1
|
Li W, Gao W, Yan S, Yang L, Zhu Q, Chu H. Gut Microbiota as Emerging Players in the Development of Alcohol-Related Liver Disease. Biomedicines 2024; 13:74. [PMID: 39857657 PMCID: PMC11761646 DOI: 10.3390/biomedicines13010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 12/23/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
The global incidence and mortality rates of alcohol-related liver disease are on the rise, reflecting a growing health concern worldwide. Alcohol-related liver disease develops due to a complex interplay of multiple reasons, including oxidative stress generated during the metabolism of ethanol, immune response activated by immunogenic substances, and subsequent inflammatory processes. Recent research highlights the gut microbiota's significant role in the progression of alcohol-related liver disease. In patients with alcohol-related liver disease, the relative abundance of pathogenic bacteria, including Enterococcus faecalis, increases and is positively correlated with the level of severity exhibited by alcohol-related liver disease. Supplement probiotics like Lactobacillus, as well as Bifidobacterium, have been found to alleviate alcohol-related liver disease. The gut microbiota is speculated to trigger specific signaling pathways, influence metabolite profiles, and modulate immune responses in the gut and liver. This research aimed to investigate the role of gut microorganisms in the onset and advancement of alcohol-related liver disease, as well as to uncover the underlying mechanisms by which the gut microbiota may contribute to its development. This review outlines current treatments for reversing gut dysbiosis, including probiotics, fecal microbiota transplantation, and targeted phage therapy. Particularly, targeted therapy will be a vital aspect of future alcohol-related liver disease treatment. It is to be hoped that this article will prove beneficial for the treatment of alcohol-related liver disease.
Collapse
Affiliation(s)
- Wei Li
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan 430023, China;
| | - Wenkang Gao
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (W.G.); (S.Y.); (L.Y.)
| | - Shengqi Yan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (W.G.); (S.Y.); (L.Y.)
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (W.G.); (S.Y.); (L.Y.)
| | - Qingjing Zhu
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan 430023, China;
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (W.G.); (S.Y.); (L.Y.)
| |
Collapse
|
2
|
Sun S, Zhang G, Lv S, Sun J. Potential mechanisms of traditional Chinese medicine in the treatment of liver cirrhosis: a focus on gut microbiota. Front Microbiol 2024; 15:1407991. [PMID: 39234554 PMCID: PMC11371771 DOI: 10.3389/fmicb.2024.1407991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Cirrhosis, a pathological stage that develops from various chronic liver diseases, is characterized by liver fibrosis, pseudolobular formation, and chronic inflammation. When it progresses to the decompensated phase, the mortality rate of cirrhosis can reach 80%. The role of gut microbiota in the progression of liver diseases has received significant attention. Numerous studies have shown that regulating gut microbiota has significant therapeutic effects on preventing and reversing liver cirrhosis. This article reviewed the mechanisms by which gut microbiota influence liver cirrhosis, explaining the effective therapeutic effects of traditional Chinese medicine. Through multi-directional regulation involving signaling pathways, gut microbiota diversity, and restoration of intestinal barrier function, traditional Chinese medicine has been promising in ameliorating liver cirrhosis, providing treatment options and pharmacological guidance for the occurrence and development of liver cirrhosis.
Collapse
Affiliation(s)
- Siyuan Sun
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Guangheng Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shimeng Lv
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinhui Sun
- Gastroenterology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Aghaei F, Arabzadeh E, Mahmoodzadeh Hosseini H, Shirvani H. Exercise Training and Probiotic Lacticaseibacillus rhamnosus GG Reduce Tetracycline-Induced Liver Oxidative Stress and Inflammation in Rats with Hepatic Steatosis. Probiotics Antimicrob Proteins 2023; 15:1393-1405. [PMID: 36169882 DOI: 10.1007/s12602-022-09994-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2022] [Indexed: 10/25/2022]
Abstract
Lifestyle modification with regular exercise can improve metabolic diseases by reducing lipid profile and inflammation. Probiotics have been recently recommended not only for gastrointestinal diseases but also for metabolic and even degenerative diseases. Therefore, in the present study, the effect of high-intensity interval training (HIIT) and Lacticaseibacillus rhamnosus strain GG (LGG) as a probiotic on tetracycline-induced hepatic steatosis in an animal model was evaluated. Eighty male Wistar rats were randomly divided into eight groups (n = 10 in each group): control, LGG, HIIT, LGG + HIIT, tetracycline-induced (TTC), TTC + LGG, TTC + HIIT, and TTC + LGG + HIIT. The rats are treated by intraperitoneal injection (IP) with 140 mg kg-1 tetracycline, an antibiotic previously known to induce steatosis. The exercise training groups performed HIIT 5 days/week for 5 weeks, and 107 CFU/ml of Lacticaseibacillus rhamnosus GG was gavaged for the LGG groups 5 days/week for 5 weeks. Fatty droplets in the hepatocyte were considered with Oil Red staining. TTC-receiving rats have more lipid accumulation and larger lipid droplets in the liver compared to healthy animals. The two-way ANOVA showed that the interaction of LGG and HIIT significantly decreased LDL, cholesterol, and triglyceride in the healthy rats (p < 0.05). In TTC-receiving rats, the interaction of LGG and HIIT significantly increased HDL and SOD and significantly decreased triglyceride, ALP, AST, and ALT (p < 0.05). The consumption of probiotic LGG, along with HIIT with control of lipid profile and liver enzymes and improvement of the oxidative capacity, neutralizes the damage of TTC to liver tissue. Therefore, this protocol can be recommended for people with hepatic steatosis.
Collapse
Affiliation(s)
- Fariba Aghaei
- Faculty of Physical Education and Sport Sciences, Karaj Branch, Islamic Azad University, Alborz, Iran
| | - Ehsan Arabzadeh
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamideh Mahmoodzadeh Hosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hossein Shirvani
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Jensen N, Weiland-Bräuer N, Joel S, Chibani CM, Schmitz RA. The Life Cycle of Aurelia aurita Depends on the Presence of a Microbiome in Polyps Prior to Onset of Strobilation. Microbiol Spectr 2023; 11:e0026223. [PMID: 37378516 PMCID: PMC10433978 DOI: 10.1128/spectrum.00262-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Aurelia aurita's intricate life cycle alternates between benthic polyp and pelagic medusa stages. The strobilation process, a critical asexual reproduction mechanism in this jellyfish, is severely compromised in the absence of the natural polyp microbiome, with limited production and release of ephyrae. Yet, the recolonization of sterile polyps with a native polyp microbiome can correct this defect. Here, we investigated the precise timing necessary for recolonization as well as the host-associated molecular processes involved. We deciphered that a natural microbiota had to be present in polyps prior to the onset of strobilation to ensure normal asexual reproduction and a successful polyp-to-medusa transition. Providing the native microbiota to sterile polyps after the onset of strobilation failed to restore the normal strobilation process. The absence of a microbiome was associated with decreased transcription of developmental and strobilation genes as monitored by reverse transcription-quantitative PCR. Transcription of these genes was exclusively observed for native polyps and sterile polyps that were recolonized before the initiation of strobilation. We further propose that direct cell contact between the host and its associated bacteria is required for the normal production of offspring. Overall, our findings indicate that the presence of a native microbiome at the polyp stage prior to the onset of strobilation is essential to ensure a normal polyp-to-medusa transition. IMPORTANCE All multicellular organisms are associated with microorganisms that play fundamental roles in the health and fitness of the host. Notably, the native microbiome of the Cnidarian Aurelia aurita is crucial for the asexual reproduction by strobilation. Sterile polyps display malformed strobilae and a halt of ephyrae release, which is restored by recolonizing sterile polyps with a native microbiota. Despite that, little is known about the microbial impact on the strobilation process's timing and molecular consequences. The present study shows that A. aurita's life cycle depends on the presence of the native microbiome at the polyp stage prior to the onset of strobilation to ensure the polyp-to-medusa transition. Moreover, sterile individuals correlate with reduced transcription levels of developmental and strobilation genes, evidencing the microbiome's impact on strobilation on the molecular level. Transcription of strobilation genes was exclusively detected in native polyps and those recolonized before initiating strobilation, suggesting microbiota-dependent gene regulation.
