children. Recent advances in molecular technologies allowed to classify MB in 4 major molecular subgroups: WNT, SHH, Group 3 and Group 4. In cancer research, cancer cell lines are important for examining and manipulating molecular and cellular process. However, it is important to know the characteristics of each cancer cell line prior to use, because there are some differences among them, even if they originate from the same cancer type. This study aimed to evaluate the similarities and differences among four human medulloblastoma cell lines, UW402, UW473, DAOY and ONS-76. The medulloblastoma cell lines were analyzed for (1) cell morphology, (2) immunophenotyping by flow cytometry for some specifics surface proteins, (3) expression level of adhesion molecules by RT-qPCR, (4) proliferative potential, (5) cell migration, and (6) in vivo tumorigenic potential. It was observed a relationship between cell growth and CDH1 (E-chaderin) adhesion molecule expression and all MB cell lines showed higher levels of CDH2 (N-chaderin) when compared to other adhesion molecule. ONS-76 showed higher gene expression of CDH5 (VE-chaderin) and higher percentage of CD144/VE-chaderin positive cells when compared to other MB cell lines. All MB cell lines showed low percentage of CD34, CD45, CD31, CD133 positive cells and high percentage of CD44, CD105, CD106 and CD29 positive cells. The DAOY cell line showed the highest migration potential, the ONS-76 cell line showed the highest proliferative potential and only DAOY and ONS-76 cell lines showed tumorigenic potential in vivo. MB cell lines showed functional and molecular differences among them, which it should be considered by the researchers in choosing the most suitable cellular model according to the study proposal.
Collapse
Affiliation(s)
- Ricardo Bonfim-Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900 Monte Alegre, Ribeirão Preto, São Paulo, ZIP code: 14049-900, Brazil.
| | - Karina Bezerra Salomão
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900 Monte Alegre, Ribeirão Preto, São Paulo, ZIP code: 14049-900, Brazil
| | - Thais Valéria Costa de Andrade Pimentel
- Department of Medical Clinic, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900 Monte Alegre, Ribeirão Preto, São Paulo, ZIP code: 14049-900, Brazil
| | - Camila Cristina Branquinho de Oliveira Menezes
- Ribeirão Preto Blood Center, Clinics Hospital of the Ribeirão Preto Medical School, University of São Paulo, Av. Tenente Catão Roxo, 2501 Monte Alegre, Ribeirão Preto, São Paulo, ZIP code: 14051-140, Brazil
| | - Patrícia Vianna Bonini Palma
- Ribeirão Preto Blood Center, Clinics Hospital of the Ribeirão Preto Medical School, University of São Paulo, Av. Tenente Catão Roxo, 2501 Monte Alegre, Ribeirão Preto, São Paulo, ZIP code: 14051-140, Brazil
| | - Aparecida Maria Fontes
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900 Monte Alegre, Ribeirão Preto, São Paulo, ZIP code: 14049-900, Brazil
| |
Collapse
|
11
|
Sakhawat A, Ma L, Muhammad T, Khan AA, Chen X, Huang Y. A tumor targeting oncolytic adenovirus can improve therapeutic outcomes in chemotherapy resistant metastatic human breast carcinoma. Sci Rep 2019; 9:7504. [PMID: 31097752 PMCID: PMC6522519 DOI: 10.1038/s41598-019-43668-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/17/2019] [Indexed: 01/05/2023] Open
Abstract
Breast cancer is the most prevalent malignancy in women, which remains untreatable once metastatic. The treatment of advanced breast cancer is restricted due to chemotherapy resistance. We previously investigated anti-cancer potential of a tumor selective oncolytic adenovirus along with cisplatin in three lung cancer cells; A549, H292, and H661, and found it very efficient. To our surprise, this virotherapy showed remarkable cytotoxicity to chemo-resistant cancer cells. Here, we extended our investigation by using two breast cancer cells and their resistant sublines to further validate CRAd’s anti-resistance properties. Results of in vitro and in vivo analyses recapitulated the similar anti-tumor potential of CRAd. Based on the molecular analysis through qPCR and western blotting, we suggest upregulation of coxsackievirus-adenovirus receptor (CAR) as a selective vulnerability of chemotherapy-resistant tumors. CAR knockdown and overexpression experiments established its important involvement in the success of CRAd-induced tumor inhibition. Additionally, through transwell migration assay we demonstrate that CRAd might have anti-metastatic properties. Mechanistic analysis show that CRAd pre-treatment could reverse epithelial to mesenchymal transition in breast cancer cells, which needs further verification. These insights may prove to be a timely opportunity for the application of CRAd in recurrent drug-resistant cancers.
