1
|
Lu C, Liu Y, Ren F, Zhang H, Hou Y, Zhang H, Chen Z, Du X. HO-1: An emerging target in fibrosis. J Cell Physiol 2025; 240:e31465. [PMID: 39420552 DOI: 10.1002/jcp.31465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/08/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Fibrosis, an aberrant reparative response to tissue injury, involves a disruption in the equilibrium between the synthesis and degradation of the extracellular matrix, leading to its excessive accumulation within normal tissues, and culminating in organ dysfunction. Manifesting in the terminal stages of nearly all chronic ailments, fibrosis carries a high mortality rate and poses a significant threat to human health. Heme oxygenase-1 (HO-1) emerges as an endogenous protective agent, mitigating tissue damage through its antioxidant, anti-inflammatory, and antiapoptotic properties. Numerous studies have corroborated HO-1's potential as a therapeutic target in anti-fibrosis treatment. This review delves into the structural and functional attributes, and the upstream and downstream pathways of HO-1. Additionally, the regulatory networks and mechanisms of HO-1 in cells associated with fibrosis are elucidated. The role of HO-1 in various fibrosis-related diseases is also explored. Collectively, this comprehensive information serves as a foundation for future research and augments the viability of HO-1 as a therapeutic target for fibrosis.
Collapse
Affiliation(s)
- Chenxi Lu
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Yuan Liu
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Feifei Ren
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Haoran Zhang
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Yafang Hou
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Hong Zhang
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Zhiyong Chen
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Xia Du
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| |
Collapse
|
2
|
Tunstead C, Volkova E, Dunbar H, Hawthorne IJ, Bell A, Crowe L, Masterson JC, Dos Santos CC, McNicholas B, Laffey JG, English K. The ARDS microenvironment enhances MSC-induced repair via VEGF in experimental acute lung inflammation. Mol Ther 2024; 32:3422-3432. [PMID: 39108095 PMCID: PMC11489539 DOI: 10.1016/j.ymthe.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/10/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024] Open
Abstract
Clinical trials investigating the potential of mesenchymal stromal cells (MSCs) for the treatment of inflammatory diseases, such as acute respiratory distress syndrome (ARDS), have been disappointing, with less than 50% of patients responding to treatment. Licensed MSCs show enhanced therapeutic efficacy in response to cytokine-mediated activation signals. There are two distinct sub-phenotypes of ARDS: hypo- and hyper-inflammatory. We hypothesized that pre-licensing MSCs in a hyper-inflammatory ARDS environment would enhance their therapeutic efficacy in acute lung inflammation (ALI). Serum samples from patients with ARDS were segregated into hypo- and hyper-inflammatory categories based on interleukin (IL)-6 levels. MSCs were licensed with pooled serum from patients with hypo- or hyper-inflammatory ARDS or healthy serum controls. Our findings show that hyper-inflammatory ARDS pre-licensed MSC conditioned medium (MSC-CMHyper) led to a significant enrichment in tight junction expression and enhanced barrier integrity in lung epithelial cells in vitro and in vivo in a vascular endothelial growth factor (VEGF)-dependent manner. Importantly, while both MSC-CMHypo and MSC-CMHyper significantly reduced IL-6 and tumor necrosis factor alpha (TNF-α) levels in the bronchoalveolar lavage fluid (BALF) of lipopolysaccharide (LPS)-induced ALI mice, only MSC-CMHyper significantly reduced lung permeability and overall clinical outcomes including weight loss and clinical score. Thus, the hypo- and hyper-inflammatory ARDS environments may differentially influence MSC cytoprotective and immunomodulatory functions.
