1
|
Bell JT, Zhang X. The hepatitis B virus surface antigen: An evolved perfection and its unresolved mysteries. Virology 2025; 608:110527. [PMID: 40220401 DOI: 10.1016/j.virol.2025.110527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/24/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025]
Abstract
The Hepatitis B Virus has long afflicted the human race, with a widespread impact on the global health system and profound medical implications for those who are chronically infected. Despite its relatively recent discovery, over the last 50 years great advancements have been made towards the characterisation of this complex etiological agent. The virus itself has a highly evolved genome which encodes for seven viral proteins, three of which (the surface antigens) were consequential in the initial discovery and isolation of the virus. These surface antigens are ubiquitously important throughout the viral lifecycle, from capsid envelopment through to receptor-mediated invasion into the hepatocytes. The hepatitis B surface antigens (in particular, the large protein) adopt complex topological folds and tertiary structures, and it is this topological intricacy which facilitates the diverse roles the three surface antigens play in HBV maturation and infection. Here, the biochemical and topological attributes of the three surface antigens are reviewed in detail, with particular focus on their relevance to the establishment of infection. Further research is still required to elucidate the coordinates of the antigen loop and the dynamic topological changes of key motifs during entry and viral morphogenesis; these in turn may provide new leads for therapeutics which may potentiate a functional cure for chronic hepatitis B.
Collapse
Affiliation(s)
- Jack Thomas Bell
- Faculty of Science and Technology, University of Canberra, ACT, Australia
| | - Xiaonan Zhang
- Faculty of Science and Technology, University of Canberra, ACT, Australia.
| |
Collapse
|
2
|
Lu L, Cai D, Wang J, Li W, Zhu X, Liu Y, Xin Z, Liu S, Wu X. Myricetin supresses HBV replication both in vitro and in vivo via inhibition of HBV promoter SP2. Biochem Biophys Res Commun 2025; 755:151560. [PMID: 40043611 DOI: 10.1016/j.bbrc.2025.151560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/17/2025]
Abstract
Hepatitis B virus (HBV) infection remains a significant global public health concern. Myricetin, a flavonoid compound widely distributed in natural plants, has demonstrated multiple biological functions in combating diseases such as cancer and inflammation. In this research, we explored the mechanism of myricetin against HBV replication. We employed various experiments such as ELISA, Southern Blot, Northern Blot, Western Blot, RT-qPCR, Dual luciferase reporter gene assay, ChIP, EMSA, IHC, Immunofluorescence, AAV infection, and isolation of primary human hepatocytes (PHH) in this study. Our results showed that myricetin significantly reduced the expression of HBV markers, including HBsAg, HBeAg and covalently closed circular DNA (cccDNA), in HepG2-NTCP cells and PHH. We further confirmed these findings using AAV-HBV cell and mouse models. Furthermore, we found that myricetin significantly downregulated HBV SP2 promoter activity. Mechanistically, myricetin reduced CEBPA expression, which in turn interfered with the binding of CEBPA to the HBV SP2 promoter, leading to an antiviral effect. In conclusion, myricetin exhibited promising antiviral activity against HBV, suggesting its potential for novel HBV treatment.
Collapse
Affiliation(s)
- LiLi Lu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, PR China
| | - Duo Cai
- Medical Research Center, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266500, PR China
| | - JiangNan Wang
- College of Laboratory Medicine and Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei North University, Zhangjiakou, 075000, Hebei Province, PR China
| | - Wei Li
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Shandong, 266003, PR China
| | - XiLin Zhu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, PR China
| | - Ying Liu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, PR China
| | - ZhenHui Xin
- College of Laboratory Medicine and Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei North University, Zhangjiakou, 075000, Hebei Province, PR China.
| | - ShiHai Liu
- Medical Research Center, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266500, PR China.
| | - XiaoPan Wu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, PR China.
| |
Collapse
|
3
|
Niu YJ, Xia CJ, Ai X, Xu WM, Lin XT, Zhu YQ, Zhu HY, Zeng X, Cao ZL, Zhou W, Huang H, Shi XL. Sequential activation of ERα-AMPKα signaling by the flavonoid baicalin down-regulates viral HNF-dependent HBV replication. Acta Pharmacol Sin 2025; 46:653-661. [PMID: 39478159 PMCID: PMC11845607 DOI: 10.1038/s41401-024-01408-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/08/2024] [Indexed: 02/23/2025]
Abstract
Baicalin (BA), a natural component found in many traditional Chinese medicines, exerts protective effects against several viruses. Although our previous studies have revealed that the anti-hepatitis B virus (anti-HBV) activity of BA depends on hepatocyte nuclear factor (HNF) signaling, the specific mechanisms remain unclear. The present study explored the potential signaling mechanisms involved in BA-mediated HBV suppression. Transcriptomic analysis suggested that BA significantly modulates the estrogen receptor (ER) and AMPK signaling pathways in HepG2 cells. The ER alpha (ERα) binding affinity of BA and its estrogen-like agonist activity were subsequently verified through molecular docking assays, BA-ERα affinity detection experiments, ERα luciferase reporter gene assays, and qRT-PCR. ERα knockdown (shRNA) and AMPK inhibition (Compound C and doxorubicin [Dox]) experiments revealed that the sequential activation of the ERα-LKB1-AMPK-HNF signaling axis is essential for the anti-HBV effects of BA. This study indicates that BA may trigger the ERα-AMPKα-HNF pathway to inhibit HBV replication, providing insights into its potential protective mechanisms against other viruses.
Collapse
Affiliation(s)
- Yi-Jun Niu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Cheng-Jie Xia
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Xin Ai
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Wei-Ming Xu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Xiao-Tong Lin
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Ying-Qi Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Hai-Yan Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Xian Zeng
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Zhong-Lian Cao
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Wei Zhou
- Department of Chemistry, Fudan University, Shanghai, 201203, China
| | - Hai Huang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Xun-Long Shi
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, 201203, China.
| |
Collapse
|
4
|
Dezhbord M, Kim SH, Park S, Lee DR, Kim N, Won J, Lee AR, Kim DS, Kim KH. Novel role of MHC class II transactivator in hepatitis B virus replication and viral counteraction. Clin Mol Hepatol 2024; 30:539-560. [PMID: 38741238 PMCID: PMC11261224 DOI: 10.3350/cmh.2024.0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND/AIMS The major histocompatibility class II (MHC II) transactivator, known as CIITA, is induced by Interferon gamma (IFN-γ) and plays a well-established role in regulating the expression of class II MHC molecules in antigen-presenting cells. METHODS Primary human hepatocytes (PHH) were isolated via therapeutic hepatectomy from two donors. The hepatocellular carcinoma (HCC) cell lines HepG2 and Huh7 were used for the mechanistic study, and HBV infection was performed in HepG2-NTCP cells. HBV DNA replication intermediates and secreted antigen levels were measured using Southern blotting and ELISA, respectively. RESULTS We identified a non-canonical function of CIITA in the inhibition of hepatitis B virus (HBV) replication in both HCC cells and patient-derived PHH. Notably, in vivo experiments demonstrated that HBV DNA and secreted antigen levels were significantly decreased in mice injected with the CIITA construct. Mechanistically, CIITA inhibited HBV transcription and replication by suppressing the activity of HBV-specific enhancers/promoters. Indeed, CIITA exerts antiviral activity in hepatocytes through ERK1/2-mediated down-regulation of the expression of hepatocyte nuclear factor 1α (HNF1α) and HNF4α, which are essential factors for virus replication. In addition, silencing of CIITA significantly abolished the IFN-γ-mediated anti-HBV activity, suggesting that CIITA mediates the anti-HBV activity of IFN-γ to some extent. HBV X protein (HBx) counteracts the antiviral activity of CIITA via direct binding and impairing its function. CONCLUSION Our findings reveal a novel antiviral mechanism of CIITA that involves the modulation of the ERK pathway to restrict HBV transcription. Additionally, our results suggest the possibility of a new immune avoidance mechanism involving HBx.
Collapse
Affiliation(s)
- Mehrangiz Dezhbord
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Seong Ho Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Soree Park
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Da Rae Lee
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Nayeon Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Juhee Won
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Korea
- Department of Pharmacology, School of Medicine, Konkuk University, Seoul, Korea
| | - Ah Ram Lee
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Dong-Sik Kim
- Department of Surgery, Division of HBP Surgery and Liver Transplantation, College of Medicine, Korea University, Seoul, Korea
| | - Kyun-Hwan Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Korea
| |
Collapse
|
5
|
Won J, Kang HS, Kim NY, Dezhbord M, Marakkalage KG, Lee EH, Lee D, Park S, Kim DS, Kim KH. Tripartite motif-containing protein 21 is involved in IFN-γ-induced suppression of hepatitis B virus by regulating hepatocyte nuclear factors. J Virol 2024; 98:e0046824. [PMID: 38780244 PMCID: PMC11237615 DOI: 10.1128/jvi.00468-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/03/2024] [Indexed: 05/25/2024] Open
Abstract
The antiviral role of the tripartite motif-containing (TRIM) protein family , a member of the E3-ubiquitin ligase family, has recently been actively studied. Hepatitis B virus (HBV) infection is a major contributor to liver diseases; however, the host factors regulated by cytokine-inducible TRIM21 to suppress HBV remain unclear. In this study, we showed the antiviral efficacy of TRIM21 against HBV in hepatoma cell lines, primary human hepatocytes isolated from patient liver tissues, and mouse model. Using TRIM21 knock-out cells, we confirmed that the antiviral effects of interferon-gamma, which suppress HBV replication, are diminished when TRIM21 is deficient. Northern blot analysis confirmed a reduction of HBV RNA levels by TRIM21. Using Luciferase reporter assay, we also discovered that TRIM21 decreases the activity of HBV enhancers, which play a crucial role in covalently closed circular DNA transcription. The participation of the RING domain and PRY-SPRY domain in the anti-HBV effect of TRIM21 was demonstrated through experiments using deletion mutants. We identified a novel interaction between TRIM21 and hepatocyte nuclear factor 4α (HNF4α) through co-immunoprecipitation assay. More specifically, ubiquitination assay revealed that TRIM21 promotes ubiquitin-mediated proteasomal degradation of HNF4α. HNF1α transcription is down-regulated as a result of the degradation of HNF4α, an activator for the HNF1α promoter. Therefore, the reduction of key HBV enhancer activators, HNF4α and HNF1α, by TRIM21 resulted in a decline in HBV transcription, ultimately leading to the inhibition of HBV replication.IMPORTANCEDespite extensive research efforts, a definitive cure for chronic hepatitis B remains elusive, emphasizing the persistent importance of this viral infection as a substantial public health concern. Although the risks associated with hepatitis B virus (HBV) infection are well known, host factors capable of suppressing HBV are largely uncharacterized. This study elucidates that tripartite motif-containing protein 21 (TRIM21) suppresses HBV transcription and consequently inhibits HBV replication by downregulating the hepatocyte nuclear factors, which are host factors associated with the HBV enhancers. Our findings demonstrate a novel anti-HBV mechanism of TRIM21 in interferon-gamma-induced anti-HBV activity. These findings may contribute to new strategies to block HBV.
Collapse
Affiliation(s)
- Juhee Won
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Hong Seok Kang
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Na Yeon Kim
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
| | - Mehrangiz Dezhbord
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
| | | | - Eun-Hwi Lee
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
| | - Donghyo Lee
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
| | - Soree Park
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
| | - Dong-Sik Kim
- Department of Surgery, Division of HBP Surgery and Liver Transplantation, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyun-Hwan Kim
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Giraud G, El Achi K, Zoulim F, Testoni B. Co-Transcriptional Regulation of HBV Replication: RNA Quality Also Matters. Viruses 2024; 16:615. [PMID: 38675956 PMCID: PMC11053573 DOI: 10.3390/v16040615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Chronic hepatitis B (CHB) virus infection is a major public health burden and the leading cause of hepatocellular carcinoma. Despite the efficacy of current treatments, hepatitis B virus (HBV) cannot be fully eradicated due to the persistence of its minichromosome, or covalently closed circular DNA (cccDNA). The HBV community is investing large human and financial resources to develop new therapeutic strategies that either silence or ideally degrade cccDNA, to cure HBV completely or functionally. cccDNA transcription is considered to be the key step for HBV replication. Transcription not only influences the levels of viral RNA produced, but also directly impacts their quality, generating multiple variants. Growing evidence advocates for the role of the co-transcriptional regulation of HBV RNAs during CHB and viral replication, paving the way for the development of novel therapies targeting these processes. This review focuses on the mechanisms controlling the different co-transcriptional processes that HBV RNAs undergo, and their contribution to both viral replication and HBV-induced liver pathogenesis.
Collapse
Affiliation(s)
- Guillaume Giraud
- INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France (F.Z.)
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
| | - Khadija El Achi
- INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France (F.Z.)
| | - Fabien Zoulim
- INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France (F.Z.)
