1
|
Ozmen Yaylaci A, Canbek M. The role of ubiquitin signaling pathway on liver regeneration in rats. Mol Cell Biochem 2023; 478:131-147. [PMID: 35750978 DOI: 10.1007/s11010-022-04482-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 05/18/2022] [Indexed: 01/17/2023]
Abstract
The ubiquitin signalling pathway is a large system associated with numerous intracellular mechanisms. However, its function in the liver regeneration process remains unknown. This particular study investigates the intracellular effect mechanisms of the ubiquitin signalling pathway. It also determines the differences in the expression of 88 genes belonging to the ubiquitin pathway using the RT-PCR array method. To conduct this research, three genes-that differed in the expression analysis were selected. Moreover, their proteins were analysed by western blot analysis while using Ki67 immunohistochemical analysis that determines proliferation rates by hour. It was determined that BRCA1 and BARD1, which are effective in DNA repair, play an active role at PH24. Similarly, Ube2t expression, which belongs to the Fanconi anaemia pathway associated with DNA repair, was also found to be high at PH12-72 h. In addition, it was revealed that the expressions of Anapc2, Anapc11, Cdc20 belonging to the APC/CCdc20 complex, which participate in cell cycle regulation, differed at different hours after PH. Expression of Mul1, which is involved in mitochondrial biogenesis and mitophagy mechanisms, peaked at PH12 under the observation. Considering the Mul1 gene expression difference, MUL1-mediated mitophagy and mitochondrial fission mechanism may be associated with liver regeneration. It was also determined that PARKIN-mediated mitophagy mechanisms are not active in 0-72 h of liver regeneration since PARKIN expression did not show a significant change in PH groups.
Collapse
Affiliation(s)
- Ayse Ozmen Yaylaci
- Department of Biology, Faculty of Arts and Science, Hitit University, 19030, Corum, Turkey.
| | - Mediha Canbek
- Department of Biology, Faculty of Arts and Science, Eskisehir Osmangazi University, 26480, Eskisehir, Turkey
| |
Collapse
|
2
|
Colak D, Al-Harazi O, Mustafa OM, Meng F, Assiri AM, Dhar DK, Broering DC. RNA-Seq transcriptome profiling in three liver regeneration models in rats: comparative analysis of partial hepatectomy, ALLPS, and PVL. Sci Rep 2020; 10:5213. [PMID: 32251301 PMCID: PMC7089998 DOI: 10.1038/s41598-020-61826-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/28/2020] [Indexed: 12/13/2022] Open
Abstract
The liver is a unique organ that has a phenomenal capacity to regenerate after injury. Different surgical procedures, including partial hepatectomy (PH), intraoperative portal vein ligation (PVL), and associated liver partition and portal vein ligation for staged hepatectomy (ALPPS) show clinically distinct recovery patterns and regeneration. The observable clinical differences likely mirror some underlying variations in the patterns of gene activation and regeneration pathways. In this study, we provided a comprehensive comparative transcriptomic analysis of gene regulation in regenerating rat livers temporally spaced at 24 h and 96 h after PH, PVL, and ALPPS. The time-dependent factors appear to be the most important determinant of post-injury alterations of gene expression in liver regeneration. Gene expression profile after ALPPS showed more similar expression pattern to the PH than the PVL at the early phase of the regeneration. Early transcriptomic changes and predicted upstream regulators that were found in all three procedures included cell cycle associated genes (E2F1, CCND1, FOXM1, TP53, and RB1), transcription factors (Myc, E2F1, TBX2, FOXM1), DNA replication regulators (CDKN1A, EZH2, RRM2), G1/S-transition regulators (CCNB1, CCND1, RABL6), cytokines and growth factors (CSF2, IL-6, TNF, HGF, VEGF, and EGF), ATM and p53 signaling pathways. The functional pathway, upstream, and network analyses revealed both unique and overlapping molecular mechanisms and pathways for each surgical procedure. Identification of molecular signatures and regenerative signaling pathways for each surgical procedure further our understanding of key regulators of liver regeneration as well as patient populations that are likely to benefit from each procedure.
Collapse
Affiliation(s)
- Dilek Colak
- Biostatistics, Epidemiology, and Scientific Computing Department, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| | - Olfat Al-Harazi
- Biostatistics, Epidemiology, and Scientific Computing Department, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Osama M Mustafa
- Biostatistics, Epidemiology, and Scientific Computing Department, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fanwei Meng
- Department of Surgery and Organ Transplantation Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Abdullah M Assiri
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- College of Medicine, AlFaisal University, Riyadh, Saudi Arabia
| | - Dipok K Dhar
- Department of Surgery and Organ Transplantation Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
- Institute for Liver and Digestive Health, University College London, Royal Free Hospital, London, UK.
| | - Dieter C Broering
- Department of Surgery and Organ Transplantation Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- College of Medicine, AlFaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Gao H, Cao Y, Wan S, Liu J, Chen G, Li Z, Wang H, Li L. Upregulation of NM23-E2 accelerates the liver regeneration after 40% decreased-size liver transplantation in rats. J Surg Res 2017; 219:325-333. [PMID: 29078900 DOI: 10.1016/j.jss.2017.06.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 04/17/2017] [Accepted: 06/15/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Potential of liver regeneration after living-donor liver transplantation is closely associated with the recipient's prognosis, whereas exogenous gene might regulate the liver regeneration progress. NM23 is a multifunctional gene, which inhibits tumor metastasis and regulates cell proliferation, differentiation, development, and apoptosis; however, there is little research about NM23 in promoting liver cell proliferation. METHODS To investigate the effect of NM23-E2 on the liver cell proliferation, the NM23-E2 overexpression vector or negative control vector was transfected into BRL-3A cells and donor liver, respectively. NM23-E2, Cyclin D1, and PCNA expression levels in BRL-3A cells and liver tissues were detected by quantitative real-time polymerase chain reaction and Western blot analysis. Cell Counting Kit-8 was used to detect cell proliferation and flow cytometry for investigating cell cycle. The liver regeneration rate was determined by calculating (regenerated-liver weight of recipient - liver weight of donor/liver weight of donor) × 100%. RESULTS NM23-E2 overexpression increased the NM23-E2, Cyclin D1, and PCNA levels significantly in BRL-3A cells and liver tissues (P < 0.05). The number of S phase cells was more than that of negative control group, and cell proliferation rate was higher than that of the control group in BRL-3A cells markedly (P < 0.05). Moreover, the liver regeneration rate in the NM23-E2 overexpression group was also higher than that in negative control group on postoperative day 1, day 3, day 5, and day 7. CONCLUSIONS Overexpression of NM23-E2 can increase Cyclin D1 and PCNA expression, shorten cell cycle, and thereby promoting the proliferation of liver cells and accelerating the regeneration of liver after 40% decreased-size rat liver transplantation.