Collapse
Affiliation(s)
- Courteney Tunstead
- Cellular Immunology Lab, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Evelina Volkova
- Cellular Immunology Lab, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Hazel Dunbar
- Cellular Immunology Lab, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Ian J Hawthorne
- Cellular Immunology Lab, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Alison Bell
- Anesthesia and Intensive Care Medicine, School of Medicine, College of Medicine Nursing and Health Sciences, University of Galway, Galway, Ireland; Anesthesia and Intensive Care Medicine, Galway University Hospitals, Saolta University Hospitals Groups, Galway, Ireland
| | - Louise Crowe
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland; Allergy, Inflammation & Remodelling Research Lab, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Joanne C Masterson
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland; Allergy, Inflammation & Remodelling Research Lab, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Claudia C Dos Santos
- Keenan Research Centre for Biomedical Research, St. Michael's Hospital, Toronto, ON, Canada
| | - Bairbre McNicholas
- Anesthesia and Intensive Care Medicine, School of Medicine, College of Medicine Nursing and Health Sciences, University of Galway, Galway, Ireland; Anesthesia and Intensive Care Medicine, Galway University Hospitals, Saolta University Hospitals Groups, Galway, Ireland
| | - John G Laffey
- Anesthesia and Intensive Care Medicine, School of Medicine, College of Medicine Nursing and Health Sciences, University of Galway, Galway, Ireland; Anesthesia and Intensive Care Medicine, Galway University Hospitals, Saolta University Hospitals Groups, Galway, Ireland
| | - Karen English
- Cellular Immunology Lab, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
3
|
Wang B, Liu S, Lin L, Xu W, Gong Z, Xiao W. The protective effect of L-theanine on the intestinal barrier in heat-stressed organisms. Food Funct 2024; 15:3036-3049. [PMID: 38414417 DOI: 10.1039/d3fo04459a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Heat stress caused by heatwaves, extreme temperatures, and other weather can damage the intestinal barrier of organisms. L-Theanine (LTA) attenuates heat stress-induced oxidative stress, inflammatory responses, and impaired immune function, but its protective effect on the intestinal barrier of heat-stressed organisms is unclear. In this study, low (100 mg kg-1 d-1), medium (200 mg kg-1 d-1), and high (400 mg kg-1 d-1) dosages of LTA were used in the gavage of C57BL/6J male mice that were experimented on for 50 d. These mice were subjected to heat stress for 2 h d-1 at 40 ± 1 °C and 60 ± 5% RH in the last 7 d. LTA attenuated the heat stress-induced decreases in body mass and feed intake, and the destruction of intestinal villi and crypt depth; reduced the serum levels of FITC-dextran and D-LA, as well as the DAO activity; and upregulated the colonic tissues of Occludin, Claudin-1, and ZO-1 mRNA and occludin protein expression. The number of goblet cells in the colon tissue of heat-stressed organisms increased in the presence of LTA, and the expression levels of Muc2, Muc4 mRNA, and Muc2 protein were upregulated. LTA increased the abundance of Bifidobacterium and Turicibacter, and decreased the abundance of Enterorhabdus and Desulfovibrio in the intestinal tract of heat-stressed organisms and restored gut microbiota homeostasis. LTA promoted the secretion of IL-4, IL-10, and sIgA and inhibited the secretion of TNF-α and IFN-γ in the colon of heat-stressed organisms. The expressions of Hsf1, Hsp70, Hsph1, TLR4, P38 MAPK, p-P65 NF-κB, MLCK mRNA, and proteins were downregulated by LTA in the colon of heat-stressed organisms. These results suggest that LTA protects the intestinal barrier in heat-stressed organisms by modulating multiple molecular pathways. Therefore, this study provides evidence on how tea-containing LTA treatments could be used to prevent and relieve intestinal problems related to heat stress.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Sino-Kenyan Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Sha Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Sino-Kenyan Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Ling Lin
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Sino-Kenyan Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Wei Xu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Sino-Kenyan Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Zhihua Gong
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Sino-Kenyan Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Wenjun Xiao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Sino-Kenyan Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
4
|
Gao Y, Chen H, Cang X, Chen H, Di Y, Qi J, Cai H, Luo K, Jin S. Transplanted hair follicle mesenchymal stem cells alleviated small intestinal ischemia–reperfusion injury via intrinsic and paracrine mechanisms in a rat model. Front Cell Dev Biol 2022; 10:1016597. [PMID: 36274835 PMCID: PMC9581151 DOI: 10.3389/fcell.2022.1016597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Small intestinal ischemia-reperfusion (IR) injury is a common intestinal disease with high morbidity and mortality. Mesenchymal stem cells (MSCs) have been increasingly used in various intestinal diseases. This study aimed to evaluate the therapeutic effect of hair follicle MSCs (HFMSCs) on small intestinal IR injury. Methods: We divided Sprague–Dawley rats into three groups: the sham group, IR group and IR + HFMSCs group. A small intestinal IR injury rat model was established by clamping of the superior mesenteric artery (SMA) for 30 min and reperfusion for 2 h. HFMSCs were cultured in vitro and injected into the rats through the tail vein. Seven days after treatment, the intrinsic homing and differentiation characteristics of the HFMSCs were observed by immunofluorescence and immunohistochemical staining, and the paracrine mechanism of HFMSCs was assessed by Western blotting and enzyme-linked immunosorbent assay (ELISA). Results: A small intestinal IR injury model was successfully established. HFMSCs could home to damaged sites, express proliferating cell nuclear antigen (PCNA) and intestinal stem cell (ISC) markers, and promote small intestinal ISC marker expression. The expression levels of angiopoietin-1 (ANG1), vascular endothelial growth factor (VEGF) and insulin growth factor-1 (IGF1) in the IR + HFMSCs group were higher than those in the IR group. HFMSCs could prevent IR-induced apoptosis by increasing B-cell lymphoma-2 (Bcl-2) expression and decreasing Bcl-2 homologous antagonist/killer (Bax) expression. Oxidative stress level detection showed that the malondialdehyde (MDA) content was decreased, while the superoxide dismutase (SOD) content was increased in the IR + HFMSCs group compared to the IR group. An elevated diamine oxidase (DAO) level reflected the potential protective effect of HFMSCs on the intestinal mucosal barrier. Conclusion: HFMSCs are beneficial to alleviate small intestinal IR injury through intrinsic homing to the small intestine and by differentiating into ISCs, via a paracrine mechanism to promote angiogenesis, reduce apoptosis, regulate the oxidative stress response, and protect intestinal mucosal function potentially. Therefore, this study suggests that HFMSCs serve as a new option for the treatment of small intestinal IR injury.