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
- Hospices Civils de Lyon, Hôpital Croix Rousse, Service d’Hépato-Gastroentérologie, 69004 Lyon, France
| | - Barbara Testoni
- INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France (F.Z.)
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
| |
Collapse
|
7
|
Paresishvili T, Kakabadze Z. Freeze-Dried Mesenchymal Stem Cells: From Bench to Bedside. Review. Adv Biol (Weinh) 2024; 8:e2300155. [PMID: 37990389 DOI: 10.1002/adbi.202300155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/09/2023] [Indexed: 11/23/2023]
Abstract
This review describes the freeze-dried mesenchymal stem cells (MSCs) and their ability to restore damaged tissues and organs. An analysis of the literature shows that after the lyophilization MSCs retain >80% of paracrine factors and that the mechanism of their action on the restoration of damaged tissues and organs is similar to the mechanism of action of paracrine factors in fresh and cryopreserved mesenchymal stem cells. Based on the own materials, the use of paracrine factors of freeze-dried MSCs in vivo and in vitro for the treatment of various diseases of organs and tissues has shown to be effective. The study also discusses about the advantages and disadvantages of freeze-dried MSCs versus cryopreserved MSCs. However, for the effective use of freeze-dried MSCs in clinical practice, a more detailed study of the mechanism of interaction of paracrine factors of freeze-dried MSCs with target cells and tissues is required. It is also necessary to identify possible other specific paracrine factors of freeze-dried MSCs. In addition, develop new therapeutic strategies for the use of freeze-dried MSCs in regenerative medicine and tissue bioengineering.
Collapse
Affiliation(s)
- Teona Paresishvili
- Department of Clinical Anatomy, Tbilisi State Medical University, Tbilisi, 0186, Georgia
| | - Zurab Kakabadze
- Department of Clinical Anatomy, Tbilisi State Medical University, Tbilisi, 0186, Georgia
| |
Collapse
|
8
|
Hu JL, Huang AL. Classifying hepatitis B therapies with insights from covalently closed circular DNA dynamics. Virol Sin 2024; 39:9-23. [PMID: 38110037 PMCID: PMC10877440 DOI: 10.1016/j.virs.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023] Open
Abstract
The achievement of a functional cure for chronic hepatitis B (CHB) remains limited to a minority of patients treated with currently approved drugs. The primary objective in developing new anti-HBV drugs is to enhance the functional cure rates for CHB. A critical prerequisite for the functional cure of CHB is a substantial reduction, or even eradication of covalently closed circular DNA (cccDNA). Within this context, the changes in cccDNA levels during treatment become as a pivotal concern. We have previously analyzed the factors influencing cccDNA dynamics and introduced a preliminary classification of hepatitis B treatment strategies based on these dynamics. In this review, we employ a systems thinking perspective to elucidate the fundamental aspects of the HBV replication cycle and to rationalize the classification of treatment strategies according to their impact on the dynamic equilibrium of cccDNA. Building upon this foundation, we categorize current anti-HBV strategies into two distinct groups and advocate for their combined use to significantly reduce cccDNA levels within a well-defined timeframe.
Collapse
Affiliation(s)
- Jie-Li Hu
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
| | - Ai-Long Huang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
9
|
Abounouh K, Tanouti IA, Ouladlahsen A, Tahiri M, Badre W, Dehbi H, Sarih M, Benjelloun S, Pineau P, Ezzikouri S. The peroxisome proliferator-activated receptor γ coactivator-1 alpha rs8192678 (Gly482Ser) variant and hepatitis B virus clearance. Infect Dis (Lond) 2023; 55:614-624. [PMID: 37376899 DOI: 10.1080/23744235.2023.2228403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/06/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Chronic hepatitis B virus (CHB) infection is still incurable a major public health problem. It is yet unclear how host genetic factors influence the development of HBV infection. The peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A) has been shown to regulate hepatitis B virus (HBV). Several reports found that PPARGC1A variants are involved in a number of distinct liver diseases. Here we investigate whether the PPARGC1A rs8192678 (Gly482Ser) variant is involved in the spontaneous clearance of acute HBV infection and if it participates in chronic disease progression in Moroccan patients. METHODS Our study included 292 chronic hepatitis B (CHB) patients and 181 individuals who spontaneously cleared-HBV infection. We genotyped the rs8192678 SNP using a TaqMan allelic discrimination assay and then explored its association with spontaneous HBV clearance and CHB progression. RESULTS Our data showed that individuals carrying CT and TT genotypes were more likely to achieve spontaneous clearance (OR = 0.48, 95% CI (0.32-0.73), p = 0.00047; OR = 0.28, 95% CI (0.15-0.53), p = 0.00005, respectively). Subjects carrying the mutant allele T were more likely to achieve spontaneous clearance (OR = 0.51, 95% CI (0.38-0.67), P = 2.68E-06). However, when we investigated the impact of rs8192678 on the progression of liver diseases, we neither observe any influence (p > 0.05) nor found any significant association between ALT, AST, HBV viral loads, and the PPARGC1A rs8192678 genotypes in patients with CHB (p > 0.05). CONCLUSION Our result suggests that PPARGC1A rs8192678 may modulate acute HBV infection, and could therefore represent a potential predictive marker in the Moroccan population.
Collapse
Affiliation(s)
- Karima Abounouh
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
- Laboratory of Cellular and Molecular Pathology, Medical School, University Hassan II
| | - Ikram-Allah Tanouti
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Ahd Ouladlahsen
- Faculté de médecine de Casablanca, CHU Ibn Rochd, Casablanca, Morocco
| | - Mohamed Tahiri
- Faculté de médecine de Casablanca, CHU Ibn Rochd, Casablanca, Morocco
| | - Wafaa Badre
- Faculté de médecine de Casablanca, CHU Ibn Rochd, Casablanca, Morocco
| | - Hind Dehbi
- Laboratory of Cellular and Molecular Pathology, Medical School, University Hassan II
| | - M'hammed Sarih
- Service de Parasitologie et des Maladies Vectorielles, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Soumaya Benjelloun
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Pascal Pineau
- Unité "Organisation Nucléaire et Oncogenèse", INSERM U993, Institut Pasteur, Paris, France
| | - Sayeh Ezzikouri
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| |
Collapse
|
10
|
Patil VS, Harish DR, Sampat GH, Roy S, Jalalpure SS, Khanal P, Gujarathi SS, Hegde HV. System Biology Investigation Revealed Lipopolysaccharide and Alcohol-Induced Hepatocellular Carcinoma Resembled Hepatitis B Virus Immunobiology and Pathogenesis. Int J Mol Sci 2023; 24:11146. [PMID: 37446321 DOI: 10.3390/ijms241311146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Hepatitis B infection caused by the hepatitis B virus is a life-threatening cause of liver fibrosis, cirrhosis, and hepatocellular carcinoma. Researchers have produced multiple in vivo models for hepatitis B virus (HBV) and, currently, there are no specific laboratory animal models available to study HBV pathogenesis or immune response; nonetheless, their limitations prevent them from being used to study HBV pathogenesis, immune response, or therapeutic methods because HBV can only infect humans and chimpanzees. The current study is the first of its kind to identify a suitable chemically induced liver cirrhosis/HCC model that parallels HBV pathophysiology. Initially, data from the peer-reviewed literature and the GeneCards database were compiled to identify the genes that HBV and seven drugs (acetaminophen, isoniazid, alcohol, D-galactosamine, lipopolysaccharide, thioacetamide, and rifampicin) regulate. Functional enrichment analysis was performed in the STRING server. The network HBV/Chemical, genes, and pathways were constructed by Cytoscape 3.6.1. About 1546 genes were modulated by HBV, of which 25.2% and 17.6% of the genes were common for alcohol and lipopolysaccharide-induced hepatitis. In accordance with the enrichment analysis, HBV activates the signaling pathways for apoptosis, cell cycle, PI3K-Akt, TNF, JAK-STAT, MAPK, chemokines, NF-kappa B, and TGF-beta. In addition, alcohol and lipopolysaccharide significantly activated these pathways more than other chemicals, with higher gene counts and lower FDR scores. In conclusion, alcohol-induced hepatitis could be a suitable model to study chronic HBV infection and lipopolysaccharide-induced hepatitis for an acute inflammatory response to HBV.
Collapse
Affiliation(s)
- Vishal S Patil
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Darasaguppe R Harish
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
| | - Ganesh H Sampat
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Subarna Roy
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
| | - Sunil S Jalalpure
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Pukar Khanal
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Swarup S Gujarathi
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Harsha V Hegde
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
| |
Collapse
|
11
|
Bhat S, Ahanger IA, Kazim SN. Forthcoming Developments in Models to Study the Hepatitis B Virus Replication Cycle, Pathogenesis, and Pharmacological Advancements. ACS OMEGA 2023; 8:14273-14289. [PMID: 37125123 PMCID: PMC10134252 DOI: 10.1021/acsomega.2c07154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/08/2023] [Indexed: 05/03/2023]
Abstract
Hepatitis, liver cirrhosis, and hepatocellular carcinoma are all manifestations of chronic hepatitis B. Its pathogenesis and molecular mechanism remain mysterious. As medical science progresses, different models are being used to study the disease from the physiological and molecular levels. Animal models have played an unprecedented role in achieving in-depth knowledge of the disease while posing no risk of harming humans throughout the study. The scarcity of acceptable animal models has slowed progress in hepatitis B virus (HBV) research and preclinical testing of antiviral medicines since HBV has a narrow species tropism and exclusively infects humans and higher primates. The development of human chimeric mice was supported by a better understanding of the obstacles to interspecies transmission, which has substantially opened the way for HBV research in vivo and the evaluation of possible chronic hepatitis B therapeutics. Animal models are cumbersome to handle, not accessible, and expensive. Hence, it is herculean to investigate the HBV replication cycle in animal models. Therefore, it becomes essential to build a splendid in vitro cell culture system to demonstrate the mechanisms attained by the HBV for its multiplication and sustenance. We also addressed the advantages and caveats associated with different models in examining HBV.
Collapse
Affiliation(s)
- Sajad
Ahmad Bhat
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Ishfaq Ahmad Ahanger
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- Clinical
Biochemistry University of Kashmir, Srinagar, India
| | - Syed Naqui Kazim
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- Phone: +91 9953621758.
| |
Collapse
|
12
|
Zheng Z, Wei J, Hou X, Jia F, Zhang Z, Guo H, Yuan F, He F, Ke Z, Wang Y, Zhao L. A High Hepatic Uptake of Conjugated Bile Acids Promotes Colorectal Cancer-Associated Liver Metastasis. Cells 2022; 11:cells11233810. [PMID: 36497071 PMCID: PMC9736302 DOI: 10.3390/cells11233810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The liver is the most common site for colorectal cancer (CRC)-associated metastasis. There remain unsatisfactory medications in liver metastasis given the incomplete understanding of pathogenic mechanisms. Herein, with an orthotopic implantation model fed either regular or high-fat diets (HFD), more liver metastases were associated with an expansion of conjugated bile acids (BAs), particularly taurocholic acid (TCA) in the liver, and an increased gene expression of Na+-taurocholate cotransporting polypeptide (NTCP). Such hepatic BA change was more apparently shown in the HFD group. In the same model, TCA was proven to promote liver metastases and induce a tumor-favorable microenvironment in the liver, characterizing a high level of fibroblast activation and increased proportions of myeloid-derived immune cells. Hepatic stellate cells, a liver-residing source of fibroblasts, were dose-dependently activated by TCA, and their conditioned medium significantly enhanced the migration capability of CRC cells. Blocking hepatic BA uptake with NTCP neutralized antibody can effectively repress TCA-triggered liver metastases, with an evident suppression of tumor microenvironment niche formation. This study points to a new BA-driven mechanism of CRC-associated liver metastases, suggesting that a reduction of TCA overexposure by limiting liver uptake is a potential therapeutic option for CRC-associated liver metastasis.
