1
|
Zhang X, Chen J, Ma X, Tang X, Tan B, Liao P, Yao K, Jiang Q. Mycotoxins in Feed: Hazards, Toxicology, and Plant Extract-Based Remedies. Metabolites 2025; 15:219. [PMID: 40278348 PMCID: PMC12029259 DOI: 10.3390/metabo15040219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/26/2025] Open
Abstract
Background: Mycotoxins, which are secondary metabolites produced by fungi, are prevalent in animal feed and pose a serious risk to the healthy growth of livestock and poultry. Methods: This review aims to conclude current knowledge on the detrimental effects of mycotoxins on animal health and to demonstrate the potential of plant extracts as a means to counteract mycotoxin toxicity in feed. A systematic review of the literature was conducted to identify studies on the impact of mycotoxins on livestock and poultry health, as well as research into the use of plant extracts as feed additives to mitigate mycotoxin effects. Studies were selected based on their relevance to the topic, and data were extracted regarding the mechanisms of action and the efficacy of plant extracts. Results: Excessive mycotoxins in feed can lead to reduced appetite, impaired digestion, and general health issues in animals, resulting in decreased food intake, slowed weight gain, and instances of acute poisoning. Plant extracts with antioxidant, anti-inflammatory, and anti-mutagenic properties have shown the potential to improve production efficiency and reduce the toxic effects of mycotoxins. Conclusion: This comprehensive review not only consolidates the well-documented adverse effects of mycotoxins on animal health but also introduces a novel perspective by highlighting the potential of plant extracts as a promising and natural solution to counteract mycotoxin toxicity.
Collapse
Affiliation(s)
- Xiangnan Zhang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.Z.); (J.C.); (X.M.); (X.T.); (B.T.)
- Yuelushan Laboratory, Changsha 410128, China
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China;
| | - Jiashun Chen
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.Z.); (J.C.); (X.M.); (X.T.); (B.T.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Xiaokang Ma
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.Z.); (J.C.); (X.M.); (X.T.); (B.T.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Xiongzhuo Tang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.Z.); (J.C.); (X.M.); (X.T.); (B.T.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Bie Tan
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.Z.); (J.C.); (X.M.); (X.T.); (B.T.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Peng Liao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China;
| | - Kang Yao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China;
| | - Qian Jiang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.Z.); (J.C.); (X.M.); (X.T.); (B.T.)
- Yuelushan Laboratory, Changsha 410128, China
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China;
| |
Collapse
|
2
|
Wang Y, Wang X, Li Q. Aflatoxin B 1 in poultry liver: Toxic mechanism. Toxicon 2023; 233:107262. [PMID: 37619742 DOI: 10.1016/j.toxicon.2023.107262] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/05/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
Aflatoxin B1 (AFB1) is the most common carcinogenic toxin in livestock and poultry feed, seriously endangering poultry production and public health. Liver is the most important organ for the metabolism of exogenous and endogenous substances in the body. AFB1 produces toxicity under the biotransformation of cytochrome P450 microparticle oxidase (CYP450). Hepatocytes are the most important cells for synthesizing CYP450 enzymes, so that AFB1 has the most significant effect on the liver. AFB1 can induce liver cell damage in poultry through a variety of molecular mechanisms, and the main of damage mechanisms have been discovered so far include oxidative damage, promoting apoptosis, influencing hepatocyte gene expression, interfering with hepatocyte autophagy, pyroptosis and necroptosis. This article reviewed the molecular mechanism of AFB1 inducing liver injury in poultry, hopefully, to provid a new direction and theoretical basis for the development of a new AFB1 detoxification method.