Collapse
Affiliation(s)
- Nadin Jensen
- Institute of General Microbiology, Christian-Albrechts University Kiel, Kiel, Germany
| | - Nancy Weiland-Bräuer
- Institute of General Microbiology, Christian-Albrechts University Kiel, Kiel, Germany
| | - Shindhuja Joel
- Institute of General Microbiology, Christian-Albrechts University Kiel, Kiel, Germany
| | - Cynthia Maria Chibani
- Institute of General Microbiology, Christian-Albrechts University Kiel, Kiel, Germany
| | - Ruth Anne Schmitz
- Institute of General Microbiology, Christian-Albrechts University Kiel, Kiel, Germany
| |
Collapse
|
5
|
Chen G, Shi F, Yin W, Guo Y, Liu A, Shuai J, Sun J. Gut microbiota dysbiosis: The potential mechanisms by which alcohol disrupts gut and brain functions. Front Microbiol 2022; 13:916765. [PMID: 35966709 PMCID: PMC9372561 DOI: 10.3389/fmicb.2022.916765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/29/2022] [Indexed: 11/24/2022] Open
Abstract
Alcohol use disorder (AUD) is a high-risk psychiatric disorder and a key cause of death and disability in individuals. In the development of AUD, there is a connection known as the microbiota-gut-brain axis, where alcohol use disrupts the gut barrier, resulting in changes in intestinal permeability as well as the gut microbiota composition, which in turn impairs brain function and worsens the patient’s mental status and gut activity. Potential mechanisms are explored by which alcohol alters gut and brain function through the effects of the gut microbiota and their metabolites on immune and inflammatory pathways. Alcohol and microbiota dysregulation regulating neurotransmitter release, including DA, 5-HT, and GABA, are also discussed. Thus, based on the above discussion, it is possible to speculate on the gut microbiota as an underlying target for the treatment of diseases associated with alcohol addiction. This review will focus more on how alcohol and gut microbiota affect the structure and function of the gut and brain, specific changes in the composition of the gut microbiota, and some measures to mitigate the changes caused by alcohol exposure. This leads to a potential intervention for alcohol addiction through fecal microbiota transplantation, which could normalize the disruption of gut microbiota after AUD.
Collapse
Affiliation(s)
- Ganggang Chen
- Department of Anatomy and Neurobiology, School of Basic Medicine, Shandong University, Jinan, China
| | - Fenglei Shi
- Department of Othopaedics, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Yin
- Department of Anatomy and Neurobiology, School of Basic Medicine, Shandong University, Jinan, China
| | - Yao Guo
- Shandong Provincial Mental Health Center, Jinan, China
| | - Anru Liu
- Department of Anatomy and Neurobiology, School of Basic Medicine, Shandong University, Jinan, China
| | - Jiacheng Shuai
- Department of Anatomy and Neurobiology, School of Basic Medicine, Shandong University, Jinan, China
| | - Jinhao Sun
- Department of Anatomy and Neurobiology, School of Basic Medicine, Shandong University, Jinan, China
- *Correspondence: Jinhao Sun,
| |
Collapse
|
6
|
Park SH, Lee YS, Sim J, Seo S, Seo W. Alcoholic liver disease: a new insight into the pathogenesis of liver disease. Arch Pharm Res 2022; 45:447-459. [PMID: 35761115 DOI: 10.1007/s12272-022-01392-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 06/10/2022] [Indexed: 11/02/2022]
Abstract
Excessive alcohol consumption contributes to a broad clinical spectrum of liver diseases, from simple steatosis to end-stage hepatocellular carcinoma. The liver is the primary organ that metabolizes ingested alcohol and is exquisitely sensitive to alcohol intake. Alcohol metabolism is classified into two pathways: oxidative and non-oxidative alcohol metabolism. Both oxidative and non-oxidative alcohol metabolisms and their metabolites have toxic consequences for multiple organs, including the liver, adipose tissue, intestine, and pancreas. Although many studies have focused on the effects of oxidative alcohol metabolites on liver damage, the importance of non-oxidative alcohol metabolites in cellular damage has also been discovered. Furthermore, extrahepatic alcohol effects are crucial for providing additional information necessary for the progression of alcoholic liver disease. Therefore, studying the effects of alcohol-producing metabolites and interorgan crosstalk between the liver and peripheral organs that express ethanol-metabolizing enzymes will facilitate a comprehensive understanding of the pathogenesis of alcoholic liver disease. This review focuses on alcohol-metabolite-associated hepatotoxicity due to oxidative and non-oxidative alcohol metabolites and the role of interorgan crosstalk in alcoholic liver disease pathogenesis.
Collapse
Affiliation(s)
- Seol Hee Park
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Young-Sun Lee
- Department of Internal Medicine, Korea University Medical Center, Seoul, Republic of Korea
| | - Jaemin Sim
- Lab of Hepatotoxicity, College of Pharmacy, Ewha Womans University, #52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03765, Republic of Korea
| | - Seonkyung Seo
- Lab of Hepatotoxicity, College of Pharmacy, Ewha Womans University, #52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03765, Republic of Korea
| | - Wonhyo Seo
- Lab of Hepatotoxicity, College of Pharmacy, Ewha Womans University, #52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03765, Republic of Korea.
| |
Collapse
|
7
|
Translational Approaches with Antioxidant Phytochemicals against Alcohol-Mediated Oxidative Stress, Gut Dysbiosis, Intestinal Barrier Dysfunction, and Fatty Liver Disease. Antioxidants (Basel) 2021; 10:antiox10030384. [PMID: 33806556 PMCID: PMC8000766 DOI: 10.3390/antiox10030384] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Emerging data demonstrate the important roles of altered gut microbiomes (dysbiosis) in many disease states in the peripheral tissues and the central nervous system. Gut dysbiosis with decreased ratios of Bacteroidetes/Firmicutes and other changes are reported to be caused by many disease states and various environmental factors, such as ethanol (e.g., alcohol drinking), Western-style high-fat diets, high fructose, etc. It is also caused by genetic factors, including genetic polymorphisms and epigenetic changes in different individuals. Gut dysbiosis, impaired intestinal barrier function, and elevated serum endotoxin levels can be observed in human patients and/or experimental rodent models exposed to these factors or with certain disease states. However, gut dysbiosis and leaky gut can be normalized through lifestyle alterations such as increased consumption of healthy diets with various fruits and vegetables containing many different kinds of antioxidant phytochemicals. In this review, we describe the mechanisms of gut dysbiosis, leaky gut, endotoxemia, and fatty liver disease with a specific focus on the alcohol-associated pathways. We also mention translational approaches by discussing the benefits of many antioxidant phytochemicals and/or their metabolites against alcohol-mediated oxidative stress, gut dysbiosis, intestinal barrier dysfunction, and fatty liver disease.
