1
|
Quelhas P, Oliveira R, Kieling C, Vieira S, dos Santos J. Structural Disruption of Cilia and Increased Cytoplasmic Tubulin in Biliary Atresia-An Exploratory Study Focusing on Early Postoperative Prognosis Following Portoenterostomy. Biomedicines 2025; 13:87. [PMID: 39857671 PMCID: PMC11763231 DOI: 10.3390/biomedicines13010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/13/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Introduction: Biliary atresia (BA) is a progressive hepatobiliary disease in infants, leading to liver failure and the need for transplantation. While its etiopathogenesis remains unclear, recent studies suggest primary cilia (PC) disruption plays a role. This study investigates correlations between PC and cytoplasmic tubulin (TUBA4A) alterations with hypoxia in patients with the isolated form of BA, focusing on native liver survival. Methods: Using qualitative and quantitative digital image analysis of immunofluorescence-stained liver samples, we assessed PC and TUBA4A features correlating these findings with HIF-1α nuclear positivity, clinical-laboratory data, and early native liver survival. Liver samples from fourteen BA patients and six controls with another liver disease were analyzed by digital image analysis, with data evaluated using Spearman's correlation and independent t-tests. Results: HIF-1α positivity in cholangiocytes was observed in 42.8% of BA patients. While the PC ratio per biliary structure (cilia ratio status, CRs) was similar between BA patients and controls, PC length was decreased in BA patients. Cytoplasmic TUBA4A levels were elevated in BA patients. CRs positively correlated with lower cytoplasmic TUBA4A expression and was higher in patients without HIF-1α nuclear positivity. Reduced cilia length correlated with higher bilirubin levels at portoenterostomy. Predictors of early poor prognosis (death or need for transplantation until 1 year of life) included HIF-1α positivity, elevated direct bilirubin levels, decreased cilia length, PC bending, and increased TUBA4A expression. Conclusions: Reduced PC length, PC bending, and increased intensity of cytoplasmic TUBA4A expression occur in the isolated BA clinical type and negatively impact the early prognosis after post-portoenterostomy. These findings suggest the existence of a disruption in the tubulin transport between cytoplasm and PC. The detrimental effect of HIF-1alpha pathway activation over early native liver survival was confirmed, although independently from PC or cytoplasmic tubulin features.
Collapse
Affiliation(s)
- Patrícia Quelhas
- Faculty of Health Sciences, Health Science Investigation Center of University of Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal;
| | - Rui Oliveira
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Pathology Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
- Germano de Sousa-Centro de Diagnóstico Histopatológico CEDAP, University of Coimbra, 3000-377 Coimbra, Portugal
| | - Carlos Kieling
- Unidade de Gastroenterologia e Hepatologia, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Brazil; (C.K.); (S.V.)
| | - Sandra Vieira
- Unidade de Gastroenterologia e Hepatologia, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Brazil; (C.K.); (S.V.)
- Department of Pediatrics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90010-150, Brazil
- Programa de Transplante de Fígado Pediátrico, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Brazil
| | - Jorge dos Santos
- Faculty of Health Sciences, Health Science Investigation Center of University of Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal;
| |
Collapse
|
2
|
Preuß B, Frank A, Terjung B, Spengler U, Berg C, Klein R. Autoantibodies to beta tubulin in autoimmune liver diseases-Relation to pANCA and clinical relevance. Clin Exp Immunol 2024; 216:146-158. [PMID: 37823420 PMCID: PMC11036111 DOI: 10.1093/cei/uxad114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/30/2023] [Accepted: 10/10/2023] [Indexed: 10/13/2023] Open
Abstract
There was evidence that perinuclear antineutrophil cytoplasmic antibodies (pANCA) in autoimmune liver diseases react with human beta-tubulin-5 (TBB5). Here, we reevaluate the specificity and clinical relevance of anti-TBB5 antibodies. Patients with untreated autoimmune hepatitis (AIH; n = 53), AIH under immunosuppressive therapy (AIH-IS; n = 125), primary sclerosing cholangitis (PSC; n = 40), primary biliary cholangitis (PBC; n = 250), nonautoimmune liver diseases (n = 158), inflammatory bowel diseases (IBD; n = 30), and healthy individuals (n = 62) were tested by enzyme-linked immunosorbent assay for IgG- and IgA-antibodies against recombinant human TBB5. pANCA were detected by immunofluorescence test. Sera were absorbed with TBB5 coupled to cyanogen bromide-activated sepharose. Prevalence and reactivity of IgG anti-TBB5 were significantly higher in patients with untreated AIH (68%; arbitrary units [AU] median: 369) than in PSC (28%; AU median: 84, P < 0.001), other liver diseases (14%; AU median: 185, P < 0.0001), IBD (3%; AU median: 111, P < 0.0001), and healthy controls (3%; AU median: 135; P < 0.0001). Anti-TBB5 did not correlate with pANCA, and immunoprecipitation with TBB5 did not abolish pANCA reactivity. In untreated AIH, anti-TBB5-reactivity was significantly higher than in AIH-IS. Transaminases decreased under IS preferentially in anti-TBB5-negative patients. There was no correlation between anti-TBB5-reactivity and histological stages. IgA-anti-TBB5 was mainly found in alcohol-associated liver disease (ALD; 39%). Our data do not support TBB5 as an autoantigenic target of pANCA. However, IgG-anti-TBB5 showed high specificity for (untreated) AIH. While they did not correlate with histological and laboratory parameters, their presence may indicate a poor response to IS.
Collapse
Affiliation(s)
- Beate Preuß
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University of Tuebingen, Tuebingen, Germany
| | - Amelie Frank
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University of Tuebingen, Tuebingen, Germany
| | - Birgit Terjung
- Department of Gastroenterology, GFO Kliniken Bonn, St. Josef Hospital, Bonn, Germany
| | - Ulrich Spengler
- Department of Gastroenterology and Hepatology, Nephrology, Infectious Diseases, Endocrinology and Diabetology, University of Bonn, Bonn, Germany
| | - Christoph Berg
- Department of Gastroenterology and Infectiology, University of Tuebingen, Tuebingen, Germany
| | - Reinhild Klein
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
3
|
Wijaya LS, Gabor A, Pot IE, van de Have L, Saez-Rodriguez J, Stevens JL, Le Dévédec SE, Callegaro G, van de Water B. A network-based transcriptomic landscape of HepG2 cells uncovering causal gene-cytotoxicity interactions underlying drug-induced liver injury. Toxicol Sci 2024; 198:14-30. [PMID: 38015832 PMCID: PMC10901150 DOI: 10.1093/toxsci/kfad121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
Drug-induced liver injury (DILI) remains the main reason for drug development attritions largely due to poor mechanistic understanding. Toxicogenomic to interrogate the mechanism of DILI has been broadly performed. Gene coregulation network-based transcriptome analysis is a bioinformatics approach that potentially contributes to improve mechanistic interpretation of toxicogenomic data. Here we performed an extensive concentration time course response-toxicogenomic study in the HepG2 cell line exposed to 20 DILI compounds, 7 reference compounds for stress response pathways, and 10 agonists for cytokines and growth factor receptors. We performed whole transcriptome targeted RNA sequencing to more than 500 conditions and applied weighted gene coregulated network analysis to the transcriptomics data followed by the identification of gene coregulated networks (modules) that were strongly modulated upon the exposure of DILI compounds. Preservation analysis on the module responses of HepG2 and PHH demonstrated highly preserved adaptive stress response gene coregulated networks. We correlated gene coregulated networks with cell death onset and causal relationships of 67 critical target genes of these modules with the onset of cell death was evaluated using RNA interference screening. We identified GTPBP2, HSPA1B, IRF1, SIRT1, and TSC22D3 as essential modulators of DILI compound-induced cell death. These genes were also induced by DILI compounds in PHH. Altogether, we demonstrate the application of large transcriptome datasets combined with network-based analysis and biological validation to uncover the candidate determinants of DILI.