Collapse
Affiliation(s)
- Zongmei Zheng
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiao Wei
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinxin Hou
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fengjing Jia
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhaozhou Zhang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Haidong Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fuwen Yuan
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Feng He
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zunji Ke
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yan Wang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Correspondence: (Y.W.); (L.Z.)
| | - Ling Zhao
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Correspondence: (Y.W.); (L.Z.)
| |
Collapse
|
13
|
Presence of entry receptors and viral markers suggest a low level of placental replication of hepatitis B virus in a proportion of pregnant women infected with chronic hepatitis B. Sci Rep 2022; 12:17795. [PMID: 36272995 PMCID: PMC9588053 DOI: 10.1038/s41598-022-22699-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/18/2022] [Indexed: 01/19/2023] Open
Abstract
The transplacental route of vertical transmission of Hepatitis B Virus (HBV) has been known for over a decade. Here we present evidence which suggest HBV can replicate in placenta. Forty-one HBsAg positive and 10 control pregnant women were enrolled in the study after obtaining informed consent. HBV positives were further divided in the High Viral Load (HVL) Group and Low Viral Load (LVL) Group according to INASL guidelines 2018. The Presence of the HBV DNA and expression of NTCP in the placenta was analyzed by qPCR/RT-qPCR and/or immunohistochemistry (IHC). The presence of cccDNA was assessed using Digital Droplet PCR while the presence of pre-genomic (pg) RNA was assessed through qRT-PCR and sequencing. The presence of HBeAg and HBcAg in the placenta was assessed by IHC. Immunostaining of NTCP, HBeAg and HBcAg on trophoblasts along with the presence of total HBV DNA, cccDNA and pgRNA indicated, that these cells are not only susceptible to HBV infection but may also support viral replication. This is further supported by the finding that trophoblasts of the several HBeAg seronegative samples harbored the HBeAg. Although, we did not find any correlation in NTCP expression and viral markers with viral load indicates placental replication may not aping hepatocytes. The presence of the HBV receptor, NTCP along with the presence of cccDNA, pgRNA, and HBeAg in placenta of HBV infected females without circulating HBeAg suggest that placenta act as a replication host.
Collapse
|
14
|
Core promoter mutation of nucleotides A1762T and G1764A of hepatitis B virus increases core promoter transactivation by hepatocyte nuclear factor 1. J Microbiol 2022; 60:1039-1047. [DOI: 10.1007/s12275-022-1675-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 08/10/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022]
|
15
|
Qurashi MA, Rashid S, Jarad F. A computational study of a stochastic fractal-fractional hepatitis B virus infection incorporating delayed immune reactions via the exponential decay. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:12950-12980. [PMID: 36654030 DOI: 10.3934/mbe.2022605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Recently, researchers have become interested in modelling, monitoring, and treatment of hepatitis B virus infection. Understanding the various connections between pathogens, immune systems, and general liver function is crucial. In this study, we propose a higher-order stochastically modified delay differential model for the evolution of hepatitis B virus transmission involving defensive cells. Taking into account environmental stimuli and ambiguities, we presented numerical solutions of the fractal-fractional hepatitis B virus model based on the exponential decay kernel that reviewed the hepatitis B virus immune system involving cytotoxic T lymphocyte immunological mechanisms. Furthermore, qualitative aspects of the system are analyzed such as the existence-uniqueness of the non-negative solution, where the infection endures stochastically as a result of the solution evolving within the predetermined system's equilibrium state. In certain settings, infection-free can be determined, where the illness settles down tremendously with unit probability. To predict the viability of the fractal-fractional derivative outcomes, a novel numerical approach is used, resulting in several remarkable modelling results, including a change in fractional-order δ with constant fractal-dimension ϖ, δ with changing ϖ, and δ with changing both δ and ϖ. White noise concentration has a significant impact on how bacterial infections are treated.
Collapse
Affiliation(s)
- Maysaa Al Qurashi
- Department of Mathematics, King Saud University, P. O. Box 22452, Riyadh 11495, Saudi Arabia
- Department of Mathematics, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Saima Rashid
- Department of Mathematics, Government College University, Faisalabad 38000, Pakistan
| | - Fahd Jarad
- Department of Physics, Government College University, Faisalabad 38000, Pakistan
- Department of Mathmatics, Cankaya University, Ankara, Turkey
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Mathematics, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
16
|
Kayesh MEH, Hashem MA, Sanada T, Kitab B, Rashid MHO, Akter L, Ezzikouri S, Murakami S, Ogawa S, Tanaka Y, Kohara M, Tsukiyama-Kohara K. Characterization of innate immune response to hepatitis B virus genotype F acute infection in tree shrew (Tupaia belangeri) model. FRONTIERS IN VIROLOGY 2022; 2. [DOI: 10.3389/fviro.2022.926831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Hepatitis B virus (HBV) infection is a global public health problem. The clinical outcomes of HBV infections are influenced by host as well as viral factors, including viral genotypes and subgenotypes. The interplay between HBV and host innate immunity remains unclear because of the lack of a suitable small animal model. Tree shrews (Tupaia belangeri) have been utilized as a useful animal model for hepatitis viruses such as hepatitis B and C viruses. In this study, we characterized acute infections by HBV genotype F (HBV-F) wild type (Wt) and mutant type (Mt) viruses in adult tree shrews. Serum alanine aminotransferase levels were measured before and post- infection 7 and 14 dpi. Both HBV-F-Wt and Mt were detected in the HBV-F-infected tree shrew serum and liver tissue at 7 and 14 dpi. We examined the intrahepatic expression patterns of Toll-like receptors (TLRs) (TLR1–9 mRNAs), cGAS, several transcription factors such as STAT1, STAT2, IRF7, HNF4, PD-L1, and cytokines, including IFN-β, IFN-γ, IL-6, and TNF-α in HBV-F Wt/Mt-infected tree shrews. When compared with uninfected animal group, significant suppression of TLR8 in HBV-F-Wt infected animals and significant suppression of PD-L1 in both HBV-F-Wt and Mt infected animals were observed. Thus, tree shrew can be a useful animal model to characterize HBV-F pathogenesis.
Collapse
|
17
|
Elizalde MM, Mojsiejczuk L, Speroni M, Bouzas B, Tadey L, Mammana L, Campos RH, Flichman DM. Molecular and biological characterization of hepatitis B virus subgenotype F1b clusters: Unraveling its role in hepatocarcinogenesis. Front Microbiol 2022; 13:946703. [PMID: 35966715 PMCID: PMC9363773 DOI: 10.3389/fmicb.2022.946703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/11/2022] [Indexed: 12/02/2022] Open
Abstract
Hepatitis B virus (HBV) subgenotype F1b infection has been associated with the early occurrence of hepatocellular carcinoma in chronically infected patients from Alaska and Peru. In Argentina, however, despite the high prevalence of subgenotype F1b infection, this relationship has not been described. To unravel the observed differences in the progression of the infection, an in-depth molecular and biological characterization of the subgenotype F1b was performed. Phylogenetic analysis of subgenotype F1b full-length genomes revealed the existence of two highly supported clusters. One of the clusters, designated as gtF1b Basal included sequences mostly from Alaska, Peru and Chile, while the other, called gtF1b Cosmopolitan, contained samples mainly from Argentina and Chile. The clusters were characterized by a differential signature pattern of eight nucleotides distributed throughout the genome. In vitro characterization of representative clones from each cluster revealed major differences in viral RNA levels, virion secretion, antigen expression levels, as well as in the localization of the antigens. Interestingly, a differential regulation in the expression of genes associated with tumorigenesis was also identified. In conclusion, this study provides new insights into the molecular and biological characteristics of the subgenotype F1b clusters and contributes to unravel the different clinical outcomes of subgenotype F1b chronic infections.
Collapse
Affiliation(s)
- María Mercedes Elizalde
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- *Correspondence: María Mercedes Elizalde,
| | - Laura Mojsiejczuk
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Micaela Speroni
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Belén Bouzas
- Unidad de Virología, Hospital de Infecciosas “Francisco J. Muñiz”, Buenos Aires, Argentina
| | - Luciana Tadey
- Unidad de Virología, Hospital de Infecciosas “Francisco J. Muñiz”, Buenos Aires, Argentina
| | - Lilia Mammana
- Unidad de Virología, Hospital de Infecciosas “Francisco J. Muñiz”, Buenos Aires, Argentina
| | - Rodolfo Héctor Campos
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Diego Martín Flichman
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
18
|
Bhat S, Kazim SN. HBV cccDNA-A Culprit and Stumbling Block for the Hepatitis B Virus Infection: Its Presence in Hepatocytes Perplexed the Possible Mission for a Functional Cure. ACS OMEGA 2022; 7:24066-24081. [PMID: 35874215 PMCID: PMC9301636 DOI: 10.1021/acsomega.2c02216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Hepatitis B virus infection (HBV) is still a big health problem across the globe. It has been linked to the development of liver cirrhosis and hepatocellular carcinoma and can trigger different types of liver damage. Existing medicines are unable to disable covalently closed circular DNA (cccDNA), which may result in HBV persistence and recurrence. The current therapeutic goal is to achieve a functional cure, which means HBV-DNA no longer exists when treatment stops and the absence of HBsAg seroclearance. However, due to the presence of integrated HBV DNA and cccDNA functional treatment is now regarded to be difficult. In order to uncover pathways for potential therapeutic targets and identify medicines that could result in large rates of functional cure, a thorough understanding of the virus' biology is required. The proteins of the virus and episomal cccDNA are thought to be critical for the management and support of the HBV replication cycle as they interact directly with the host proteome to establish the best atmosphere for the virus while evading immune detection. The breakthroughs of host dependence factors, cccDNA transcription, epigenetic regulation, and immune-mediated breakdown have all produced significant progress in our understanding of cccDNA biology during the past decade. There are some strategies where cccDNA can be targeted either in a direct or indirect way and are presently at the point of discovery or preclinical or early clinical advancement. Editing of genomes, techniques targeting host dependence factors or epigenetic gene maintenance, nucleocapsid modulators, miRNA, siRNA, virion secretory inhibitors, and immune-mediated degradation are only a few examples. Though cccDNA approaches for direct targeting are still in the early stages of development, the assembly of capsid modulators and immune-reliant treatments have made it to the clinic. Clinical trials are currently being conducted to determine their efficiency and safety in patients, as well as their effect on viral cccDNA. The influence of recent breakthroughs in the development of new treatment techniques on cccDNA biology is also summarized in this review.
Collapse
Affiliation(s)
- Sajad
Ahmad Bhat
- Jamia Millia Islamia Central University, Centre for Interdisciplinary Research in Basic Sciences, New Delhi 110025, India
| | - Syed Naqui Kazim
- Jamia Millia Islamia Central University, Centre for Interdisciplinary Research in Basic Sciences, New Delhi 110025, India
| |
Collapse
|
19
|
Bianca C, Sidhartha E, Tiribelli C, El-Khobar KE, Sukowati CHC. Role of hepatitis B virus in development of hepatocellular carcinoma: Focus on covalently closed circular DNA. World J Hepatol 2022; 14:866-884. [PMID: 35721287 PMCID: PMC9157711 DOI: 10.4254/wjh.v14.i5.866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Accepted: 04/25/2022] [Indexed: 02/06/2023] Open
Abstract
Chronic infection with hepatitis B virus (HBV) remains a major global health problem, especially in developing countries. It may lead to prolonged liver damage, fibrosis, cirrhosis, and hepatocellular carcinoma. Persistent chronic HBV infection is related to host immune response and the stability of the covalently closed circular DNA (cccDNA) in human hepatocytes. In addition to being essential for viral transcription and replication, cccDNA is also suspected to play a role in persistent HBV infections or hepatitis relapses since cccDNA is very stable in non-dividing human hepatocytes. Understanding the pathogenicity and oncogenicity of HBV components would be essential in the development of new diagnostic tools and treatment strategies. This review summarizes the role and molecular mechanisms of HBV cccDNA in hepatocyte transformation and hepatocarcinogenesis and current efforts to its detection and targeting.
Collapse
Affiliation(s)
- Claryssa Bianca
- Department of Biomedicine, Indonesia International Institute for Life Sciences, Jakarta 13210, Indonesia
| | - Elizabeth Sidhartha
- Department of Biomedicine, Indonesia International Institute for Life Sciences, Jakarta 13210, Indonesia
| | - Claudio Tiribelli
- Centro Studi Fegato, Fondazione Italiana Fegato ONLUS, Trieste 34149, Italy
| | - Korri Elvanita El-Khobar
- Eijkman Center for Molecular Biology, National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia
| | - Caecilia H C Sukowati
- Centro Studi Fegato, Fondazione Italiana Fegato ONLUS, Trieste 34149, Italy
- Eijkman Center for Molecular Biology, National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia.
| |
Collapse
|
20
|
(-)-Lariciresinol Isolated from the Roots of Isatis indigotica Fortune ex Lindl. Inhibits Hepatitis B Virus by Regulating Viral Transcription. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103223. [PMID: 35630700 PMCID: PMC9143483 DOI: 10.3390/molecules27103223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/17/2022]
Abstract
Chronic hepatitis induced by hepatitis B virus (HBV) infection is a serious public health problem, leading to hepatic cirrhosis and liver cancer. Although the currently approved medications can reliably decrease the virus load and prevent the development of hepatic diseases, they fail to induce durable off-drug control of HBV replication in the majority of patients. The roots of Isatis indigotica Fortune ex Lindl., a traditional Chinese medicine, were frequently used for the prevention of viral disease in China. In the present study, (-)-lariciresinol ((-)-LRSL), isolated from the roots of Isatis indigotica Fortune ex Lindl., was found to inhibit HBV DNA replication of both wild-type and nucleos(t)ide analogues (NUCs)-resistant strains in vitro. Mechanism studies revealed that (-)-LRSL could block RNA production after treatment, followed by viral proteins, and then viral particles and DNA. Promoter reporter assays and RNA decaying dynamic experiments indicated that (-)-LRSL mediated HBV RNA reduction was mainly due to transcriptional inhibition rather than degradation. Moreover, (-)-LRSL in a dose-dependent manner also inhibited other animal hepadnaviruses, including woodchuck hepatitis virus (WHV) and duck hepatitis B virus (DHBV). Combining the analysis of RNA-seq, we further found that the decrease in HBV transcriptional activity by (-)-LRSL may be related to hepatocyte nuclear factor 1α (HNF1α). Taken together, (-)-LRSL represents a novel chemical entity that inhibits HBV replication by regulating HNF1α mediated HBV transcription, which may provide a new perspective for HBV therapeutics.