Collapse
Affiliation(s)
- Yuhan Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100091, China.
| | - Xinghe Wang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Liaoning Province, Shenyang, Liaoning 110866, China.
| | - Qingzhu Li
- Liaoning Center for Animal Disease Control and Prevention, Shenyang, Liaoning, 110161, China.
| |
Collapse
|
3
|
Li C, Liu X, Wu J, Ji X, Xu Q. Research progress in toxicological effects and mechanism of aflatoxin B 1 toxin. PeerJ 2022; 10:e13850. [PMID: 35945939 PMCID: PMC9357370 DOI: 10.7717/peerj.13850] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/16/2022] [Indexed: 01/18/2023] Open
Abstract
Fungal contamination of animal feed can severely affect the health of farm animals, and result in considerable economic losses. Certain filamentous fungi or molds produce toxic secondary metabolites known as mycotoxins, of which aflatoxins (AFTs) are considered the most critical dietary risk factor for both humans and animals. AFTs are ubiquitous in the environment, soil, and food crops, and aflatoxin B1(AFB1) has been identified by the World Health Organization (WHO) as one of the most potent natural group 1A carcinogen. We reviewed the literature on the toxic effects of AFB1 in humans and animals along with its toxicokinetic properties. The damage induced by AFB1 in cells and tissues is mainly achieved through cell cycle arrest and inhibition of cell proliferation, and the induction of apoptosis, oxidative stress, endoplasmic reticulum (ER) stress and autophagy. In addition, numerous coding genes and non-coding RNAs have been identified that regulate AFB1 toxicity. This review is a summary of the current research on the complexity of AFB1 toxicity, and provides insights into the molecular mechanisms as well as the phenotypic characteristics.
Collapse
Affiliation(s)
- Congcong Li
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Xiangdong Liu
- Huazhong Agricultural University, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
| | - Jiao Wu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Xiangbo Ji
- Henan University of Animal Husbandry and Economy, Henan Key Laboratory of Unconventional Feed Resources Innovative Utilization, Zhengzhou, Henan, China
| | - Qiuliang Xu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Cao W, Yu P, Yang K, Cao D. Aflatoxin B1: metabolism, toxicology, and its involvement in oxidative stress and cancer development. Toxicol Mech Methods 2021; 32:395-419. [PMID: 34930097 DOI: 10.1080/15376516.2021.2021339] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aflatoxins are a class of carcinogenic mycotoxins produced by Aspergillus fungi, which are widely distributed in nature. Aflatoxin B1 (AFB1) is the most toxic of these compounds and its metabolites have a variety of biological activities, including acute toxicity, teratogenicity, mutagenicity and carcinogenicity, which has been well-characterized to lead to the development of hepatocellular carcinoma (HCC) in humans and animals. This review focuses on the metabolism of AFB1, including epoxidation and DNA adduction, as it concerns the initiation of cancer and the underlying mechanisms. In addition to DNA adduction, inflammation and oxidative stress caused by AFB1 can also participate in the occurrence of cancer. Therefore, the main carcinogenic mechanism of AFB1 related ROS is summarized. This review also describes recent reports of AFB1 exposures in occupational settings. It is hoped that people will pay more attention to occupational health, in order to reduce the incidence of cancer caused by occupational exposure.
Collapse
Affiliation(s)
- Weiya Cao
- Medical school, Anhui University of Science & Technology, Huainan 232001, China
| | - Pan Yu
- Medical school, Anhui University of Science & Technology, Huainan 232001, China
| | - KePeng Yang
- Medical school, Anhui University of Science & Technology, Huainan 232001, China
| | - Dongli Cao
- Medical school, Anhui University of Science & Technology, Huainan 232001, China
| |
Collapse
|
5
|
Li H, Cheng W, Chen B, Pu S, Fan N, Zhang X, Jiao D, Shi D, Guo J, Li Z, Qing Y, Jia B, Zhao HY, Wei HJ. Efficient Generation of P53 Biallelic Mutations in Diannan Miniature Pigs Using RNA-Guided Base Editing. Life (Basel) 2021; 11:life11121417. [PMID: 34947951 PMCID: PMC8706133 DOI: 10.3390/life11121417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/30/2022] Open
Abstract