Collapse
|
8
|
Wen B, Zhang C, Zhou J, Zhang Z, Che Q, Cao H, Bai Y, Guo J, Su Z. Targeted treatment of alcoholic liver disease based on inflammatory signalling pathways. Pharmacol Ther 2020; 222:107752. [PMID: 33253739 DOI: 10.1016/j.pharmthera.2020.107752] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Targeted therapy is an emerging treatment strategy for alcoholic liver disease (ALD). Inflammation plays an important role in the occurrence and development of ALD, and is a key choice for its targeted treatment, and anti-inflammatory treatment has been considered beneficial for liver disease. Surprisingly, immune checkpoint inhibitors have become important therapeutic agents for hepatocellular carcinoma (HCC). Moreover, studies have shown that the combination of inflammatory molecule inhibitors and immune checkpoint inhibitors can exert better effects than either alone in mouse models of HCC. This review discusses the mechanism of hepatic ethanol metabolism and the conditions under which inflammation occurs. In addition, we focus on the potential molecular targets in inflammatory signalling pathways and summarize the potential targeted inhibitors and immune checkpoint inhibitors, providing a theoretical basis for the targeted treatment of ALD and the development of new combination therapy strategies for HCC.
Collapse
Affiliation(s)
- Bingjian Wen
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chengcheng Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jingwen Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengyan Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd., Guangzhou 510663, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
9
|
cAMP Signaling in Pathobiology of Alcohol Associated Liver Disease. Biomolecules 2020; 10:biom10101433. [PMID: 33050657 PMCID: PMC7600246 DOI: 10.3390/biom10101433] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
The importance of cyclic adenosine monophosphate (cAMP) in cellular responses to extracellular signals is well established. Many years after discovery, our understanding of the intricacy of cAMP signaling has improved dramatically. Multiple layers of regulation exist to ensure the specificity of cellular cAMP signaling. Hence, disturbances in cAMP homeostasis could arise at multiple levels, from changes in G protein coupled receptors and production of cAMP to the rate of degradation by phosphodiesterases. cAMP signaling plays critical roles in metabolism, inflammation and development of fibrosis in several tissues. Alcohol-associated liver disease (ALD) is a multifactorial condition ranging from a simple steatosis to steatohepatitis and fibrosis and ultimately cirrhosis, which might lead to hepatocellular cancer. To date, there is no FDA-approved therapy for ALD. Hence, identifying the targets for the treatment of ALD is an important undertaking. Several human studies have reported the changes in cAMP homeostasis in relation to alcohol use disorders. cAMP signaling has also been extensively studied in in vitro and in vivo models of ALD. This review focuses on the role of cAMP in the pathobiology of ALD with emphasis on the therapeutic potential of targeting cAMP signaling for the treatment of various stages of ALD.
Collapse
|
10
|
Yu Z, Yang L, Deng S, Liang M. Daidzein ameliorates LPS-induced hepatocyte injury by inhibiting inflammation and oxidative stress. Eur J Pharmacol 2020; 885:173399. [PMID: 32712091 DOI: 10.1016/j.ejphar.2020.173399] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023]
Abstract
Endotoxin-induced acute liver injury (ALI) is a severe disease associated with a poor prognosis. Therefore, it is urgent to discover new effective therapies to prevent ALI. Daidzein, extracted from leguminous plants, possess anti-inflammatory and antioxidative bioactivities. However, little is known about whether daidzein could attenuate lipopolysaccharide (LPS)-induced ALI. We investigated the effects of daidzein on hepatocyte injury and its underlying mechanisms. In LPS-induced hepatocyte supernatant, 100 μM daidzein decreased ALT and AST expression levels by 49.3% ± 5.6% and 39.3% ± 3.5%, respectively, with no cytotoxicity. In addition, the expression of inflammatory factors, including interleukin-1β (IL-lβ), interleukin-6 (IL-6) and tumor necrosis factor α (TNF-α) were decreased by 100 μM daidzein (73.8% ± 5.3%, 58.8 ± 9.0% and 55.5% ± 7.2%, respectively) in LPS-treated hepatocytes. Western blot analysis showed that daidzein inhibited LPS-induced p-ERK1/2, p-IκBα and p-p65 expression levels. Moreover, 100 μM daidzein reduced the LPS-induced production of Reactive oxygen species by 23.9 ± 7.8% and increased SOD activity by 88.4% ± 18.9% by downregulating Keap-1 and upregulating Nrf2 expression. In conclusion, these data indicate that daidzein ameliorates LPS-induced hepatocyte injury by inhibiting inflammation and oxidative stress.
Collapse
Affiliation(s)
- Zuying Yu
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Yang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Deng
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Minglu Liang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
11
|
Vogle A, Qian T, Zhu S, Burnett E, Fey H, Zhu Z, Keshavarzian A, Shaikh M, Hoshida Y, Kim M, Aloman C. Restricted immunological and cellular pathways are shared by murine models of chronic alcohol consumption. Sci Rep 2020; 10:2451. [PMID: 32051453 PMCID: PMC7016184 DOI: 10.1038/s41598-020-59188-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/20/2020] [Indexed: 12/13/2022] Open
Abstract
Murine models of chronic alcohol consumption are frequently used to investigate alcoholic liver injury and define new therapeutic targets. Lieber-DeCarli diet (LD) and Meadows-Cook diet (MC) are the most accepted models of chronic alcohol consumption. It is unclear how similar these models are at the cellular, immunologic, and transcriptome levels. We investigated the common and specific pathways of LD and MC models. Livers from LD and MC mice were subjected to histologic changes, hepatic leukocyte population, hepatic transcripts level related to leukocyte recruitment, and hepatic RNA-seq analysis. Cross-species comparison was performed using the alcoholic liver disease (ALD) transcriptomic public dataset. Despite LD mice have increased liver injury and steatosis by alcohol exposure, the number of CD45+ cells were reduced. Opposite, MC mice have an increased number of monocytes/liver by alcohol. The pattern of chemokine gradient, adhesion molecules, and cytokine transcripts is highly specific for each model, not shared with advanced human alcoholic liver disease. Moreover, hepatic RNA-seq revealed a limited and restricted number of shared genes differentially changed by alcohol exposure in these 2 models. Thus, mechanisms involved in alcohol tissue injury are model-dependent at multiple levels and raise the consideration of significant pathophysiological diversity of human alcoholic liver injury.