Collapse
Affiliation(s)
- Lukas S Wijaya
- Leiden Academic Centre for Drug Research (LACDR), Faculty of Science, Leiden University, 2333 Leiden, The Netherlands
| | - Attila Gabor
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University, 69120 Heidelberg, Germany
- Heidelberg University Hospital, Molecular Medicine Partnership Unit, 69120 Heidelberg, Germany
| | - Iris E Pot
- Leiden Academic Centre for Drug Research (LACDR), Faculty of Science, Leiden University, 2333 Leiden, The Netherlands
| | - Luca van de Have
- Leiden Academic Centre for Drug Research (LACDR), Faculty of Science, Leiden University, 2333 Leiden, The Netherlands
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University, 69120 Heidelberg, Germany
- Heidelberg University Hospital, Molecular Medicine Partnership Unit, 69120 Heidelberg, Germany
| | - James L Stevens
- Leiden Academic Centre for Drug Research (LACDR), Faculty of Science, Leiden University, 2333 Leiden, The Netherlands
| | - Sylvia E Le Dévédec
- Leiden Academic Centre for Drug Research (LACDR), Faculty of Science, Leiden University, 2333 Leiden, The Netherlands
| | - Giulia Callegaro
- Leiden Academic Centre for Drug Research (LACDR), Faculty of Science, Leiden University, 2333 Leiden, The Netherlands
| | - Bob van de Water
- Leiden Academic Centre for Drug Research (LACDR), Faculty of Science, Leiden University, 2333 Leiden, The Netherlands
| |
Collapse
|
4
|
Zhang S, Weng Z, Wang Z, Wang B, Zeng Y, Li J, Hu C. Attenuation of alcohol-induced hepatocyte damage by ginsenoside Rg1 evaluated using atomic force microscopy. Microsc Res Tech 2023; 86:1037-1046. [PMID: 37382340 DOI: 10.1002/jemt.24381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/30/2023]
Abstract
Alcoholic liver disease is an important cause of death worldwide. Hepatocyte apoptosis is commonly observed in alcoholic liver disease. In this study, we investigated the effect of ginsenoside Rg1 (G-Rg1), an organic component of ginseng, on the alcohol-induced morphological and biophysical properties of hepatocytes. Human hepatocytes (HL-7702) were treated in vitro with alcohol and G-Rg1. The cell morphology was observed using scanning electron microscopy. Cell height, roughness, adhesion, and elastic modulus were detected using atomic force microscopy. We found that alcohol significantly induced hepatocyte apoptosis, whereas G-Rg1 attenuated the alcohol-induced hepatocyte damage. Scanning electron microscopy revealed that alcohol-induced significant morphological changes in hepatocytes, including decreased cell contraction, roundness, and pseudopods, whereas G-Rg1 inhibited these negative changes. Atomic force microscopy revealed that alcohol increased the cell height and decreased the adhesion and elastic modulus of hepatocytes. Following treatment with G-Rg1, the cell height, adhesion, and elastic modulus of alcohol-injured hepatocytes were all similar to those of normal cells. Thus, G-Rg1 can attenuate the alcohol-induced damage to hepatocytes by modulating the morphology and biomechanics of the cells. RESEARCH HIGHLIGHTS: In this study, the morphological characteristics of hepatocytes were observed using SEM. The changes in hepatocyte three-dimensional images and biomechanical action caused by alcohol and G-Rg1 were examined at the nanoscale using AFM under near-physiological conditions. Alcohol-induced hepatocytes showed abnormal morphology and biophysical properties. G-Rg1 attenuated the alcohol-induced damage to hepatocytes by modulating the morphology and biomechanics of the cells.
Collapse
Affiliation(s)
- Shengli Zhang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| | - Zhankun Weng
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
- JR3CN & IRAC, University of Bedfordshire, Luton, UK
| | - Bowei Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| | - Yi Zeng
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| | - Jiani Li
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| | - Cuihua Hu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| |
Collapse
|
5
|
Hwang H, Liu R, Eldridge R, Hu X, Forghani P, Jones DP, Xu C. Chronic ethanol exposure induces mitochondrial dysfunction and alters gene expression and metabolism in human cardiac spheroids. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:643-658. [PMID: 36799338 PMCID: PMC10149610 DOI: 10.1111/acer.15026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND Chronic alcohol consumption in adults can induce various cardiac toxicities such as arrhythmias, cardiomyopathy, and heart failure. Prenatal alcohol exposure can increase the risk of developing congenital heart defects among offspring. Understanding the molecular mechanisms underlying long-term alcohol exposure-induced cardiotoxicity can help guide the development of therapeutic strategies. METHODS Cardiomyocytes derived from human-induced pluripotent stem cells (hiPSC-CMs) were engineered into cardiac spheroids and treated with clinically relevant concentrations of ethanol (17 and 50 mM) for 5 weeks. The cells were then analyzed for changes in mitochondrial features, transcriptomic and metabolomic profiles, and integrated omics outcomes. RESULTS Following chronic ethanol treatment of hiPSC-CMs, a decrease in mitochondrial membrane potential and respiration and changes in expression of mitochondrial function-related genes were observed. RNA-sequencing analysis revealed changes in various metabolic processes, heart development, response to hypoxia, and extracellular matrix-related activities. Metabolomic analysis revealed dysregulation of energy metabolism and increased metabolites associated with the upregulation of inflammation. Integrated omics analysis further identified functional subclusters and revealed potentially affected pathways associated with cardiac toxicities. CONCLUSION Chronic ethanol treatment of hiPSC-CMs resulted in overall decreased mitochondrial function, increased glycolysis, disrupted fatty acid oxidation, and impaired cardiac structural development.