Collapse
|
21
|
Interaction between the Hepatitis B Virus and Cellular FLIP Variants in Viral Replication and the Innate Immune System. Viruses 2022; 14:v14020373. [PMID: 35215970 PMCID: PMC8874586 DOI: 10.3390/v14020373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 12/10/2022] Open
Abstract
During viral evolution and adaptation, many viruses have utilized host cellular factors and machinery as their partners. HBx, as a multifunctional viral protein encoded by the hepatitis B virus (HBV), promotes HBV replication and greatly contributes to the development of HBV-associated hepatocellular carcinoma (HCC). HBx interacts with several host factors in order to regulate HBV replication and evolve carcinogenesis. The cellular FADD-like IL-1β-converting enzyme (FLICE)-like inhibitory protein (c-FLIP) is a major factor that functions in a variety of cellular pathways and specifically in apoptosis. It has been shown that the interaction between HBx and c-FLIP determines HBV fate. In this review, we provide a comprehensive and detailed overview of the interplay between c-FLIP and HBV in various environmental circumstances. We describe strategies adapted by HBV to establish its chronic infection. We also summarize the conventional roles of c-FLIP and highlight the functional outcome of the interaction between c-FLIP and HBV or other viruses in viral replication and the innate immune system.
Collapse
|
22
|
Abstract
Hepatitis B virus (HBV) is a hepatotropic virus and an important human pathogen. There are an estimated 296 million people in the world that are chronically infected by this virus, and many of them will develop severe liver diseases including hepatitis, cirrhosis and hepatocellular carcinoma (HCC). HBV is a small DNA virus that replicates via the reverse transcription pathway. In this review, we summarize the molecular pathways that govern the replication of HBV and its interactions with host cells. We also discuss viral and non-viral factors that are associated with HBV-induced carcinogenesis and pathogenesis, as well as the role of host immune responses in HBV persistence and liver pathogenesis.
Collapse
Affiliation(s)
- Yu-Chen Chuang
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Kuen-Nan Tsai
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Jing-Hsiung James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| |
Collapse
|
23
|
Ma X, Li H, Gong Y, Liu F, Tong X, Zhu F, Yang X, Yang L, Zuo J. Psoralen inhibits hepatitis B viral replication by down-regulating the host transcriptional machinery of viral promoters. Virol Sin 2022; 37:256-265. [PMID: 35305922 PMCID: PMC9170971 DOI: 10.1016/j.virs.2022.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023] Open
Abstract
The hepatitis B virus (HBV) is a global public health challenge due to its highly contagious nature. It is estimated that almost 300 million people live with chronic HBV infection annually. Although nucleoside analogs markedly reduce the risk of liver disease progression, the analogs do not fully eradicate the virus. As such, new treatment options and drugs are urgently needed. Psoralen is a nourishing monomer of Chinese herb and is known to inhibit virus replication and inactivate viruses. In this study, we evaluated the potential of psoralen as an anti-HBV agent. Quantitative PCR and Southern blot analysis revealed that psoralen inhibited HBV replication in HepG2.2.15 cells in a concentration-dependent manner. Moreover, psoralen was also active against the 3TC/ETV-dual-resistant HBV mutant. Further investigations revealed that psoralen suppressed both HBV RNA transcription and core protein expression. The transcription factor FOXO1, a known target for PGC1α co-activation, binds to HBV pre-core/core promoter enhancer II region and activates HBV RNA transcription. Co-immunoprecipitation showed that psoralen suppressed the expression of FOXO1, thereby decreasing the binding of FOXO1 co-activator PGC1α to the HBV promoter. Overall, our results demonstrate that psoralen suppresses HBV RNA transcription by down-regulating the expression of FOXO1 resulting in a reduction of HBV replication. Psoralen is a nourishing monomer of Chinese herb that inhibits the replication of HBV. Psoralen decreases the expression of transcription factor FOXO1 of pre-core/core promoter. Psoralen suppresses HBV replication by down-regulation FOXO1 in HBV-producing cells.
Collapse
|
24
|
Khan IW, Dad Ullah MU, Choudhry M, Ali MJ, Ali MA, Lam SLK, Shah PA, Kaur SP, Lau DTY. Novel Therapies of Hepatitis B and D. Microorganisms 2021; 9:2607. [PMID: 34946209 PMCID: PMC8707465 DOI: 10.3390/microorganisms9122607] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 02/05/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a global public health issue and is a major cause of cirrhosis and hepatocellular carcinoma (HCC). Hepatitis D virus (HDV) requires the hepatitis B surface antigen (HBsAg) to replicate. The eradication of HBV, therefore, can also cure HDV. The current therapies for chronic hepatitis B and D are suboptimal and cannot definitely cure the viruses. In order to achieve functional or complete cure of these infections, novel therapeutic agents that target the various sites of the viral replicative cycle are necessary. Furthermore, novel immunomodulatory agents are also essential to achieve viral clearance. Many of these new promising compounds such as entry inhibitors, covalently closed circular DNA (cccDNA) inhibitors, small interfering RNAs (siRNAs), capsid assembly modulators and nucleic acid polymers are in various stages of clinical developments. In this review article, we provided a comprehensive overview of the structure and lifecycle of HBV, the limitations of the current therapies and a summary of the novel therapeutic agents for both HDV and HBV infection.
Collapse
Affiliation(s)
- Iman Waheed Khan
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (I.W.K.); (M.U.D.U.); (M.C.); (M.J.A.); (M.A.A.); (S.P.K.)
| | - Mati Ullah Dad Ullah
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (I.W.K.); (M.U.D.U.); (M.C.); (M.J.A.); (M.A.A.); (S.P.K.)
| | - Mina Choudhry
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (I.W.K.); (M.U.D.U.); (M.C.); (M.J.A.); (M.A.A.); (S.P.K.)
| | - Mukarram Jamat Ali
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (I.W.K.); (M.U.D.U.); (M.C.); (M.J.A.); (M.A.A.); (S.P.K.)
| | - Muhammad Ashar Ali
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (I.W.K.); (M.U.D.U.); (M.C.); (M.J.A.); (M.A.A.); (S.P.K.)
| | - Sam L. K. Lam
- Liver Center, Department of Medicine, Department of Pharmacy, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA;
| | - Pir Ahmad Shah
- Department of Internal Medicine, University of Texas, San Antonio, TX 78229, USA;
| | - Satinder Pal Kaur
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (I.W.K.); (M.U.D.U.); (M.C.); (M.J.A.); (M.A.A.); (S.P.K.)
| | - Daryl T. Y. Lau
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (I.W.K.); (M.U.D.U.); (M.C.); (M.J.A.); (M.A.A.); (S.P.K.)
| |
Collapse
|
25
|
Abstract
The hepatitis B virus (HBV) is a member of the Hepadnaviridae family, which includes small DNA enveloped viruses that infect primates, rodents, and birds and is the causative factor of chronic hepatitis B. A common feature of all these viruses is their great specificity by species and cell type, as well as a peculiar genomic and replication organization similar to that of retroviruses. The HBV virion consists of an external lipid envelope and an internal icosahedral protein capsid containing the viral genome and a DNA polymerase, which also functions as a reverse transcriptase.
Collapse
Affiliation(s)
- Alessandro Loglio
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy
| | - Mauro Viganò
- Hepatology Division, San Giuseppe Hospital Multimedica Spa, Via San Vittore 12, 20123 Milan, Italy
| | - Pietro Lampertico
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy; Department of Pathophysiology and Transplantation, CRC "A. M. and A. Migliavacca" Center for Liver Disease, University of Milan, Via F. Sforza 35, Milan 20122, Italy.
| |
Collapse
|
26
|
Lv X, Xiang X, Wu Y, Liu Y, Xu R, Xiang Q, Lai G. GATA binding protein 4 promotes the expression and transcription of hepatitis B virus by facilitating hepatocyte nuclear factor 4 alpha in vitro. Virol J 2021; 18:196. [PMID: 34583732 PMCID: PMC8479913 DOI: 10.1186/s12985-021-01668-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/21/2021] [Indexed: 12/24/2022] Open
Abstract
Background GATA binding protein 4 (GATA4) has been reported as a potential target of gene therapy for hepatocellular carcinoma (HCC). It is well known that the main cause of HCC is the chronic infection of hepatitis B virus (HBV). However, whether the effect of GATA4 on HBV has not yet been reported. Methods In this study, the regulation of GATA4 on HBV was analyzed in vitro. In turn, the effect of HBV on GATA4 was also observed in vitro, in vivo, and clinical HCC patients. Subsequently, we analyzed whether the effect of GATA4 on HBV was related to hepatocyte nuclear factor 4 alpha (HNF4α) in vitro. Results The results showed that GATA4 significantly promoted the secretion of HBV surface antigen (HBsAg) and HBV e antigen in the cell culture medium, improved the replication of HBV genomic DNA, and increased the level of HBV 3.5 kb pre-genomic RNA and HBV total RNA (P < 0.05). Moreover, it was showed that HBV had no significant effect on GATA4 in vitro and in vivo (P > 0.05). At the same time, GATA4 expression was decreased in 78.9% (15/19) of HCC patients regardless of the HBV and HBsAg status. Among them, there were 76.9% (10/13) in HBV-associated patients with HCC (HBV-HCC), and 83.3% (5/6) in non-HBV-HCC patients. In addition, the expression of HNF4α was also up-regulated or down-regulated accordingly when stimulating or interfering with the expression of GATA4. Furthermore, stimulating the expression of HNF4α could only alleviate the HBsAg level and HBV transcription levels, but had no significant effect on GATA4. Conclusions In summary, this study found that GATA4 has a positive effect on HBV, and the potential pathway may be related to another transcription factor HNF4α that regulates HBV.
Collapse
Affiliation(s)
- Xiaoqin Lv
- Laboratory Animal Center of Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Xia Xiang
- Laboratory Animal Center of Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Yue Wu
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 40010, China
| | - Yang Liu
- LuXian No. 2 High School, Sichuan, 646100, China
| | - Ruqing Xu
- Laboratory Animal Center of Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Qin Xiang
- Molecular Oncology and Epigenetics Laboratory of the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Guoqi Lai
- Laboratory Animal Center of Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
27
|
Haraguchi M, Miuma S, Yamamoto K, Nakao Y, Ichikawa T, Kanda Y, Sasaki R, Fukushima M, Akazawa Y, Miyaaki H, Nakao K. Geranylgeranylacetone decreases the production of hepatitis B virus-related antigen by comprehensive downregulation of mRNA transcription activity. J Gastroenterol Hepatol 2021; 36:1979-1987. [PMID: 33393671 DOI: 10.1111/jgh.15394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 12/06/2020] [Accepted: 12/24/2020] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIM Elimination of hepatitis B virus (HBV) is infrequently achieved with current therapies. Therefore, more effective anti-HBV therapy is needed. We previously reported that geranylgeranylacetone (GGA) showed anti-hepatitis C virus activity in human hepatoma cells. In this study, we examined the anti-HBV activity of GGA. METHODS We used HepG2.2.15.7 cells, PXB cells infected with HBV, Huh7 cells transfected with linear HBV, and PLC/PRF/5 cells as HBV-infected hepatocyte models. After GGA treatment, HBV-related antigen was measured by chemiluminescent immunoassay. HBV-related mRNA was examined by Northern blot. cccDNA and endoplasmic reticulum stress markers were measured by real-time polymerase chain reaction. The activities of HBV promoters and enhancer regions were examined using luciferase vectors. RESULTS After GGA treatment, hepatitis B surface antigen and hepatitis B e antigen secretion was decreased in all HBV-infected hepatocyte models. HBV-related mRNA was also decreased by GGA treatment, although cccDNA levels were not affected. Additionally, the activity of HBV S1 and S2 promoter region and Enhancer 1/Enhancer 2/core promoter region was reduced by GGA treatment. The mRNA expression of the main transcription factors, hepatocyte nuclear factor 3 and 4 and CCAAT/enhancer binding protein, was also decreased. Further, the expression levels of endoplasmic reticulum stress markers were increased by GGA treatment, which reflected the change in HBV-related antigen secretion. CONCLUSIONS Geranylgeranylacetone treatment reduces HBV-related protein levels by suppressing comprehensive downregulation of HBV promoter and enhancer activity, which might be caused by decreased hepatic transcription factor expression. GGA treatment may enhance anti-HBV effects in combination with other therapies.