Collapse
Affiliation(s)
- Hongqiang Gao
- Department of Hepatobiliary Surgery, The Affiliated Calmette Hospital of Kunming Medical University, Kunming City, Yunnan Province, PR China
| | - Yongmei Cao
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Shuo Wan
- Department of Gastroenterology, The Affiliated Hospital of Zunyi Medical College, Zunyi City, Guzhou Province, PR China
| | - Jing Liu
- Department of Hepatobiliary Surgery, The Affiliated Calmette Hospital of Kunming Medical University, Kunming City, Yunnan Province, PR China
| | - Gang Chen
- Department of Hepatobiliary Surgery, The Affiliated Calmette Hospital of Kunming Medical University, Kunming City, Yunnan Province, PR China
| | - Zhiqiang Li
- Department of Hepatobiliary Surgery, The Affiliated Calmette Hospital of Kunming Medical University, Kunming City, Yunnan Province, PR China
| | - Hailei Wang
- Department of Hepatobiliary Surgery, The Affiliated Calmette Hospital of Kunming Medical University, Kunming City, Yunnan Province, PR China
| | - Li Li
- Department of Hepatobiliary Surgery, The Affiliated Calmette Hospital of Kunming Medical University, Kunming City, Yunnan Province, PR China.
| |
Collapse
|
4
|
Zhang J, Yang Y, He T, Liu Y, Zhou Y, Chen Y, Xu C. Expression profiles uncover the relationship between erythropoietin and cell proliferation in rat hepatocytes after a partial hepatectomy. Cell Mol Biol Lett 2014; 19:331-46. [PMID: 24928528 PMCID: PMC6275805 DOI: 10.2478/s11658-014-0198-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 05/28/2014] [Indexed: 02/06/2023] Open
Abstract
Erythropoietin (EPO) has a beneficial effect on hepatic cell proliferation during liver regeneration. However, the underlying mechanism has not yet been elucidated. To uncover the proliferation response of EPO in rat liver regeneration after partial hepatectomy (PH) at the cellular level, hepatocytes (HCs) were isolated using Percoll density gradient centrifugation. The genes of the EPO-mediated signaling pathway and the target genes of the transcription factor (TF) in the pathway were identified in a pathway and TF database search. Their expression profiles were then detected using Rat Genome 230 2.0 Microarray. The results indicated that the EPO-mediated signaling pathway is involved in 19 paths and that 124 genes participate, of which 32 showed significant changes and could be identified as liver regeneration-related genes. In addition, 443 targets regulated by the TFs of the pathway and 60 genes associated with cell proliferation were contained in the array. Subsequently, the synergetic effect of these genes in liver regeneration was analyzed using the E(t) mathematical model based on their expression profiles. The results demonstrated that the E(t) values of paths 3, 8, 12 and 14-17 were significantly strengthened in the progressing phase of liver regeneration through the RAS/MEK/ERK or PI3K/AκT pathways. The synergetic effect of the target genes, in parallel with target-related cell proliferation, was also enhanced 12-72 h after PH, suggesting a potential positive effect of EPO on HC proliferation during rat liver regeneration. These data imply that the EPO receptor may allow EPO to promote HC proliferation through paths 3, 8, 12 and 14-17, mediating the RAS/MEK/ERK and PI3K/AκT pathways in rat liver regeneration after PH.
Collapse
Affiliation(s)
- Jihong Zhang
- College of Life Science, Henan Normal University, Xinxiang, 453007 P.R. China
| | - Yajuan Yang
- College of Life Science, Henan Normal University, Xinxiang, 453007 P.R. China
| | - Tingting He
- College of Life Science, Henan Normal University, Xinxiang, 453007 P.R. China
| | - Yunqing Liu
- College of Life Science, Henan Normal University, Xinxiang, 453007 P.R. China
| | - Yun Zhou
- College of Life Science, Henan Normal University, Xinxiang, 453007 P.R. China
| | - Yongkang Chen
- College of Life Science and Technology, Jinan University, Guangzhou, 510632 P.R. China
| | - Cunshuan Xu
- College of Life Science, Henan Normal University, Xinxiang, 453007 P.R. China
- Key Laboratory for Cell Differentiation Regulation, Xinxiang, 453007 P.R. China
| |
Collapse
|
5
|
Zhou Y, Xu J, Liu Y, Li J, Chang C, Xu C. Rat hepatocytes weighted gene co-expression network analysis identifies specific modules and hub genes related to liver regeneration after partial hepatectomy. PLoS One 2014; 9:e94868. [PMID: 24743545 PMCID: PMC3990548 DOI: 10.1371/journal.pone.0094868] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 03/19/2014] [Indexed: 11/20/2022] Open
Abstract
The recovery of liver mass is mainly mediated by proliferation of hepatocytes after 2/3 partial hepatectomy (PH) in rats. Studying the gene expression profiles of hepatocytes after 2/3 PH will be helpful to investigate the molecular mechanisms of liver regeneration (LR). We report here the first application of weighted gene co-expression network analysis (WGCNA) to analyze the biological implications of gene expression changes associated with LR. WGCNA identifies 12 specific gene modules and some hub genes from hepatocytes genome-scale microarray data in rat LR. The results suggest that upregulated MCM5 may promote hepatocytes proliferation during LR; BCL3 may play an important role by activating or inhibiting NF-kB pathway; MAPK9 may play a permissible role in DNA replication by p38 MAPK inactivation in hepatocytes proliferation stage. Thus, WGCNA can provide novel insight into understanding the molecular mechanisms of LR.