Collapse
Affiliation(s)
- Hyun Hwang
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Rui Liu
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Ronald Eldridge
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA 30322, USA
| | - Xin Hu
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Parvin Forghani
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Dean P. Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Chunhui Xu
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
6
|
Duryee MJ, Aripova N, Hunter CD, Ruskamp RJ, Tessin MR, Works DR, Mikuls TR, Thiele GM. A novel reactive aldehyde species inhibitor prevents the deleterious effects of ethanol in an animal model of alcoholic liver disease. Int Immunopharmacol 2022; 113:109400. [DOI: 10.1016/j.intimp.2022.109400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
7
|
Wu KJ, Liu PP, Chen MY, Zhou MX, Liu X, Yang Q, Xu L, Gong Z. The Hepatoprotective Effect of Leonurine Hydrochloride Against Alcoholic Liver Disease Based on Transcriptomic and Metabolomic Analysis. Front Nutr 2022; 9:904557. [PMID: 35873419 PMCID: PMC9301321 DOI: 10.3389/fnut.2022.904557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Excessive alcohol consumption can eventually progress to alcoholic liver disease (ALD). The underlying mechanism of ALD toxicity is primarily associated with oxidative damage. Many alkaloids have been reported to possess potential antioxidative efficacy, while the mechanism of their hepatoprotective activity against ALD is still not clear. In this study, eight alkaloids were selected from a monomer library of Traditional Chinese Medicine and evaluated for their antioxidant activity against ALD by the evaluation of Glutathione (GSH) and Malondialdehyde (MDA). The result suggested that Leonurine hydrochloride (LH) was a potent antioxidant that could reduce alcoholic liver damage. To further investigate the underlying mechanism of LH against ALD, the molecular pathway induced by LH was identified by RNA-seq analyses. Transcriptome data revealed the principal mechanism for the protective effect of LH against ALD might be attributed to the differentially expressed genes (DEGs) of PI3K-AKT, AMPK, and HIF-1 signaling pathways involved in the lipid metabolism. Given the hepatoprotective mechanism of LH is involved in lipid metabolism, the lipid metabolism induced by LH was further analyzed by UHPLC-MS/MS. Metabolome analysis indicated that LH significantly regulated glycerophospholipid metabolism including phosphatidylcholine, 1-acyl-sn-glycero-3-phosphocholine, phosphatidylethanolamine and 1-acyl-sn-glycero-3-phosphoethanolamine in the liver. Overall, this study revealed that the hepatoprotective mechanism of LH against alcoholic liver damage might be associated with the genes involved in glycerophospholipid metabolism.
Collapse
|
8
|
In vivo evaluation of a microtubule PET ligand, [ 11C]MPC-6827, in mice following chronic alcohol consumption. Pharmacol Rep 2021; 74:241-247. [PMID: 34491568 DOI: 10.1007/s43440-021-00311-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Excessive alcohol consumption is a global health burden and requires a better understanding of its neurobiology. A lower density of brain microtubules is found in alcohol-related human brain disease postmortem and in rodent models of chronic alcohol consumption. Here, we report in vivo imaging studies of microtubules in brain using our recently reported Positron Emission Tomography (PET) tracer, [11C]MPC-6827, in chronic alcohol-consuming adult male C57BL/6 J mice and control mice. METHODS In vivo PET imaging studies of [11C]MPC-6827 (3.7 ± 0.8 MBq) were performed in two groups of adult male mice: (1) water-consuming control mice (n = 4) and (2) mice that consumed 20% alcohol (w/v) for 4 months using the intermittent 2-bottle choice procedure that has been shown to lead to signs of alcohol dependence. Dynamic 63 min PET images were acquired using a microPET Inveon system (Siemens, Germany). PET images were reconstructed using the 3D-OSEM algorithm and analyzed using VivoQuant version 4 (Invicro, MA). Tracer uptake in ROIs that included whole brain, prefrontal cortex (PFC), liver and heart was measured and plotted as %ID/g over time (0-63 min) to generate time-activity curves (TACs). RESULTS In general, a trend for lower binding of [11C]MPC-6827 in the whole brain and PFC of mice in the chronic alcohol group was found compared with control group. No group difference in radiotracer binding was found in the peripheral organs such as liver and heart. CONCLUSIONS This pilot study indicates a trend of loss of microtubule binding in whole brain and prefrontal cortex of chronic alcohol administered mice brain compared to control mice, but no loss in heart or liver. These results indicate the potential of [11C]MPC-6827 as a PET ligand for further in vivo imaging investigations of AUD in human.
Collapse
|
9
|
Zhang D, Dong X, Liu X, Ye L, Li S, Zhu R, Ye Y, Jiang Y. Proteomic Analysis of Brain Regions Reveals Brain Regional Differences and the Involvement of Multiple Keratins in Chronic Alcohol Neurotoxicity. Alcohol Alcohol 2020; 55:147-156. [PMID: 32047899 DOI: 10.1093/alcalc/agaa007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/22/2019] [Accepted: 01/13/2020] [Indexed: 12/29/2022] Open
Abstract
AIMS Alcohol abuse has attracted public attention and chronic alcohol exposure can result in irreversible structural changes in the brain. The molecular mechanisms underlying alcohol neurotoxicity are complex, mandating comprehensive mining of spatial protein expression profile. METHODS In this study, mice models of chronic alcohol intoxication were established after 95% alcohol vapor administration for 30 consecutive days. On Day 30, striatum (the dorsal and ventral striatum) and hippocampus, the two major brain regions responsible for learning and memorizing while being sensitive to alcohol toxicity, were collected. After that, isobaric tags for relative and absolute quantitation -based quantitative proteomic analysis were carried out for further exploration of the novel mechanisms underlying alcohol neurotoxicity. RESULTS Proteomic results showed that in the striatum, 29 proteins were significantly up-regulated and 17 proteins were significantly down-regulated. In the hippocampus, 72 proteins were significantly up-regulated, while 2 proteins were significantly down-regulated. Analysis of the overlay proteins revealed that a total of 102 proteins were consistently altered (P < 0.05) in both hippocampus and striatum regions, including multiple keratins such as Krt6a, Krt17 and Krt5. Ingenuity pathway analysis revealed that previously reported diseases/biofunctions such as dermatological diseases and developmental disorders were enriched in those proteins. Interestingly, the glucocorticoid receptor (GR) signaling was among the top enriched pathways in both brain regions, while multiple keratins from the GR signaling such as Krt1 and Krt17 exhibited significantly opposite expression patterns in the two brain nuclei. Moreover, there are several other involved pathways significantly differed between the hippocampus and striatum. CONCLUSIONS Our data revealed brain regional differences upon alcohol consumption and indicated the critical involvement of keratins from GR signaling in alcohol neurotoxicity. The differences in proteomic results between the striatum and hippocampus suggested a necessity of taking into consideration brain regional differences and intertwined signaling pathways rather than merely focusing on single nuclei or molecule during the study of drug-induced neurotoxicity in the future.