Collapse
Affiliation(s)
- Alyx Vogle
- Division of Digestive Diseases and Nutrition, Section of Hepatology, Rush University, Chicago, IL, USA
| | - Tongqi Qian
- University of Texas Southwestern Medical Center, Division of Digestive Diseases, Department of Internal Medicine, Texas, USA
| | - Shijia Zhu
- University of Texas Southwestern Medical Center, Division of Digestive Diseases, Department of Internal Medicine, Texas, USA
| | - Elizabeth Burnett
- Division of Digestive Diseases and Nutrition, Section of Hepatology, Rush University, Chicago, IL, USA
| | - Holger Fey
- Division of Digestive Diseases and Nutrition, Section of Hepatology, Rush University, Chicago, IL, USA
| | - Zhibin Zhu
- Division of Digestive Diseases and Nutrition, Section of Hepatology, Rush University, Chicago, IL, USA
| | - Ali Keshavarzian
- Division of Digestive Diseases and Nutrition, Section of Hepatology, Rush University, Chicago, IL, USA
| | - Maliha Shaikh
- Division of Digestive Diseases and Nutrition, Section of Hepatology, Rush University, Chicago, IL, USA
| | - Yujin Hoshida
- University of Texas Southwestern Medical Center, Division of Digestive Diseases, Department of Internal Medicine, Texas, USA
| | - Miran Kim
- Division of Digestive Diseases and Nutrition, Section of Hepatology, Rush University, Chicago, IL, USA
| | - Costica Aloman
- Division of Digestive Diseases and Nutrition, Section of Hepatology, Rush University, Chicago, IL, USA.
| |
Collapse
|
12
|
Li Y, Wang C, Lu J, Huang K, Han Y, Chen J, Yang Y, Liu B. PPAR δ inhibition protects against palmitic acid-LPS induced lipidosis and injury in cultured hepatocyte L02 cell. Int J Med Sci 2019; 16:1593-1603. [PMID: 31839747 PMCID: PMC6909814 DOI: 10.7150/ijms.37677] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/22/2019] [Indexed: 01/18/2023] Open
Abstract
Background: Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, and its pathogenesis and mechanism are intricate. In the present study, we aimed to evaluate the role of PPAR δ in LPS associated NAFLD and to investigate the signal transduction pathways underlying PPAR δ treatment in vitro. Material and Methods: L02 cells were exposed to palmitic acid (PA) and/or LPS in the absence or presence of PPAR δ inhibition and/or activation. Results: LPS treatment markedly increased lipid deposition, FFA contents, IL-6 and TNF-α levels, and cell apoptosis in PA treatment (NAFLD model). PPAR δ inhibition protects L02 cells against LPS-induced lipidosis and injury. Conversely, the result of PPAR δ activation showed the reverse trend. LPS+PA treatment group significantly decreases the relative expression level of IRS-1, PI3K, AKT, phosphorylation of AKT, TLR-4, MyD88, phosphorylation of IKKα, NF-κB, Bcl-2 and increases the relative expression level of Bax, cleaved caspase 3 and cleaved caspase 8, compared with the cells treated with NAFLD model. PPAR δ inhibition upregulated the related proteins' expression level in insulin resistance and inflammation pathway and downregulated apoptotic relevant proteins. Instead, PPAR δ agonist showed the reverse trend. Conclusion: Our data show that PPAR δ inhibition reduces steatosis, inflammation and apoptosis in LPS-related NAFLD damage, in vitro. PPAR δ may be a potential therapeutic implication for NAFLD.
Collapse
Affiliation(s)
- Yi Li
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Chenwei Wang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Jiyuan Lu
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Ke Huang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Yu Han
- College of Life Science & Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Junlin Chen
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Yan Yang
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, China
| | - Bin Liu
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| |
Collapse
|
13
|
Bruch-Bertani JP, Uribe-Cruz C, Pasqualotto A, Longo L, Ayres R, Beskow CB, Barth AL, Lima-Morales D, Meurer F, Tayguara Silveira Guerreiro G, da Silveira TR, Álvares-da-Silva MR, Dall'Alba V. Hepatoprotective Effect of Probiotic Lactobacillus rhamnosus GG Through the Modulation of Gut Permeability and Inflammasomes in a Model of Alcoholic Liver Disease in Zebrafish. J Am Coll Nutr 2019; 39:163-170. [PMID: 31241423 DOI: 10.1080/07315724.2019.1627955] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objective: Alcoholic liver disease (ALD) is among the leading causes of death from liver disease. Among the factors involved in its pathogenesis are inflammation and increased intestinal permeability. The aim of this study was to assess the effect of Lactobacillus rhamnosus GG (LGG) on hepatic lipid accumulation, activation of inflammasomes, and gut permeability markers in experimental model of ALD with zebrafish.Methods: An experiment was conducted to assess the effective LGG dose capable of promoting intestinal colonization. Animals were divided into three groups (n = 64/group): ethanol group (E), ethanol + probiotic group (EP), and control group (C). Groups E and EP were exposed to 0.5% ethanol concentration for 28 days. At the end of this period, animals were euthanized, and livers were collected for Oil Red staining and assessment of the inflammasome system. Intestines were collected for evaluation of gut permeability markers.Results: The dose of 1.55 × 106 UFC LGG/fish/d promoted intestinal colonization. Group EP presented lower hepatic lipid accumulation, lower il-1β expression, and higher cldn15a expression when compared to group E.Conclusions: Supplementation with LGG was protective for hepatic steatosis in ALD model. In addition, LGG influenced the modulation of the inflammatory response and markers of gut permeability, improving the gut barrier structure.
Collapse
Affiliation(s)
- Juliana Paula Bruch-Bertani
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Post Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Carolina Uribe-Cruz
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Post Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Amanda Pasqualotto
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Post Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Larisse Longo
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Post Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Raquel Ayres
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Carolina Bortolin Beskow
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Post Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Afonso Luis Barth
- Research Laboratory on Bacterial Resistance (LABRESIS), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Daiana Lima-Morales
- Research Laboratory on Bacterial Resistance (LABRESIS), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Fábio Meurer
- Post Graduate Program in Sustainable Development of Aquaculture, Universidade Federal do Paraná, Campus de Palotina, Paraná, Brazil
| | | | - Themis Reverbel da Silveira
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Post Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Mário Reis Álvares-da-Silva
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Post Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Internal Medicine, Gastroenterology and Hepatology Unit. School of Medicine, UFRGS. Gastroenterology and Hepatology Division, HCPA, Porto Alegre, Brazil
| | - Valesca Dall'Alba
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Post Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Nutrition. School of Medicine, UFRGS. Nutrition Division. Hospital de Clínicas de Porto Alegre, UFRGS. Porto Alegre, Brazil
| |
Collapse
|
14
|
Wang M, Niu J, Ou L, Deng B, Wang Y, Li S. Zerumbone Protects against Carbon Tetrachloride (CCl 4)-Induced Acute Liver Injury in Mice via Inhibiting Oxidative Stress and the Inflammatory Response: Involving the TLR4/NF-κB/COX-2 Pathway. Molecules 2019; 24:molecules24101964. [PMID: 31121820 PMCID: PMC6571963 DOI: 10.3390/molecules24101964] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 12/11/2022] Open
Abstract
The natural compound Zerumbone (hereinafter referred to as ZER), a monocyclic sesquiterpenoid, has been reported to possess many pharmacological properties, including antioxidant and anti-inflammatory properties. This study aimed to investigate the underlying mechanism of ZER against acute liver injury (ALI) in CCl4-induced mice models. ICR mice were pretreated intraperitoneally with ZER for five days, then received a CCl4 injection two hours after the last ZER administration and were sacrificed 24 h later. Examination of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities and the histopathological analysis confirmed the hepatoprotective effect of ZER. Biochemical assays revealed that ZER pretreatment recovered the activities of antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), restored the glutathione (GSH) reservoir, and reduced the production of malondialdehyde (MDA), all in a dose-dependent manner. Furthermore, administration of ZER in vivo reduced the release amounts of pro-inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) and inhibited the increased protein levels of Toll-like receptor 4 (TLR4), nuclear factor-kappaB (NF-κB) p-p65, and cyclooxygenase (COX-2). Further studies in lipopolysaccharide (LPS)-induced Raw264.7 inflammatory cellular models verified that ZER could inhibit inflammation via inactivating the TLR4/NF-κB/COX-2 pathway. Thus, our study indicated that ZER exhibited a hepatoprotective effect against ALI through its antioxidant and anti-inflammatory activities and the possible mechanism might be mediated by the TLR4/NF-κB/COX-2 pathway. Collectively, our studies indicate ZER could be a potential candidate for chemical liver injury treatment.