The base editing 3 (BE3) system, a single-base gene editing technology developed using CRISPR/Cas9n, has a broad range of applications for human disease model construction and gene therapy, as it is highly efficient, accurate, and non-destructive. P53 mutations are present in more than 50% of human malignancies. Due to the similarities between humans and pigs at the molecular level, pig models carrying P53 mutations can be used to research the mechanism of tumorigenesis and improve tumor diagnosis and treatment. According to pathogenic mutations of the human P53 gene at W146* and Q100*, sgRNAs were designed to target exon 4 and exon 5 of the porcine P53 gene. The target editing efficiencies of the two sgRNAs were 61.9% and 50.0%, respectively. The editing efficiency of the BE3 system was highest (about 60%) when C (or G) was at the 5th base. Puromycin screening revealed that 75.0% (21/28) and 68.7% (22/32) of cell colonies contained a P53 mutation at sgRNA-Exon5 and sgRNA-Exon4, respectively. The reconstructed embryos from sgRNA-Exon5-5# were transferred into six recipient gilts, all of which aborted. The reconstructed embryos from sgRNA-Exon4-7# were transferred into 6 recipient gilts, 3 of which became pregnant, resulting in 14 live and 3 dead piglets. Sequencing analyses of the target site confirmed 1 P53 monoallelic mutation and 16 biallelic mutations. The qPCR analysis showed that the P53 mRNA expression level was significantly decreased in different tissues of the P53 mutant piglets (p < 0.05). Additionally, confocal microscopy and western blot analysis revealed an absence of P53 expression in the P53 mutant fibroblasts, livers, and lung tissues. In conclusion, a porcine cancer model with a P53 point mutation can be obtained via the BE3 system and somatic cell nuclear transfer (SCNT).
Collapse
Affiliation(s)
- Honghui Li
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Wenmin Cheng
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Bowei Chen
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Shaoxia Pu
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Ninglin Fan
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Xiaolin Zhang
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Deling Jiao
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Dejia Shi
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jianxiong Guo
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
| | - Zhuo Li
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yubo Qing
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Baoyu Jia
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Hong-Ye Zhao
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
- Correspondence: (H.-Y.Z.); (H.-J.W.)
| | - Hong-Jiang Wei
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- Correspondence: (H.-Y.Z.); (H.-J.W.)
| |
Collapse
|
6
|
Li YT, Wu HL, Liu CJ. Molecular Mechanisms and Animal Models of HBV-Related Hepatocellular Carcinoma: With Emphasis on Metastatic Tumor Antigen 1. Int J Mol Sci 2021; 22:9380. [PMID: 34502289 PMCID: PMC8431721 DOI: 10.3390/ijms22179380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/22/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is an important cause of cancer death worldwide, and hepatitis B virus (HBV) infection is a major etiology, particularly in the Asia-Pacific region. Lack of sensitive biomarkers for early diagnosis of HCC and lack of effective therapeutics for patients with advanced HCC are the main reasons for high HCC mortality; these clinical needs are linked to the molecular heterogeneity of hepatocarcinogenesis. Animal models are the basis of preclinical and translational research in HBV-related HCC (HBV-HCC). Recent advances in methodology have allowed the development of several animal models to address various aspects of chronic liver disease, including HCC, which HBV causes in humans. Currently, multiple HBV-HCC animal models, including conventional, hydrodynamics-transfection-based, viral vector-mediated transgenic, and xenograft mice models, as well as the hepadnavirus-infected tree shrew and woodchuck models, are available. This review provides an overview of molecular mechanisms and animal models of HBV-HCC. Additionally, the metastatic tumor antigen 1 (MTA1), a cancer-promoting molecule, was introduced as an example to address the importance of a suitable animal model for studying HBV-related hepatocarcinogenesis.