Collapse
Affiliation(s)
- Dingang Zhang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaoru Dong
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaochen Liu
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lin Ye
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Shuhao Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Rongzhe Zhu
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yonghong Ye
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yan Jiang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
10
|
Nowak AJ, Relja B. The Impact of Acute or Chronic Alcohol Intake on the NF-κB Signaling Pathway in Alcohol-Related Liver Disease. Int J Mol Sci 2020; 21:E9407. [PMID: 33321885 PMCID: PMC7764163 DOI: 10.3390/ijms21249407] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
Ethanol misuse is frequently associated with a multitude of profound medical conditions, contributing to health-, individual- and social-related damage. A particularly dangerous threat from this classification is coined as alcoholic liver disease (ALD), a liver condition caused by prolonged alcohol overconsumption, involving several pathological stages induced by alcohol metabolic byproducts and sustained cellular intoxication. Molecular, pathological mechanisms of ALD principally root in the innate immunity system and are especially associated with enhanced functionality of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. NF-κB is an interesting and convoluted DNA transcription regulator, promoting both anti-inflammatory and pro-inflammatory gene expression. Thus, the abundancy of studies in recent years underlines the importance of NF-κB in inflammatory responses and the mechanistic stimulation of inner molecular motifs within the factor components. Hereby, in the following review, we would like to put emphasis on the correlation between the NF-κB inflammation signaling pathway and ALD progression. We will provide the reader with the current knowledge regarding the chronic and acute alcohol consumption patterns, the molecular mechanisms of ALD development, the involvement of the NF-κB pathway and its enzymatic regulators. Therefore, we review various experimental in vitro and in vivo studies regarding the research on ALD, including the recent active compound treatments and the genetic modification approach. Furthermore, our investigation covers a few human studies.
Collapse
Affiliation(s)
- Aleksander J. Nowak
- Experimental Radiology, University Clinic for Radiology and Nuclear Medicine, Leipziger Strasse 44, 39120 Magdeburg, Germany;
- Medical Faculty, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Borna Relja
- Experimental Radiology, University Clinic for Radiology and Nuclear Medicine, Leipziger Strasse 44, 39120 Magdeburg, Germany;
- Medical Faculty, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| |
Collapse
|
11
|
Maddah M, Mandegar MA, Dame K, Grafton F, Loewke K, Ribeiro AJS. Quantifying drug-induced structural toxicity in hepatocytes and cardiomyocytes derived from hiPSCs using a deep learning method. J Pharmacol Toxicol Methods 2020; 105:106895. [PMID: 32629158 DOI: 10.1016/j.vascn.2020.106895] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 12/15/2022]
Abstract
Cardiac and hepatic toxicity result from induced disruption of the functioning of cardiomyocytes and hepatocytes, respectively, which is tightly related to the organization of their subcellular structures. Cellular structure can be analyzed from microscopy imaging data. However, subtle or complex structural changes that are not easily perceived may be missed by conventional image-analysis techniques. Here we report the evaluation of PhenoTox, an image-based deep-learning method of quantifying drug-induced structural changes using human hepatocytes and cardiomyocytes derived from human induced pluripotent stem cells. We assessed the ability of the deep learning method to detect variations in the organization of cellular structures from images of fixed or live cells. We also evaluated the power and sensitivity of the method for detecting toxic effects of drugs by conducting a set of experiments using known toxicants and other methods of screening for cytotoxic effects. Moreover, we used PhenoTox to characterize the effects of tamoxifen and doxorubicin-which cause liver toxicity-on hepatocytes. PhenoTox revealed differences related to loss of cytochrome P450 3A4 activity, for which it showed greater sensitivity than a caspase 3/7 assay. Finally, PhenoTox detected structural toxicity in cardiomyocytes, which was correlated with contractility defects induced by doxorubicin, erlotinib, and sorafenib. Taken together, the results demonstrated that PhenoTox can capture the subtle morphological changes that are early signs of toxicity in both hepatocytes and cardiomyocytes.
Collapse
Affiliation(s)
| | | | - Keri Dame
- Division of Applied Regulatory Science, Office of Translational Science, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | | | | | - Alexandre J S Ribeiro
- Division of Applied Regulatory Science, Office of Translational Science, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
12
|
Jin J, Wahlang B, Shi H, Hardesty JE, Falkner KC, Head KZ, Srivastava S, Merchant ML, Rai SN, Cave MC, Prough RA. Dioxin-like and non-dioxin-like PCBs differentially regulate the hepatic proteome and modify diet-induced nonalcoholic fatty liver disease severity. Med Chem Res 2020; 29:1247-1263. [PMID: 32831531 PMCID: PMC7440142 DOI: 10.1007/s00044-020-02581-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/30/2020] [Indexed: 02/06/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants associated with metabolic disruption and non-alcoholic fatty liver disease (NAFLD). Based on their ability to activate the aryl hydrocarbon receptor (AhR), PCBs are subdivided into two classes: dioxin-like (DL) and non-dioxin-like (NDL) PCBs. Previously, we demonstrated that NDL PCBs compromised the liver to promote more severe diet-induced NAFLD. Here, the hepatic effects and potential mechanisms (by untargeted liver proteomics) of DL PCBs, NDL PCBs or co-exposure to both in diet-induced NAFLD are investigated. Male C57Bl/6 mice were fed a 42% fat diet and exposed to vehicle control; Aroclor1260 (20 mg/kg, NDL PCB mixture); PCB126 (20 μg/kg, DL PCB congener); or a mixture of Aroclor1260 (20 mg/kg)+PCB126 (20 μg/kg) for 12 weeks. Each exposure was associated with a distinct hepatic proteome. Phenotypic and proteomic analyses revealed increased hepatic inflammation and phosphoprotein signaling disruption by Aroclor1260. PCB126 decreased hepatic inflammation and fibrosis at the molecular level; while altering cytoskeletal remodeling, metal homeostasis, and intermediary/xenobiotic metabolism. PCB126 attenuated Aroclor1260-induced hepatic inflammation but increased hepatic free fatty acids in the co-exposure group. Aroclor1260+PCB126 exposure was strongly associated with multiple epigenetic processes, and these could potentially explain the observed non-additive effects of the exposures on the hepatic proteome. Taken together, the results demonstrated that PCB exposures differentially regulated the hepatic proteome and the histologic severity of diet-induced NAFLD. Future research is warranted to determine the AhR-dependence of the observed effects including metal homeostasis and the epigenetic regulation of gene expression.