Collapse
Affiliation(s)
- Yun Zhou
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
- Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang, Henan, China
- College of Computer and Information Engineering, Henan Normal University, Xinxiang, Henan, China
- * E-mail: (YZ); (CSX)
| | - Jiucheng Xu
- College of Computer and Information Engineering, Henan Normal University, Xinxiang, Henan, China
| | - Yunqing Liu
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
- Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang, Henan, China
| | - Juntao Li
- College of Mathematics and Information Science, Henan Normal University, Xinxiang, Henan, China
| | - Cuifang Chang
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
- Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang, Henan, China
| | - Cunshuan Xu
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
- Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang, Henan, China
- * E-mail: (YZ); (CSX)
| |
Collapse
|
6
|
Xu C, Zhao W, Hao Y, Chang C, Fan J. Comparative analysis of gene expression profiles of acute hepatic failure and that of liver regeneration in rat. Gene 2013; 528:59-66. [DOI: 10.1016/j.gene.2013.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/28/2013] [Accepted: 07/02/2013] [Indexed: 01/18/2023]
|
7
|
Wang G, Li B, Hao Y, Zhi J, He C, Xu C. Correlation analysis between gene expression profile of high-fat emulsion-induced non-alcoholic fatty liver and liver regeneration in rat. Cell Biol Int 2013; 37:917-28. [PMID: 23619824 DOI: 10.1002/cbin.10118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/29/2013] [Indexed: 12/21/2022]
Abstract
To explore the relevance of non-alcoholic fatty liver disease (NAFLD) to liver regeneration (LR), rat models of non-alcoholic steatohepatitis (NASH) and LR were established, respectively, then Rat Genome 230 2.0 Array was used to detect the gene expression abundance of them, and the reliabilities of the array data were confirmed by real-time RT-PCR. As a result, the expression of 93 genes was significantly changed during NAFLD occurrence and 948 genes in LR. Hierarchical clustering indicated that the expression profiles of the above two events were quite different. K-means cluster classified their expression patterns into four clusters, and gene expression trends of clusters 1, 2 were similar in NAFLD and LR, while clusters 3, 4 were contrary with the gene expression changes of LR more abundant. DAVID classifications and functional enrichment analysis found that lipid metabolism and carbohydrate metabolism were stronger in NAFLD than in LR, but some other physiological activities including inflammation/immune response, cell adhesion, and migration, cell proliferation and differentiation in NAFLD were weaker than in LR. IPA further indicated that lipid metabolism, inflammation response, and cellular development were highly associated with NAFLD, and thus identified some potential biomarkers for NAFLD.
Collapse
Affiliation(s)
- Gaiping Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan Province, China
| | | | | | | | | | | |
Collapse
|
8
|
Fusarium mycotoxin-contaminated wheat containing deoxynivalenol alters the gene expression in the liver and the jejunum of broilers. Animal 2012; 6:278-91. [PMID: 22436186 DOI: 10.1017/s1751731111001601] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The effects of mycotoxins in the production of animal feed were investigated using broiler chickens. For the feeding trial, naturally Fusarium mycotoxin-contaminated wheat was used, which mainly contained deoxynivalenol (DON). The main effects of DON are reduction of the feed intake and reduced weight gain of broilers. At the molecular level, DON binds to the 60 S ribosomal subunit and subsequently inhibits protein synthesis at the translational level. However, little is known about other effects of DON, for example, at the transcriptional level. Therefore, a microarray analysis was performed, which allows the investigation of thousands of transcripts in one experiment. In the experiment, 20 broilers were separated into four groups of five broilers each at day 1 after hatching. The diets consisted of a control diet and three diets with calculated, moderate concentrations of 1.0, 2.5 and 5.0 mg DON/kg feed, which was attained by exchanging uncontaminated wheat with naturally mycotoxin-contaminated wheat up to the intended DON concentration. The broilers were held at standard conditions for 23 days. Three microarrays were used per group to determine the significant alterations of the gene expression in the liver (P < 0.05), and qPCR was performed on the liver and the jejunum to verify the results. No significant difference in BW, feed intake or feed conversion rate was observed. The nutrient uptake into the hepatic and jejunal cells seemed to be influenced by genes: SLC2A5 (fc: -1.54, DON2.5), which facilitates glucose and fructose transport and SLC7A10 (fc: +1.49, DON5), a transporter of d-serine and other neutral amino acids. In the jejunum, the palmitate transport might be altered by SLC27A4 (fc: -1.87, DON5) and monocarboxylates uptake by SLC16A1 (fc: -1.47, DON5). The alterations of the SLC gene expression may explain the reduced weight gain of broilers chronically exposed to DON-contaminated wheat. The decreased expressions of EIF2AK3 (fc: -1.29, DON2.5/5) and DNAJC3 (fc: -1.44, DON2.5) seem to be related to the translation inhibition. The binding of DON to the 60 S ribosomal subunit and the subsequent translation inhibition might be counterbalanced by the downregulation of EIF2AK3 and DNAJC3. The genes PARP1, MPG, EME1, XPAC, RIF1 and CHAF1B are mainly related to single-strand DNA modifications and showed an increased expression in the group with 5 mg DON/kg feed. The results indicate that significantly altered gene expression was already occurring at 2.5 mg DON/kg feed.