Collapse
|
5
|
Andres AM, Stringa P, Talayero P, Santamaria M, García-Arranz M, García Gómez-Heras S, Largo-Aramburu C, Aras-Lopez RM, Vallejo-Cremades MT, Guerra Pastrián L, Vega L, Encinas JL, Lopez-Santamaria M, Hernández-Oliveros F. Graft infusion of adipose-derived mesenchymal stromal cells to prevent rejection in experimental intestinal transplantation: A feasibility study. Clin Transplant 2021; 35:e14226. [PMID: 33465824 DOI: 10.1111/ctr.14226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/30/2020] [Accepted: 01/12/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Mesenchymal stromal cells (MSC) have been proposed as a promising complement to standard immunosuppression in solid organ transplantation because of their immunomodulatory properties. The present work addresses the role of adipose-derived MSC (Ad-MSC) in an experimental model of acute rejection in small bowel transplantation (SBT). MATERIAL/METHODS Heterotopic allogeneic SBT was performed. A single dose of 1.5x106 Ad-MSC was intra-arterially delivered just before graft reperfusion. Animals were divided into CONTROL (CTRL), CONTROL+Ad-MSC (CTRL_MSC), tacrolimus (TAC), and TAC+Ad-MSC (TAC_MSC) groups. Each Ad-MSC groups was subdivided in autologous and allogeneic third-party groups. RESULTS Rejection rate and severity were similar in MSC-treated and untreated animals. CTRL_MSC animals showed a decrease in macrophages, T-cell (CD4, CD8, and Foxp3 subsets) and B-cell counts in the graft compared with CTRL, this decrease was attenuated in TAC_MSC animals. Pro- and anti-inflammatory cytokines and some chemokines and growth factors increased in CTRL_MSC animals, especially in the allogeneic group, whereas milder changes were seen in the TAC groups. CONCLUSION Ad-MSC did not prevent rejection when administered just before reperfusion. However, they showed immunomodulatory effects that could be relevant for a longer-term outcome. Interference between tacrolimus and the MSC effects should be addressed in further studies.
Collapse
Affiliation(s)
- Ane M Andres
- Pediatric Surgery Department, La Paz University Hospital, Madrid, Spain.,Idipaz Institute, La Paz University Hospital, Madrid, Spain.,TransplantChild ERN, Idipaz Institute, La Paz University Hospital, Madrid, Spain
| | - Pablo Stringa
- Institute for Immunological and Physiopathological Studies (IIFP-CONICET-UNLP), National University of La Plata, Buenos Aires, Argentina
| | - Paloma Talayero
- Immunology Department, 12 de Octubre University Hospital, Madrid, Spain.,imas12 Research Institute, 12 de Octubre University Hospital, Madrid, Spain
| | - Monica Santamaria
- Experimental Transplant Department, Alfonso X University, Madrid, Spain
| | | | | | | | - Rosa M Aras-Lopez
- Research Institute, Idipaz Institute, La Paz University Hospital, Madrid, Spain
| | | | | | - Luz Vega
- Health Research Institute, Fundación Jimenez Diaz, Madrid, Spain
| | - Jose Luis Encinas
- Pediatric Surgery Department, La Paz University Hospital, Madrid, Spain
| | | | - Francisco Hernández-Oliveros
- TransplantChild ERN, Idipaz Institute, La Paz University Hospital, Madrid, Spain.,Health Research Institute, Fundación Jimenez Diaz, Madrid, Spain.,Pediatric Surgery Department EOC TransplantChild ERN, La Paz University Hospital, Madrid, Spain
| |
Collapse
|
6
|
Ma J, Shah AM, Wang Z, Hu R, Zou H, Wang X, Cao G, Peng Q, Xue B, Wang L, Zhao S, Kong X. Comparing the gastrointestinal barrier function between growth-retarded and normal yaks on the Qinghai-Tibetan Plateau. PeerJ 2020; 8:e9851. [PMID: 32953274 PMCID: PMC7474896 DOI: 10.7717/peerj.9851] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
Background Yak (Bos grunniens) is an ancient bovine species on the Qinghai-Tibetan Plateau. Due to extremely harsh condition in the plateau, the growth retardation of yaks commonly exist, which can reduce the incomes of herdsman. The gastrointestinal barrier function plays a vital role in the absorption of nutrients and healthy growth. Functional deficiencies of the gastrointestinal barrier may be one of the contributors for yaks with growth retardation. Methods To this end, we compared the growth performance and gastrointestinal barrier function of growth-retarded (GRY) and normal yaks (GNY) based on average daily gain (ADG), serum parameters, tissue slice, real-time PCR, and western blotting, with eight yaks in each group. Results GRY exhibited lower (P < 0.05) average daily gain as compared to GNY. The