Collapse
Affiliation(s)
- Ali Sakhawat
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang, 100124, Beijing, China
| | - Ling Ma
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang, 100124, Beijing, China
| | - Tahir Muhammad
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang, 100124, Beijing, China
| | - Aamir Ali Khan
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang, 100124, Beijing, China
| | - Xuechai Chen
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang, 100124, Beijing, China
| | - Yinghui Huang
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang, 100124, Beijing, China.
| |
Collapse
|
12
|
Ke K, Sun Z, Wang Z. Downregulation of long non-coding RNA GAS5 promotes cell proliferation, migration and invasion in esophageal squamous cell carcinoma. Oncol Lett 2018; 16:1801-1808. [PMID: 30008868 PMCID: PMC6036321 DOI: 10.3892/ol.2018.8797] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/12/2018] [Indexed: 01/10/2023] Open
Abstract
The present study aimed to investigate the potential role of long non-coding RNA growth arrest-specific transcript 5 (lncRNA GAS5) in the progression of esophageal squamous cell carcinoma (ESCC) and to reveal its possible regulatory mechanism. The expression of lncRNA GAS5 in ESCC tissues and cell lines was analyzed using reverse transcription-quantitative polymerase chain reaction and western blot analysis. The overexpression vector pc-GAS5 and control vector pc-negative control (NC), containing no GAS5 sequence, were transfected into ESCC cells. The effects of lncRNA GAS5 overexpression on cell proliferation, cell cycle distribution, cell migration and invasion were then analyzed. Besides, the expression levels of ATM-CHK2 pathway-associated proteins and epithelial-mesenchymal transition (EMT)-associated proteins were measured. Expression of lncRNA GAS5 was downregulated in the ESCC tissues compared with adjacent normal tissues, and was also downregulated in ESCC Kyse450 cells compared with the human esophageal epithelial HET-1A cell line. Additionally, lncRNA GAS5 was successfully overexpressed in ESCC cells following transfection with pc-GAS5. Overexpression of lncRNA GAS5 significantly inhibited cell proliferation, induced cell cycle arrest at G2/M phase and suppressed cellular migration and invasion. When cells were transfected with pc-GAS5, the levels of phosphorylated (p)-ATM serine/threonine protein kinase, p-checkpoint kinase 2 (CHK2), p-cell division cycle 25C, p-cyclin-dependent kinase 1, N-cadherin, vimentin and Snail were significantly increased, whereas that of E-cadherin were markedly decreased. The results of the present study indicate that overexpression of lncRNA GAS5 may inhibit cell proliferation, migration and invasion in ESCC. lncRNA GAS5 overexpression may induce cell cycle arrest at G2/M stage by activating the ATM-CHK2 pathway. The results of the current study further indicate that lncRNA GAS5 overexpression may suppress cell migration and invasion via EMT-associated proteins. lncRNA GAS5 could therefore serve as a potential target for ESCC therapy.