Collapse
Affiliation(s)
- Yung-Tsung Li
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Hui-Lin Wu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Chun-Jen Liu
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei 100, Taiwan
| |
Collapse
|
7
|
Lu T, Peng H, Zhong L, Wu P, He J, Deng Z, Huang Y. The Tree Shrew as a Model for Cancer Research. Front Oncol 2021; 11:653236. [PMID: 33768009 PMCID: PMC7985444 DOI: 10.3389/fonc.2021.653236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/17/2021] [Indexed: 12/14/2022] Open
Abstract
Animal disease models are necessary in medical research, and an appropriate animal model is of great importance for studies about the prevention or treatment of cancer. The most important thing in the selection of animal models is to consider the similarity between animals and humans. The tree shrew (Tupaia belangeri) is a squirrel-like mammal which placed in the order Scandentia. Whole-genome sequencing has revealed that tree shrews are extremely similar to primate and humans than to rodents, with many highly conserved genes, which makes the data from studies that use tree shrews as models more convincing and the research outcomes more easily translatable. In tumor research, tree shrews are often used as animal models for hepatic and mammary cancers. As research has progressed, other types of tree shrew tumor models have been developed and exhibit clinical manifestations similar to those of humans. Combining the advantages of both rodents and primates, the tree shrew is expected to be the most powerful animal model for studying tumors.
Collapse
Affiliation(s)
- Tao Lu
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Hongmei Peng
- Scientific Research and Education Department, The First People's Hospital of Changde City, Changde, China
| | - Liping Zhong
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Pan Wu
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Jian He
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Zhiming Deng
- The First People's Hospital of Changde City, Changde, China
| | - Yong Huang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| |
Collapse
|
8
|
Nakagawa N, Sakaguchi S, Nomura T, Kamada R, Omichinski JG, Sakaguchi K. The tetramerization domain of the tree shrew p53 protein displays unique thermostability despite sharing high sequence identity with the human p53 protein. Biochem Biophys Res Commun 2019; 521:681-686. [PMID: 31690451 DOI: 10.1016/j.bbrc.2019.10.130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 01/11/2023]
Abstract
The p53 protein plays a number of roles in protecting organisms from different genotoxic stresses and this includes DNA damage induced by acetaldehyde, a metabolite of alcohol. Since the common tree shrew ingests high levels of alcohol as part of its normal diet, this suggests that its p53 protein may possess unique properties. Using a combination of biophysical and modeling studies, we demonstrate that the tetramerization domain of the tree shrew p53 protein is considerably more stable than the corresponding domain from humans despite sharing almost 90% sequence identity. Based on modeling and mutagenesis studies, we determine that a glutamine to methionine substitution at position 354 plays a key role in this difference. Given the link between stability of the p53 tetramerization domain and its transcriptional activity, the results suggest that this enhanced stability could lead to important consequences at p53-regulated genes in the tree shrew.
Collapse
Affiliation(s)
- Natsumi Nakagawa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Shuya Sakaguchi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Takao Nomura
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Rui Kamada
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - James G Omichinski
- Département de Biochimie et Médicine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Kazuyasu Sakaguchi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
| |
Collapse
|
9
|
Abstract
The tree shrew (Tupaia belangeri) is a promising laboratory animal that possesses a closer genetic relationship to primates than to rodents. In addition, advantages such as small size, easy breeding, and rapid reproduction make the tree shrew an ideal subject for the study of human disease. Numerous tree shrew disease models have been generated in biological and medical studies in recent years. Here we summarize current tree shrew disease models, including models of infectious diseases, cancers, depressive disorders, drug addiction, myopia, metabolic diseases, and immune-related diseases. With the success of tree shrew transgenic technology, this species will be increasingly used in biological and medical studies in the future.
Collapse
Affiliation(s)
- Ji Xiao
- Medical Faculty of Kunming University of Science and Technology, Kunming Yunnan 650500, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Rong Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Ce-Shi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China.