Collapse
|
9
|
Wang G, Xu C, Zhi J, Hao Y, Zhang L, Chang C. Gene expression profiles reveal significant differences between rat liver cancer and liver regeneration. Gene 2012; 504:41-52. [DOI: 10.1016/j.gene.2012.04.086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 04/02/2012] [Accepted: 04/27/2012] [Indexed: 02/08/2023]
|
10
|
Xu C, Yang Y, Yang J, Chen X, Wang G. Analysis of the role of the integrin signaling pathway in hepatocytes during rat liver regeneration. Cell Mol Biol Lett 2012; 17:274-88. [PMID: 22396140 PMCID: PMC6275568 DOI: 10.2478/s11658-012-0011-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 02/22/2012] [Indexed: 12/22/2022] Open
Abstract
To explore the role of the integrin signaling pathway in hepatocytes during rat liver regeneration, the integrin signaling pathway-related gene expression profile in hepatocytes of regenerative liver was detected using Rat Genome 230 2.0 array. The chip data showed that 265 genes of the integrin signaling pathway were included by Rat Genome 230 2.0 array and 132 genes showed significant expression changes in hepatocytes of regenerative liver. The numbers of up-, down- and up/down-regulated genes were 110, 15 and 7 respectively. In addition, bioinformatics and systems biology methods were used to analyze the role of the integrin signaling pathway in hepatocytes. The analysis of gene synergy value indicated that paths 1, 8, 12, and 15 promoted hepatocyte proliferation at the priming phase of liver regeneration; paths 1, 3, 8, and 12-15 enhanced hepatocyte proliferation at the progressing phase; paths 11 and 14 promoted hepatocyte proliferation, while paths 12 and 13 reduced hepatocyte proliferation at the terminal phase. Additionally, the other 8 paths (2, 4, 5-7, 9-10, and 16) were not found to be related to liver regeneration. In conclusion, 132 genes and 8 cascades of the integrin signaling pathway participated in regulating hepatocyte proliferation during rat liver regeneration.
Collapse
Affiliation(s)
- Cunshuan Xu
- College of Life Science, Henan Normal University, Xinxiang, 453007, P.R. China.
| | | | | | | | | |
Collapse
|
11
|
Variability of sequence surrounding the Xist gene in rodents suggests taxon-specific regulation of X chromosome inactivation. PLoS One 2011; 6:e22771. [PMID: 21826206 PMCID: PMC3149622 DOI: 10.1371/journal.pone.0022771] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Accepted: 06/29/2011] [Indexed: 11/29/2022] Open
Abstract
One of the two X chromosomes in female mammalian cells is subject to inactivation (XCI) initiated by the Xist gene. In this study, we examined in rodents (voles and rat) the conservation of the microsatellite region DXPas34, the Tsix gene (antisense counterpart of Xist), and enhancer Xite that have been shown to flank Xist and regulate XCI in mouse. We have found that mouse regions of the Tsix gene major promoter and minisatellite repeat DXPas34 are conserved among rodents. We have also shown that in voles and rat the region homologous to the mouse Tsix major promoter, initiates antisense to Xist transcription and terminates around the Xist gene start site as is observed with mouse Tsix. A conservation of Tsix expression pattern in voles, rat and mice suggests a crucial role of the antisense transcription in regulation of Xist and XIC in rodents. Most surprisingly, we have found that voles lack the regions homologous to the regulatory element Xite, which is instead replaced with the Slc7a3 gene that is unassociated with the X-inactivation centre in any other eutherians studied. Furthermore, we have not identified any transcription that could have the same functions as murine Xite in voles. Overall, our data show that not all the functional elements surrounding Xist in mice are well conserved even within rodents, thereby suggesting that the regulation of XCI may be at least partially taxon-specific.
Collapse
|
12
|
Polimeno L, Pesetti B, Annoscia E, Giorgio F, Francavilla R, Lisowsky T, Gentile A, Rossi R, Bucci A, Francavilla A. Alrp, a survival factor that controls the apoptotic process of regenerating liver after partial hepatectomy in rats. Free Radic Res 2011; 45:534-549. [PMID: 21291353 DOI: 10.3109/10715762.2011.555482] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Augmenter of Liver Regeneration (Alrp) enhances, through unknown mechanism/s, hepatocyte proliferation only when administered to partially hepatectomized (PH) rats. Liver resection, besides stimulating hepatocyte proliferation, induces reactive oxygen species (ROS), triggering apoptosis. To clarify the role of Alrp in the process of liver regeneration, hepatocyte proliferation, apoptosis, ROS-induced parameters and morphological findings of regenerating liver were studied from PH rats Alrp-treated for 72 h after the surgery. The same parameters, evaluated on regenerating liver from albumin-treated PH rats, were used as control. The results demonstrated that Alrp administration induces the anti-apoptotic gene expression, inhibits hepatocyte apoptosis and reduces ROS-induced cell damage. These and similar data from in vitro studies and the presence of 'Alrp homologous proteins' in viruses as well as in mammals (i) allow to hypothesize that Alrp activity/ies may not be exclusive for regenerating liver and (ii) suggest the use of Alrp in the treatment of oxidative stress-related diseases.