Collapse
Affiliation(s)
- Ke Ke
- Department of Head and Neck (Esophagus) Medical Oncology, Huangshi Central Hospital of Edong Healthcare Group, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei 435000, P.R. China
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi Central Hospital of Edong Healthcare Group, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei 435000, P.R. China
| | - Zhanwen Sun
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi Central Hospital of Edong Healthcare Group, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei 435000, P.R. China
- Department of Cardiothoracic Surgery, Huangshi Central Hospital of Edong Healthcare Group, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei 435000, P.R. China
| | - Zhengjun Wang
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi Central Hospital of Edong Healthcare Group, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei 435000, P.R. China
- Department of Cardiothoracic Surgery, Huangshi Central Hospital of Edong Healthcare Group, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei 435000, P.R. China
| |
Collapse
|
13
|
Significance of PI3K/AKT signaling pathway in metastasis of esophageal squamous cell carcinoma and its potential as a target for anti-metastasis therapy. Oncotarget 2018; 8:38755-38766. [PMID: 28418888 PMCID: PMC5503569 DOI: 10.18632/oncotarget.16333] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 02/20/2017] [Indexed: 02/06/2023] Open
Abstract
Metastasis is the most lethal hallmark of esophageal squamous cell carcinoma (ESCC). The aim of the study is to identify key signaling pathways that control metastasis in ESCC. Highly invasive ESCC sublines (designated I3 cells) were established through three rounds of selection of cancer cells invading through matrigel-coated chambers. Gene expression profile of one of the I3 sublines was compared with that of its parental cell line using cDNA microarray analysis. Gene ontology and pathway analyses of the differentially expressed genes (both upregulated and downregulated) indicated that genes associated with cellular movement and the AKT pathway were associated with increased cancer cell invasiveness. Western blot analysis confirmed increased phosphorylated AKT (p-AKT), N-cadherin and decreased E-cadherin expression in the I3 cells. Immunohistochemistry was used to evaluate the clinical significance of p-AKT expression in ESCC, and the results showed higher p-AKT nuclear expression in lymph node metastases when compared with primary carcinoma. Inactivation of the PI3K/AKT pathway with specific inhibitors, or with PTEN overexpression, resulted in reversed cadherin switching and inhibited cancer cell motility. Inhibition of the pathway by treatment with wortmannin markedly suppressed experimental metastasis in nude mice. Our data demonstrated the importance of the PI3K/AKT signaling pathway in ESCC metastasis and support PI3K/AKT as a valid therapeutic target in treatment of metastatic ESCC.
Collapse
|
14
|
Zhu S, Liu J, Min L, Sun X, Guo Q, Li H, Zhang Z, Zhao Y, Gu J, Zhang S. Cadherin Expression Shift Could Well Distinguish Esophageal Squamous Cell Carcinoma from Non- Cancerous Esophageal Tissues. Oncol Res Treat 2018; 41:380-385. [PMID: 29734166 DOI: 10.1159/000487267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 01/30/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Biomarkers for esophageal squamous cell carcinoma (ESCC) identification with high sensitivity are not well established. Since abnormal expression of cadherins has been widely reported in cancer, we explored its feasibility as an ESCC biomarker. METHODS Expression of E-cadherin and N-cadherin were detected in 150 esophageal tissues by immunohistochemistry. Staining strength and percentage in different subcellular structures of each specimen were evaluated by 2 independent pathologists. A logistic regression-based classifier derived from E-cadherin and N-cadherin staining was generated. RESULTS E-cadherin exhibited decreased membrane expression in ESCC, while N-cadherin exhibited decreased expression in the nucleus but elevated expression in the cytoplasm. Both E-cadherin and N-cadherin could distinguish ESCC tissues from non-cancerous tissues (area under the curve (AUC) = 0.748, 0.801, respectively). E-cadherin and N-cadherin staining scores could be merged into a cadherin (CDH) logistic index, which showed better discrimination (AUC = 0.909) than E-cadherin or N-cadherin alone. Further investigation indicated that the CDH logistic index was significantly correlated with tumor size and differentiation in ESCC. CONCLUSION Both E-cadherin and N-cadherin had a strong expression shift in ESCC compared with non-cancerous tissues. The CDH logistic index, a parameter integrating the expression data of both cadherins, could be used as a marker with high sensitivity and specificity in the identification of ESCC.