Collapse
Affiliation(s)
- Masafumi Haraguchi
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Satoshi Miuma
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazuo Yamamoto
- Biomedical Research Support Center, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Yasuhiko Nakao
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Tatsuki Ichikawa
- Department of Gastroenterology, Nagasaki Harbor Medical Center City Hospital, Nagasaki, Japan
| | - Yasuko Kanda
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ryu Sasaki
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Masanori Fukushima
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yuko Akazawa
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hisamitsu Miyaaki
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazuhiko Nakao
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
28
|
Ailioaie LM, Litscher G. Curcumin and Photobiomodulation in Chronic Viral Hepatitis and Hepatocellular Carcinoma. Int J Mol Sci 2020; 21:7150. [PMID: 32998270 PMCID: PMC7582680 DOI: 10.3390/ijms21197150] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 12/13/2022] Open
Abstract
Immune modulation is a very modern medical field for targeting viral infections. In the race to develop the best immune modulator against viruses, curcumin, as a natural product, is inexpensive, without side effects, and can stimulate very well certain areas of the human immune system. As a bright yellow component of turmeric spice, curcumin has been the subject of thousands of scientific and clinical studies in recent decades to prove its powerful antioxidant properties and anticancer effects. Curcumin has been shown to influence inter- and intracellular signaling pathways, with direct effects on gene expression of the antioxidant proteins and those that regulate the immunity. Experimental studies have shown that curcumin modulates several enzyme systems, reduces nitrosative stress, increases the antioxidant capacity, and decreases the lipid peroxidation, protecting against fatty liver pathogenesis and fibrotic changes. Hepatitis B virus (HBV) affects millions of people worldwide, having sometimes a dramatic evolution to chronic aggressive infection, cirrhosis, and hepatocellular carcinoma. All up-to-date treatments are limited, there is still a gap in the scientific knowledge, and a sterilization cure may not yet be possible with the removal of both covalently closed circular DNA (cccDNA) and the embedded HBV DNA. With a maximum light absorption at 420 nm, the cytotoxicity of curcumin as photosensitizer could be expanded by the intravenous blue laser blood irradiation (IVBLBI) or photobiomodulation in patients with chronic hepatitis B infection, Hepatitis B e-antigen (HBeAg)-positive, noncirrhotic, but nonresponsive to classical therapy. Photobiomodulation increases DNA repair by the biosynthesis of complex molecules with antioxidant properties, the outset of repairing enzyme systems and new phospholipids for regenerating the cell membranes. UltraBioavailable Curcumin and blue laser photobiomodulation could suppress the virus and control better the disease by reducing inflammation/fibrosis and stopping the progression of chronic hepatitis, reversing fibrosis, and diminishing the progression of cirrhosis, and decreasing the incidence of hepatocellular carcinoma. Photodynamic therapy with blue light and curcumin opens new avenues for the effective prevention and cure of chronic liver infections and hepatocellular carcinoma. Blue laser light and UltraBioavailable Curcumin could be a new valuable alternative for medical applications in chronic B viral hepatitis and hepatocarcinoma, saving millions of lives.
Collapse
MESH Headings
- Antineoplastic Agents, Phytogenic/therapeutic use
- Antioxidants/therapeutic use
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/etiology
- Carcinoma, Hepatocellular/radiotherapy
- Carcinoma, Hepatocellular/virology
- Curcumin/therapeutic use
- DNA Repair/radiation effects
- DNA, Circular/antagonists & inhibitors
- DNA, Circular/genetics
- DNA, Circular/metabolism
- DNA, Viral/antagonists & inhibitors
- DNA, Viral/genetics
- DNA, Viral/metabolism
- Hepatitis B e Antigens/genetics
- Hepatitis B e Antigens/immunology
- Hepatitis B virus/drug effects
- Hepatitis B virus/growth & development
- Hepatitis B virus/pathogenicity
- Hepatitis B virus/radiation effects
- Hepatitis B, Chronic/complications
- Hepatitis B, Chronic/drug therapy
- Hepatitis B, Chronic/radiotherapy
- Hepatitis B, Chronic/virology
- Humans
- Immunologic Factors/therapeutic use
- Liver/drug effects
- Liver/immunology
- Liver/pathology
- Liver/radiation effects
- Liver Cirrhosis/drug therapy
- Liver Cirrhosis/etiology
- Liver Cirrhosis/radiotherapy
- Liver Cirrhosis/virology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/etiology
- Liver Neoplasms/radiotherapy
- Liver Neoplasms/virology
- Low-Level Light Therapy/methods
- Photosensitizing Agents/therapeutic use
Collapse
Affiliation(s)
- Laura Marinela Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania;
- Ultramedical & Laser Clinic, 83 Arcu Street, 700135 Iasi, Romania
| | - Gerhard Litscher
- Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine, Research Unit for Complementary and Integrative Laser Medicine, and Traditional Chinese Medicine (TCM) Research Center Graz, Medical University of Graz, Auenbruggerplatz 39, 8036 Graz, Austria
| |
Collapse
|
29
|
Xia C, Tang W, Geng P, Zhu H, Zhou W, Huang H, Zhou P, Shi X. Baicalin down-regulating hepatitis B virus transcription depends on the liver-specific HNF4α-HNF1α axis. Toxicol Appl Pharmacol 2020; 403:115131. [PMID: 32687838 DOI: 10.1016/j.taap.2020.115131] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/06/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
Baicalin (BA) inhibits hepatitis B virus (HBV) RNAs production and reduces levels of the related hepatocyte nuclear factors (HNFs), although the underlying mechanism is unclear. In this study, we investigated the specific pathway by which BA regulates HBV transcription through the HBV-related HNFs. Following transfection of HepG2 cells with pHBV1.2, we observed that BA inhibited the production of HBV RNAs and viral proteins in a time- and dose-dependent manner. These effects were consistent with the downregulation of HNF1α, which was abolished by HNF1α-shRNA. The shRNA of HNF4α, the upstream gene of HNF1α, also remarkedly reduced HNF1α expression and impaired the anti-HBV efficacy of BA, indicating that this function of BA depended on HNF4α/HNF1α axis. Furthermore, chromatin immunoprecipitation assay showed that BA significantly reduced HNF4α-HNF1α transactivation activity. The similar effects of BA were observed in entecavir (ETV)-resistant HBVrtM204V/rtLl80M transfected HepG2 cells. Thus, we proposed a mechanism for the anti-HBV activity of BA in an HNF4α-HNF1α-dependent manner, which impaired HNF4α and HNF1α transactivation, and effectively inhibited HBV transcription and viral replication.
Collapse
Affiliation(s)
- Chengjie Xia
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Wenyi Tang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Ping Geng
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Haiyan Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Wei Zhou
- Department of Chemistry, Fudan University, 220 Han Dan Road, Shanghai 200433, PR China
| | - Hai Huang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Pei Zhou
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Xunlong Shi
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, PR China.
| |
Collapse
|
30
|
Comparison of Serum Hepatitis B Virus RNA Levels and Quasispecies Evolution Patterns between Entecavir and Pegylated-Interferon Mono-treatment in Chronic Hepatitis B Patients. J Clin Microbiol 2020; 58:JCM.00075-20. [PMID: 32554476 PMCID: PMC7448659 DOI: 10.1128/jcm.00075-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/26/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatitis B virus (HBV) RNA may independently predict virological and serological response. This study aimed to compare dynamic changes in serum HBV RNA levels and HBV quasispecies evolution patterns between entecavir and pegylated-interferon mono-treatment in chronic hepatitis B patients and to determine the clinical significance during treatment. TaqMan real-time PCR was used for quantitative analysis. HBV RNA levels were retrospectively determined in serial serum samples from 178 chronic hepatitis B patients who received either entecavir or pegylated-interferon treatment. Hepatitis B virus (HBV) RNA may independently predict virological and serological response. This study aimed to compare dynamic changes in serum HBV RNA levels and HBV quasispecies evolution patterns between entecavir and pegylated-interferon mono-treatment in chronic hepatitis B patients and to determine the clinical significance during treatment. TaqMan real-time PCR was used for quantitative analysis. HBV RNA levels were retrospectively determined in serial serum samples from 178 chronic hepatitis B patients who received either entecavir or pegylated-interferon treatment. Both serum HBV DNA and RNA quasispecies were analyzed via next-generation sequencing. Receiver operating characteristics (ROC) analysis was performed to evaluate the prediction value of individual biomarkers for hepatitis B e antigen (HBeAg) seroconversion. Patients who received pegylated-interferon treatment showed stronger declines in HBV RNA levels than did those who received entecavir treatment. Serum HBV RNA levels were lower in patients with subsequent HBeAg seroconversion. At baseline, the level of HBV RNA was better than other indicators in predicting HBeAg seroconversion. Moreover, the predictive value of serum HBV RNA levels was better in the entecavir group. Baseline HBV RNA exhibited a significantly higher genetic diversity than HBV DNA and had a significant decline after 4 weeks of entecavir treatment. Higher baseline genetic diversity may result in a better outcome in pegylated-interferon-treated patients. Serum HBV RNA levels showed different decline kinetics, and HBV RNA quasispecies showed different evolution patterns in entecavir and pegylated-interferon mono-treatment. Taken together, serum HBV RNA may serve as a promising biomarker of HBeAg seroconversion in patients during antiviral treatment.
Collapse
|
31
|
Goto K, Nishitsuji H, Sugiyama M, Nishida N, Mizokami M, Shimotohno K. Orchestration of Intracellular Circuits by G Protein-Coupled Receptor 39 for Hepatitis B Virus Proliferation. Int J Mol Sci 2020; 21:ijms21165661. [PMID: 32784555 PMCID: PMC7460832 DOI: 10.3390/ijms21165661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Hepatitis B virus (HBV), a highly persistent pathogen causing hepatocellular carcinoma (HCC), takes full advantage of host machinery, presenting therapeutic targets. Here we aimed to identify novel druggable host cellular factors using the reporter HBV we have recently generated. In an RNAi screen of G protein-coupled receptors (GPCRs), GPCR39 (GPR39) appeared as the top hit to facilitate HBV proliferation. Lentiviral overexpression of active GPR39 proteins and an agonist enhanced HBV replication and transcriptional activities of viral promoters, inducing the expression of CCAAT/enhancer binding protein (CEBP)-β (CEBPB). Meanwhile, GPR39 was uncovered to activate the heat shock response, upregulating the expression of proviral heat shock proteins (HSPs). In addition, glioma-associated oncogene homologue signaling, a recently reported target of GPR39, was suggested to inhibit HBV replication and eventually suppress expression of CEBPB and HSPs. Thus, GPR39 provirally governed intracellular circuits simultaneously affecting the carcinopathogenetic gene functions. GPR39 and the regulated signaling networks would serve as antiviral targets, and strategies with selective inhibitors of GPR39 functions can develop host-targeted antiviral therapies preventing HCC.
Collapse
Affiliation(s)
- Kaku Goto
- Correspondence: ; Tel.: +81-47-372-3501; Fax: +81-47-375-4766
| | | | | | | | | | | |
Collapse
|
32
|
Park S, Park ES, Koo JE, Park YK, Lee AR, Dezhbord M, Cho ES, Ahn SH, Kim DH, Lee JH, Lee HC, Kim KH. Entecavir-resistant hepatitis B virus decreases surface antigenicity: A full genome and functional characterization. Liver Int 2020; 40:1564-1577. [PMID: 32216026 DOI: 10.1111/liv.14446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/17/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Since polymerase and surface genes overlap in hepatitis B virus (HBV), an antiviral-induced mutation in the polymerase gene may alter the surface antigenicity in patients with chronic hepatitis B (CHB), but this possibility has not been clearly confirmed. This study aimed to determine the drug susceptibility and surface antigenicity of the patient-derived mutants. PATIENTS AND METHODS Full-length HBV genomes isolated from four entecavir-resistant CHB patients were cloned and sequenced. Around 10 clones of full-length HBV obtained from each patient were analysed and registered in the NCBI GenBank. Representative clones were further characterized by in vitro drug susceptibility and surface antigenicity assays. RESULTS The rtL180M + rtM204V mutations were common among all the clones analysed. Additionally, the ETV resistance mutations rtT184A/L, rtS202G and rtM250V were found among three patients. Most of the ETV-resistant mutants had amino acid alterations within the known epitopes recognized by T- and B-cells in the HBV surface and core antigens. The in vitro drug susceptibility assay showed that all tested clones were resistant to ETV treatment. However, they were all susceptible to ADV and TDF. More importantly, the rtI169T mutation in the RT domain, led to the sF161L mutation in the overlapping S gene, which decreased in surface antigenicity. CONCLUSIONS The ETV resistance mutations can affect the antigenicity of the HBsAg proteins due to changes in the overlapping sequence of this surface antigen. Thus, the apparent decline or disappearance of HBsAg needs to be interpreted cautiously in patients with previous or current antiviral resistance mutations.