Collapse
Affiliation(s)
- Lorenzo Polimeno
- Section of Gastroenterology, Department of Emergency and Organ Transplantation (DETO), University of Bari, Bari, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Xu C, Chen X, Chang C, Wang G, Wang W, Zhang L, Zhu Q, Wang L, Zhang F. Transcriptome analysis of hepatocytes after partial hepatectomy in rats. Dev Genes Evol 2010; 220:263-74. [PMID: 21082200 DOI: 10.1007/s00427-010-0345-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 10/28/2010] [Indexed: 11/29/2022]
Abstract
After partial hepatectomy (PH), the recovery of liver mass is mainly mediated by proliferation and enlargement of hepatocytes. Therefore, measuring the transcriptional profiling of hepatocytes after PH will be helpful in exploring the mechanism of liver regeneration (LR). Firstly, hepatocytes were isolated from rat regenerating liver at different time points following PH, and then global gene expression analysis of hepatocytes was performed using Rat Genome 230 2.0 Array. The results demonstrated that 1,417 genes in the array (including 767 known genes) were identified to be LR-related. Clustering analysis demonstrated that 767 known genes fell into six classes with distinct expression kinetics. When gene expression patterns were combined with gene functions, genes involved in acute-phase response and defense response were rapidly elevated in early phases; those in cell proliferation and DNA replication were significantly up-expressed in middle phase; a growing number of cell adhesion-involved genes were up-regulated as regeneration progressed; those in amino acid and lipid metabolism showed persistent down-regulation during LR. Based on the above analyses, it was suggested that hepatocyte defense mechanism was quickly triggered after PH; cell proliferation became active in middle phase; cell adhesion was strengthened in late phase; amino acid and lipid metabolism were attenuated during LR. Additionally, comparative analysis between transcriptional profiling of hepatocytes and regenerating liver indicated a major contribution of hepatocytes to LR.
Collapse
Affiliation(s)
- Cunshuan Xu
- Key Laboratory for Cell Differentiation Regulation, Henan Normal University, 46# East of Construction Road, Xinxiang, 453007, China,
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Rychtrmoc D, Libra A, Buncek M, Garnol T, Cervinková Z. Studying liver regeneration by means of molecular biology: how far we are in interpreting the findings? ACTA MEDICA (HRADEC KRÁLOVÉ) 2010; 52:91-9. [PMID: 20073420 DOI: 10.14712/18059694.2016.112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Liver regeneration in mammals is a unique phenomenon attracting scientific interest for decades. It is a valuable model for basic biology research of cell cycle control as well as for clinically oriented studies of wide and heterogeneous group of liver diseases. This article provides a concise review of current knowledge about the liver regeneration, focusing mainly on rat partial hepatectomy model. The three main recognized phases of the regenerative response are described. The article also summarizes history of molecular biology approaches to the topic and finally comments on obstacles in interpreting the data obtained from large scale microarray-based gene expression analyses.
Collapse
Affiliation(s)
- David Rychtrmoc
- Department of Physiology, Charles University in Prague, Faculty of Medicine in Hradec Králové, Czech Republic.
| | | | | | | | | |
Collapse
|
15
|
Serial Expression Analysis of Liver Regeneration-Related Genes in Rat Regenerating Liver. Mol Biotechnol 2009; 43:221-31. [DOI: 10.1007/s12033-009-9199-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 07/14/2009] [Indexed: 10/20/2022]
|
16
|
Xu CS, Shao HY, Liu SS, Qin B, Sun XF, Tian L. Possible regulation of genes associated with intracellular signaling cascade in rat liver regeneration. Scand J Gastroenterol 2009; 44:462-70, 10 p following 470. [PMID: 18991167 PMCID: PMC2657316 DOI: 10.1080/00365520802495560] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The importance of signal transduction in cell activities has been generally accepted. The purpose of this study was to analyze the regulatory effect of intracellular signaling cascade-associated genes on rat liver regeneration (LR) at transcriptional level. MATERIAL AND METHODS The associated genes were originally obtained through a search of the databases and related scientific publications; their expression profiles were then checked in rat LR using the Rat Genome 230 2.0 array. The LR-associated genes were identified by comparing the discrepancy in gene expression changes between the partial hepatectomy (PH) group and the sham operation (SO) group. RESULTS A total of 566 genes associated with the intracellular signaling cascade were LR related. The genes involved in nine signaling pathways including intracellular receptor-, second messenger-, nitric oxide-, hormone-, carbohydrate-mediated, protein kinase, small GTPase, ER-nuclear and target of rapamycin (TOR) signaling pathways were detected to be enriched in a cluster characterized by up-regulated expression in LR. According to their expression similarity and time relevance, they were separately classified into 5 and 5 groups. CONCLUSIONS It is presumed that following PH, the second messenger-mediated signaling pathway inhibits the inflammatory response, while the protein kinase cascade and small GTPase-mediated signal transduction stimulate the immune response; the intracellular receptor-, second messenger-, small GTPase-mediated signal transduction and protein kinase cascade coordinately control cell replication; the intracellular receptor-, second messenger-mediated and ER-nuclear signaling pathways facilitate cell differentiation; the MAPK cascade and small GTPase-mediated signal transduction play a role in cytoskeletal reconstruction and cell migration; the second messenger-, small GTPase-mediated and IkappaB kinase/NFkappaB cascades take care of protein transport, etc., in LR.