Collapse
Affiliation(s)
- Jian Jin
- Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Banrida Wahlang
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
- UofL Superfund Research Center, University of Louisville, Louisville, KY, 40202, USA
| | - Hongxue Shi
- Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Josiah E. Hardesty
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - K. Cameron Falkner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Kimberly Z. Head
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Sudhir Srivastava
- Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, 40202, USA
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Michael L. Merchant
- UofL Superfund Research Center, University of Louisville, Louisville, KY, 40202, USA
- Division of Nephrology and Hypertension, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Shesh N. Rai
- UofL Superfund Research Center, University of Louisville, Louisville, KY, 40202, USA
- Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, 40202, USA
| | - Matthew C. Cave
- Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
- UofL Superfund Research Center, University of Louisville, Louisville, KY, 40202, USA
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
- Robley Rex Veterans Affairs Medical Center, Louisville, KY, 40206, USA
| | - Russell A. Prough
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| |
Collapse
|
13
|
Gu Y, Yang Y, Cao X, Zhao Y, Gao X, Sun C, Zhang F, Yuan Y, Xu Y, Zhang J, Xiao L, Ye J. Plin3 protects against alcoholic liver injury by facilitating lipid export from the endoplasmic reticulum. J Cell Biochem 2019; 120:16075-16087. [PMID: 31119787 DOI: 10.1002/jcb.28889] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 03/01/2019] [Accepted: 03/15/2019] [Indexed: 12/20/2022]
Abstract
Hepatic lipid accumulation is the most common pathological characteristic of alcoholic liver disease (ALD). In mammalian cells, excess neutral lipids are stored in lipid droplets (LDs). As a member of perilipin family proteins, Plin3 was recently found to regulate the LD biogenesis. However, the roles and mechanism of Plin3 in ALD progression remain unclear. Herein, we found that alcohol stimulated Plin3 expression in both mouse livers and cultured AML12 mouse hepatic cells, which was accompanied by excess LD accumulation in hepatocytes. The elevations of Plin3 in alcohol-treated hepatocytes paralleled with the levels of both PPARα and γ, and the protein degradation of Plin3 was also reduced after alcohol exposure. Moreover, Plin3 knockdown increased cellular sensitivity to alcohol-induced apoptosis, endoplasmic reticulum (ER) stress, and inflammatory cytokines release, including TNF-α, IL-1, and IL-6β. Notably, alcohol exacerbated triglycerides (TG) accumulation in the ER and caused ER dilation in Plin3-knockdown AML12 cells. Finally, we observed that Plin3 interacted with dynein subunit Dync1i1 and mediated the colocalization of LDs and microtubules, while high concentration of alcohol disrupted microtubules and caused dispersion of excess small LDs in cytoplasm. Summarily, Plin3 promotes lipid export from the ER and reduces ER lipotoxic stress, thereby, protecting against alcoholic liver injury. Moreover, Plin3 could be an adapter protein mediating LD transport by microtubules. This study explored the roles of Plin3 in alcohol-induced hepatic injury, suggesting Plin3 as a potential target for the prevention of ALD progression.
Collapse
Affiliation(s)
- Yu Gu
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China.,Department of Pathology, Basic Medicine School, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ying Yang
- Department of Pathology, Basic Medicine School, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiangmei Cao
- Department of Pathology, Basic Medical School, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yuanlin Zhao
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xing Gao
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chao Sun
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China.,Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Feng Zhang
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China.,Department of Pathology, Basic Medicine School, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuan Yuan
- Department of Pathology, Basic Medicine School, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuqiao Xu
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China.,Department of Pathology, Basic Medicine School, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jin Zhang
- Department of Pathology, Basic Medicine School, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Liming Xiao
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jing Ye
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China.,Department of Pathology, Basic Medicine School, The Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
14
|
Dos Santos APR, Rocha TL, Borges CL, Bailão AM, de Almeida Soares CM, de Sabóia-Morais SMT. A glyphosate-based herbicide induces histomorphological and protein expression changes in the liver of the female guppy Poecilia reticulata. CHEMOSPHERE 2017; 168:933-943. [PMID: 27836263 DOI: 10.1016/j.chemosphere.2016.10.116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 06/06/2023]
Abstract
Glyphosate-based herbicides (GBH) are among the most common herbicides found in aquatic systems, but limited data are available about their mode of action and hepatotoxicity in fish. This study investigated the hepatotoxicity induced by GBH in the guppy Poecilia reticulata using a histopathological assessment associated with a proteomic approach. Guppies were exposed to GBH for 24 h at 1.8 mg of glyphosate L-1, corresponding to 50% of the LC50, 96 h. The results indicate that the GBH at 1.8 mg of glyphosate L-1 induce the development of hepatic damage in P. reticulata, which is exposure-time dependent. The histopathological indexes demonstrate that GBH cause inflammatory, regressive, vascular and progressive disorders in the liver of guppies. Using 2D gel electrophoresis associated with mass spectrometry, 18 proteins that changed by GBH were identified and were related to the cellular structure, motility and transport, energy metabolism and apoptosis. The results show that the acute exposure to GBH causes hepatic histopathological damage related to protein expression profile changes in P. reticulata, indicating that a histopathological assessment associated with a proteomic analysis provides a valuable approach to assess the toxic effects of GBH in sentinel fish species.
Collapse
Affiliation(s)
- Ana Paula Rezende Dos Santos
- Laboratory of Cellular Behavior, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Cellular Behavior, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil; CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Clayton Luiz Borges
- Laboratory of Molecular Biology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Alexandre Melo Bailão
- Laboratory of Molecular Biology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | | | | |
Collapse
|
15
|
Lee J, Choi B, No DY, Lee G, Lee SR, Oh H, Lee SH. A 3D alcoholic liver disease model on a chip. Integr Biol (Camb) 2016; 8:302-8. [PMID: 26857817 DOI: 10.1039/c5ib00298b] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alcohol is one of the main causes of liver diseases, and the development of alcoholic liver disease (ALD) treatment methods has been one of the hottest issues. For this purpose, development of in vitro models mimicking the in vivo physiology is one of the critical requirements, and they help to determine the disease mechanisms and to discover the treatment method. Herein, a three-dimensional (3D) ALD model was developed and its superior features in mimicking the in vivo condition were demonstrated. A spheroid-based microfluidic chip was employed for the development of the 3D in vitro model of ALD progression. We co-cultured rat primary hepatocytes and hepatic stellate cells (HSCs) in a fluidic chip to investigate the role of HSCs in the recovery of liver with ALD. An interstitial level of flow derived by an osmotic pump was applied to the chip to provide in vivo mimicking of fluid activity. Using this in vitro tool, we were able to observe structural changes and decreased hepatic functions with the increase in ethanol concentration. The recovery process of liver injured by alcohol was observed by providing fresh culture medium to the damaged 3D liver tissue for few days. A reversibly- and irreversibly-injured ALD model was established. The proposed model can not only be used for the research of alcoholic disease mechanism, but also has the potential for use in studies of hepatotoxicity and drug screening applications.