Collapse
Affiliation(s)
- Soree Park
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, Konkuk University School of Medicine, Seoul, Korea
| | - Eun-Sook Park
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, Konkuk University School of Medicine, Seoul, Korea
| | - Ja Eun Koo
- Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Yong Kwang Park
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, Konkuk University School of Medicine, Seoul, Korea
| | - Ah Ram Lee
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, Konkuk University School of Medicine, Seoul, Korea
| | - Mehrangiz Dezhbord
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, Konkuk University School of Medicine, Seoul, Korea
| | - Eun Sook Cho
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, Konkuk University School of Medicine, Seoul, Korea
| | - Sung Hyun Ahn
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, Konkuk University School of Medicine, Seoul, Korea
| | - Doo Hyun Kim
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, Konkuk University School of Medicine, Seoul, Korea
| | - Jeong-Hoon Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Han Chu Lee
- Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Kyun-Hwan Kim
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, Konkuk University School of Medicine, Seoul, Korea.,Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Korea
| |
Collapse
|
33
|
Eller C, Heydmann L, Colpitts CC, El Saghire H, Piccioni F, Jühling F, Majzoub K, Pons C, Bach C, Lucifora J, Lupberger J, Nassal M, Cowley GS, Fujiwara N, Hsieh SY, Hoshida Y, Felli E, Pessaux P, Sureau C, Schuster C, Root DE, Verrier ER, Baumert TF. A genome-wide gain-of-function screen identifies CDKN2C as a HBV host factor. Nat Commun 2020; 11:2707. [PMID: 32483149 PMCID: PMC7264273 DOI: 10.1038/s41467-020-16517-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 05/03/2020] [Indexed: 12/21/2022] Open
Abstract
Chronic HBV infection is a major cause of liver disease and cancer worldwide. Approaches for cure are lacking, and the knowledge of virus-host interactions is still limited. Here, we perform a genome-wide gain-of-function screen using a poorly permissive hepatoma cell line to uncover host factors enhancing HBV infection. Validation studies in primary human hepatocytes identified CDKN2C as an important host factor for HBV replication. CDKN2C is overexpressed in highly permissive cells and HBV-infected patients. Mechanistic studies show a role for CDKN2C in inducing cell cycle G1 arrest through inhibition of CDK4/6 associated with the upregulation of HBV transcription enhancers. A correlation between CDKN2C expression and disease progression in HBV-infected patients suggests a role in HBV-induced liver disease. Taken together, we identify a previously undiscovered clinically relevant HBV host factor, allowing the development of improved infectious model systems for drug discovery and the study of the HBV life cycle.
Collapse
Affiliation(s)
- Carla Eller
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, F-67000, Strasbourg, France
| | - Laura Heydmann
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, F-67000, Strasbourg, France
| | - Che C Colpitts
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, F-67000, Strasbourg, France
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Houssein El Saghire
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, F-67000, Strasbourg, France
| | - Federica Piccioni
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Frank Jühling
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, F-67000, Strasbourg, France
| | - Karim Majzoub
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, F-67000, Strasbourg, France
| | - Caroline Pons
- Inserm, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - Charlotte Bach
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, F-67000, Strasbourg, France
| | - Julie Lucifora
- Inserm, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - Joachim Lupberger
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, F-67000, Strasbourg, France
| | - Michael Nassal
- Department of Internal Medicine II/Molecular Biology, University Hospital Freiburg, Freiburg, Germany
| | - Glenn S Cowley
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Naoto Fujiwara
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sen-Yung Hsieh
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Yujin Hoshida
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Emanuele Felli
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, F-67000, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, 67000, Strasbourg, France
| | - Patrick Pessaux
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, F-67000, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, 67000, Strasbourg, France
| | - Camille Sureau
- Laboratoire de Virologie Moléculaire, INTS, Paris, France
| | - Catherine Schuster
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, F-67000, Strasbourg, France
| | - David E Root
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Eloi R Verrier
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, F-67000, Strasbourg, France.
| | - Thomas F Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, F-67000, Strasbourg, France.
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, 67000, Strasbourg, France.
- Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
34
|
SIRT1 enhances hepatitis virus B transcription independent of hepatic autophagy. Biochem Biophys Res Commun 2020; 527:64-70. [PMID: 32446392 DOI: 10.1016/j.bbrc.2020.04.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 02/02/2023]
Abstract
Autophagy is an intracellular process that can lead to the degradation of malfunctioned proteins and damaged organelles to maintain homeostasis during cellular stress. Here, we evaluated the change in hepatitis B virus (HBV) production by regulating hepatic autophagy in HBV-producing cells. We examined focusing on a relation with a positive autophagy regulator, sirtuin1 (SIRT1). Starvation and rapamycin treatment induced autophagy with increasing SIRT1 protein, HBc protein and pregenomic RNA (pgRNA) levels in HBV- producing cells. Knockdown of Atg7 or Atg13 suppressed hepatic autophagy, and it did not change SIRT1 protein, HBc protein or pgRNA levels in HBV- producing cells. Resveratrol, which increases SIRT1 expression and activity, promoted autophagy and increased HBc protein and pgRNA levels. siRNA-mediated knockdown of SIRT1 inhibited autophagy and decreased HBc protein and pgRNA levels. In SIRT1-knockdown cells, starvation promoted autophagy but did not increase HBc protein and pgRNA levels. In conclusion, HBc protein and pgRNA levels are upregulated not by the autophagic process itself but by the SIRT1 expression level.
Collapse
|
35
|
Yang H, Mo J, Xiang Q, Zhao P, Song Y, Yang G, Wu K, Liu Y, Liu W, Wu J. SOX2 Represses Hepatitis B Virus Replication by Binding to the Viral EnhII/Cp and Inhibiting the Promoter Activation. Viruses 2020; 12:v12030273. [PMID: 32121397 PMCID: PMC7150879 DOI: 10.3390/v12030273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/15/2020] [Accepted: 02/25/2020] [Indexed: 12/21/2022] Open
Abstract
Hepatitis B virus (HBV) replication is controlled by four promoters (preS1, preS2, Cp, and Xp) and two enhancers (EnhI and EnhII). EnhII stimulates Cp activity to regulate the transcriptions of precore, core, polymerase, and pregenomic RNAs, and therefore, EnhII/Cp is essential for the regulation of HBV replication. This study revealed a distinct mechanism underlying the suppression of EnhII/Cp activation and HBV replication. On the one hand, the sex determining region Y box2 (SOX2), a transcription factor, is induced by HBV. On the other hand, SOX2, in turn, represses the expression levels of HBV RNAs, HBV core-associated DNA, hepatitis B surface antigen (HBsAg), and hepatitis B e antigen (HBeAg), thereby playing an inhibitory role during HBV replication. Further studies indicated that SOX2 bound to the EnhII/Cp DNA and repressed the promoter activation. With the deletion of the high mobility group (HMG) domain, SOX2 loses the ability to repress EnhII/Cp activation, viral RNA transcription, HBV core-associated DNA replication, HBsAg and HBeAg production, as well as fails to enter the nucleus, demonstrating that the HMG domain is required for the SOX2-mediated repression of HBV replication. Moreover, SOX2 represses HBsAg and HBeAg secretion in BALB/c mice sera, and attenuates HBV 3.5 kb RNA transcription and hepatitis B virus core protein (HBc) production in the liver tissues, demonstrating that SOX2 suppresses HBV replication in mice. Furthermore, the results revealed that the HMG domain was required for SOX2-mediated repression of HBV replication in the mice. Taken together, the above facts indicate that SOX2 acts as a new host restriction factor to repress HBV replication by binding to the viral EnhII/Cp and inhibiting the promoter activation through the HMG domain.
Collapse
Affiliation(s)
- Hua Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (H.Y.); (J.M.); (Q.X.); (P.Z.); (Y.S.); (G.Y.); (K.W.); (Y.L.)
| | - Jiayin Mo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (H.Y.); (J.M.); (Q.X.); (P.Z.); (Y.S.); (G.Y.); (K.W.); (Y.L.)
| | - Qi Xiang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (H.Y.); (J.M.); (Q.X.); (P.Z.); (Y.S.); (G.Y.); (K.W.); (Y.L.)
| | - Peiyi Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (H.Y.); (J.M.); (Q.X.); (P.Z.); (Y.S.); (G.Y.); (K.W.); (Y.L.)
| | - Yunting Song
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (H.Y.); (J.M.); (Q.X.); (P.Z.); (Y.S.); (G.Y.); (K.W.); (Y.L.)
| | - Ge Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (H.Y.); (J.M.); (Q.X.); (P.Z.); (Y.S.); (G.Y.); (K.W.); (Y.L.)
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (H.Y.); (J.M.); (Q.X.); (P.Z.); (Y.S.); (G.Y.); (K.W.); (Y.L.)
| | - Yingle Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (H.Y.); (J.M.); (Q.X.); (P.Z.); (Y.S.); (G.Y.); (K.W.); (Y.L.)
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
| | - Weiyong Liu
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (W.L.); (J.W.); Tel.: +86-27-68754979 (J.W.)
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (H.Y.); (J.M.); (Q.X.); (P.Z.); (Y.S.); (G.Y.); (K.W.); (Y.L.)
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
- Correspondence: (W.L.); (J.W.); Tel.: +86-27-68754979 (J.W.)
| |
Collapse
|
36
|
Shi S, Liu M, Xi J, Liu H, Guan G, Shen C, Guo Z, Zhang T, Xu Q, Kudereti D, Chen X, Wang J, Lu F. Sex-determining region Y box 4 (SOX4) suppresses Hepatitis B virus replication by inhibiting hepatocyte nuclear factor 4α expression. Antiviral Res 2020; 176:104745. [PMID: 32084507 DOI: 10.1016/j.antiviral.2020.104745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 01/10/2020] [Accepted: 02/10/2020] [Indexed: 02/06/2023]
Abstract
Hepatitis B virus (HBV) infection is still a health care crisis in the world, and a considerable number of chronic hepatitis B patients die of end-stage liver diseases, including liver cirrhosis and hepatocellular carcinoma. A previous study has reported that sex-determining region Y box 4 (SOX4) promotes HBV replication by binding to the AACAAAG motif in the viral genome. However, such SOX4 binding site was not found in the genome of the majority of HBV genotype strains. Further, we found that SOX4 inhibited rather than promoted the replication of most HBV strains. In line with this, HBV replication was significantly enhanced when the endogenous SOX4 was knocked down. Moreover, we demonstrated that the SOX4-induced suppression of HBV replication was mainly mediated by hepatocyte nuclear factor 4α (HNF4α). Taken together, our findings suggest that SOX4 plays an important antiviral role by inhibiting HNF4α expression in most HBV strains.
Collapse
Affiliation(s)
- Shu Shi
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Mingchen Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jingyuan Xi
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Hui Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Guiwen Guan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Congle Shen
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Zhengyang Guo
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Ting Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Qiang Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Dilidaer Kudereti
- Department of Microbiology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830011, China
| | - Xiangmei Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jie Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Fengmin Lu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
37
|
Host Transcription Factors in Hepatitis B Virus RNA Synthesis. Viruses 2020; 12:v12020160. [PMID: 32019103 PMCID: PMC7077322 DOI: 10.3390/v12020160] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 02/06/2023] Open
Abstract
The hepatitis B virus (HBV) chronically infects over 250 million people worldwide and is one of the leading causes of liver cancer and hepatocellular carcinoma. HBV persistence is due in part to the highly stable HBV minichromosome or HBV covalently closed circular DNA (cccDNA) that resides in the nucleus. As HBV replication requires the help of host transcription factors to replicate, focusing on host protein–HBV genome interactions may reveal insights into new drug targets against cccDNA. The structural details on such complexes, however, remain poorly defined. In this review, the current literature regarding host transcription factors’ interactions with HBV cccDNA is discussed.
Collapse
|
38
|
Wang J, Huang H, Liu Y, Chen R, Yan Y, Shi S, Xi J, Zou J, Yu G, Feng X, Lu F. HBV Genome and Life Cycle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1179:17-37. [PMID: 31741332 DOI: 10.1007/978-981-13-9151-4_2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chronic hepatitis B virus (HBV) infection remains to be a serious threat to public health and is associated with many liver diseases including chronic hepatitis B (CHB), liver cirrhosis, and hepatocellular carcinoma. Although nucleos(t)ide analogues (NA) and pegylated interferon-α (Peg-IFNα) have been confirmed to be efficient in inhibiting HBV replication, it is difficult to eradicate HBV and achieve the clinical cure of CHB. Therefore, long-term therapy has been recommended to CHB treatment under the current antiviral therapy. In this context, the new antiviral therapy targeting one or multiple critical steps of viral life cycle may be an alternative approach in future. In the last decade, the functional receptor [sodium-taurocholate cotransporting polypeptide (NTCP)] of HBV entry into hepatocytes has been discovered, and the immature nucleocapsids containing the non- or partially reverse-transcribed pregenomic RNA, the nucleocapsids containing double-strand linear DNA (dslDNA), and the empty particles devoid of any HBV nucleic acid have been found to be released into circulation, which have supplemented the life cycle of HBV. The understanding of HBV life cycle may offer a new instruction for searching the potential antiviral targets, and the new viral markers used to monitor the efficacy of antiviral therapy for CHB patients in the future.