Collapse
Affiliation(s)
- Cun-Shuan Xu
- College of Life Science, Henan Normal University, Xinxiang, Henan Province, P.R. China,Co-Construction Key Laboratory for Cell Differentiation and Regulation, Xinxiang, Henan Province, P.R. China
| | - Heng-Yi Shao
- College of Life Science, Henan Normal University, Xinxiang, Henan Province, P.R. China
| | - Shuai-Shuai Liu
- Co-Construction Key Laboratory for Cell Differentiation and Regulation, Xinxiang, Henan Province, P.R. China
| | - Bo Qin
- Co-Construction Key Laboratory for Cell Differentiation and Regulation, Xinxiang, Henan Province, P.R. China
| | - Xiu-Feng Sun
- Co-Construction Key Laboratory for Cell Differentiation and Regulation, Xinxiang, Henan Province, P.R. China
| | - Lin Tian
- Co-Construction Key Laboratory for Cell Differentiation and Regulation, Xinxiang, Henan Province, P.R. China
| |
Collapse
|
17
|
Characterization of heparan sulfate on hepatocytes in regenerating rat liver. ACTA ACUST UNITED AC 2008; 15:608-14. [DOI: 10.1007/s00534-007-1321-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Accepted: 12/10/2007] [Indexed: 02/04/2023]
|
18
|
Guo GB, Xu CS. Expression profiles of the organic acid metabolism-associated genes during rat liver regeneration. Amino Acids 2007; 34:597-604. [PMID: 18095055 DOI: 10.1007/s00726-007-0013-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 11/26/2007] [Indexed: 12/22/2022]
Abstract
In this study, 55 of the organic acid metabolism-involved genes were primarily confirmed to be associated with liver regeneration (LR) by bioinformatics and gene expression profiling analysis. Number of the initially and totally expressed genes occurring in initiation phase of LR, G(0)/G(1), cell proliferation, cell differentiation and liver tissue structure-function reconstruction were 21, 5, 33, 1 and 40, 20, 174, 44, respectively, illustrating that genes were initially expressed mainly in initiation stage, and worked in different phases. 151 times up-regulation and 114 times down-regulation as well as 14 types of expression patterns showed the diversification and complication of genes expression changes. It is inferred from the above gene expression changes and patterns that acetate biosynthesis enhanced at forepart, propionate biosynthesis at forepart, prophase and early metaphase, pyruvate biosynthesis at forepart, metaphase and anaphase, succinate biosynthesis at forepart and anaphase; malate biosynthesis in metaphase and N-acetylneuraminate biosynthesis at 36, 66 and 96 h. Whereas, carnitine biosynthsis attenuates at forepart and prophase, enhancement at middle metaphase; isocitrate in the forepart, quinolinate at forepart and early metaphase, creatine at early metaphase and fumarate at anaphase perform the restrained biosynthesis, respectively; catabolisms of propionate and pyruvate were depressed in metaphase.
Collapse
Affiliation(s)
- G B Guo
- College of Life Sciences, Henan Normal University, No. 46, Jianshe RD, Xinxiang, 453007 Henan Province, China.
| | | |
Collapse
|
19
|
Li H, Chen X, Zhang F, Ma J, Xu C. Expression Patterns of the Cell Junction-associated Genes During Rat Liver Regeneration. J Genet Genomics 2007; 34:892-908. [DOI: 10.1016/s1673-8527(07)60101-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 04/24/2007] [Indexed: 12/26/2022]
|
20
|
Abstract
AIM: To study at transcriptional level the similarities and differences of the physiological and biochemical activities between liver tumor (LT) and regenerating liver cells.
METHODS: LT-associated genes and their expression changes in LT were obtained from databases and scientific articles, and their expression profiles in rat liver regeneration (LR) were detected using Rat Genome 230 2.0 array. Subsequently their expression changes in LT and LR were compared and analyzed.
RESULTS: One hundred and twenty one LT-associated genes were found to be LR-associated. Thirty four genes were up-regulated, and 14 genes were down-regulated in both LT and regenerating liver; 20 genes up-regulated in LT were down-regulated in regenerating liver; 21 up-regulated genes and 16 down-regulated genes in LT were up-regulated at some time points and down-regulated at others during LR.
CONCLUSION: Results suggested that apoptosis activity suppressed in LT was still active in regenerating liver, and there are lots of similarities and differences between the LT and regenerating liver at the aspects of cell growth, proliferation, differentiation, migration and angiogenesis.
Collapse
Affiliation(s)
- Cun-Shuan Xu
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan Province, China.
| | | | | | | |
Collapse
|
21
|
Shalaby RH. Bcl-2 and Bax Messenger RNA Gene Expression Detected by Reverse Transcriptase Polymerase Chain Reaction after Partial Hepatectomy and Licorice in Rats. CYTOLOGIA 2007. [DOI: 10.1508/cytologia.72.119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Rokaya H. Shalaby
- Department of Zoology, Girls' College for Arts, Science and Education, Ain Shams University
| |
Collapse
|
22
|
Chen GW, Zhang MZ, Zhao LF, Xu CS. Expression patterns and action analysis of genes associated with physiological responses during rat liver regeneration: Innate immune response. World J Gastroenterol 2006; 12:7852-8. [PMID: 17203533 PMCID: PMC4087555 DOI: 10.3748/wjg.v12.i48.7852] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the relationship between innate immune response and liver regeneration (LR) at transcriptional level.
METHODS: Genes associated with innate immunity response were obtained by collecting the data from databases and retrieving articles. Gene expression changes in rat regenerating liver were detected by rat genome 230 2.0 array.
RESULTS: A total of 85 genes were found to be associated with LR. The initially and totally expressed number of genes at the phases of initiation [0.5-4 h after partial hepatectomy (PH)], transition from G0 to G1 (4-6 h after PH), cell proliferation (6-66 h after PH), cell differentiation and structure-function reconstruction (66-168 h after PH) was 36, 9, 47, 4 and 36, 26, 78, 50, respectively, illustrating that the associated genes were mainly triggered at the initial phase of LR and worked at different phases. According to their expression similarity, these genes were classified into 5 types: 41 up-regulated, 4 predominantly up-regulated, 26 down-regulated, 6 predominantly down-regulated, and 8 approximately up/down-regulated genes, respectively. The expression of these genes was up-regulated 350 times and down-regulated 129 times respectively, demonstrating that the expression of most genes was enhanced while the expression of a small number of genes was decreased during LR. Their time relevance was classified into 14 groups, showing that the cellular physiological and biochemical activities during LR were staggered. According to the gene expression patterns, they were classified into 28 types, indicating that the cellular physiological and biochemical activities were diverse and complicated during LR.
CONCLUSION: Congenital cellular immunity is enhanced mainly in the forepart, prophase and anaphase of LR while congenital molecular immunity is increased dominantly in the forepart and anaphase of LR. A total of 85 genes associated with LR play an important role in innate immunity.