Collapse
Affiliation(s)
- JaeSeo Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-713, Republic of Korea
| | - BongHwan Choi
- School of Biomedical Engineering, College of Health Science, Korea University, Seoul 136-713, Republic of Korea
| | - Da Yoon No
- Department of Bioengineering, School of Engineering and Medicine, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA
| | - GeonHui Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-713, Republic of Korea
| | - Seung-Ri Lee
- Department of Biopharmaceutical Sciences College of Pharmacy University of Illinois at Chicago, USA
| | - HyunJik Oh
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 136-713, Republic of Korea. and MicroFIT R&BD Institute, Dunchon-daero 457beon-gil, Jungwon-gu, Gyeonggi-do 462-806, Republic of Korea
| | - Sang-Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-713, Republic of Korea and Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 136-713, Republic of Korea.
| |
Collapse
|
16
|
Groebner JL, Tuma PL. The Altered Hepatic Tubulin Code in Alcoholic Liver Disease. Biomolecules 2015; 5:2140-59. [PMID: 26393662 PMCID: PMC4598792 DOI: 10.3390/biom5032140] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 01/01/2023] Open
Abstract
The molecular mechanisms that lead to the progression of alcoholic liver disease have been actively examined for decades. Because the hepatic microtubule cytoskeleton supports innumerable cellular processes, it has been the focus of many such mechanistic studies. It has long been appreciated that α-tubulin is a major target for modification by highly reactive ethanol metabolites and reactive oxygen species. It is also now apparent that alcohol exposure induces post-translational modifications that are part of the natural repertoire, mainly acetylation. In this review, the modifications of the "tubulin code" are described as well as those adducts by ethanol metabolites. The potential cellular consequences of microtubule modification are described with a focus on alcohol-induced defects in protein trafficking and enhanced steatosis. Possible mechanisms that can explain hepatic dysfunction are described and how this relates to the onset of liver injury is discussed. Finally, we propose that agents that alter the cellular acetylation state may represent a novel therapeutic strategy for treating liver disease.
Collapse
Affiliation(s)
- Jennifer L Groebner
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA.
| | - Pamela L Tuma
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA.
| |
Collapse
|
17
|
Theis WS, Andringa KK, Millender-Swain T, Dickinson DA, Postlethwait EM, Bailey SM. Ozone inhalation modifies the rat liver proteome. Redox Biol 2014; 2:52-60. [PMID: 25544660 PMCID: PMC4297937 DOI: 10.1016/j.redox.2013.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 11/18/2013] [Accepted: 11/18/2013] [Indexed: 02/06/2023] Open
Abstract
Ozone (O3) is a serious public health concern. Recent findings indicate that the damaging health effects of O3 extend to multiple systemic organ systems. Herein, we hypothesize that O3 inhalation will cause downstream alterations to the liver. To test this, male Sprague-Dawley rats were exposed to 0.5 ppm O3 for 8 h/day for 5 days. Plasma liver enzyme measurements showed that 5 day O3 exposure did not cause liver cell death. Proteomic and mass spectrometry analysis identified 10 proteins in the liver that were significantly altered in abundance following short-term O3 exposure and these included several stress responsive proteins. Glucose-regulated protein 78 and protein disulfide isomerase increased, whereas glutathione S-transferase M1 was significantly decreased by O3 inhalation. In contrast, no significant changes were detected for the stress response protein heme oxygenase-1 or cytochrome P450 2E1 and 2B in liver of O3 exposed rats compared to controls. In summary, these results show that an environmentally-relevant exposure to inhaled O3 can alter the expression of select proteins in the liver. We propose that O3 inhalation may represent an important unrecognized factor that can modulate hepatic metabolic functions. Rats were exposed to filtered air (FA) or 0.5 ppm ozone (O3) 8 h/day for 5 days. Using this exposure protocol, O3 caused no detectable lung injury or liver cell death. O3 altered the expression of some drug metabolism and stress proteins in liver.
Collapse
Affiliation(s)
- Whitney S Theis
- Department of Environmental Health Sciences, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA.
| | - Kelly K Andringa
- Department of Environmental Health Sciences, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA.
| | - Telisha Millender-Swain
- Department of Environmental Health Sciences, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA; Department of Pathology, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA.
| | - Dale A Dickinson
- Department of Environmental Health Sciences, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA; Center for Free Radical Biology, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA.
| | - Edward M Postlethwait
- Department of Environmental Health Sciences, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA; Center for Free Radical Biology, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA.
| | - Shannon M Bailey
- Department of Environmental Health Sciences, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA; Department of Pathology, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA; Center for Free Radical Biology, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA.
| |
Collapse
|
18
|
McCarthy ET, Zhou J, Eckert R, Genochio D, Sharma R, Oni O, De A, Srivastava T, Sharma R, Savin VJ, Sharma M. Ethanol at low concentrations protects glomerular podocytes through alcohol dehydrogenase and 20-HETE. Prostaglandins Other Lipid Mediat 2014; 116-117:88-98. [PMID: 25447342 DOI: 10.1016/j.prostaglandins.2014.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/24/2014] [Accepted: 10/25/2014] [Indexed: 12/22/2022]
Abstract
Clinical studies suggest cardiovascular and renal benefits of ingesting small amounts of ethanol. Effects of ethanol, role of alcohol dehydrogenase (ADH) or of 20-hydroxyeicosatetraenoic acid (20-HETE) in podocytes of the glomerular filtration barrier have not been reported. We found that mouse podocytes at baseline generate 20-HETE and express ADH but not CYP2e1. Ethanol at high concentrations altered the actin cytoskeleton, induced CYP2e1, increased superoxide production and inhibited ADH gene expression. Ethanol at low concentrations upregulated the expression of ADH and CYP4a12a. 20-HETE, an arachidonic acid metabolite generated by CYP4a12a, blocked the ethanol-induced cytoskeletal derangement and superoxide generation. Ethanol at high concentration or ADH inhibitor increased glomerular albumin permeability in vitro. 20-HETE and its metabolite produced by ADH activity, 20-carboxy-arachidonic acid, protected the glomerular permeability barrier against an ADH inhibitor, puromycin or FSGS permeability factor. We conclude that ADH activity is required for glomerular function, 20-HETE is a physiological substrate of ADH in podocytes and that podocytes are useful biosensors to understand glomeruloprotective effects of ethanol.
Collapse
Affiliation(s)
- Ellen T McCarthy
- Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jianping Zhou
- Research Service, Kansas City VA Medical Center, Kansas City, MO, United States
| | - Ryan Eckert
- Research Service, Kansas City VA Medical Center, Kansas City, MO, United States
| | - David Genochio
- Research Service, Kansas City VA Medical Center, Kansas City, MO, United States
| | - Rishi Sharma
- Research Service, Kansas City VA Medical Center, Kansas City, MO, United States
| | - Olurinde Oni
- Research Service, Kansas City VA Medical Center, Kansas City, MO, United States
| | - Alok De
- Research Service, Kansas City VA Medical Center, Kansas City, MO, United States
| | - Tarak Srivastava
- Research Service, Kansas City VA Medical Center, Kansas City, MO, United States; Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO, United States
| | - Ram Sharma
- Research Service, Kansas City VA Medical Center, Kansas City, MO, United States
| | - Virginia J Savin
- Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States; Research Service, Kansas City VA Medical Center, Kansas City, MO, United States
| | - Mukut Sharma
- Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States; Research Service, Kansas City VA Medical Center, Kansas City, MO, United States.
| |
Collapse
|
19
|
Verdugo Thomas F, Tapia Mingo A, Ramírez Montes D, Oporto Uribe S. [Albendazole-induced toxic hepatitis]. GASTROENTEROLOGIA Y HEPATOLOGIA 2014; 38:436-8. [PMID: 25179365 DOI: 10.1016/j.gastrohep.2014.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/26/2014] [Accepted: 08/04/2014] [Indexed: 10/24/2022]
Affiliation(s)
- Fernando Verdugo Thomas
- Servicio de Medicina Interna, Hospital Santiago Oriente, Santiago, Chile; Departamento de Medicina Interna, Universidad de los Andes, Santiago, Chile.