Collapse
Affiliation(s)
- Meilin Wang
- Medical College, Henan University of Science and Technology, Luoyang 471023, China.
| | - Jingling Niu
- Medical College, Henan University of Science and Technology, Luoyang 471023, China.
| | - Lina Ou
- Medical College, Henan University of Science and Technology, Luoyang 471023, China.
| | - Bo Deng
- Medical College, Henan University of Science and Technology, Luoyang 471023, China.
| | - Yingyi Wang
- Medical College, Henan University of Science and Technology, Luoyang 471023, China.
| | - Sanqiang Li
- Medical College, Henan University of Science and Technology, Luoyang 471023, China.
| |
Collapse
|
15
|
Vieira LD, Farias JS, de Queiroz DB, Cabral EV, Lima-Filho MM, Sant'Helena BR, Aires RS, Ribeiro VS, Santos-Rocha J, Xavier FE, Paixão AD. Oxidative stress induced by prenatal LPS leads to endothelial dysfunction and renal haemodynamic changes through angiotensin II/NADPH oxidase pathway: Prevention by early treatment with α-tocopherol. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3577-3587. [DOI: 10.1016/j.bbadis.2018.09.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/04/2018] [Accepted: 09/17/2018] [Indexed: 11/16/2022]
|
16
|
Wahlang B, McClain C, Barve S, Gobejishvili L. Role of cAMP and phosphodiesterase signaling in liver health and disease. Cell Signal 2018; 49:105-115. [PMID: 29902522 PMCID: PMC6445381 DOI: 10.1016/j.cellsig.2018.06.005] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/08/2018] [Accepted: 06/09/2018] [Indexed: 02/06/2023]
Abstract
Liver disease is a significant health problem worldwide with mortality reaching around 2 million deaths a year. Non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD) are the major causes of chronic liver disease. Pathologically, NAFLD and ALD share similar patterns of hepatic disorders ranging from simple steatosis to steatohepatitis, fibrosis and cirrhosis. It is becoming increasingly important to identify new pharmacological targets, given that there is no FDA-approved therapy yet for either NAFLD or ALD. Since the evolution of liver diseases is a multifactorial process, several mechanisms involving parenchymal and non-parenchymal hepatic cells contribute to the initiation and progression of liver pathologies. Moreover, certain protective molecular pathways become repressed during liver injury including signaling pathways such as the cyclic adenosine monophosphate (cAMP) pathway. cAMP, a key second messenger molecule, regulates various cellular functions including lipid metabolism, inflammation, cell differentiation and injury by affecting gene/protein expression and function. This review addresses the current understanding of the role of cAMP metabolism and consequent cAMP signaling pathway(s) in the context of liver health and disease. The cAMP pathway is extremely sophisticated and complex with specific cellular functions dictated by numerous factors such abundance, localization and degradation by phosphodiesterases (PDEs). Furthermore, because of the distinct yet divergent roles of both of its effector molecules, the cAMP pathway is extensively targeted in liver injury to modify its role from physiological to therapeutic, depending on the hepatic condition. This review also examines the behavior of the cAMP-dependent pathway in NAFLD, ALD and in other liver diseases and focuses on PDE inhibition as an excellent therapeutic target in these conditions.
Collapse
Affiliation(s)
- Banrida Wahlang
- University of Louisville Alcohol Research Center, School of Medicine, University of Louisville, KY, USA; Department of Medicine, School of Medicine, University of Louisville, KY, USA
| | - Craig McClain
- University of Louisville Alcohol Research Center, School of Medicine, University of Louisville, KY, USA; Department of Medicine, School of Medicine, University of Louisville, KY, USA; Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, USA; Hepatobiology & Toxicology Center, School of Medicine, University of Louisville, KY, USA; Robley Rex Louisville VAMC, Louisville, KY, USA
| | - Shirish Barve
- University of Louisville Alcohol Research Center, School of Medicine, University of Louisville, KY, USA; Department of Medicine, School of Medicine, University of Louisville, KY, USA; Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, USA; Hepatobiology & Toxicology Center, School of Medicine, University of Louisville, KY, USA
| | - Leila Gobejishvili
- University of Louisville Alcohol Research Center, School of Medicine, University of Louisville, KY, USA; Department of Medicine, School of Medicine, University of Louisville, KY, USA; Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, USA; Hepatobiology & Toxicology Center, School of Medicine, University of Louisville, KY, USA.
| |
Collapse
|
17
|
Immune response involved in liver damage and the activation of hepatic progenitor cells during liver tumorigenesis. Cell Immunol 2018; 326:52-59. [PMID: 28860007 DOI: 10.1016/j.cellimm.2017.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 08/02/2017] [Accepted: 08/04/2017] [Indexed: 02/07/2023]
|
18
|
Resveratrol Ameliorates Experimental Alcoholic Liver Disease by Modulating Oxidative Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:4287890. [PMID: 29456571 PMCID: PMC5804110 DOI: 10.1155/2017/4287890] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/08/2017] [Accepted: 11/28/2017] [Indexed: 01/30/2023]
Abstract
The aim of this study was to investigate the hepatoprotective effects of resveratrol in alcoholic liver disease (ALD). Alcohol was administered to healthy female rats starting from 6% (v/v) and gradually increased to 20% (v/v) by the fifth week. After 16 weeks of intervention, liver enzymes (aspartate aminotransferase [AST] and alanine aminotransferase [ALT]) were analyzed using a chemistry analyzer, while hepatic antioxidant enzymes, oxidative stress markers, and caspase 3 activity were assessed using ELISA kits. Furthermore, hepatic CYP2E1 protein levels and mRNA levels of antioxidant and inflammation-related genes were determined using western blotting and RT-PCR, respectively. The results showed that resveratrol significantly attenuated alcohol-induced elevation of liver enzymes and improved hepatic antioxidant enzymes. Resveratrol also attenuated alcohol-induced CYP2E1 increase, oxidative stress, and apoptosis (caspase 3 activity). Moreover, genes associated with oxidative stress and inflammation were regulated by resveratrol supplementation. Taken together, the results suggested that resveratrol alleviated ALD through regulation of oxidative stress, apoptosis, and inflammation, which was mediated at the transcriptional level. The data suggests that resveratrol is a promising natural therapeutic agent against chronic ALD.