Collapse
Affiliation(s)
- Guang-Wen Chen
- College of Life Science, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | | | | | | |
Collapse
|
23
|
Su LJ, Ding GW, Yang ZL, Zhang SB, Yang YX, Xu CS. Expression patterns and action analysis of genes associated with hepatitis virus infection during rat liver regeneration. World J Gastroenterol 2006; 12:7626-34. [PMID: 17171791 PMCID: PMC4088044 DOI: 10.3748/wjg.v12.i47.7626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the action of hepatitis virus infection-associated genes at transcription level during liver regeneration (LR).
METHODS: Hepatitis virus infection-associated genes were obtained by collecting the data from databases and retrieving the correlated articles, and their expression changes in the regenerating rat liver were detected with the rat genome 230 2.0 array.
RESULTS: Eighty-eight genes were found to be associated with liver regeneration. The number of genes initially and totally expressed during initial LR [0.5-4 h after partial hepatectomy (PH)], transition from G0 to G1 (4-6 h after PH), cell proliferation (6-66 h after PH), cell differentiation and reorganization of structure-function (66-168 h after PH) was 37, 8, 48, 3 and 37, 26, 80, 57, respectively, indicating that the genes were mainly triggered at the early stage of LR (0.5-4 h after PH), and worked at different phases. These genes were classified into 5 types according to their expression similarity, namely 37 up-regulated, 9 predominantly up-regulated, 34 down-regulated, 6 predominantly down-regulated and 2 up/down-regulated genes. Their total up- and down-regulation frequencies were 359 and 149 during LR, indicating that the expression of most genes was enhanced, while the expression of a small number of genes was attenuated during LR. According to time relevance, they were classified into 12 groups (0.5 and 1 h, 2 and 4 h, 6 h, 8 and 12 h, 16 and 96 h, 18 and 24 h, 30 and 42 h, 36 and 48 h, 54 and 60 h, 66 and 72 h, 120 and 144 h, 168 h), demonstrating that the cellular physiological and biochemical activities during LR were fluctuated. According to expression changes of the genes, their expression patterns were classified into 23 types, suggesting that the cellular physiological and biochemical activities during LR were diverse and complicated.
CONCLUSION: The anti-virus infection capacity of regenerating liver can be enhanced and 88 genes play an important role in LR.
Collapse
Affiliation(s)
- Li-Juan Su
- Faculty of Life Science and Technology, Ocean University of China, Qingdao 260003, Shandong Province, China
| | | | | | | | | | | |
Collapse
|
24
|
Qin SW, Zhao LF, Chen XG, Xu CS. Expression pattern and action analysis of genes associated with the responses to chemical stimuli during rat liver regeneration. World J Gastroenterol 2006; 12:7285-91. [PMID: 17143942 PMCID: PMC4087484 DOI: 10.3748/wjg.v12.i45.7285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the genes associated with the responses to chemokines, nutrients, inorganic substances, organic substances and xenobiotics after rat partial hepatectomy (PH) at transcriptional level.
METHODS: The associated genes involved in the five kinds of responses were obtained from database and literature, and the gene expression changes during liver regeneration in rats were checked by the Rat Genome 230 2.0 array.
RESULTS: It was found that 60, 10, 9, 6, 26 genes respectively participating in the above five kinds of responses were associated with liver regeneration. The numbers of initially and totally expressed genes occurring in the initial phase of liver regeneration (0.5-4 h after PH), G0/G1 transition (4-6 h after PH), cell proliferation (6-66 h after PH), cell differentiation and structure-functional reconstruction (66-168 h after PH) were 51, 19, 52, 6 and 51, 43, 98, 68 respectively, illustrating that the associated genes were mainly triggered in the initiation and transition stages, and functioned at different phases. According to their expression similarity, these genes were classified into 5 groups: only up-regulated (47), predominantly up-regulated (18), only down-regulated (24), predominantly down-regulated (10), and up- and down-regulated (8). The total times of their up-regulated and down-regulated expression were 441 and 221, demonstrating that the number of up-regulated genes is more than that of the down-regulated genes. Their time relevance and gene expression patterns were classified into 14 and 26 groups, showing that the cell physiological and biochemical activities were staggered, diversified and complicated during liver regeneration in rats.
CONCLUSION: The chemotaxis was enhanced mainly in the forepart and metaphase of LR. The response of regenerating liver to nutrients and chemical substances was increased, whereas that to xenobiotics was not strong. One hundred and seven genes associated with LR play important roles in the responses to chemical substances.
Collapse
Affiliation(s)
- Shao-Wei Qin
- Laboratory for Cell Differentiation Regulation, Xinxiang 453007, Henan Province, China
| | | | | | | |
Collapse
|
25
|
Ning QJ, Qin SW, Xu CS. Expression patterns and action analysis of genes associated with drug-induced liver diseases during rat liver regeneration. World J Gastroenterol 2006; 12:6966-72. [PMID: 17109518 PMCID: PMC4087340 DOI: 10.3748/wjg.v12.i43.6966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM: To study the action of the genes associated with drug-induced liver diseases at the gene transcriptional level during liver regeneration (LR) in rats.
METHODS: The genes associated with drug-induced liver diseases were obtained by collecting the data from databases and literature, and the gene expression changes in the regenerating liver were checked by the Rat Genome 230 2.0 array.
RESULTS: The initial and total expression numbers of genes occurring in phases of 0.5-4 h after partial hepatectomy (PH), 4-6 h after PH (G0/G1 transition), 6-66 h after PH (cell proliferation), 66-168 h after PH (cell differentiation and structure-function reconstruction) were 21, 3, 9, 2 and 21, 9, 19, 18, respectively. It is illustrated that the associated genes were mainly triggered at the initial stage of LR and worked at different phases. According to their expression similarity, these genes were classified into 5 types: only up-regulated (12 genes), predominantly up-regulated (4 genes), only down-regulated (11 genes), predominantly down-regulated (3 genes), and approximately up-/down-regulated (2 genes). The total times of their up- and down-expression were 130 and 79, respectively, demonstrating that expression of most of the genes was increased during LR, while a few decreased. The cell physiological and biochemical activities during LR were staggered according to the time relevance and were diverse and complicated in gene expression patterns.