| | - Andrés Tapia Mingo
- Servicio de Medicina Interna, Hospital Santiago Oriente, Santiago, Chile
| | | | | |
Collapse
|
20
|
Roychowdhury S, Chiang DJ, McMullen MR, Nagy LE. Moderate, chronic ethanol feeding exacerbates carbon-tetrachloride-induced hepatic fibrosis via hepatocyte-specific hypoxia inducible factor 1α. Pharmacol Res Perspect 2014; 2:e00061. [PMID: 25089199 PMCID: PMC4115456 DOI: 10.1002/prp2.61] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The hypoxia-sensing transcriptional factor HIF1α is implicated in a variety of hepato-pathological conditions; however, the contribution of hepatocyte-derived HIF1α during progression of alcoholic liver injury is still controversial. HIF1α induces a variety of genes including those involved in apoptosis via p53 activation. Increased hepatocyte apoptosis is critical for progression of liver inflammation, stellate cell activation, and fibrosis. Using hepatocyte-specific HIF1α-deficient mice (ΔHepHIF1α−/−), here we investigated the contribution of HIF1α to ethanol-induced hepatocyte apoptosis and its role in amplification of fibrosis after carbon tetrachloride (CCl4) exposure. Moderate ethanol feeding (11% of kcal) induced accumulation of hypoxia-sensitive pimonidazole adducts and HIF1α expression in the liver within 4 days of ethanol feeding. Chronic CCl4 treatment increased M30-positive cells, a marker of hepatocyte apoptosis in pair-fed control mice. Concomitant ethanol feeding (11% of kcal) amplified CCl4-induced hepatocyte apoptosis in livers of wild-type mice, associated with elevated p53K386 acetylation, PUMA expression, and Ly6c+ cell infiltration. Subsequent to increased apoptosis, ethanol-enhanced induction of profibrotic markers, including stellate cell activation, collagen 1 expression, and extracellular matrix deposition following CCl4 exposure. Ethanol-induced exacerbation of hepatocyte apoptosis, p53K386 acetylation, and PUMA expression following CCl4 exposure was attenuated in livers of ΔHepHIF1α−/− mice. This protection was also associated with a reduction in Ly6c+ cell infiltration and decreased fibrosis in livers of ΔHepHIF1α−/− mice. In summary, these results indicate that moderate ethanol exposure leads to hypoxia/HIF1α-mediated signaling in hepatocytes and induction of p53-dependent apoptosis of hepatocytes, resulting in increased hepatic fibrosis during chronic CCl4 exposure.
Collapse
Affiliation(s)
- Sanjoy Roychowdhury
- Center for Liver Disease Research, Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio
| | - Dian J Chiang
- Department of Gastroenterology, Cleveland Clinic, Cleveland, Ohio
| | - Megan R McMullen
- Center for Liver Disease Research, Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio
| | - Laura E Nagy
- Center for Liver Disease Research, Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio ; Department of Gastroenterology, Cleveland Clinic, Cleveland, Ohio ; Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
21
|
Erdozain AM, Morentin B, Bedford L, King E, Tooth D, Brewer C, Wayne D, Johnson L, Gerdes HK, Wigmore P, Callado LF, Carter WG. Alcohol-related brain damage in humans. PLoS One 2014; 9:e93586. [PMID: 24699688 PMCID: PMC3974765 DOI: 10.1371/journal.pone.0093586] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 03/04/2014] [Indexed: 12/02/2022] Open
Abstract
Chronic excessive alcohol intoxications evoke cumulative damage to tissues and organs. We examined prefrontal cortex (Brodmann's area (BA) 9) from 20 human alcoholics and 20 age, gender, and postmortem delay matched control subjects. H & E staining and light microscopy of prefrontal cortex tissue revealed a reduction in the levels of cytoskeleton surrounding the nuclei of cortical and subcortical neurons, and a disruption of subcortical neuron patterning in alcoholic subjects. BA 9 tissue homogenisation and one dimensional polyacrylamide gel electrophoresis (PAGE) proteomics of cytosolic proteins identified dramatic reductions in the protein levels of spectrin β II, and α- and β-tubulins in alcoholics, and these were validated and quantitated by Western blotting. We detected a significant increase in α-tubulin acetylation in alcoholics, a non-significant increase in isoaspartate protein damage, but a significant increase in protein isoaspartyl methyltransferase protein levels, the enzyme that triggers isoaspartate damage repair in vivo. There was also a significant reduction in proteasome activity in alcoholics. One dimensional PAGE of membrane-enriched fractions detected a reduction in β-spectrin protein levels, and a significant increase in transmembranous α3 (catalytic) subunit of the Na+,K+-ATPase in alcoholic subjects. However, control subjects retained stable oligomeric forms of α-subunit that were diminished in alcoholics. In alcoholics, significant loss of cytosolic α- and β-tubulins were also seen in caudate nucleus, hippocampus and cerebellum, but to different levels, indicative of brain regional susceptibility to alcohol-related damage. Collectively, these protein changes provide a molecular basis for some of the neuronal and behavioural abnormalities attributed to alcoholics.
Collapse
Affiliation(s)
- Amaia M. Erdozain
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, United Kingdom
- Department of Pharmacology, University of the Basque Country, and Centro de Investigación Biomédica en Red de Salud Mental, Spain
| | - Benito Morentin
- Section of Forensic Pathology, Basque Institute of Legal Medicine, Bilbao, Spain
| | - Lynn Bedford
- School of Life Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham, United Kingdom
| | - Emma King
- School of Life Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham, United Kingdom
| | - David Tooth
- School of Life Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham, United Kingdom
| | - Charlotte Brewer
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, United Kingdom
| | - Declan Wayne
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, United Kingdom
| | - Laura Johnson
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, United Kingdom
| | - Henry K. Gerdes
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, United Kingdom
| | - Peter Wigmore
- School of Life Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham, United Kingdom
| | - Luis F. Callado
- Department of Pharmacology, University of the Basque Country, and Centro de Investigación Biomédica en Red de Salud Mental, Spain
| | - Wayne G. Carter
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, United Kingdom
| |
Collapse
|
22
|
Ghosh S, Kaplan KJ, Schrum LW, Bonkovsky HL. Cytoskeletal proteins: shaping progression of hepatitis C virus-induced liver disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 302:279-319. [PMID: 23351713 DOI: 10.1016/b978-0-12-407699-0.00005-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatitis C virus (HCV) infection, which results in chronic hepatitis C (CHC) in most patients (70-85%), is a major cause of liver disease and remains a major therapeutic challenge. The mechanisms determining liver damage and the key factors that lead to a high rate of CHC remain imperfectly understood. The precise role of cytoskeletal (CS) proteins in HCV infection remains to be determined. Some studies including our recent study have demonstrated that changes occur in the expression of CS proteins in HCV-infected hepatocytes. A variety of host proteins interact with HCV proteins. Association between CS and HCV proteins may have implications in future design of CS protein-targeted therapy for the treatment for HCV infection. This chapter will focus on the interaction between host CS and viral proteins to signify the importance of this event in HCV entry, replication and transportation.