diamine oxidase, D-lactic acid, and lipopolysaccharide concentrations in the serum of GRY were significantly higher (P < 0.05) than those of GNY. Compared to GNY, the papillae height in the rumen of GRY exhibited lower (P = 0.004). In jejunum, with the exception of higher villus height, width, and surface area in GNY, numerical difference (P = 0.61) was detected between two groups for crypt depth. Both in rumen and jejunum, the mRNA expression of interleukin-1beta in GRY was markedly higher (P < 0.05) than that in GNY, but an opposite trend was found in interleukin-10 expression. Moreover, GRY showed a higher (P < 0.05) tumor necrosis factor-alpha mRNA expression in the rumen. The claudin-1 (CLDN1), occludin (OCLN), and zonula occludens-1 (ZO1) expressions of GRY in rumen and jejunum were significantly down-regulated (P < 0.05) as compared to GNY. The correlation analysis identified that in rumen and jejunum, there was a positive correlation between interleukin-10 and CLDN1, OCLN, and ZO1 mRNA expressions, but the tumor necrosis factor-alpha was negatively correlated with CLDN1, OCLN, and ZO1. In the rumen, the ADG was positively correlated with papillae surface area, and a same relationship between ADG and CLDN1, OCLN, and ZO1 expressions was found. Conclusion The results indicated that the ruminal and jejunal barrier functions of GRY are disrupted as compared to GNY. In addition, our study provides a potential solution for promoting the growth of GRY by enhancing the gastrointestinal barrier function.
Collapse
Affiliation(s)
- Jian Ma
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Ali Mujtaba Shah
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhisheng Wang
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Rui Hu
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Huawei Zou
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xueying Wang
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Guang Cao
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Quanhui Peng
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Bai Xue
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Lizhi Wang
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Suonan Zhao
- Haibei Demonstration Zone of Plateau Modern Ecological Animal Husbandry Science and Technology, Haibei, China
| | - Xiangying Kong
- Haibei Demonstration Zone of Plateau Modern Ecological Animal Husbandry Science and Technology, Haibei, China
| |
Collapse
|
7
|
Wang L, Deng Z, Yuan R, Zhao Y, Yang M, Hu J, Zhang Y, Li Y, Zhou F, Kang H. Protective effect and mechanism of mesenchymal stem cells on heat stroke induced intestinal injury. Exp Ther Med 2020; 20:3041-3050. [PMID: 32855671 PMCID: PMC7444330 DOI: 10.3892/etm.2020.9051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/29/2020] [Indexed: 11/06/2022] Open
Abstract
Heat stroke (HS) is considered to be a severe systemic inflammatory reaction disease that is caused by high fever. The mortality of HS is high worldwide due to the lack of effective treatments. Presently, mesenchymal stem cells (MSCs) have been demonstrated to serve roles in inflammation and immune regulation. Therefore, the current study aimed to investigate the protective effect and mechanism of MSCs against the HS-induced inflammatory response and organ dysfunction. A rat model of HS was induced by a high-temperature environment and treated with MSCs via tail veins. The levels of molecular markers of organ function, inflammatory factors and chemokines were examined at days 1, 7, 14 and 28. Histological staining was performed on the intestines of rats and control groups, and the Chiu's scores of the two groups were compared. The results revealed that MSCs injection significantly reduced the mortality and inhibited the circulatory inflammatory response. Additionally, main organ function, such as in the liver and kidney, were significantly improved following MSCs infusion in HS rats. Furthermore, MSCs treatment significantly improved edema, necrosis and villus exfoliation of intestinal mucosa, and reduced the inflammatory response of intestinal tissue. These results indicated that MSC infusion had therapeutic effects on HS of rats by regulating the circulatory and intestinal inflammatory response. Moreover, MSCs may be able to protect organ function and promote tissue repair in HS. The results of the current study indicated that MSCs may be used as a potential method to treat HS and the resulting organ dysfunction.