CONCLUSION: Drug metabolic capacity in regenerating liver was enhanced. Thirty-two genes play important roles during liver regeneration in rats.
Collapse
Affiliation(s)
- Qian-Ji Ning
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan Province, China
| | | | | |
Collapse
|
26
|
Zhao LF, Zhang WM, Xu CS. Expression patterns and action analysis of genes associated with blood coagulation responses during rat liver regeneration. World J Gastroenterol 2006; 12:6842-9. [PMID: 17106934 PMCID: PMC4087440 DOI: 10.3748/wjg.v12.i42.6842] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the blood coagulation response after partial hepatectomy (PH) at transcriptional level.
METHODS: After PH of rats, the associated genes with blood coagulation were obtained through reference to the databases, and the gene expression changes in rat regenerating liver were analyzed by the Rat Genome 230 2.0 array.
RESULTS: It was found that 107 genes were associated with liver regeneration. The initially and totally expressing gene numbers occurring in initiation phase of liver regeneration (0.5-4 h after PH), G0/G1 transition (4-6 h after PH), cell proliferation (6-66 h after PH), cell differentiation and structure-function reconstruction (66-168 h after PH) were 44, 11, 58, 7 and 44, 33, 100, 71 respectively, showing that the associated genes were mainly triggered in the forepart and prophase, and worked at different phases. According to their expression similarity, these genes were classified into 5 groups: only up-, predominantly up-, only down-, predominantly down-, up- and down-regulation, involving 44, 8, 36, 13 and 6 genes, respectively, and the total times of their up- and down-regulation expression were 342 and 253, respectively, demonstrating that the number of the up-regulated genes was more than that of the down- regulated genes. Their time relevance was classified into 15 groups, showing that the cellular physiological and biochemical activities were staggered during liver regeneration. According to gene expression patterns, they were classified into 29 types, suggesting that their protein activities were diverse and complex during liver regeneration.
CONCLUSION: The blood coagulation response is enhanced mainly in the forepart, prophase and anaphase of liver regeneration, in which the response in the forepart, prophase of liver regeneration can prevent the bleeding caused by partial hepatectomy, whereas that in the anaphase contributes to the structure-function reorganization of regenerating liver. In the process, 107 genes associated with liver regeneration play an important role.
Collapse
Affiliation(s)
- Li-Feng Zhao
- Faculty of Life Science and Technology, Ocean University of China, China
| | | | | |
Collapse
|
27
|
Baier P, Wolf-Vorbeck G, Hempel S, Hopt UT, von Dobschuetz E. Effect of liver regeneration after partial hepatectomy and ischemia-reperfusion on expression of growth factor receptors. World J Gastroenterol 2006; 12:3835-40. [PMID: 16804967 PMCID: PMC4087930 DOI: 10.3748/wjg.v12.i24.3835] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of experimental partial hepatectomy and normothermic ischemia-reperfusion damage on the time course of the expression of four different growth factor receptors in liver regeneration. This is relevant due to the potential therapeutic use of growth factors in stimulating liver regeneration.
METHODS: For partial hepatectomy (PH) 80% of the liver mass was resected in Sprague Dawley rats. Ischemia and reperfusion (I/R) were induced by occlusion of the portal vein and the hepatic artery for 15 min. The epidermal growth factor receptor, hepatic growth factor receptor, fibroblast growth factor receptor and tumour necrosis factor receptor-1 were analysed by immunohistochemistry up to 72 h after injury. Quantitative RT-PCR was performed at the time point of minimal receptor expression (24 h).
RESULTS: In immunohistochemistry, EGFR, HGFR, FGFR and TNFR1 showed biphasic kinetics after partial hepatectomy with a peak up to 12 h, a nadir after 24 h and another weak increase up to 72 h. During liver regeneration, after ischemia and reperfusion, the receptor expression was lower; the nadir at 24 h after reperfusion was the same. To evaluate whether this nadir was caused by a lack of mRNA transcription, or due to a posttranslational regulation, RT-PCR was performed at 24 h and compared to resting liver. In every probe there was specific mRNA for the receptors. EGFR, FGFR and TNFR1 mRNA expression was equal or lower than in resting liver, HGFR expression after I/R was stronger than in the control.
CONCLUSION: At least partially due to a post-transcrip-tional process, there is a nadir in the expression of the analysed receptors 24 h after liver injury. Therefore, a therapeutic use of growth factors to stimulate liver regeneration 24 h after the damage might be not successful.
Collapse
MESH Headings
- Animals
- ErbB Receptors/metabolism
- Gene Expression Regulation/physiology
- Growth Substances/pharmacology
- Growth Substances/therapeutic use
- Hepatectomy/methods
- Immunohistochemistry
- Liver/chemistry
- Liver/pathology
- Liver/physiopathology
- Liver/surgery
- Liver Regeneration/drug effects
- Liver Regeneration/physiology
- Male
- Proto-Oncogene Proteins c-met/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Receptors, Fibroblast Growth Factor/metabolism
- Receptors, Growth Factor/metabolism
- Receptors, Tumor Necrosis Factor, Type I/analysis
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/physiology
- Reperfusion Injury/pathology
- Reperfusion Injury/physiopathology
- Time Factors
Collapse
Affiliation(s)
- P Baier
- Department of General and Visceral Surgery, Albert-Ludwigs-University, Freiburg, Germany.
| | | | | | | | | |
Collapse
|