| |
Collapse
|
10
|
Effect of Au-dextran NPs as anti-tumor agent against EAC and solid tumor in mice by biochemical evaluations and histopathological investigations. Biomed Pharmacother 2017; 91:1006-1016. [DOI: 10.1016/j.biopha.2017.05.043] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 04/26/2017] [Accepted: 05/08/2017] [Indexed: 12/12/2022] Open
|
11
|
de Jesús Romero-Geraldo R, García-Lagunas N, Hernández-Saavedra NY. Effects of in vitro exposure to diarrheic toxin producer Prorocentrum lima on gene expressions related to cell cycle regulation and immune response in Crassostrea gigas. PLoS One 2014; 9:e97181. [PMID: 24825133 PMCID: PMC4019545 DOI: 10.1371/journal.pone.0097181] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 04/16/2014] [Indexed: 01/20/2023] Open
Abstract
Background Crassostrea gigas accumulates diarrheic shellfish toxins (DSP) associated to Prorocentrum lima of which Okadaic acid (OA) causes specific inhibitions of serine and threonine phosphatases 1 and 2A. Its toxic effects have been extensively reported in bivalve mollusks at cellular and physiological levels, but genomic approaches have been scarcely studied. Methodology/Principal Findings Acute and sub-chronic exposure effects of P. lima were investigated on farmed juvenile C. gigas (3–5 mm). The Pacific oysters were fed with three dinoflagellate concentrations: 0.3, 3, and 30×103 cells mL−1 along with a nontoxic control diet of Isochrysis galbana. The effects of P. lima on C. gigas were followed by analyzing expression levels of a total of four genes, three involved in cell cycle regulation and one in immune response by polymerase chain reaction and real time quantitative PCR, where changes in time and cell concentration were found. The highest expression levels were found in oysters fed 3×103 cells mL−1 at 168 h for the cycle regulator p21 protein (9 fold), chromatin assembly factor 1 p55 subunit (8 fold), elongation factor 2 (2 fold), and lipopolysaccharide/β-1, 3 glucan binding protein (13 fold above base line). Additionally, the transcript level of all the genes decreased in oysters fed wich the mixed diet 30×103 cells mL−1 of dinoflagellate after 72 h and was lowest in the chromatin assembly factor 1 p55 subunit (0.9 fold below baseline). Conclusions On C. gigas the whole cell ingestion of P lima caused a clear mRNA modulation expression of the genes involved in cell cycle regulation and immune system. Over-expression could be related to DNA damage, disturbances in cell cycle continuity, probably a genotoxic effect, as well as an activation of its innate immune system as first line of defense.
Collapse
Affiliation(s)
- Reyna de Jesús Romero-Geraldo
- Molecular Genetics Laboratory, Centro de Investigaciones Biológicas del Noroeste, S.C. La Paz, Baja California Sur, México
- Department of Engineering, Instituto Tecnológico de La Paz, Baja California Sur, México
| | - Norma García-Lagunas
- Molecular Genetics Laboratory, Centro de Investigaciones Biológicas del Noroeste, S.C. La Paz, Baja California Sur, México
| | - Norma Yolanda Hernández-Saavedra
- Molecular Genetics Laboratory, Centro de Investigaciones Biológicas del Noroeste, S.C. La Paz, Baja California Sur, México
- * E-mail:
| |
Collapse
|
12
|
Significance of PRO2000/ANCCA expression, a novel proliferation-associated protein in hepatocellular carcinoma. Cancer Cell Int 2014; 14:33. [PMID: 24708861 PMCID: PMC3997233 DOI: 10.1186/1475-2867-14-33] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 03/26/2014] [Indexed: 01/01/2023] Open
Abstract
Background PRO2000/ANCCA may be an important candidate gene which located within a region of chromosome 8q in hepatocellular carcinoma (HCC). However, its significance remains unclear. The aim of this study was to explore the clinical significance of PRO2000/ANCCA expression in HCC. Methods The correlations of PRO2000/ANCCA expression with clinicopathological factors and prognosis of HCC patients were analyzed. Expression of PRO2000/ANCCA, ki-67, cyclinD1, p53 and p21 was detected in HCCs from 107 patients along with corresponding non-tumor tissues by immunohistochemistry. Results PRO2000/ANCCA expression was present in 66 of 107 (64.94%) HCC specimens in which 36 of 76 (47.37%) in well differentiated tumors and 30 of 31 (96.77%) in poorly differentiated tumors respectively, while 8 (7.48%) in adjacent non-tumor tissues with scattered positive cells. PRO2000/ANCCA expression was associated with clinicopathological features such as histological differentiation, number of tumor nodules, TNM stage, tumor microsatellite, portal vein tumor thrombus and recurrence, but not with gender, age, tumor size, cirrhosis, HBV infection and serum fetoprotein (AFP) level. There was a close relationship between PRO2000/ANCCA and ki-67 and cyclinD1 in HCC. PRO2000/ANCCA immunopositivity was independent of p53 and p21WAF1/Cip1. Conclusions Increased expression of PRO2000/ANCCA is associated with adverse outcome in patients with HCC and is a predictor of poor prognosis for HCC. PRO2000/ANCCA may be involved in the development of HCC and might promote cell proliferation through a p53/ P21WAF1/Cip1-independent pathway.