Collapse
|
19
|
Increased Abundance of Plasmacytoid Dendritic Cells and Interferon-Alpha Induces Plasma Cell Differentiation in Patients of IgA Nephropathy. Mediators Inflamm 2017; 2017:4532409. [PMID: 29403161 PMCID: PMC5748321 DOI: 10.1155/2017/4532409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 08/30/2017] [Accepted: 09/24/2017] [Indexed: 11/22/2022] Open
Abstract
The roles of pDC and IFN-α have not been well defined in IgA nephropathy (IgAN). In this study, we investigated the abundance of pDCs and IFN-α in IgAN patients and the response of peripheral blood mononuclear cells (PBMCs) after stimulation of the pDC-preferred TLR9 ligand CpG2216. The effects of IFN-α on plasma cell differentiation and leukocyte migration were also investigated. Here, we found that the percentages of pDCs were increased in PBMCs of IgAN patients, than in those of healthy controls. Plasma levels of IFN-α proteins and abundance of plasma cells were higher in IgAN patients than in healthy donors. Plasma IFN-α levels were positively associated with proteinuria, renal IgM deposition, and renal tubular atrophy/interstitial fibrosis grade in IgAN patients. Ex vivo activation of TLR9 on pDCs resulted in increased IFN-α production and enhanced plasma cell differentiation in IgAN patients as compared with healthy donors. IFN-α treatment led to increased plasma cell differentiation in vitro. IFN-α also significantly promoted expression of chemokines IP-10 and MCP-1 in human mesangial cells, which subsequently facilitated the transendothelial migration of human CD4+ and CD14+ cells. In conclusion, pDC and its secreted cytokine IFN-α may play important roles in pathological changes of IgA nephropathy.
Collapse
|
20
|
Pinho JPC, Bell-Temin H, Liu B, Stevens SM. Spike-In SILAC Approach for Proteomic Analysis of Ex Vivo Microglia. Methods Mol Biol 2017; 1598:295-312. [PMID: 28508369 DOI: 10.1007/978-1-4939-6952-4_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Stable isotope labeling by amino acids in cell culture (SILAC) is a versatile mass spectrometry-based proteomic approach that can achieve accurate relative protein quantitation on a global scale. In this approach, proteins are labeled while being synthesized by the cell due to the presence of certain amino acids exclusively as heavier mass analogs than their regular (light) counterparts. This differential labeling allows for the identification of heavy and light forms of each peptide corresponding to two or more different experimental groups upon mass spectrometric analysis, the intensities of which reflect their abundance in the sample analyzed. Relative quantitation is straightforward when SILAC labeling efficiency is high (>99%) and the same cell proteome is used as the quantitation reference, which is typically the case for immortalized cell lines. However, the SILAC methodology for the proteomic analysis of primary cells isolated after in vivo experimentation is more challenging given the low labeling efficiency that would be achieved post-isolation. Alternatively, a stable-isotope-labeled cell line representing the cell type can be used as an internal standard (spike-in SILAC); however, adequate representation of the primary cell proteome with the stable-isotope-labeled internal standard may limit overall protein quantitation, especially for cell types that exhibit a broad range of phenotypes such as microglia, the resident immune cells in the brain. Here, we present a way to circumvent this limitation by combining multiple phenotypes of a single-cell type (the immortalized mouse BV2 microglial cell line) into a single spike-in standard using primary mouse microglia as our model system. We describe the preparation of media, incorporation of labels, induction of four different activation states (plus resting), isolation of primary microglia from adult mice brains, preparation of lysates for analysis, and general guidelines for data processing.
Collapse
Affiliation(s)
- Joao Paulo Costa Pinho
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E Fowler Ave, ISA 2015, Tampa, FL, 33620, USA
| | - Harris Bell-Temin
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bin Liu
- Department of Pharmacodynamics, University of Florida, 1345 Center Drive, Box 100487, Gainesville, FL, 32610, USA.
| | - Stanley M Stevens
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E Fowler Ave, ISA 2015, Tampa, FL, 33620, USA.
| |
Collapse
|
21
|
Ceccarelli S, Panera N, Mina M, Gnani D, De Stefanis C, Crudele A, Rychlicki C, Petrini S, Bruscalupi G, Agostinelli L, Stronati L, Cucchiara S, Musso G, Furlanello C, Svegliati-Baroni G, Nobili V, Alisi A. LPS-induced TNF-α factor mediates pro-inflammatory and pro-fibrogenic pattern in non-alcoholic fatty liver disease. Oncotarget 2016; 6:41434-52. [PMID: 26573228 PMCID: PMC4747165 DOI: 10.18632/oncotarget.5163] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/25/2015] [Indexed: 02/07/2023] Open
Abstract
Lipopolysaccharide (LPS) is currently considered one of the major players in non-alcoholic fatty liver disease (NAFLD) pathogenesis and progression. Here, we aim to investigate the possible role of LPS-induced TNF-α factor (LITAF) in inducing a pro-inflammatory and pro-fibrogenic phenotype of non-alcoholic steatohepatitis (NASH).We found that children with NAFLD displayed, in different liver-resident cells, an increased expression of LITAF which correlated with histological traits of hepatic inflammation and fibrosis. Total and nuclear LITAF expression increased in mouse and human hepatic stellate cells (HSCs). Moreover, LPS induced LITAF-dependent transcription of IL-1β, IL-6 and TNF-α in the clonal myofibroblastic HSC LX-2 cell line, and this effect was hampered by LITAF silencing. We showed, for the first time in HSCs, that LITAF recruitment to these cytokine promoters is LPS dependent. However, preventing LITAF nuclear translocation by p38MAPK inhibitor, the expression of IL-6 and TNF-α was significantly reduced with the aid of p65NF-ĸB, while IL-1β transcription exclusively required LITAF expression/activity. Finally, IL-1β levels in plasma mirrored those in the liver and correlated with LPS levels and LITAF-positive HSCs in children with NASH.In conclusion, a more severe histological profile in paediatric NAFLD is associated with LITAF over-expression in HSCs, which in turn correlates with hepatic and circulating IL-1β levels outlining a panel of potential biomarkers of NASH-related liver damage. The in vitro study highlights the role of LITAF as a key regulator of the LPS-induced pro-inflammatory pattern in HSCs and suggests p38MAPK inhibitors as a possible therapeutic approach against hepatic inflammation in NASH.