Collapse
Affiliation(s)
- Jie Wang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China
| | - Hongxin Huang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China
| | - Yongzhen Liu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China
| | - Ran Chen
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China
| | - Ying Yan
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China
| | - Shu Shi
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China
| | - Jingyuan Xi
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China
| | - Jun Zou
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China
| | - Guangxin Yu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China
| | - Xiaoyu Feng
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China
| | - Fengmin Lu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China.
| |
Collapse
|
39
|
Pan Y, Ke Z, Ye H, Sun L, Ding X, Shen Y, Zhang R, Yuan J. Saikosaponin C exerts anti-HBV effects by attenuating HNF1α and HNF4α expression to suppress HBV pgRNA synthesis. Inflamm Res 2019; 68:1025-1034. [PMID: 31531682 PMCID: PMC7079752 DOI: 10.1007/s00011-019-01284-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/03/2019] [Accepted: 09/07/2019] [Indexed: 02/06/2023] Open
Abstract
Objective Saikosaponin c (SSc), a compound purified from the traditional Chinese herb of Radix Bupleuri was previously identified to exhibit anti-HBV replication activity. However, the mechanism through which SSc acts against HBV remains unknown. In this study, we investigated the mechanism of SSc mediated anti-HBV activity. Methods HepG2.2.15 cells were cultured at 37 ℃ in the presence of 1–40 μg/mL of SSc or DMSO as a control. The expression profile of HBV markers, cytokines, HNF1α and HNF4α were investigated by real-time quantitative PCR, Elisa, Western blot and Dot blotting. Knockdown of HNF1α or HNF4α in HepG2.2.15 cells was mediated by two small siRNAs specifically targeting HNF1α or HNF4α. Results We found that SSc stimulates IL-6 expression, leading to attenuated HNF1α and HNF4α expression, which further mediates suppression of HBV pgRNA synthesis. Knockdown of HNF1α or HNF4α in HepG2.2.15 cells by RNA interference abrogates SSc’s anti-HBV role. Moreover, SSc is effective to both wild-type and drug-resistant HBV mutants. Conclusion SSc inhibits pgRNA synthesis by targeting HNF1α and HNF4α. These results indicate that SSc acts as a promising compound for modulating pgRNA transcription in the therapeutic strategies against HBV infection. Electronic supplementary material The online version of this article (10.1007/s00011-019-01284-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanchao Pan
- Diagnosis and Treatment of Infectious Diseases Research Laboratory, Shenzhen Third People's Hospital, Shenzhen, 518112, China.
| | - Zhiyi Ke
- Diagnosis and Treatment of Infectious Diseases Research Laboratory, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Hong Ye
- Anhui Academy of Medical Sciences, Hefei, 230061, China
| | - Lina Sun
- Diagnosis and Treatment of Infectious Diseases Research Laboratory, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Xiaoyan Ding
- Diagnosis and Treatment of Infectious Diseases Research Laboratory, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Yun Shen
- Diagnosis and Treatment of Infectious Diseases Research Laboratory, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Runze Zhang
- Diagnosis and Treatment of Infectious Diseases Research Laboratory, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Jing Yuan
- Diagnosis and Treatment of Infectious Diseases Research Laboratory, Shenzhen Third People's Hospital, Shenzhen, 518112, China.
| |
Collapse
|
40
|
Yan Y, Allweiss L, Yang D, Kang J, Wang J, Qian X, Zhang T, Liu H, Wang L, Liu S, Sui J, Chen X, Dandri M, Zhao J, Lu F. Down-regulation of cell membrane localized NTCP expression in proliferating hepatocytes prevents hepatitis B virus infection. Emerg Microbes Infect 2019; 8:879-894. [PMID: 31179847 PMCID: PMC6567113 DOI: 10.1080/22221751.2019.1625728] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hepatocyte proliferation could result in the loss of covalently closed circular DNA (cccDNA) and the emergence of cccDNA-cleared nascent hepatocytes, which appear refractory to hepatitis B virus (HBV) reinfection with unknown mechanism(s). Sodium taurocholate cotransporting polypeptide (NTCP) is the functional receptor for HBV entry. In this study, down-regulation of cell membrane localized NTCP expression in proliferating hepatocytes was found to prevent HBV infection in HepG2-NTCP-tet cells and in liver-humanized mice. In patients, lower NTCP protein expression was correlated well with higher levels of hepatocyte proliferation and less HBsAg expression in HBV-related focal nodular hyperplasia (FNH) tissues. Clinically, significantly lower NTCP protein expression was correlated with more active hepatocyte proliferation in CHB patients with severe active necroinflammation and better antiviral treatment outcome. Mechanistically, the activation of cell cycle regulatory genes p53, S-phase kinase-associated protein 2 (SKP2) and cyclin D1 during cell proliferation, as well as proliferative and inflammatory cytokine Interleukin-6 (IL-6) could transcriptionally down-regulate NTCP expression. From these aspects, we conclude that within the milieu of hepatocyte proliferation, down-regulation of cell membrane localized NTCP expression level renders nascent hepatocytes resistant to HBV reinfection. This may accelerate virus clearance during immune-mediated cell death and compensatory proliferation of survival hepatocytes.
Collapse
Affiliation(s)
- Ying Yan
- a State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences , Peking University Health Science Center , Beijing , People's Republic of China
| | - Lena Allweiss
- b Department of Medicine, Center for Internal Medicine , University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Danli Yang
- a State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences , Peking University Health Science Center , Beijing , People's Republic of China
| | - Jingting Kang
- c Institute of Basic Medical Sciences Chinese Academy of Medical Sciences , School of Basic Medicine Peking Union Medical College , Beijing , People's Republic of China
| | - Jianwen Wang
- a State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences , Peking University Health Science Center , Beijing , People's Republic of China
| | - Xiangjun Qian
- a State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences , Peking University Health Science Center , Beijing , People's Republic of China
| | - Ting Zhang
- a State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences , Peking University Health Science Center , Beijing , People's Republic of China
| | - Hui Liu
- a State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences , Peking University Health Science Center , Beijing , People's Republic of China
| | - Lu Wang
- a State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences , Peking University Health Science Center , Beijing , People's Republic of China
| | - Shuhong Liu
- d Department of Pathology and Hepatology , The 5th Medical Centre, Chinese PLA General Hospital , Beijing , People's Republic of China
| | - Jianhua Sui
- e Biologics Research Center , National Institute of Biological Sciences , Beijing , People's Republic of China
| | - Xiangmei Chen
- a State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences , Peking University Health Science Center , Beijing , People's Republic of China
| | - Maura Dandri
- b Department of Medicine, Center for Internal Medicine , University Medical Center Hamburg-Eppendorf , Hamburg , Germany.,f German Center for Infection Research (DZIF) , Hamburg-Lübeck-Borstel-Riems Partner Site , Hamburg , Germany
| | - Jingmin Zhao
- d Department of Pathology and Hepatology , The 5th Medical Centre, Chinese PLA General Hospital , Beijing , People's Republic of China
| | - Fengmin Lu
- a State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences , Peking University Health Science Center , Beijing , People's Republic of China
| |
Collapse
|
41
|
Hu J, Cheng J, Tang L, Hu Z, Luo Y, Li Y, Zhou T, Chang J, Guo JT. Virological Basis for the Cure of Chronic Hepatitis B. ACS Infect Dis 2019; 5:659-674. [PMID: 29893548 DOI: 10.1021/acsinfecdis.8b00081] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatitis B virus (HBV) has infected one-third of world population, and 240 million people are chronic carriers, to whom a curative therapy is still not available. Similar to other viruses, persistent HBV infection relies on the virus to exploit host cell functions to support its replication and efficiently evade host innate and adaptive antiviral immunity. Understanding HBV replication and concomitant host cell interactions is thus instrumental for development of therapeutics to disrupt the virus-host interactions critical for its persistence and cure chronic hepatitis B. Although the currently available cell culture systems of HBV infection are refractory to genome-wide high throughput screening of key host cellular factors essential for and/or regulating HBV replication, classic one-gene (or pathway)-at-a-time studies in the last several decades have already revealed many aspects of HBV-host interactions. An overview of the landscape of HBV-hepatocyte interaction indicates that, in addition to more tightly suppressing viral replication by directly targeting viral proteins, disruption of key viral-host cell interactions to eliminate or inactivate the covalently closed circular (ccc) DNA, the most stable HBV replication intermediate that exists as an episomal minichromosome in the nucleus of infected hepatocyte, is essential to achieve a functional cure of chronic hepatitis B. Moreover, therapeutic targeting of integrated HBV DNA and their transcripts may also be required to induce hepatitis B virus surface antigen (HBsAg) seroclearance and prevent liver carcinogenesis.
Collapse
Affiliation(s)
- Jin Hu
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, 1 Tian-tan Xi-li, Beijing, 100050, China
| | - Junjun Cheng
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Liudi Tang
- Microbiology and Immunology Graduate Program, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, Pennsylvania 19129, United States
| | - Zhanying Hu
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Yue Luo
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
- Institute of Hepatology, Second Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China
| | - Yuhuan Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, 1 Tian-tan Xi-li, Beijing, 100050, China
| | - Tianlun Zhou
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Jinhong Chang
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| |
Collapse
|
42
|
Hamada-Tsutsumi S, Naito Y, Sato S, Takaoka A, Kawashima K, Isogawa M, Ochiya T, Tanaka Y. The antiviral effects of human microRNA miR-302c-3p against hepatitis B virus infection. Aliment Pharmacol Ther 2019; 49:1060-1070. [PMID: 30828831 DOI: 10.1111/apt.15197] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/13/2018] [Accepted: 01/30/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Conventional treatments of chronic hepatitis B virus (HBV) infection rarely achieve a decline of serum hepatitis B surface antigen (HBsAg) levels and eradication of the virus. AIM To elucidate the antiviral mechanisms of a human microRNA, miR-302c-3p, against HBV replication. METHODS The antiviral effect of miR-302c-3p was evaluated in vitro and in vivo by transfecting the miR-302c-3p mimic into HBV-infected HepG2-hNTCP-C4 cells and HBV transgenic mice respectively. RESULTS miR-302c-3p decreased not only HBV replication but also production of HBsAg. Pregenomic RNA and HBsAg mRNA concentrations decreased in the cells treated with miR-302c-3p. Interestingly, the amount of cccDNA was significantly reduced in the miR-302c-3p-treated cells, in association with disappearance of the HBV core protein. An RNA immunoprecipitation assay showed that miR-302c-3p decreased the binding of the HBV polymerase to the pregenomic RNA by hybridising with the ε-loop region. A number of host genes were downregulated in miR-302c-3p-treated cells, including BMPR2 and HNF4A. Knockdown of these two genes by corresponding siRNAs also suppressed HBV replication and HBsAg secretion. The antiviral effect of miR-302c-3p was also observed in HBV transgenic mice. CONCLUSION miR-302c-3p had anti-HBV activity, in vitro and in vivo, via several mechanisms.
Collapse
Affiliation(s)
- Susumu Hamada-Tsutsumi
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yutaka Naito
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Seiichi Sato
- Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Akinori Takaoka
- Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Keigo Kawashima
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Masanori Isogawa
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
43
|
Kim DH, Park ES, Lee AR, Park S, Park YK, Ahn SH, Kang HS, Won JH, Ha YN, Jae B, Kim DS, Chung WC, Song MJ, Kim KH, Park SH, Kim SH, Kim KH. Intracellular interleukin-32γ mediates antiviral activity of cytokines against hepatitis B virus. Nat Commun 2018; 9:3284. [PMID: 30115930 PMCID: PMC6095909 DOI: 10.1038/s41467-018-05782-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 07/26/2018] [Indexed: 02/07/2023] Open
Abstract
Cytokines are involved in early host defense against pathogen infections. In particular, tumor necrosis factor (TNF) and interferon-gamma (IFN-γ) have critical functions in non-cytopathic elimination of hepatitis B virus (HBV) in hepatocytes. However, the molecular mechanisms and mediator molecules are largely unknown. Here we show that interleukin-32 (IL-32) is induced by TNF and IFN-γ in hepatocytes, and inhibits the replication of HBV by acting intracellularly to suppress HBV transcription and replication. The gamma isoform of IL-32 (IL-32γ) inhibits viral enhancer activities by downregulating liver-enriched transcription factors. Our data are validated in both an in vivo HBV mouse model and primary human hepatocytes. This study thus suggests that IL-32γ functions as intracellular effector in hepatocytes for suppressing HBV replication to implicate a possible mechanism of non-cytopathic viral clearance. Cytokines such as TNF and IFN-γ are important for immunity against hepatitis B virus (HBV). Here the authors show that interleukin-32 gamma (IL-32γ) acts downstream of TNF and IFN-γ as an intracellular effector, and that IL-32γ negatively regulates host factors contributing to HBV transcription to promote HBV clearance.