Collapse
|
13
|
Alwahaibi NY, Budin SB, Mohamed JH. Absence of p53 gene expression in selenium molecular prevention of chemically induced hepatocarcinogenesis in rats. Saudi J Gastroenterol 2011; 17:328-34. [PMID: 21912060 PMCID: PMC3178921 DOI: 10.4103/1319-3767.84489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND/AIM p53 pathway is thought by many researchers to be critically involved in selenium's chemoprevention or in hepatocarcinogenesis. The aim of this study was to investigate the gene expression of p53, p21 and B-cell lymphoma-2 (bcl-2) using preventive and therapeutic approaches of selenium in chemically induced hepatocarcinogenesis in rats. MATERIALS AND METHODS Rats were divided randomly into six groups: Negative control, positive control (diethyl nitrosamine +2-acetylaminofluorene), preventive group, preventive control (respective control for preventive group), therapeutic group and therapeutic control (respective control for therapeutic group). p53, p21 and bcl-2 genes on liver tissues were measured using real-time polymerase chain reaction. RESULTS The expression of p53 was only significant in the therapeutic control. The expression of bcl-2 was insignificant in all the groups. p21 expression was significant in all the groups except the preventive group. CONCLUSIONS The selenium molecular mechanism for liver cancer prevention is not through the p53 pathway. Also, the absence of p53 is not necessary for chemically induced liver cancer in rats.
Collapse
Affiliation(s)
- Nasar Y. Alwahaibi
- Department of Pathology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman,Address for correspondence: Dr. Nasar Alwahaibi, Department of Pathology, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Postal Code 123, Muscat, Oman. E-mail:
| | - Siti B. Budin
- Department of Biomedical Sciences, Faculty of Allied Health Sciences, Universiti Kebangsaan Malaysia (UKM), Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Jamaludin. H. Mohamed
- Department of Biomedical Sciences, Faculty of Allied Health Sciences, Universiti Kebangsaan Malaysia (UKM), Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Abstract
OBJECTIVE As sex favorably modulates the natural history of chronic liver diseases and the risk for neoplastic evolution, our study aimed to ascertain whether female hepatocellular carcinoma (HCC) patients are also characterized by better prognosis. METHODS The ITA.LI.CA (Italian Liver Cancer) database was used, including 1834 HCC patients (482 females, 1352 males) that were consecutively diagnosed. The following variables were considered: age, etiology, modality of diagnosis, earlier interferon treatment, bilirubin, alpha-fetoprotein levels, constitutional syndrome, portal thrombosis, metastasis, number and size of nodules, grading, Child-Pugh class, tumor-nodes-metastases and Cancer of the Liver Italian Program staging, and treatment. RESULTS Female HCC patients were characterized by older age (P=0.0001), higher prevalence of HCV infection (P=0.0001), diagnosis more frequently by surveillance (P=0.003), higher alpha-fetoprotein levels (P=0.0055), lower prevalence of constitutional syndrome (P=0.03), portal thrombosis (P=0.04), and metastasis (P=0.0001). HCC in females was more frequently unifocal (P=0.0001), smaller (P=0.001), well differentiated (P=0.001), and of lower Cancer of the Liver Italian Program and tumor-nodes-metastases stage (P=0.0001 and 0.0001). However, females underwent curative treatments (transplantation, resection, percutaneous ablation) in the same percentage of cases as males. Finally, females had a significantly longer survival (median 29 [95% confidence interval (CI): 24-33] vs. 24 (22-25) months, P=0.0001). The difference was sharper [median 36 (CI: 31-41] vs. 17 (CI: 15-19)] when females undergoing surveillance were compared with males diagnosed incidentally or for symptoms. The Cox model also identified sex as an independent predictor of survival. When only patients undergoing surveillance were considered, no significant difference was observed. CONCLUSION HCC in females has better prognosis, but this is possibly more because of higher compliance with surveillance than to real biological differences.