Collapse
Affiliation(s)
- Sara Ceccarelli
- Liver Research Unit, "Bambino Gesù" Children's Hospital-IRCCS, Rome, Italy
| | - Nadia Panera
- Hepato-Metabolic Disease Unit, "Bambino Gesù" Children's Hospital-IRCCS, Rome, Italy
| | - Marco Mina
- Predictive Models for Biomedicine and Environment Unit, Fondazione Bruno Kessler, Trento, Italy
| | - Daniela Gnani
- Liver Research Unit, "Bambino Gesù" Children's Hospital-IRCCS, Rome, Italy
| | - Cristiano De Stefanis
- Hepato-Metabolic Disease Unit, "Bambino Gesù" Children's Hospital-IRCCS, Rome, Italy
| | - Annalisa Crudele
- Liver Research Unit, "Bambino Gesù" Children's Hospital-IRCCS, Rome, Italy
| | - Chiara Rychlicki
- Department of Gastroenterology, Polytechnic University of Marche, Ancona, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, "Bambino Gesù" Children's Hospital-IRCCS, Rome, Italy
| | - Giovannella Bruscalupi
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Laura Agostinelli
- Department of Gastroenterology, Polytechnic University of Marche, Ancona, Italy
| | - Laura Stronati
- Department of Radiobiology and Human Health, ENEA, Rome, Italy
| | - Salvatore Cucchiara
- Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Rome, Italy
| | | | - Cesare Furlanello
- Predictive Models for Biomedicine and Environment Unit, Fondazione Bruno Kessler, Trento, Italy
| | - Gianluca Svegliati-Baroni
- Department of Gastroenterology, Polytechnic University of Marche, Ancona, Italy.,Center for Obesity, Polytechnic University of Marche, Ancona, Italy
| | - Valerio Nobili
- Hepato-Metabolic Disease Unit, "Bambino Gesù" Children's Hospital-IRCCS, Rome, Italy
| | - Anna Alisi
- Liver Research Unit, "Bambino Gesù" Children's Hospital-IRCCS, Rome, Italy
| |
Collapse
|
22
|
Meier EM, Pohl R, Rein-Fischboeck L, Schacherer D, Eisinger K, Wiest R, Krautbauer S, Buechler C. Circulating lipocalin 2 is neither related to liver steatosis in patients with non-alcoholic fatty liver disease nor to residual liver function in cirrhosis. Cytokine 2016; 85:45-50. [DOI: 10.1016/j.cyto.2016.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/17/2016] [Accepted: 06/05/2016] [Indexed: 01/17/2023]
|
23
|
Cai X, Bao L, Wang N, Ren J, Chen Q, Xu M, Li D, Mao R, Li Y. Dietary nucleotides protect against alcoholic liver injury by attenuating inflammation and regulating gut microbiota in rats. Food Funct 2016; 7:2898-908. [PMID: 27247978 DOI: 10.1039/c5fo01580d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nucleotides have been reported to be effective in attenuating liver damage and regulating gut microbiota. However, the protective effect of nucleotides against alcoholic liver injury remains unknown. The present study aims to investigate whether nucleotides ameliorate alcoholic liver injury and explores the possible mechanism. Male Wistar rats were given alcohol, equivalent distilled water or an isocaloric amount of dextrose intragastrically twice daily for up to 6 weeks respectively. Two subgroups of alcohol-treated rats were fed with a nucleotide-supplemented AIN-93G rodent diet. Serum enzymes, inflammatory cytokines and microbiota composition of the caecum content were evaluated. We found that nucleotides could significantly decrease serum alanine aminotransferase and aspartate aminotransferase, plasma lipopolysaccharide and inflammatory cytokine levels. Sequencing of 16S rRNA genes revealed that nucleotide-treated rats showed a higher abundance of Firmicutes and a lower abundance of Bacteroidetes than alcohol-treated rats. Moreover, nucleotide treatment inhibited the protein expression of toll-like receptor 4, CD14 and repressed the phosphorylation of inhibitor kappa Bα and nuclear factor-κB p65 in the liver. These results suggested that nucleotides suppressed the inflammatory response and regulated gut microbiota in alcoholic liver injury. The partial inhibition of lipopolysaccharide - toll-like receptor 4-nuclear factor-κB p65 signaling in the liver may be attributed to this mechanism.
Collapse
Affiliation(s)
- Xiaxia Cai
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Neyrinck AM, Etxeberria U, Taminiau B, Daube G, Van Hul M, Everard A, Cani PD, Bindels LB, Delzenne NM. Rhubarb extract prevents hepatic inflammation induced by acute alcohol intake, an effect related to the modulation of the gut microbiota. Mol Nutr Food Res 2016; 61. [PMID: 26990039 DOI: 10.1002/mnfr.201500899] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/26/2016] [Accepted: 03/14/2016] [Indexed: 12/17/2022]
Abstract
SCOPE Binge consumption of alcohol is an alarming global health problem. Acute ethanol intoxication is characterized by hepatic inflammation and oxidative stress, which could be promoted by gut barrier function alterations. In this study, we have tested the hypothesis of the hepatoprotective effect of rhubarb extract in a mouse model of binge drinking and we explored the contribution of the gut microbiota in the related metabolic effects. METHODS AND RESULTS Mice were fed a control diet supplemented with or without 0.3% rhubarb extract for 17 days and were necropsied 6 h after an alcohol challenge. Supplementation with rhubarb extract changed the microbial ecosystem (assessed by 16S rDNA pyrosequencing) in favor of Akkermansia muciniphila and Parabacteroides goldsteinii. Furthermore, it improved alcohol-induced hepatic injury, downregulated key markers of both inflammatory and oxidative stresses in the liver tissue, without affecting significantly steatosis. In the gut, rhubarb supplementation increased crypt depth, tissue weight, and the expression of antimicrobial peptides. CONCLUSIONS These findings suggest that some bacterial genders involved in gut barrier function, are promoted by phytochemicals present in rhubarb extract, and could therefore be involved in the modulation of the susceptibility to hepatic diseases linked to acute alcohol consumption.
Collapse
Affiliation(s)
- Audrey M Neyrinck
- Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Université catholique de Louvain, Brussels, Belgium
| | - Usune Etxeberria
- Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Université catholique de Louvain, Brussels, Belgium.,Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain
| | - Bernard Taminiau
- Fundamental and Applied Research for Animal and Health-Department of Food Sciences, Université de Liège, Liège, Belgium
| | - Georges Daube
- Fundamental and Applied Research for Animal and Health-Department of Food Sciences, Université de Liège, Liège, Belgium
| | - Matthias Van Hul
- Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Université catholique de Louvain, Brussels, Belgium.,Walloon Excellence in Life sciences and BIOtechnology (WELBIO), Louvain Drug Research Institute, Brussels, Belgium
| | - Amandine Everard
- Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Université catholique de Louvain, Brussels, Belgium.,Walloon Excellence in Life sciences and BIOtechnology (WELBIO), Louvain Drug Research Institute, Brussels, Belgium
| | - Patrice D Cani
- Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Université catholique de Louvain, Brussels, Belgium.,Walloon Excellence in Life sciences and BIOtechnology (WELBIO), Louvain Drug Research Institute, Brussels, Belgium
| | - Laure B Bindels
- Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Université catholique de Louvain, Brussels, Belgium
| | - Nathalie M Delzenne
- Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
25
|
Martínez-Esparza M, Tristán-Manzano M, Ruiz-Alcaraz AJ, García-Peñarrubia P. Inflammatory status in human hepatic cirrhosis. World J Gastroenterol 2015; 21:11522-11541. [PMID: 26556984 PMCID: PMC4631958 DOI: 10.3748/wjg.v21.i41.11522] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 07/31/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
This review focuses on new findings about the inflammatory status involved in the development of human liver cirrhosis induced by the two main causes, hepatitis C virus (HCV) infection and chronic alcohol abuse, avoiding results obtained from animal models. When liver is faced to a persistent and/or intense local damage the maintained inflammatory response gives rise to a progressive replacement of normal hepatic tissue by non-functional fibrotic scar. The imbalance between tissue regeneration and fibrosis will determine the outcome toward health recovery or hepatic cirrhosis. In all cases progression toward liver cirrhosis is caused by a dysregulation of mechanisms that govern the balance between activation/homeostasis of the immune system. Detecting differences between the inflammatory status in HCV-induced vs alcohol-induced cirrhosis could be useful to identify specific targets for preventive and therapeutic intervention in each case. Thus, although survival of patients with alcoholic cirrhosis seems to be similar to that of patients with HCV-related cirrhosis (HCV-C), there are important differences in the altered cellular and molecular mechanisms implicated in the progression toward human liver cirrhosis. The predominant features of HCV-C are more related with those that allow viral evasion of the immune defenses, especially although not exclusively, inhibition of interferons secretion, natural killer cells activation and T cell-mediated cytotoxicity. On the contrary, the inflammatory status of alcohol-induced cirrhosis is determined by the combined effect of direct hepatotoxicity of ethanol metabolites and increases of the intestinal permeability, allowing bacteria and bacterial products translocation, into the portal circulation, mesenteric lymph nodes and peritoneal cavity. This phenomenon generates a stronger pro-inflammatory response compared with HCV-related cirrhosis. Hence, therapeutic intervention in HCV-related cirrhosis must be mainly focused to counteract HCV-immune system evasion, while in the case of alcohol-induced cirrhosis it must try to break the inflammatory loop established at the gut-mesenteric lymph nodes-peritoneal-systemic axis.