Collapse
Affiliation(s)
- Lu Wang
- Medical School of Chinese PLA, Beijing 100853, P.R. China.,Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Zihui Deng
- Department of Biochemistry, Graduate School, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Rui Yuan
- Medical School of Chinese PLA, Beijing 100853, P.R. China.,Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yan Zhao
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Mengmeng Yang
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Jie Hu
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yu Zhang
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yun Li
- Medical School of Chinese PLA, Beijing 100853, P.R. China.,Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Feihu Zhou
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Hongjun Kang
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
8
|
Yang L, Shen ZY, Wang RR, Yin ML, Zheng WP, Wu B, Liu T, Song HL. Effects of heme oxygenase-1-modified bone marrow mesenchymal stem cells on microcirculation and energy metabolism following liver transplantation. World J Gastroenterol 2017; 23:3449-3467. [PMID: 28596681 PMCID: PMC5442081 DOI: 10.3748/wjg.v23.i19.3449] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/23/2017] [Accepted: 02/17/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effects of heme oxygenase-1 (HO-1)-modified bone marrow mesenchymal stem cells (BMMSCs) on the microcirculation and energy metabolism of hepatic sinusoids following reduced-size liver transplantation (RLT) in a rat model.
METHODS BMMSCs were isolated and cultured in vitro using an adherent method, and then transduced with HO-1-bearing recombinant adenovirus to construct HO-1/BMMSCs. A rat acute rejection model following 50% RLT was established using a two-cuff technique. Recipients were divided into three groups based on the treatment received: normal saline (NS), BMMSCs and HO-1/BMMSCs. Liver function was examined at six time points. The levels of endothelin-1 (ET-1), endothelial nitric-oxide synthase (eNOS), inducible nitric-oxide synthase (iNOS), nitric oxide (NO), and hyaluronic acid (HA) were detected using an enzyme-linked immunosorbent assay. The portal vein pressure (PVP) was detected by Power Lab ML880. The expressions of ET-1, iNOS, eNOS, and von Willebrand factor (vWF) protein in the transplanted liver were detected using immunohistochemistry and Western blotting. ATPase in the transplanted liver was detected by chemical colorimetry, and the ultrastructural changes were observed under a transmission electron microscope.
RESULTS HO-1/BMMSCs could alleviate the pathological changes and rejection activity index of the transplanted liver, and improve the liver function of rats following 50% RLT, with statistically significant differences compared with those of the NS group and BMMSCs group (P < 0.05). In term of the microcirculation of hepatic sinusoids: The PVP on POD7 decreased significantly in the HO-1/BMMSCs and BMMSCs groups compared with that of the NS group (P < 0.01); HO-1/BMMSCs could inhibit the expressions of ET-1 and iNOS, increase the expressions of eNOS and inhibit amounts of NO production, and maintain the equilibrium of ET-1/NO (P < 0.05); and HO-1/BMMSCs increased the expression of vWF in hepatic sinusoidal endothelial cells (SECs), and promoted the degradation of HA, compared with those of the NS group and BMMSCs group (P < 0.05). In term of the energy metabolism of the transplanted liver, HO-1/BMMSCs repaired the damaged mitochondria, and improved the activity of mitochondrial aspartate aminotransferase (ASTm) and ATPase, compared with the other two groups (P <0.05).
CONCLUSION HO-1/BMMSCs can improve the microcirculation of hepatic sinusoids significantly, and recover the energy metabolism of damaged hepatocytes in rats following RLT, thus protecting the transplanted liver.
Collapse
|
9
|
Zheng WP, Zhang BY, Shen ZY, Yin ML, Cao Y, Song HL. Biological effects of bone marrow mesenchymal stem cells on hepatitis B virus in vitro. Mol Med Rep 2017; 15:2551-2559. [PMID: 28447750 PMCID: PMC5428401 DOI: 10.3892/mmr.2017.6330] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 12/09/2016] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to explore the effects of co‑culturing bone marrow‑derived mesenchymal stem cells (BM-MSCs) cultured with hepatitis B virus (HBV)‑infected lymphocytes in vitro. BM‑MSCs and lymphocytes from Brown Norway rats were obtained from the bone marrow and spleen, respectively. Rats were divided into the following five experimental groups: Group 1, splenic lymphocytes (SLCs); group 2, HepG2.2.15 cells; group 3, BM‑MSCs + HepG2.2.15 cells; group 4, SLCs + HepG2.2.15 cells; and group 5, SLCs + BM‑MSCs + HepG2.2.15 cells. The viability of lymphocytes and HepG2.2.15 cells was assessed using the MTT assay at 24, 48 and 72 h, respectively. Levels of supernatant HBV DNA and intracellular HBV covalently closed circular DNA (cccDNA) were measured using quantitative polymerase chain reaction. Supernatant cytokine levels were measured by enzyme‑linked immunosorbent assay (ELISA). T cell subsets were quantified by flow cytometry using fluorescence‑labeled antibodies. In addition, the HBV genome sequence was analyzed by direct gene sequencing. Levels of HBV DNA and cccDNA in group 5 were lower when compared with those in group 3 or group 4, with a significant difference observed at 48 h. The secretion of interferon‑γ was negatively correlated with the level of HBV DNA, whereas secretion of interleukin (IL)‑10 and IL‑22 were positively correlated with the level of HBV DNA. Flow cytometry demonstrated that the percentage of CD3+CD8+ T cells was positively correlated with the levels of HBV DNA, and the CD3+CD4+/CD3+CD8+ ratio was negatively correlated with the level of HBV DNA. Almost no mutations in the HBV DNA sequence were detected in HepG2.2.15 cells co‑cultured with BM‑MSCs, SLCs, or in the two types of cells combined. BM‑MSCs inhibited the expression of HBV DNA and enhanced the clearance of HBV, which may have been mediated by the regulation of the Tc1/Tc2 cell balance and the mode of cytokine secretion to modulate cytokine expression.