Collapse
Affiliation(s)
- Doo Hyun Kim
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Eun-Sook Park
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Ah Ram Lee
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Soree Park
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Yong Kwang Park
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Sung Hyun Ahn
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Hong Seok Kang
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Ju Hee Won
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Yea Na Ha
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - ByeongJune Jae
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Dong-Sik Kim
- Division of HBP Surgery and Liver Transplantation, Department of Surgery, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Woo-Chang Chung
- Virus-Host Interactions Laboratory, Division of Biotechnology, Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Moon Jung Song
- Virus-Host Interactions Laboratory, Division of Biotechnology, Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Kee-Hwan Kim
- Department of Surgery, Uijeongbu St. Mary's Hospital, Catholic Central Laboratory of Surgery, College of Medicine, The Catholic University of Korea, Seoul 11765, Republic of Korea
| | - Seung Hwa Park
- Department of Anatomy, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Soo-Hyun Kim
- Laboratory of Cytokine Immunology, Veterinary School, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyun-Hwan Kim
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea. .,KU Open Innovation Center, Research Institute of Medical Sciences, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
44
|
Multiple Functions of Cellular FLIP Are Essential for Replication of Hepatitis B Virus. J Virol 2018; 92:JVI.00339-18. [PMID: 29875248 DOI: 10.1128/jvi.00339-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/24/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a leading cause of liver diseases; however, the host factors which facilitate the replication and persistence of HBV are largely unidentified. Cellular FLICE inhibitory protein (c-FLIP) is a typical antiapoptotic protein. In many cases of liver diseases, the expression level of c-FLIP is altered, which affects the fate of hepatocytes. We previously found that c-FLIP and its cleaved form interact with HBV X protein (HBx), which is essential for HBV replication, and regulate diverse cellular signals. In this study, we investigated the role of endogenous c-FLIP in HBV replication and its underlying mechanisms. The knockdown of endogenous c-FLIP revealed that this protein regulates HBV replication through two different mechanisms. (i) c-FLIP interacts with HBx and protects it from ubiquitin-dependent degradation. The N-terminal DED1 domain of c-FLIP is required for HBx stabilization. (ii) c-FLIP regulates the expression or stability of hepatocyte nuclear factors (HNFs), which have critical roles in HBV transcription and maintenance of hepatocytes. c-FLIP regulates the stability of HNFs through physical interactions. We verified our findings in three HBV infection systems: HepG2-NTCP cells, differentiated HepaRG cells, and primary human hepatocytes. In conclusion, our results identify c-FLIP as an essential factor in HBV replication. c-FLIP regulates viral replication through its multiple effects on viral and host proteins that have critical roles in HBV replication.IMPORTANCE Although the chronic hepatitis B virus (HBV) infection still poses a major health concern, the host factors which are required for the replication of HBV are largely uncharacterized. Our studies identify cellular FLICE inhibitory protein (c-FLIP) as an essential factor in HBV replication. We found the dual roles of c-FLIP in regulation of HBV replication: c-FLIP interacts with HBx and enhances its stability and regulates the expression or stability of hepatocyte nuclear factors which are essential for transcription of HBV genome. Our findings may provide a new target for intervention in persistent HBV infection.
Collapse
|
45
|
Tan G, Song H, Xu F, Cheng G. When Hepatitis B Virus Meets Interferons. Front Microbiol 2018; 9:1611. [PMID: 30072974 PMCID: PMC6058040 DOI: 10.3389/fmicb.2018.01611] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection imposes a severe burden on global public health. Currently, there are no curative therapies for millions of chronic HBV-infected patients (Lok et al., 2017). Interferon (IFN; including pegylated IFN) is an approved anti-HBV drug that not only exerts direct antiviral activity, but also augments immunity against HBV infection. Through a systematic review of the literature, here we summarize and present recent progress in research regarding the interactions between IFN and HBV as well as dissect the antiviral mechanisms of IFN. We focus on inhibition of HBV replication by IFN-stimulated genes (ISGs) as well as inhibition of IFN signaling by HBV and viral proteins. Finally, we briefly discuss current IFN-based HBV treatment strategies. This review may help to better understand the mechanisms involved in the therapeutic action of IFN as well as the crosstalk between IFN and HBV, and facilitate the development of both direct-acting and immunology-based new HBV drugs.
Collapse
Affiliation(s)
- Guangyun Tan
- Department of Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Hongxiao Song
- Department of Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Fengchao Xu
- Department of Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Genhong Cheng
- Department of Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.,Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States.,Center of System Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China
| |
Collapse
|
46
|
Song M, Sun Y, Tian J, He W, Xu G, Jing Z, Li W. Silencing Retinoid X Receptor Alpha Expression Enhances Early-Stage Hepatitis B Virus Infection In Cell Cultures. J Virol 2018; 92:e01771-17. [PMID: 29437960 PMCID: PMC5874418 DOI: 10.1128/jvi.01771-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 01/12/2018] [Indexed: 12/23/2022] Open
Abstract
Multiple steps of the life cycle of hepatitis B virus (HBV) are known to be coupled to hepatic metabolism. However, the details of involvement of the hepatic metabolic milieu in HBV infection remain incompletely understood. Hepatic lipid metabolism is controlled by a complicated transcription factor network centered on retinoid X receptor alpha (RXRα). Here, we report that RXRα negatively regulates HBV infection at an early stage in cell cultures. The RXR-specific agonist bexarotene inhibits HBV in HepG2 cells expressing the sodium taurocholate cotransporting polypeptide (NTCP) (HepG2-NTCP), HepaRG cells, and primary Tupaia hepatocytes (PTHs); reducing RXRα expression significantly enhanced HBV infection in the cells. Transcriptome sequencing (RNA-seq) analysis of HepG2-NTCP cells with a disrupted RXRα gene revealed that reduced gene expression in arachidonic acid (AA)/eicosanoid biosynthesis pathways, including the AA synthases phospholipase A2 group IIA (PLA2G2A), is associated with increased HBV infection. Moreover, exogenous treatment of AA inhibits HBV infection in HepG2-NTCP cells. These data demonstrate that RXRα is an important cellular factor in modulating HBV infection and implicate the participation of AA/eicosanoid biosynthesis pathways in the regulation of HBV infection.IMPORTANCE Understanding how HBV infection is connected with hepatic lipid metabolism may provide new insights into virus infection and its pathogenesis. By a series of genetic studies in combination with transcriptome analysis and pharmacological assays, we here investigated the role of cellular retinoid X receptor alpha (RXRα), a crucial transcription factor for controlling hepatic lipid metabolism, in de novo HBV infection in cell cultures. We found that silencing of RXRα resulted in elevated HBV covalently closed circular DNA (cccDNA) formation and viral antigen production, while activation of RXRα reduced HBV infection efficiency. Our results also showed that silencing phospholipase A2 group IIA (PLA2G2A), a key enzyme of arachidonic acid (AA) synthases, enhanced HBV infection efficiency in HepG2-NTCP cells and that exogenous AA treatment reduced de novo HBV infection in the cells. These findings unveil RXRα as an important cellular factor in modulating HBV infection and may point to a new strategy for host-targeted therapies against HBV.
Collapse
Affiliation(s)
- Mei Song
- Graduate Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Institute of Biological Sciences, Beijing, China
| | - Yinyan Sun
- National Institute of Biological Sciences, Beijing, China
| | - Ji Tian
- National Institute of Biological Sciences, Beijing, China
- Graduate Program, School of Life Science, Tsinghua University, Beijing, China
| | - Wenhui He
- National Institute of Biological Sciences, Beijing, China
| | - Guangwei Xu
- National Institute of Biological Sciences, Beijing, China
| | - Zhiyi Jing
- National Institute of Biological Sciences, Beijing, China
| | - Wenhui Li
- Graduate Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Institute of Biological Sciences, Beijing, China
| |
Collapse
|
47
|
Peretinoin, an Acyclic Retinoid, Inhibits Hepatitis B Virus Replication by Suppressing Sphingosine Metabolic Pathway In Vitro. Int J Mol Sci 2018; 19:ijms19020108. [PMID: 29360739 PMCID: PMC5855541 DOI: 10.3390/ijms19020108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/10/2018] [Accepted: 01/17/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) frequently develops from hepatitis C virus (HCV) and hepatitis B virus (HBV) infection. We previously reported that peretinoin, an acyclic retinoid, inhibits HCV replication. This study aimed to examine the influence of peretinoin on the HBV lifecycle. HBV-DNA and covalently closed circular DNA (cccDNA) were evaluated by a qPCR method in HepG2.2.15 cells. Peretinoin significantly reduced the levels of intracellular HBV-DNA, nuclear cccDNA, and HBV transcript at a concentration that did not induce cytotoxicity. Conversely, other retinoids, such as 9-cis, 13-cis retinoic acid (RA), and all-trans-retinoic acid (ATRA), had no effect or rather increased HBV replication. Mechanistically, although peretinoin increased the expression of HBV-related transcription factors, as observed for other retinoids, peretinoin enhanced the binding of histone deacetylase 1 (HDAC1) to cccDNA in the nucleus and negatively regulated HBV transcription. Moreover, peretinoin significantly inhibited the expression of SPHK1, a potential inhibitor of HDAC activity, and might be involved in hepatic inflammation, fibrosis, and HCC. SPHK1 overexpression in cells cancelled the inhibition of HBV replication induced by peretinoin. This indicates that peretinoin activates HDAC1 and thereby suppresses HBV replication by inhibiting the sphingosine metabolic pathway. Therefore, peretinoin may be a novel therapeutic agent for HBV replication and chemoprevention against HCC.
Collapse
|
48
|
Wei ZQ, Zhang YH, Ke CZ, Chen HX, Ren P, He YL, Hu P, Ma DQ, Luo J, Meng ZJ. Curcumin inhibits hepatitis B virus infection by down-regulating cccDNA-bound histone acetylation. World J Gastroenterol 2017; 23:6252-6260. [PMID: 28974891 PMCID: PMC5603491 DOI: 10.3748/wjg.v23.i34.6252] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/29/2017] [Accepted: 08/15/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the potential effect of curcumin on hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) and the underlying mechanism. METHODS A HepG2.2.15 cell line stably transfected with HBV was treated with curcumin, and HBV surface antigen (HBsAg) and e antigen (HBeAg) expression levels were assessed by ELISA. Intracellular HBV DNA replication intermediates and cccDNA were detected by Southern blot and real-time PCR, respectively. The acetylation levels of histones H3 and H4 were measured by Western blot. H3/H4-bound cccDNA was detected by chromatin immunoprecipitation (ChIP) assays. The deacetylase inhibitors trichostatin A and sodium butyrate were used to study the mechanism of action for curcumin. Additionally, short interfering RNAs (siRNAs) targeting HBV were tested along with curcumin. RESULTS Curcumin treatment led to time- and dose-dependent reductions in HBsAg and HBeAg expression and significant reductions in intracellular HBV DNA replication intermediates and HBV cccDNA. After treatment with 20 μmol/L curcumin for 2 d, HBsAg and cccDNA levels in HepG2.2.15 cells were reduced by up to 57.7% (P < 0.01) and 75.5% (P < 0.01), respectively, compared with levels in non-treated cells. Meanwhile, time- and dose-dependent reductions in the histone H3 acetylation levels were also detected upon treatment with curcumin, accompanied by reductions in H3- and H4-bound cccDNA. Furthermore, the deacetylase inhibitors trichostatin A and sodium butyrate could block the effects of curcumin. Additionally, transfection of siRNAs targeting HBV enhanced the inhibitory effects of curcumin. CONCLUSION Curcumin inhibits HBV gene replication via down-regulation of cccDNA-bound histone acetylation and has the potential to be developed as a cccDNA-targeting antiviral agent for hepatitis B.
Collapse
Affiliation(s)
- Zhi-Qiang Wei
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
- Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Yong-Hong Zhang
- Institute of Wudang Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Chang-Zheng Ke
- Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Hong-Xia Chen
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Pan Ren
- Hubei University of Chinese Medicine, Wuhan 430000, Hubei Province, China
| | - Yu-Lin He
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Pei Hu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 430000, Hubei Province, China
| | - De-Qiang Ma
- Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Jie Luo
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Zhong-Ji Meng
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
- Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| |
Collapse
|