Collapse
|
15
|
Li Q, Jin J, Liu J, Wang L, He Y. Knockdown of Zinc Transporter ZIP5 by RNA Interference Inhibits Esophageal Cancer Growth In Vivo. Oncol Res 2017; 24:205-14. [PMID: 27458102 PMCID: PMC7838672 DOI: 10.3727/096504016x14648701447896] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We recently found that SLC39A5 (ZIP5), a zinc transporter, is overexpressed in esophageal cancer. Downregulation of ZIP5 inhibited the proliferation, migration, and invasion of the esophageal cancer cell line KYSE170 in vitro. In this study, we found that downregulation of SLC39A5 (ZIP5) by interference resulted in a significant reduction in esophageal cancer tumor volume and weight in vivo. COX2 (cyclooxygenase 2) expression was decreased and E-cadherin expression was increased in the KYSE170K xenografts, which was caused by the downregulation of ZIP5. However, we did not find that the downregulation of ZIP5 caused a change in the relative expressions of cyclin D1, VEGF (vascular endothelial growth factor), MMP9 (matrix metalloprotein 9), and Bcl-2 (B-cell lymphoma/leukmia-2) mRNA or an alteration in the average level of zinc in the peripheral blood and xenografts in vivo. Collectively, these findings indicate that knocking down ZIP5 by small interfering RNA (siRNA) might be a novel treatment strategy for esophageal cancer with ZIP5 overexpression.
Collapse
Affiliation(s)
- Qian Li
- Cancer Institute, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | | | | | | | | |
Collapse
|
16
|
Wen J, Luo KJ, Liu QW, Wang G, Zhang MF, Xie XY, Yang H, Fu JH, Hu Y. The epithelial-mesenchymal transition phenotype of metastatic lymph nodes impacts the prognosis of esophageal squamous cell carcinoma patients. Oncotarget 2016; 7:37581-37588. [PMID: 27147562 PMCID: PMC5122333 DOI: 10.18632/oncotarget.9036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 04/07/2016] [Indexed: 02/05/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) plays a key role in tumor metastasis, but the significance of EMT phenotype to the prognosis of esophageal squamous cell carcinoma (ESCC) patients remains unclear. We used immunohistochemistry to examine the expression of the EMT-related proteins E-cadherin, N-cadherin and vimentin in samples of T3N1-3M0 ESCC from 155 primary tumors (PTs) with paired metastatic lymph nodes (MLNs) and 58 PTs without paired MLNs. Based on the expression pattern of the EMT markers, PTs and MLNs were classified as EMT wild, hybrid, null or complete type. The hybrid (42.7%) and complete (39.4%) types predominated among PTs, whereas the wild (34.2%) and hybrid (52.9%) types predominated among MLNs, and EMT phenotypes differed between the paired PTs and MLNs (P < 0.001). Univariate analysis revealed that, for PTs, the EMT phenotype was associated with N-stage (P = 0.039) but not patient survival, and that patients with complete or hybrid type MLNs had better overall survival (OS, P = 0.001) and disease-free survival (DFS, P = 0.005) than patients with null and wild type MLNs, especially those with N1-stage disease (P = 0.017 for OS, and P = 0.017 for DFS, respectively). Multivariate analysis revealed that wild and null type MLNs as well as older age and N2-3 stage were independent predictors of OS and DFS (P < 0.05). Thus MLNs exhibit EMT phenotypes that are distinct from those of their PT and may serve as a novel independent prognostic indicator in ESCC.
Collapse
Affiliation(s)
- Jing Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Guangdong Esophageal Cancer Institute, Guangzhou 510060, China
| | - Kong-Jia Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Guangdong Esophageal Cancer Institute, Guangzhou 510060, China
- Department of Thoracic Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Qian-Wen Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Guangdong Esophageal Cancer Institute, Guangzhou 510060, China
- Department of Thoracic Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Geng Wang
- Department of Thoracic Surgery, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
| | - Mei-Fang Zhang
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xiu-Ying Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Guangdong Esophageal Cancer Institute, Guangzhou 510060, China
| | - Hong Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Guangdong Esophageal Cancer Institute, Guangzhou 510060, China
- Department of Thoracic Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jian-Hua Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Guangdong Esophageal Cancer Institute, Guangzhou 510060, China
- Department of Thoracic Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yi Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Guangdong Esophageal Cancer Institute, Guangzhou 510060, China
- Department of Thoracic Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
17
|
N-cadherin participated in invasion and metastasis of human esophageal squamous cell carcinoma via taking part in the formation of vasculogenic mimicry. Med Oncol 2015; 32:480. [PMID: 25575439 DOI: 10.1007/s12032-014-0480-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 12/20/2014] [Indexed: 12/13/2022]
Abstract
Vasculogenic mimicry (VM) refers to the unique ability of highly aggressive tumor cells to mimic the pattern of embryonic vasculogenic networks, and the presence of VM correlates to an increased risk of metastasis and poor clinical outcome of cancers. Several key molecules, including N-cadherin, have been implicated in VM. However, the role of N-cadherin in the formation of VM in esophageal squamous cell carcinoma (ESCC) had not been elucidated. In this study, firstly we aimed to identify VM patterns in ESCC tissues and to explore their clinical significance. VM was present in 12 out of 56 samples, and ESCC with lymph node metastasis had a higher incidence of VM than that without lymph node metastasis. More importantly, VM channels were associated with the expression of N-cadherin in ESCC tissues. In order to further explore the role of N-cadherin in VM formation and invasion and metastasis in ESCC, secondly, we silenced the expression of N-cadherin with small hairpin RNA in ESCC cell line KYSE-70; herein, we showed that KYSE-70 cells with N-cadherin silencing lost not only the capacity to form tube-like structures on collagen (VM) but also the invasion, metastasis and proliferation ability in KYSE-70 cells in vitro. Taken together, antivascular therapies targeting tumor cell VM may be an effective approach to the treatment of patients with highly metastatic ESCC.