Collapse
Affiliation(s)
- Wei-Ping Zheng
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Bo-Ya Zhang
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Zhong-Yang Shen
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Ming-Li Yin
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Yi Cao
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Hong-Li Song
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin 300192, P.R. China
- Tianjin Key Laboratory of Organ Transplantation, Tianjin 300192, P.R. China
| |
Collapse
|
10
|
Cao Y, Wu BJ, Zheng WP, Yin ML, Liu T, Song HL. Effect of heme oxygenase-1 transduced bone marrow mesenchymal stem cells on damaged intestinal epithelial cells in vitro. Cell Biol Int 2017; 41:726-738. [PMID: 28206713 DOI: 10.1002/cbin.10749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/13/2017] [Indexed: 12/21/2022]
Abstract
In this study, we explored the effects of mesenchymal stem cells (MSCs) from bone marrow overexpressing heme oxygenase-1 (HO-1) on the damaged human intestinal epithelial barrier in vitro. Rat MSCs were isolated from bone marrow and transduced with rat HO-1 recombinant adenovirus (HO-MSCs) for stable expression of HO-1. Colorectal adenocarinoma 2 (Caco2) cells were treated with tumor necrosis factor-α (TNF-α) to establish a damaged colon epithelial model. Damaged Caco2 were cocultured with MSCs, Ad-MSCs, Ad-HO + MSCs or HO-MSCs. mRNA and protein expression of Zona occludens-1 (ZO-1) and human HO-1 and the release of cytokines were measured. ZO-1 and human HO-1 in Caco2 were significantly decreased after treatment with TNF-α; and this effect was reduced when coculture with MSCs from bone marrow. Expression of ZO-1 was not significantly affected by Caco2 treatment with TNF-α, Ad-HO, and MSCs. In contrast, ZO-1 and human HO-1 increased significantly when the damaged Caco2 was treated with HO-MSCs. HO-MSCs showed the strongest effect on the expression of ZO-1 in colon epithelial cells. Coculture with HO-MSCs showed the most significant effects on reducing the expression of IL-2, IL-6, IFN-γ and increasing the expression of IL-10. HO-MSCs protected the intestinal epithelial barrier, in which endogenous HO-1 was involved. HO-MSCs play an important role in the repair process by reducing the release of inflammatory cytokines and increasing the release of anti-inflammatory factors. These results suggested that HO-MSCs from bone marrow were more effective in repairing the damaged intestinal epithelial barrier, and the effectiveness of MSCs was improved by HO-1 gene transduction, which provides favorable support for the application of stem cell therapy in the intestinal diseases.
Collapse
Affiliation(s)
- Yi Cao
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, China
| | - Ben-Juan Wu
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin, China
| | - Wei-Ping Zheng
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin, China
| | - Ming-Li Yin
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, China
| | - Tao Liu
- Key Laboratory of Emergency Care Medicine of Ministry of Health, Tianjin First Central Hospital, Tianjin, China
| | - Hong-Li Song
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin, China.,Tianjin Key Laboratory of Organ Transplantation, Tianjin, China
| |
Collapse
|
11
|
Doster DL, Jensen AR, Khaneki S, Markel TA. Mesenchymal stromal cell therapy for the treatment of intestinal ischemia: Defining the optimal cell isolate for maximum therapeutic benefit. Cytotherapy 2016; 18:1457-1470. [PMID: 27745788 DOI: 10.1016/j.jcyt.2016.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/16/2016] [Accepted: 08/02/2016] [Indexed: 02/06/2023]
Abstract
Intestinal ischemia is a devastating intraabdominal emergency that often necessitates surgical intervention. Mortality rates can be high, and patients who survive often have significant long-term morbidity. The implementation of traditional medical therapies to prevent or treat intestinal ischemia have been sparse over the last decade, and therefore, the use of novel therapies are becoming more prevalent. Cellular therapy using mesenchymal stromal cells is one such treatment modality that is attracting noteworthy attention in the scientific community. Several groups have seen benefit with cellular therapy, but the optimal cell line has not been identified. The purpose of this review is to: 1) Review the mechanism of intestinal ischemia and reperfusion injury, 2) Identify the mechanisms of how cellular therapy may be therapeutic for this disease, and 3) Compare various MSC tissue sources to maximize potential therapeutic efficacy in the treatment of intestinal I/R diseases.