Collapse
Affiliation(s)
- Sriparna Ghosh
- Liver-Biliary-Pancreatic Center, Carolinas Medical Center, and School of Medicine, University of North Carolina, Carolinas Medical Center, Charlotte, NC, USA.
| | | | | | | |
Collapse
|
23
|
Keratin 8 variants are infrequent in patients with alcohol-related liver cirrhosis and do not associate with development of hepatocellular carcinoma. BMC Gastroenterol 2012; 12:147. [PMID: 23078008 PMCID: PMC3527286 DOI: 10.1186/1471-230x-12-147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/08/2012] [Indexed: 12/14/2022] Open
Abstract
Background Keratins 8/18 (K8/K18) are established hepatoprotective proteins and K8/K18 variants predispose to development and adverse outcome of multiple liver disorders. The importance of K8/K18 in alcoholic liver disease as well as in established cirrhosis remains unknown. Methods We analyzed the K8 mutational hot-spots in 261 prospectively followed-up patients with alcoholic cirrhosis (mean follow-up 65 months). PCR-amplified samples were pre-screened by denaturing high-performance liquid chromatography and conspicuous samples were sequenced. Results 67 patients developed hepatocellular carcinoma (HCC) and 133 died. Fourteen patients harbored amino-acid-altering K8 variants (5xG62C, 8xR341H). The presence of K8 variants did not associate with development of HCC (log-rank=0.5) or death (log-rank=0.7) and no significant associations were obtained for the single K8 variants after a correction for multiple testing was performed. Conclusions Keratin variants are expressed in a low percentage of patients with alcoholic cirrhosis and do not influence HCC development. Further studies conducted in larger prospective cohorts are needed to find out whether presence of K8 R341H variant predispose to non-HCC-related liver mortality.
Collapse
|
24
|
Abstract
Eukaryotic cells comprise a set of organelles, surrounded by membranes with a unique composition, which is maintained by a complex synthesis and transport system. Cells also synthesize the proteins destined for secretion. Together, these processes are known as the secretory pathway or exocytosis. In addition, many molecules can be internalized by cells through a process called endocytosis. Chronic and acute alcohol (ethanol) exposure alters the secretion of different essential products, such as hormones, neurotransmitters and others in a variety of cells, including central nervous system cells. This effect could be due to a range of mechanisms, including alcohol-induced alterations in the different steps involved in intracellular transport, such as glycosylation and vesicular transport along cytoskeleton elements. Moreover, alcohol consumption during pregnancy disrupts developmental processes in the central nervous system. No single mechanism has proved sufficient to account for these effects, and multiple factors are likely involved. One such mechanism indicates that ethanol also perturbs protein trafficking. The purpose of this review is to summarize our understanding of how ethanol exposure alters the trafficking of proteins in different cell systems, especially in central nervous system cells (neurons and astrocytes) in adult and developing brains.
Collapse
|
25
|
Molnar A, Haybaeck J, Lackner C, Strnad P. The cytoskeleton in nonalcoholic steatohepatitis: 100 years old but still youthful. Expert Rev Gastroenterol Hepatol 2011; 5:167-77. [PMID: 21476912 DOI: 10.1586/egh.11.5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The hepatocellular cytoskeleton consists of three filamentous systems: microfilaments, microtubules and keratins (Ks). While the alterations in microfilaments and microtubules during nonalcoholic steatohepatitis (NASH) are largely unexplored, K8/K18 reorganization into Mallory-Denk bodies (MDBs) represents a NASH hallmark, and serological K18 fragments constitute an established tool to monitor NASH severity. To commemorate the 100th anniversary of the first description of MDBs, this article summarizes the composition and function of the hepatocellular cytoskeleton, as well as the importance of cytoskeletal alterations in NASH. The significance of MDBs in clinical routine is illustrated, as are the findings from MDB mouse models, which shape our current view of MDB pathogenesis. Even after 100 years, the cytoskeleton represents a fascinating but greatly understudied area of NASH biology.
Collapse
Affiliation(s)
- Agnes Molnar
- Department of Internal Medicine I, University Hospital Ulm, Germany
| | | | | | | |
Collapse
|
26
|
Romero AM, Esteban-Pretel G, Marín MP, Ponsoda X, Ballestín R, Canales JJ, Renau-Piqueras J. Chronic ethanol exposure alters the levels, assembly, and cellular organization of the actin cytoskeleton and microtubules in hippocampal neurons in primary culture. Toxicol Sci 2010; 118:602-12. [PMID: 20829428 DOI: 10.1093/toxsci/kfq260] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The organization and dynamics of microtubules (MTs) and the actin cytoskeleton are critical for the correct development and functions of neurons, including intracellular traffic and signaling. In vitro ethanol exposure impairs endocytosis, exocytosis, and nucleocytoplasmic traffic in astrocytes and alters endocytosis in cultured neurons. In astrocytes, these effects relate to changes in the organization and/or function of MTs and the actin cytoskeleton. To evaluate this possibility in hippocampal cultured neurons, we analyzed if chronic ethanol exposure affects the levels, assembly, and cellular organization of both cytoskeleton elements and the possible underlying mechanisms of these effects by morphological and biochemical methods. In the experiments described below, we provide the first evidence that chronic alcohol exposure decreases the amount of both filamentous actin and polymerized tubulin in neurons and that the number of MTs in dendrites lowers in treated cells. Alcohol also diminishes the MT-associated protein-2 levels, which mainly localizes in the somatodendritic compartment in neurons. Ethanol decreases the levels of total Rac, Cdc42, and RhoA, three small guanosine triphosphatases (GTPases) involved in the organization and dynamics of the actin cytoskeleton and MTs. Yet when alcohol decreases the levels of the active forms (GTP bound) of Rac1 and Cdc42, it does not affect the active form of RhoA. We also investigated the levels of several effector and regulator molecules of these GTPases to find that alcohol induces heterogeneous results. In conclusion, our results show that MT, actin cytoskeleton organization, and Rho GTPase signaling pathways are targets for the toxic effects of ethanol in neurons.
Collapse
Affiliation(s)
- Ana M Romero
- Section of Biología y Patología Celular, Centro Investigación, Hospital La Fe, E-46009 Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Liver is known as an organ that is primarily affected by alcohol. Alcoholic liver disease (ALD) is the cause of an increased morbidity and mortality worldwide. Progression of ALD is driven by "second hits". These second hits include the complex of nutritional, pharmacological, genetic and viral factors, which aggravate liver pathology. However, in addition to liver failure, ethanol causes damage to other organs and systems. These extrahepatic manifestations are regulated via the similar hepatitis mechanisms. In the Topic Highlight series, we provide an update of current knowledge in the field of ALD.
Collapse
|