Collapse
|
15
|
Li Y, Qin X, Cui J, Dai Z, Kang X, Yue H, Zhang Y, Su J, Cao J, Ou C, Yang C, Duan X, Yue H, Liu Y. Proteome analysis of aflatoxin B1-induced hepatocarcinogenesis in tree shrew (Tupaia belangeri chinensis) and functional identification of candidate protein peroxiredoxin II. Proteomics 2008; 8:1490-501. [PMID: 18318006 DOI: 10.1002/pmic.200700229] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In order to explore the proteins responsible for hepatocellular carcinoma (HCC), aflatoxin B(1)-induced hepatocarcinogenesis in tree shrew (Tupaia belangeri chinensis) was analyzed with 2-DE and MS. By comparing HCC samples with their own precancerous biopsies and HCC-surrounding tissues, a group of candidate proteins that differentially expressed in HCC were obtained. Peroxiredoxin (Prx) II, one of the candidates with distinct alteration, was further investigated and validated. Western blot and RT-PCR assays confirmed the overexpression of Prx II in both tree shrew and human HCC tissues. RNA interference for silencing Prx II was employed subsequently to explore the function and underlying mechanism of Prx II on liver cancer cell line Hep3B. Results showed the cell proliferation and clone formation decreased obviously when Prx II expression was inhibited, while the flow cytometer analysis showed the percentage of cell apoptosis enhanced. Inhibition of Prx II expression also obviously increased the generation of ROS and malondialdehyde, both are the products from peroxidation. These results imply the important role of Prx II in hepatocarcinogenesis, possibly through its function in regulating peroxidation and hereby to provide a favorable microenvironment for cancer cell surviving and progressing.
Collapse
Affiliation(s)
- Yuan Li
- Department of Experimental Pathology, Guangxi Cancer Institute, Nanning, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Qu JH, Zhu MH, Lin J, Ni CR, Li FM, Zhu Z, Yu GZ. Effects of hepatitis B virus on p53 expression in hepatoma cell line SMMU-7721. World J Gastroenterol 2005; 11:6212-5. [PMID: 16273653 PMCID: PMC4436643 DOI: 10.3748/wjg.v11.i39.6212] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Revised: 03/23/2005] [Accepted: 03/21/2005] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the contribution of HBV in the development of hepatocarcinoma by examining the effects of HBV on p53 function in SMMU-7721 cell line. METHODS Plasmid pCMVp53 was transfected or cotransfected with pCMVHBVa (wild-type HBV) or PCMVHBVb (mutation type HBV) into the hepatoma cell line SMMU-7721 by lipofectamine. Apoptosis cells were labeled with annexin V-FITC and confirmed by flow cytometry. Reporter plasmid PG13-CAT or p21-luc was cotransfected, respectively, into each group to determine the transactivation activity of p53 and its effect on p21 promoter. Western blot was performed to observe p53 expression in hepatoma cell line of each group. RESULTS The group transfected with pCMVp53 alone exhibited higher luciferase activity and higher apoptosis rate, otherwise, the p53 expression and reporter activity of PG13-CAT or P21-luc as well as cell apoptosis rate were obviously higher in the group cotransfected of pCMVp53 with pCMVHBVa, but not in the other cotransfected group. CONCLUSION Transient transfection of HBV into the SMMU-7721 cell line can enhance p53 expression and its effects on development of hepatocarcinoma.
Collapse
Affiliation(s)
- Jian-Hui Qu
- Department of Pathology, the Second Military Medical University, Shanghai 200433, China.
| | | | | | | | | | | | | |
Collapse
|