Collapse
Affiliation(s)
- Dominique L Doster
- Department of Surgery, Indiana University Health, Indianapolis, IN, USA; The Indiana University School of Medicine, Indianapolis, IN, USA
| | - Amanda R Jensen
- Department of Surgery, Indiana University Health, Indianapolis, IN, USA; The Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sina Khaneki
- Department of Surgery, Indiana University Health, Indianapolis, IN, USA; The Indiana University School of Medicine, Indianapolis, IN, USA
| | - Troy A Markel
- Department of Surgery, Indiana University Health, Indianapolis, IN, USA; The Indiana University School of Medicine, Indianapolis, IN, USA; Section of Pediatric Surgery, Indiana University Health, Indianapolis, IN, USA; Riley Hospital for Children, Indiana University Health, Indianapolis, IN, USA.
| |
Collapse
|
12
|
Zhou F, Zhang P, Chen X, Yan J, Yao J, Yu Z, Chen X. Ginsenoside Rb1 protects the intestinal mucosal barrier following peritoneal air exposure. Exp Ther Med 2016; 12:2563-2567. [PMID: 27703510 PMCID: PMC5038908 DOI: 10.3892/etm.2016.3639] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 06/15/2016] [Indexed: 01/02/2023] Open
Abstract
Ginsenoside Rb1 (GRb1), which is one of the main ingredients derived from Panax ginseng, has been widely used to treat various gastrointestinal disorders. The present study aimed to determine whether GRb1 was able to prevent intestinal mucosal barrier damage in rats following peritoneal air exposure for 3 h. GRb1 (5, 10, and 20 mg/kg) was orally administrated via gavage four times prior to and following surgery. Blood and terminal ileum were sampled 24 h following surgery. Levels of serum D-lactate (D-LA) were detected using an enzyme-linked immunosorbent assay kit. Intestinal permeability was assessed by determining the intestinal clearance of fluorescein isothiocyanate-dextran (FD4). Activity of intestinal myeloperoxidase was measured to assess intestinal inflammation, and intestinal histopathology was assessed by light microscopy. The results showed that GRb1 reduced the level of serum D-LA, intestinal clearance of FD4, and the activity of intestinal myeloperoxidase. Intestinal edema and inflammation were also ameliorated by GRb1, and the Chiu's scores employed for assessing intestinal mucosal damage were also reduced in the GRb1-treated peritoneal air exposure group. In addition, GRb1 induced a significant difference at 10 and 20 mg/kg, indicating a dose-dependent effect. The results of the present study suggest that GRb1 may be able to protect the intestinal mucosal barrier against damage induced by peritoneal air exposure, which may be associated with its anti-inflammatory action.
Collapse
Affiliation(s)
- Feng Zhou
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Peichen Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiaoxi Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jingyi Yan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jiangao Yao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhen Yu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China; Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, P.R. China
| | - Xiaolei Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW This review focuses on the known mechanisms of alloimmunity that occur after transplantation and what is being done in order to improve graft and patient survival, particularly in the long term. RECENT FINDINGS The presence of mismatched antigens and epitopes might relate directly to the development of de-novo donor-specific antibodies (DSA), and thus, rejection. In an abdominal wall transplant, the skin graft could be the first to show signs of rejection. The epithelial or endothelial cells are the main targets in acute and chronic rejection, respectively. Possible therapeutical targets are gut homing T cells and cells of the innate immune system. Chimerism development might mostly occur in isolated lymph nodes, but also in the epithelium, particularly after transplantation of bone marrow mesenchymal stromal cells. SUMMARY Ischemia-reperfusion, surgical injury, and bacterial translocation trigger the innate immune system, starting acute rejection. Interaction between donor and recipient immune cells generate injury and tolerance, which occur mostly in secondary lymphoid organs, lamina propria, and epithelium. Chronic rejection mostly affects the endothelial cells, generating graft dysfunction. DSA increase the risk of graft rejection both acutely and chronically, and the liver protects against their effects. Induction therapies deplete lymphocytes prior to implantation, and maintenance therapies inhibit T-cell expansion. Rejection rates are the lowest when depleting drugs and a combination of interleukin 2 receptor blockade, inhibition of T-cell expansion, and steroids are used as maintenance therapy. Chimerism and tolerogenic regiments that induce Tregs and prevent the development of DSA are important treatment goals for the future.