Collapse
|
18
|
Sadler NM, Harris BR, Metzger BA, Kirshner J. N-cadherin impedes proliferation of the multiple myeloma cancer stem cells. AMERICAN JOURNAL OF BLOOD RESEARCH 2013; 3:271-285. [PMID: 24396705 PMCID: PMC3875273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/06/2013] [Indexed: 06/03/2023]
Abstract
Multiple myeloma (MM) is an incurable malignancy of the plasma cells localized to the bone marrow. A rare population of MM cancer stem cells (MM-CSCs) has been shown to be responsible for maintaining the pull of residual disease and to contribute to myeloma relapse. The stem cells are found in a bone marrow niche in contact with the stromal cells that are responsible for maintaining the proliferative quiescence of the MM-CSC and regulate its self-renewal and differentiation decisions. Here we show that both MM and bone marrow stromal cells express N-cadherin, a cell-cell adhesion molecule shown to maintain a pool of leukemic stem cells. Inhibition of N-cadherin using a neutralizing antibody led to an increase in the MM cell proliferation. A decrease in MM cell adhesion to the bone marrow stroma was observed in the first 24 hours of co-culture followed by a 2.3-30-fold expansion of the adherent cells. Moreover, inhibition of N-cadherin led to a 4.8-9.6-fold expansion of the MM-CSC population. Surprisingly, addition of the N-cadherin antagonist peptide resulted in massive death of the non-adherent MM cells, while the viability of the adherent cells and MM-CSCs remained unaffected. Interestingly, the proliferative effects of N-cadherin inhibition were not mediated by the nuclear translocation of β-catenin. Taken together, our findings demonstrate the crucial role of N-cadherin in regulating MM cell proliferation and viability and open an interesting avenue of investigation to understand how structural modifications of N-cadherin can affect MM cell behavior. Our findings suggest that targeting N-cadherin may be a useful therapeutic strategy to treat MM in conjunction with an agent that has anti-MM-CSC activity.