Collapse
|
26
|
Natural small molecule FMHM inhibits lipopolysaccharide-induced inflammatory response by promoting TRAF6 degradation via K48-linked polyubiquitination. Sci Rep 2015; 5:14715. [PMID: 26423026 PMCID: PMC4589686 DOI: 10.1038/srep14715] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/01/2015] [Indexed: 12/11/2022] Open
Abstract
TNF receptor-associated factor 6 (TRAF6) is a key hub protein involved in Toll-like receptor-dependent inflammatory signaling pathway, and it recruits additional proteins to form multiprotein complexes capable of activating downstream NF-κB inflammatory signaling pathway. Ubiquitin-proteasome system (UPS) plays a crucial role in various protein degradations, such as TRAF6, leading to inhibitory effects on inflammatory response and immunologic function. However, whether ubiquitination-dependent TRAF6 degradation can be used as a novel anti-inflammatory drug target still remains to be explored. FMHM, a bioactive natural small molecule compound extracted from Chinese herbal medicine Radix Polygalae, suppressed acute inflammatory response by targeting ubiquitin protein and inducing UPS-dependent TRAF6 degradation mechanism. It was found that FMHM targeted ubiquitin protein via Lys48 site directly induced Lys48 residue-linked polyubiquitination. This promoted Lys48 residue-linked polyubiquitin chain formation on TRAF6, resulting in increased TRAF6 degradation via UPS and inactivation of downstream NF-κB inflammatory pathway. Consequently, FMHM down-regulated inflammatory mediator levels in circulation, protected multiple organs against inflammatory injury in vivo, and prolong the survival of endotoxemia mouse models. Therefore, FMHM can serve as a novel lead compound for the development of TRAF6 scavenging agent via ubiquitination-dependent mode, which represents a promising strategy for treating inflammatory diseases.
Collapse
|
27
|
Neuman MG, Maor Y, Nanau RM, Melzer E, Mell H, Opris M, Cohen L, Malnick S. Alcoholic Liver Disease: Role of Cytokines. Biomolecules 2015; 5:2023-2034. [PMID: 26343741 PMCID: PMC4598786 DOI: 10.3390/biom5032023] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 02/07/2023] Open
Abstract
The present review spans a broad spectrum of topics dealing with alcoholic liver disease (ALD), including clinical and translational research. It focuses on the role of the immune system and the signaling pathways of cytokines in the pathogenesis of ALD. An additional factor that contributes to the pathogenesis of ALD is lipopolysaccharide (LPS), which plays a central role in the induction of steatosis, inflammation, and fibrosis in the liver. LPS derived from the intestinal microbiota enters the portal circulation, and is recognized by macrophages (Kupffer cells) and hepatocytes. In individuals with ALD, excessive levels of LPS in the liver affect immune, parenchymal, and non-immune cells, which in turn release various inflammatory cytokines and recruit neutrophils and other inflammatory cells. In this review, we elucidate the mechanisms by which alcohol contributes to the activation of Kupffer cells and the inflammatory cascade. The role of the stellate cells in fibrogenesis is also discussed.
Collapse
Affiliation(s)
- Manuela G Neuman
- In Vitro Drug Safety and Biotechnology, University of Toronto, Toronto, ON M5G 0A3, Canada.
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON M5G 0A3, Canada.
| | - Yaakov Maor
- Division of Gastroenterology, Kaplan Health Sciences Centre, Department of Medicine, Faculty of Medicine, Hebrew University, Rehovot 76100, Israel.
| | - Radu M Nanau
- In Vitro Drug Safety and Biotechnology, University of Toronto, Toronto, ON M5G 0A3, Canada.
| | - Ehud Melzer
- Division of Gastroenterology, Kaplan Health Sciences Centre, Department of Medicine, Faculty of Medicine, Hebrew University, Rehovot 76100, Israel.
| | - Haim Mell
- Israel Anti-Drug Authority, Jerusalem 91039, Israel.
| | - Mihai Opris
- In Vitro Drug Safety and Biotechnology, University of Toronto, Toronto, ON M5G 0A3, Canada.
- Casa de Ajutor Reciproc, Bucharest 031621, Romania.
| | - Lawrence Cohen
- Sunnybrook Health Sciences Centre and Department of Internal Medicine, University of Toronto, Toronto, ON M5G 0A3, Canada.
| | - Stephen Malnick
- Division of Gastroenterology, Kaplan Health Sciences Centre, Department of Medicine, Faculty of Medicine, Hebrew University, Rehovot 76100, Israel.
| |
Collapse
|
28
|
Dong D, Yin L, Qi Y, Xu L, Peng J. Protective Effect of the Total Saponins from Rosa laevigata Michx Fruit against Carbon Tetrachloride-Induced Liver Fibrosis in Rats. Nutrients 2015; 7:4829-4850. [PMID: 26083117 PMCID: PMC4488818 DOI: 10.3390/nu7064829] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/05/2015] [Accepted: 06/05/2015] [Indexed: 02/07/2023] Open
Abstract
In this study, the protective effect of the total saponins from Rosa laevigata Michx (RLTS) against liver fibrosis induced by carbon tetrachloride (CCl4) in rats was evaluated. The results showed that RLTS significantly rehabilitated the levels of alanine aminotransferase, aspartate aminotransferase, malondialdehyde, glutathione, glutathione peroxidase, catalase, superoxide dismutase, hydroxyproline, α-smooth muscle actin, collagen I, collagen III and fibronectin, which were confirmed using H&E, Sirius Red and Masson histopathological assays. Further research indicated that RLTS markedly reduced cytochrome P450 2E1 activity, attenuated oxidative stress, and suppressed inflammation. In addition, RLTS facilitated matrix degradation through down-regulation of matrix metalloproteinase2, matrix metalloproteinase 9 and metalloproteinases1, and exerted the anti-fibrotic effects through affecting transforming growth factor β/Smad, focal adhesion kinase/phosphatidylinositol-3-kinase/amino kinase terminal/70-kDa ribosomal S6 Kinase (FAK-PI3K-Akt-p70(S6K)) and mitogen-activated protein kinase (MAPK) signaling pathways. Taken together, our data indicate that RLTS can be applied as one effective candidate for the treatment of liver fibrosis in the future.
Collapse
Affiliation(s)
- Deshi Dong
- College of Pharmacy, Dalian Medical University, No. 9 Western Lvshun South Road, Dalian 116044, China.
- The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, No. 9 Western Lvshun South Road, Dalian 116044, China.
| | - Yan Qi
- College of Pharmacy, Dalian Medical University, No. 9 Western Lvshun South Road, Dalian 116044, China.
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, No. 9 Western Lvshun South Road, Dalian 116044, China.
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, No. 9 Western Lvshun South Road, Dalian 116044, China.
| |
Collapse
|