Collapse
|
14
|
Cao Y, Liu T, Yin ML, Zhang BY, Song HL. Role of CX3CR1 in repair of injured intestinal epithelial cells by bone marrow mesenchymal stem cells. Shijie Huaren Xiaohua Zazhi 2015; 23:3670-3682. [DOI: 10.11569/wcjd.v23.i23.3670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of chemokine receptor CX3CR1 in the repair of injured intestinal epithelial cells by bone marrow mesenchymal stem cells (BM-MSCs).
METHODS: BM-MSCs were cultured and identified in vitro. Caco-2 cells were exposed to tumor necrosis factor alpha (TNF-α) to establish a cell model of injured intestinal epithelium. Cells were divided into six groups: BM-MSCs, Caco-2 cells, Caco-2 cells treated with TNF-α, co-cultured BM-MSCs and Caco-2 cells, co-cultured BM-MSCs and Caco-2 cells treated with TNF-α, and co-cultured BM-MSCs and Caco-2 cells treated with anti-CX3CR1 and TNF-α. The expression of tight junction proteins and mRNAs in Caco-2 cells, and CX3CR1 protein and mRNA in BM-MSCs was detected by immunofluorescence, Western blot and RT-PCR.
RESULTS: We selected 100 ng/mL TNF-α for 48 h to establish the injured model, because the expression of zonula occluden 1(ZO-1) and Occludin was reduced significantly at this time point (P < 0.05). The protein and mRNA levels of ZO-1, Occludin and CX3CR1 had no significant changes when BM-MSCs were co-cultured with untreated Caco-2 cells, but increased when BM-MSCs were co-cultured with injured Caco-2 cells (P < 0.05). When CX3CR1 was blocked, the protein and mRNA levels of ZO-1 and Occludin decreased significantly.
CONCLUSION: CX3CR1 participates in the repair of injured intestinal epithelial cells by BM-MSCs.
Collapse
|
15
|
Xia P, Pan S, Cheng J, Yang M, Qi Z, Hou T, Yang X. Factors affecting directional migration of bone marrow mesenchymal stem cells to the injured spinal cord. Neural Regen Res 2014; 9:1688-95. [PMID: 25374590 PMCID: PMC4211189 DOI: 10.4103/1673-5374.141804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2014] [Indexed: 12/19/2022] Open
Abstract
Microtubule-associated protein 1B plays an important role in axon guidance and neuronal migration. In the present study, we sought to discover the mechanisms underlying microtubule-associated protein 1B mediation of axon guidance and neuronal migration. We exposed bone marrow mesenchymal stem cells to okadaic acid or N-acetyl-D-erythro-sphingosine (an inhibitor and stimulator, respectively, of protein phosphatase 2A) for 24 hours. The expression of the phosphorylated form of type I microtubule-associated protein 1B in the cells was greater after exposure to okadaic acid and lower after N-acetyl-D-erythro-sphingosine. We then injected the bone marrow mesenchymal stem cells through the ear vein into rabbit models of spinal cord contusion. The migration of bone marrow mesenchymal stem cells towards the injured spinal cord was poorer in cells exposed to okadaic acid- and N-acetyl-D-erythro-sphingosine than in non-treated bone marrow mesenchymal stem cells. Finally, we blocked phosphatidylinositol 3-kinase (PI3K) and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways in rabbit bone marrow mesenchymal stem cells using the inhibitors LY294002 and U0126, respectively. LY294002 resulted in an elevated expression of phosphorylated type I microtubule-associated protein 1B, whereas U0126 caused a reduction in expression. The present data indicate that PI3K and ERK1/2 in bone marrow mesenchymal stem cells modulate the phosphorylation of microtubule-associated protein 1B via a cross-signaling network, and affect the migratory efficiency of bone marrow mesenchymal stem cells towards injured spinal cord.
Collapse
Affiliation(s)
- Peng Xia
- Department of Spine Surgery, Orthopedics Hospital, Second Hosptal, Jilin University, Changchun, Jilin Province, China
| | - Su Pan
- Department of Spine Surgery, Orthopedics Hospital, Second Hosptal, Jilin University, Changchun, Jilin Province, China
| | - Jieping Cheng
- Department of Spine Surgery, Orthopedics Hospital, Second Hosptal, Jilin University, Changchun, Jilin Province, China
| | - Maoguang Yang
- Department of Endocrinology, Second Hosptal, Jilin University, Changchun, Jilin Province, China
| | - Zhiping Qi
- Department of Spine Surgery, Orthopedics Hospital, Second Hosptal, Jilin University, Changchun, Jilin Province, China
| | - Tingting Hou
- Department of Spine Surgery, Orthopedics Hospital, Second Hosptal, Jilin University, Changchun, Jilin Province, China
| | - Xiaoyu Yang
- Department of Spine Surgery, Orthopedics Hospital, Second Hosptal, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|