Collapse
Affiliation(s)
- Nicole M Sadler
- Department of Biological Sciences, Purdue University West Lafayette, IN, 47907, USA
| | - Britney R Harris
- Department of Biological Sciences, Purdue University West Lafayette, IN, 47907, USA
| | - Brittany A Metzger
- Department of Biological Sciences, Purdue University West Lafayette, IN, 47907, USA
| | - Julia Kirshner
- Department of Biological Sciences, Purdue University West Lafayette, IN, 47907, USA
| |
Collapse
|
19
|
Richter S, Morrison S, Connor T, Su J, Print CG, Ronimus RS, McGee SL, Wilson WR. Zinc finger nuclease mediated knockout of ADP-dependent glucokinase in cancer cell lines: effects on cell survival and mitochondrial oxidative metabolism. PLoS One 2013; 8:e65267. [PMID: 23799003 PMCID: PMC3683018 DOI: 10.1371/journal.pone.0065267] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/23/2013] [Indexed: 01/22/2023] Open
Abstract
Zinc finger nucleases (ZFN) are powerful tools for editing genes in cells. Here we use ZFNs to interrogate the biological function of ADPGK, which encodes an ADP-dependent glucokinase (ADPGK), in human tumour cell lines. The hypothesis we tested is that ADPGK utilises ADP to phosphorylate glucose under conditions where ATP becomes limiting, such as hypoxia. We characterised two ZFN knockout clones in each of two lines (H460 and HCT116). All four clones had frameshift mutations in all alleles at the target site in exon 1 of ADPGK, and were ADPGK-null by immunoblotting. ADPGK knockout had little or no effect on cell proliferation, but compromised the ability of H460 cells to survive siRNA silencing of hexokinase-2 under oxic conditions, with clonogenic survival falling from 21±3% for the parental line to 6.4±0.8% (p = 0.002) and 4.3±0.8% (p = 0.001) for the two knockouts. A similar increased sensitivity to clonogenic cell killing was observed under anoxia. No such changes were found when ADPGK was knocked out in HCT116 cells, for which the parental line was less sensitive than H460 to anoxia and to hexokinase-2 silencing. While knockout of ADPGK in HCT116 cells caused few changes in global gene expression, knockout of ADPGK in H460 cells caused notable up-regulation of mRNAs encoding cell adhesion proteins. Surprisingly, we could discern no consistent effect on glycolysis as measured by glucose consumption or lactate formation under anoxia, or extracellular acidification rate (Seahorse XF analyser) under oxic conditions in a variety of media. However, oxygen consumption rates were generally lower in the ADPGK knockouts, in some cases markedly so. Collectively, the results demonstrate that ADPGK can contribute to tumour cell survival under conditions of high glycolytic dependence, but the phenotype resulting from knockout of ADPGK is cell line dependent and appears to be unrelated to priming of glycolysis in these lines.
Collapse
Affiliation(s)
- Susan Richter
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | - Shona Morrison
- Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Tim Connor
- Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Jiechuang Su
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | - Cristin G. Print
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- The New Zealand Bioinformatics Institute, The University of Auckland, Auckland, New Zealand
| | | | - Sean L. McGee
- Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - William R. Wilson
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
- * E-mail:
| |
Collapse
|
20
|
Notch-mediated induction of N-cadherin and α9-integrin confers higher invasive phenotype on rhabdomyosarcoma cells. Br J Cancer 2012; 107:1374-83. [PMID: 22976797 PMCID: PMC3494428 DOI: 10.1038/bjc.2012.411] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: Rhabdomyosarcoma (RMS) is the commonest type of soft-tissue sarcoma in children. Patients with metastatic RMS continue to have very poor prognosis. Recently, several works have demonstrated a connection between Notch pathway activation and the regulation of cell motility and invasiveness. However, the molecular mechanisms of this possible relationship remain unclear. Methods: The Notch pathway was manipulated pharmacologically and genetically. The mRNA changes were analysed by quantitative PCR and protein variations by western blot and immunofluorescence. Finally, the capabilities of RMS cells to adhere, heal a wound and invade were assessed in the presence of neuronal cadherin (N-cadherin)- and α9-integrin-blocking antibodies. Results: Cells treated with γ-secretase inhibitor showed lower adhesion capability and downregulation of N-cadherin and α9-integrin. Genetic manipulation of the Notch pathway led to concomitant variations in N-cadherin and α9-integrin. Treatment with anti-N-cadherin-blocking antibody rendered marked inhibition of cell adhesion and motility, while anti-α9-integrin-blocking antibody exerted a remarkable effect on cell adhesion and invasiveness. Conclusion: Neuronal cadherin and α9-integrin are postulated as leading actors in the association between the Notch pathway and promotion of cell adhesion, motility and invasion, pointing to these proteins and the Notch pathway itself as interesting putative targets for new molecular therapies against metastases in RMS.
Collapse
|
21
|
Ding X, He Z, Shi Y, Wang Q, Wang Y. Targeting TRPC6 channels in oesophageal carcinoma growth. Expert Opin Ther Targets 2010; 14:513-27. [PMID: 20235901 DOI: 10.1517/14728221003733602] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|